Network File System Version 4 C. Lever, Ed.

I nternet-Draft Oracl e
bsol etes: 5666 (if approved) W Si npson
I ntended status: Standards Track DayDr eaner
Expi res: June 16, 2016 T. Tal pey

M crosoft

Decenber 14, 2015

Renote Direct Menory Access Transport for Renote Procedure Call
draft-ietf-nfsv4-rfc5666bis-01

Abst ract

Thi s docunment specifies a protocol for conveying Renote Procedure
Call (RPC) nessages on physical transports capable of Renote Direct
Menory Access (RDMA). The RDMA transport binding enables efficient
bul k-data transport over hi gh-speed networks with mininal change to
RPC applications. It requires no revision to application RPC
protocols or the RPC protocol itself. This docunment obsol etes RFC
5666.

Status of This Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups nmay also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on June 16, 2016
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents

Lever, et al. Expi res June 16, 2016 [Page 1]

Internet-Draft RDVA Transport for

RPC

Decenber 2015

carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD Li cense.

Tabl e of Contents

1. Introduction .
1.1. Requirenents Language .
1.2. RPC Over RDVA Transports

2. Changes Since RFC 5666 .
.1. Changes To The Specifi catl on
.2. Changes To The Protocol
3. Termnology . .
.1. Renote Pr ocedure CaI I s
.2. Renpote Direct Menory Access .
4. RPC-Over-RDVA Protocol Franmework
1. Transfer Mdels .
RPC Message Fram ng .
Fl ow Control . .
XDR Encoding Wth Chunks
Dat a Exchange . .

NN

ww

rAABRSL

2

3

4

5

6. Message Size . .

RPC- Over - RDVA | n Oper atl on

1. Fixed Header Fields .

2. Chunk Lists .

3 For mi ng Messages

4 Menory Registration .

5 Handling Errors .

6 XDR Language Descri ptl on

7 Deprecated Protocol El enents

Upper Layer Binding Specifications
Determning DDP-Eligibility .

. Wite List Odering . .

. DDPEI|g|b|I|ty\foIat|on.
O her Binding Information .

RPC Bi nd Paraneters . .

i -Directional RPC Over- RDI\/A

.1. RPC Direction . . .

.2. Backward Direction FI ow Cont roI

aoaoaoaoaa

SRS

1.
2
3
4.
Bi

00 00 00

9. Transport Protocol Extensibility

©

10. Security Considerations .
10.1. Menory Protection . . .
10.2. Using GSS Wth RPC—O/er—RDNA

.3. Conventions For Backward QOperation
.4. Backward Direction Upper Layer Binding

.1. Bunping The RPC-over- RDVA Versi oh

Lever, et al. Expi res June 16, 2016

cCOOTUTUhbhwWWW

Internet-Draft RDVA Transport for RPC Decenber 2015

11. | ANA Considerations . 46
12. Acknow edgments L L 4
13. Appendices L L Lo e s 4A
13.1. Appendix 1: XDR Exanples 47
14. References 4
14. 1. Normati ve References 49
14. 2. Informati ve References b0
Authors’ Addresses B2
1. Introduction

Thi s docunent obsol etes RFC 5666; however, the protocol specified by
this docunent is based on existing interoperating inplenmentations of
the RPC-over-RDVA Version One protocol. The new specification
clarifies text that is subject to nmultiple interpretations and

el i mi nates support for uninpl enented RPC-over- RDVA Versi on One
protocol elenents. In addition, it introduces conventions that
enabl e bi-directional RPC-over-RDVA operation

1.1. Requirenents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

1.2. RPC Over RDVMA Transports

Renote Direct Menory Access (RDMA) [RFC5040] [RFC5041] [IB] is a
techni que for noving data efficiently between end nodes. By
directing data into destination buffers as it is sent on a network
and placing it via direct nenory access by hardware, the benefits of
faster transfers and reduced host overhead are obtai ned.

Open Network Conputing Renote Procedure Call (ONC RPC, or sinply,

RPC) [RFC5531] is a renote procedure call protocol that runs over a
variety of transports. Mst RPC inplenmentations today use UDP or
TCP. On UDP, RPC nessages are encapsul ated inside datagrans, while
on a TCP byte stream RPC nessages are delineated by a record marking
protocol. An RDMVA transport al so conveys RPC nessages in a specific
fashi on that nust be fully described if RPC inplenentations are to

i nt eroperate.

RDVA transports present senantics different fromeither UDP or TCP
They retain nmessage delineations |like UDP, but provide a reliable and
sequenced data transfer like TCP. They also provide an efficient

bul k-transfer service not provided by UDP or TCP. RDMA transports
are therefore appropriately viewed as a new transport type by RPC

Lever, et al. Expi res June 16, 2016 [Page 3]

Internet-Draft RDVA Transport for RPC Decenber 2015

2

2

RDVA as a transport can enhance the perfornmance of RPC protocols that
move | arge quantities of data, since RDMA hardware excels at noving
data efficiently between host nenory and a hi gh-speed network with
little host CPU involvenent. |In this context, the Network File
System (NFS) protocols as described in [RFCL094], [RFC1813],

[RFC7530], [RFC5661], and future NFSv4 ninor verions are obvious
beneficiaries of RDMA transports. A conplete problem statenent is

di scussed in [RFC5532], and NFSv4-rel ated issues are discussed in

[RFC5661]. Many ot her RPC-based protocols can al so benefit.

Al t hough the RDMA transport described here can provide relatively
transparent support for any RPC application, this docunent also
descri bes nechani sns that can optim ze data transfer further, given
nmore active participation by RPC applications.

Changes Since RFC 5666
1. Changes To The Specification

The followi ng alterations have been made to the RPC-over-RDMA Version
One specification

0 Section 2 has been expanded to introduce and explain key RPC, XDR
and RDMVA terninology. These terms are now used consistently
t hroughout the specification. This change was necesssary because
impl ementers familiar with RDVA are often not familiar with the
mechani cs of RPC, and vice versa

0 Section 3 has been re-organized and split into sub-sections to
facilitate locating specific requirenents and definitions.

0 Section 4 and 5 have been combined for clarity and to inprove the
organi zation of this information

o0 The XDR definition of RPC-over-RDVA Version One has been updat ed
(wi thout on-the-wire changes) to align with the terns and concepts
introduced in this specification

o The specification of the optional Connection Configuration
Prot ocol has been renoved fromthe specification, as there are no
known i npl enent ati ons of the protocol

0 Sections discussing requirenents for Upper Layer Bindings have
been added.

0 A section discussing RPCover-RDVA protocol extensibility has been
added.

Lever, et al. Expi res June 16, 2016 [Page 4]

Internet-Draft RDVA Transport for RPC Decenber 2015

2

3.

3.

2. Changes To The Protocol

Wil e the protocol described herein interoperates with existing
i mpl enment ati ons of [RFC5666], the foll owing changes have been nade
relative to the protocol described in that docunent:

0 Support for the Read-Read transfer nodel has been renoved. Read-
Read is a slower transfer nodel than Read-Wite, thus inplenenters
have chosen not to support it.

0 Support for sending the RDVA MSGP nessage type has been
deprecated. This docunent instructs senders not to use it, but
receivers nmust continue to recognize it.

RDMA_ MSGP has no benefit for RPC prograns that place bul k payl oad
itens at positions other than at the end of their argunent or
result lists, as is comobn with NFSv4 COVPOUND RPCs [RFC7530].
Simlarly it is not beneficial when a connection’s inline
threshold is significantly smaller than the system page size, as
is typical for RPC over-RDVA Version One inplenentations

0 Specific requirenents related to handling XDR round-up and
abstract data types have been added.

0 O ear guidance about Send and Receive buffer size has been added.
Thi s enabl es better decisions about when to provide and use the
Reply chunk.

0 A section specifying bi-directional RPC operation on RPC- over- RDVA
has been added. This enables the NFSv4.1 backchannel [RFC5661] on
RPC- over - RDMA Ver si on One transports when both endpoints support
the new functionality.

The protocol version nunber has not been changed because the protoco
specified in this docunent fully interoperates with inplenentations
of the RPC-over-RDVA Version One protocol specified in [RFC5666].
Ter m nol ogy

1. Renote Procedure Calls

This section introduces key el ements of the Renpte Procedure Cal

[RFC5531] and External Data Representation [RFC4506] protocols upon
whi ch RPC- over- RDVA Version One is constructed

Lever, et al. Expi res June 16, 2016 [Page 5]

Internet-Draft RDVA Transport for RPC Decenber 2015

3.1.1. Upper Layer Protocols

Renote Procedure Calls are an abstraction used to inplenent the
operations of an "upper |layer protocol," sonetines referred to as a
ULP. One exanple of such a protocol is the Network File System
Version 4.0 [RFC7530] .

3.1.2. Requesters And Responders

Li ke a local procedure call, every Renote Procedure Call has a set of
"argunents" and a set of "results". A calling context is not allowed
to proceed until the procedure’s results are available to it. Unlike
a |l ocal procedure call, the called procedure is executed renotely
rather than in the local application’s context.

The RPC protocol as described in [RFC5531] is fundanentally a
nmessage- passi ng protocol between one server and one or nore clients.
ONC RPC transactions are nade up of two types of nessages:

CALL Message
A CALL nessage, or "Call", requests that work be done. A Call is
designated by the value CALL in the nessage’s nsg type field. An
arbitrary unique value is placed in the nessage’s xid field.

REPLY Message
A REPLY nessage, or "Reply", reports the results of work requested
by a Call. A Reply is designated by the value REPLY in the
message’s nsg _type field. The value contained in the nessage's
xid field is copied fromthe Call whose results are being
reported.

An RPC client endpoint, or "requester", serializes an RPC call’s
argunents and conveys themto a server endpoint via an RPC call
message. This nessage contains an RPC protocol header, a header
descri bing the requested upper |ayer operation, and all argunents.

The server endpoint, or "responder”, deserializes the argunents and
processes the requested operation. It then serializes the
operation’s results into another byte stream This byte streamis
conveyed back to the requester via an RPC reply nessage. This
message contains an RPC protocol header, a header describing the
upper layer reply, and all results. The requester deserializes the
results and allows the original caller to proceed.

RPC-over-RDVA is a connection-oriented RPC transport. \Wen a
connection-oriented transport is used, ONC RPC client endpoints are
responsible for initiating transport connections, while ONC RPC
service endpoints wait passively for inconing connection requests.

Lever, et al. Expi res June 16, 2016 [Page 6]

Internet-Draft RDVA Transport for RPC Decenber 2015

3.1.3. External Data Representation

In a heterogenous environnment, one cannot assunme that all requesters
and responders represent data the same way. RPC uses eXternal Data
Representation, or XDR, to translate data types and serialize
argunents and results. The XDR protocol encodes data independent of
t he endi anness or size of host-native data types, allow ng

unambi guous decodi ng of data on the receiving end. RPC prograns are
specified by witing an XDR definition of their procedures, argunent
data types, and result data types.

XDR assunes that the nunmber of bits in a byte (octet) and their order
are the sane on both endpoints and on the physical network. The
smal l est indivisible unit of XDR encoding is a group of four octets
inlittle-endian order. XDR also flattens lists, arrays, and other
abstract data types so they can be conveyed as a sinple stream of

byt es.

A serialized streamof bytes that is the result of XDR encoding is
referred to as an "XDR stream " A sendi ng endpoi nt encodes native
data into an XDR stream and then transnmits that streamto a receiver.
A receiving endpoint decodes inconmng XDR byte streans into its
native data representation fornmat.

The function of an RPC transport is to convey RPC nessages, each
encoded as a separate XDR stream from one endpoint to another.

3.1.3.1. XDR Opaque Data

Sonmetimes a data item nust be transferred as-is, wthout encoding or
decoding. Such a data itemis referred to as "opaque data." XDR
encodi ng pl aces opaque data itens directly into an XDR stream w t hout
altering its content in any way. Upper Layer Protocols or
applications performany needed data translation in this case.
Exanpl es of opaque data itens include the contents of files, and
generic byte strings.

3.1.3.2. XDR Round-up

The nunber of octets in a variable-size data item precedes that item
in the encoding stream |If the size of an encoded data itemis not a
mul ti ple of four octets, octets containing zero are added to the end
of the itemso that the next encoded data itemstarts on a four-octet
boundary. The encoded size of the itemis not changed by the
addition of the extra octets.

Lever, et al. Expi res June 16, 2016 [Page 7]

Internet-Draft RDVA Transport for RPC Decenber 2015

This technique is referred to as "XDR round-up,"” and the extra octets
are referred to as "XDR paddi ng". The content of XDR pad octets is
i gnored by receivers.

3.2. Renote Direct Menory Access

RPC requesters and responders can be nade nore efficient if large RPC
messages are transferred by a third party such as intelligent network
interface hardware (data novenent offload), and placed in the
receiver’'s nenory so that no additional adjustnent of data alignnent
has to be nade (direct data placenent). Renote Direct Menory Access
enabl es both optinizations.

3.2.1. Direct Data Pl acenent

Very often, RPC inplenentations copy the contents of RPC nessages
into a buffer before being sent. An efficient RPC inplenentation
sends bul k data without copying it into a separate send buffer first.

However, socket-based RPC i npl enentations are often unable to receive
data directly into its final place in nmenory. Receivers often need
to copy inconmng data to finish an RPC operation; sonetines, only to
adj ust data alignnent.

In this docunent, "RDMA" refers to the physical nechani sm an RDVA
transport utilizes when noving data. Although it nmay not be
efficient, before an RDVA transfer a sender may copy data into an
internmedi ate buffer before an RDVA transfer. After an RDVA transfer
a receiver may copy that data again to its final destination.

Thi s docunment uses the term"direct data placenment” (or DDP) to refer
specifically to an optim zed data transfer where it is unnecessary
for a receiving host’s CPU to copy transferred data to another
location after it has been received. Not all RDMA-based data
transfer qualifies as Direct Data Placenent, and DDP can be achieved
usi ng non- RDMA nechani sns.

3.2.2. RDMA Transport Requirenents

The RPC-over-RDVA Version One protocol assunmes the physical transport
provides the foll owing abstract operations. A nore conplete
di scussion of these operations is found in [RFC5040].

Regi st ered Menory
Regi stered nmenory is a segnent of nenory that is assigned a
steering tag that tenporarily pernmts access by the RDVMA provider
to performdata transfer operations. The RPC over-RDVA Version
One protocol assunes that each segnent of registered nenory MJST

Lever, et al. Expi res June 16, 2016 [Page 8]

Internet-Draft RDVA Transport for RPC Decenber 2015

be identified with a steering tag of no nore than 32 bits and
menory addresses of up to 64 bits in |ength.

RDVA Send
The RDVA provider supports an RDVMA Send operation, with conpletion
signal ed on the receiving peer after data has been placed in a
pre-posted nmenory segment. Sends conplete at the receiver in the
order they were issued at the sender. The ampount of data
transferred by an RDMA Send operation is limted by the size of
the renote pre-posted nenory segnent.

RDVA Recei ve
The RDMA provi der supports an RDVA Receive operation to receive
data conveyed by incom ng RDMA Send operations. To reduce the
anount of menory that nust rermain pinned awaiting inconm ng Sends,
the anmobunt of pre-posted nenory is limted. Flowcontrol to
prevent overrunni ng receiver resources is provided by the RDVA
consumer (in this case, the RPC over-RDVA Version One protocol).

RDVA Wite
The RDVA provider supports an RDVA Wite operation to directly
pl ace data in renote nmenory. The local host initiates an RDVA
Wite, and conpletion is signaled there; no conpletion is signaled
on the renote. The Iocal host provides a steering tag, nenory
address, and length of the renote’s nmenory segnent.

RDVA Wites are not necessarily ordered with respect to one

anot her, but are ordered with respect to RDVMA Sends. A subsequent
RDVA Send conpl etion obtained at the wite initiator guarantees
that prior RDOVA Wite data has been successfully placed in the
renote peer’s nenory.

RDVA Read
The RDVA provider supports an RDMA Read operation to directly
pl ace peer source data in the read initiator’s nenory. The |oca
host initiates an RDMA Read, and conpletion is signaled there; no
completion is signaled on the renote. The |ocal host provides
steering tags, nmenory addresses, and a length for the renote
source and | ocal destination nmenory segments.

The renote peer receives no notification of RDMA Read conpl etion
The | ocal host signals conpletion as part of an RDMA Send nessage
so that the renote peer can rel ease steering tags and subsequently
free associ ated source nenory segments

The RPC-over-RDVA Version One protocol is designed to be carried over

RDVA transports that support the above abstract operations. This
protocol conveys to the RPC peer information sufficient for that RPC

Lever, et al. Expi res June 16, 2016 [Page 9]

Internet-Draft RDVA Transport for RPC Decenber 2015

4.

4.

peer to direct an RDVMA | ayer to performtransfers containing RPC data
and to conmunicate their result(s). For exanple, it is readily
carried over RDVA transports such as Internet Wde Area RDVA Protocol
(i WARP) [RFC5040] [RFC5041].

RPC- Over - RDMA Pr ot ocol Fr anmewor k
1. Transfer Models

A "transfer nodel" designates which endpoint is responsible for
perform ng RDMA Read and Wite operations. To enable these
operations, the peer endpoint first exposes segnents of its nmenory to
t he endpoint perfornming the RDMA Read and Wite operations.

Read- Read
Request ers expose their nenory to the responder, and the responder
exposes its nenory to requesters. The responder enpl oys RDVA Read
operations to convey RPC argunents or whole RPC calls. Requesters
enpl oy RDVA Read operations to convey RPC results or whole RPC
relies.

Wite-Wite
Request ers expose their nenory to the responder, and the responder
exposes its nenory to requesters. Requesters enploy RDVA Wite
operations to convey RPC argunments or whole RPC calls. The
responder enploys RDMA Wite operations to convey RPC results or
whol e RPC relies.

Read-Wite
Request ers expose their nenory to the responder, but the responder
does not expose its nenory. The responder enpl oys RDVA Read
operations to convey RPC argunments or whole RPC calls. The
responder enploys RDMA Wite operations to convey RPC results or
whol e RPC relies.

Wi te-Read
The responder exposes its nenory to requesters, but requesters do
not expose their nenory. Requesters enploy RDMA Wite operations
to convey RPC argunents or whole RPC calls. Requesters enploy
RDVA Read operations to convey RPC results or whole RPC relies.

[RFC5666] specifies the use of both the Read-Read and the Read-Wite
Transfer Mdel. Al current RPC over-RDVA Version One

i npl ement ati ons use the Read-Wite Transfer Mdel. Use of the Read-
Read Transfer Moddel by RPC- over-RDVA Version One inplenentations is
no |l onger supported. Oher Transfer Mdels nmay be used by a future
versi on of RPC-over - RDVA.

Lever, et al. Expi res June 16, 2016 [Page 10]

Internet-Draft RDVA Transport for RPC Decenber 2015

4.2. RPC Message Frani ng

During transm ssion, the XDR stream contai ning an RPC nessage is
preceded by an RPC-over-RDMA header. This header is anal ogous to the
record marking used for RPC over TCP but is nore extensive, since
RDVA transports support several nodes of data transfer.

Al'l transfers of an RPC nessage begin with an RDVA Send t hat
transfers an RPC-over- RDMA header and part or all of the accompanying
RPC nessage. Because the size of what may be transnitted via RDVA
Send is linted by the size of the receiver’'s pre-posted buffers, the
RPC- over - RDVA transport provides a nunber of nethods to reduce the
amount transferred via RDVA Send. Parts of RPC nessages not
transferred via RDVA Send are transferred using RDVMA Read or RDVA
Wite operations.

RPC- over - RDMA frami ng replaces all other RPC framing (such as TCP
record marki ng) when used atop an RPC-over-RDVA associ ation, even
when the underlying RDVA protocol may itself be |layered atop a
transport with a defined RPC frami ng (such as TCP).

It is however possible for RPC-over-RDVA to be dynanically enabled in
the course of negotiating the use of RDVA via an Upper Layer Protocol
exchange. Because RPC framing delinmts an entire RPC request or
reply, the resulting shift in franmi ng nust occur between distinct RPC
messages, and in concert with the underlying transport.

4.3. Flow Control

It is critical to provide RDVA Send flow control for an RDVA
connection. RDMA receive operations can fail if a pre-posted receive
buffer is not available to accept an incom ng RDVA Send, and repeated
occurrences of such errors can be fatal to the connection. This is a
departure fromconventional TCP/IP networking where buffers are

al | ocated dynami cally as part of receiving nessages.

Fl ow control for RDMA Send operations directed to the responder is
i mpl emented as a sinple request/grant protocol in the RPC over- RDVA
header associated with each RPC nessage (Section 5.1.3 has details).

0 The RPC-over-RDVA header for RPC call nessages contains a
requested credit value for the responder. This is the maxi num
number of RPC replies the requester can handle at once,

i ndependent of how many RPCs are in flight at that nonment. The
requester MAY dynamically adjust the requested credit value to
match its expected needs.

Lever, et al. Expi res June 16, 2016 [Page 11]

Internet-Draft RDVA Transport for RPC Decenber 2015

0 The RPC-over-RDVA header for RPC reply nmessages provides the
granted result. This is the maxi num nunber of RPC calls the
responder can handle at once, without regard to how many RPCs are
in flight at that nonent. The granted value MJUST NOT be zero,
since such a value would result in deadl ock. The responder NAY
dynamically adjust the granted credit value to match its needs or
policies (e.g. to accommpdate the avail able resources in a shared
recei ve queue).

The requester MJST NOT send unacknow edged requests in excess of this
granted responder credit Iimt. |If the limt is exceeded, the RDVA

| ayer may signal an error, possibly ternminating the connection. Even
if an RDVA | ayer error does not occur, the responder MAY handl e
excess requests or return an RPC |l ayer error to the requester

While RPC calls conplete in any order, the current flow control limt
at the responder is known to the requester fromthe Send ordering
properties. It is always the |ower of the requested and granted

credit values, mnus the nunber of requests in flight. Advertised
credit values are not altered because individual RPCs are started or
conpl et ed.

On occasion a requester or responder may need to adjust the anount of
resources available to a connection. Wen this happens, the
responder needs to ensure that a credit increase is effected (i.e.
receives are posted) before the next reply is sent.

Certain RDVA inplenmentations nmay i npose additional flow contro
restrictions, such as linits on RDMA Read operations in progress at
the responder. Accomodation of such restrictions is considered the
responsibility of each RPC-over-RDVA Version One inplenmentation

4.3.1. Initial Connection State
There are two operational paranmeters for each connection

Credit Limt
As described above, the total nunber of responder receive buffers
is a connection’s credit limt. The credit Iimt is advertised in
the RPC-over-RDVA header in each RPC nessage, and can change
during the lifetine of a connection

Inline Threshol d
The size of the receiver’s smallest posted receive buffer is the
| argest size message that a sender can convey with an RDVA Send
operation, and is known as a connection’s "inline threshold."

Lever, et al. Expi res June 16, 2016 [Page 12]

Internet-Draft RDVA Transport for RPC Decenber 2015

Unli ke the connection's credit linmt, the inline threshold val ue
is not advertised to peers via the RPC over-RDVA Version One
protocol, and there is no provision for the inline threshold val ue
to change during the lifetine of an RPC-over- RDVA Version One
connection. Connection peers MAY have different inline

t hr eshol ds.

The | ongevity of a transport connection requires that sending
endpoi nts respect the resource linmts of peer receivers. However,
when a connection is first established, peers cannot know how nmany
receive buffers the other has, nor how |large the buffers are.

As a basis for an initial exchange of RPC requests, each RPC over-
RDVA Ver si on One connection provides the ability to exchange at |east
one RPC nessage at a time that is 1024 bytes in size. A responder
MAY exceed this basic |level of configuration, but a requester MJST
NOT assune nore than one credit is available, and MJUST receive a
valid reply fromthe responder carrying the actual nunber of
available credits, prior to sending its next request.

| mpl enent ati ons MUST support an inline threshold of 1024 bytes, but
MAY support larger inline thresholds. In the absense of a nmechani sm
for discovering a peer’'s inline threshold, senders MJST assune a
receiver’'s inline threshold is 1024 bytes.

4.4. XDR Encoding Wth Chunks

On traditional RPC transports, XDR data itens in an RPC nessage are
encoded as a contiguous sequence of bytes for network transni ssion
However, in the case of an RDVA transport, during XDR encoding it can
be determi ned that (for instance) an opaque byte array is large
enough to be noved via an RDVMA Read or RDVMA Wite operation.

RPC- over - RDMA Ver si on One provides a nechani smfor noving part an RPC
message via a separate RDVA data transfer. A contiguous piece of an
XDR streamthat is split out and noved via a separate RDVA operation
is known as a "chunk." The sender renoves the chunk data out from
the XDR stream conveyed via RDVMA Send, and the receiver inserts it

bef ore handing the reconstructed streamto the Upper Layer

4.4.1. DDP-Eligibility

Only an XDR data itemthat night benefit fromDirect Data Pl acenent
shoul d be nmoved to a chunk. The eligibility of specific XDR data
items to be noved as a chunk, as opposed to being left in the XDR
stream is not specified by this docunment. A determ nation nust be
made for each Upper Layer Protocol which itens in its XDR definition
are allowed to use Direct Data Placenent. Therefore an additiona

Lever, et al. Expi res June 16, 2016 [Page 13]

Internet-Draft RDVA Transport for RPC Decenber 2015

specification is needed that describes how an Upper Layer Protocol
enables Direct Data Placenent. The set of requirenments for a ULP to
use an RDVA transport is known as an "Upper Layer Bi nding"
specification, or ULB.

An Upper Layer Binding states which specific individual XDR data
itens in an Upper Layer Protocol MAY be transferred via Direct Data
Pl acenent. This docunent will refer to such XDR data itens as " DDP-
eligible". Al other XDR data itenms MJST NOT be placed in a chunk.
RPC- over - RDMA Ver si on One uses RDVA Read and Wite operations to
transfer DDP-eligible data that has been placed in chunks.

The details and requirenments for Upper Layer Bindings are discussed
in full in Section 6.

4.4,2. RDVA Segnents

When encodi ng an RPC nessage that contains a DDP-eligible data item
the RPC-over-RDMA transport does not place the iteminto the RPC
message’s XDR stream Instead, it records in the RPC over- RDVA
header the address and size of the nmenory region containing the data
item The requester sends this information for DDP-eligible data
itenms in both RPC calls and replies. The responder uses this
information to initiate RDMA Read and Wite operations on the nenory
regi ons.

An "RDVA segment”, or just "segnment", is an RPC- over-RDVMA header data
obj ect that contain the precise co-ordinates of a contiguous nenory
region that is to be conveyed via one or nore RDVA Read or RDVA Wite
operations. The following fields are contained in a segnent:

Handl e
Steering tag or handl e obtai ned when the segnent’s nenory is
regi stered for RDMA. Sonetines known as an R key.

Length
The I ength of the segnent in bytes.

O f set
The of fset or begi nning nenory address of the segnent.

See [RFC5040] for further discussion of the neaning of these fields.
4.4.3. Chunks

A "chunk" refers to a portion of XDR streamdata that is noved via
RDVA Read or Wite operations. Chunk data is renoved fromthe

Lever, et al. Expi res June 16, 2016 [Page 14]

Internet-Draft RDVA Transport for RPC Decenber 2015

sender’s XDR stream transferred by separate RDVA operations, and
then re-inserted into the receiver’s XDR stream

Each chunk consists of one or nore RDVA segnents. Each segnent
represents a single contiguous piece of that chunk

Except in special cases, a chunk contains exactly one XDR data item
This makes it straightforward to renmove chunks from an XDR stream
wi t hout affecting XDR alignnent.

Fommemeeeeeeaaaa I LT Ity .
| RPC-over - RDVA [[
| header w | | RPC Header | Non-chunk args/results
| segnment s | | |
e e e e o e e e oo o e e e e oo oo
I
+-> Chunk A
+-> Chunk B
+-> Chunk C

Bl ock di agram of an RPC-over- RDMA nessage

Not every nessage has chunks associated with it. The structure of
t he RPC-over-RDVA header is covered in Section 5

4.4.3.1. Counted Arrays

If a chunk is to nove a counted array data type, the count of array
el ements MUST remain in the XDR stream while the array el ements MJST
be nmoved to the chunk. For exanple, when encodi ng an opaque byte
array as a chunk, the count of bytes stays in the XDR stream while
the bytes in the array are renoved fromthe XDR stream and
transferred via the chunk. Any byte count left in the XDR stream
MUST match the sum of the lengths of the segnents making up the
chunk. If they do not agree, an RPC protocol encoding error results.

I ndi vidual array elenments appear in the chunk in their entirety. For
exanpl e, when encoding an array of arrays as a chunk, the count of
items in the enclosing array stays in the XDR stream but each

encl osed array, including its itemcount, is transferred as part of

t he chunk.

Lever, et al. Expi res June 16, 2016 [Page 15]

Internet-Draft RDVA Transport for RPC Decenber 2015

4.4.3.2. Optional-data And Uni ons

If a chunk is to nove an optional -data data type, the "is present”
field MUST remain in the XDR stream while the data, if present, MJST
be noved to the chunk

A union data type should never be made DDP-eligible, but one or nore
of its arns may be DDP-eligible.

4.4.4, Read Chunks

A "Read chunk" represents an XDR data itemthat is to be pulled from
the requester to the responder usi ng RDVMA Read operations

A Read chunk is a list of one or nore RDVA segnents. Each segnment in
a Read chunk has an additional Position field.

Posi ti on
For data that is to be encoded, the byte offset in the RPC nessage
XDR stream where the receiver re-inserts the chunk data. The byte
of fset MJUST be conputed fromthe begi nning of the RPC nessage, not
t he begi nning of the RPC-over-RDVA header. All segnments bel ongi ng
to the sane Read chunk have the sane value in their Position

field.
Whil e constructing the RPC call, the requester registers nmenory
segnments containing data in Read chunks. It advertises these chunks

in the RPC-over- RDVA header of the RPC call

After receiving the RPC call via an RDVMA Send operation, the
responder transfers the chunk data fromthe requester usi ng RDMA Read
operations. The responder reconstructs the transferred chunk data by
concatenating the contents of each segnent, in list order, into the
RPC call XDR stream The first segnent begins at the XDR position in
the Position field, and subsequent segments are concatenated
afterwards until there are no nore segnents left at that XDR
Posi ti on.

4.4.4.1. Read Chunk Round-up

XDR requires each encoded data itemto start on four-byte alignnent.
When an odd-length data itemis marshaled, its length is encoded
literally, while the data is padded so the next data itemcan start
on a four-byte boundary in the XDR stream Receivers ignore the
content of the pad bytes.

Data itens renmaining in the XDR stream nust all adhere to the above
paddi ng requirenents. Wen a Read chunk is renoved froman XDR

Lever, et al. Expi res June 16, 2016 [Page 16]

Internet-Draft RDVA Transport for RPC Decenber 2015

stream the requester MJUST renpve any needed XDR paddi ng for that
chunk as well. Alignment of the itenms remaining in the streamis
unaf f ect ed.

The length of a Read chunk is the sumof the |engths of the segnents
that conprise it. |If this sumis not a multiple of four, the
requester MAY choose to send a Read chunk without any XDR paddi ng.
The responder MJST be prepared to provide appropriate round-up in its
reconstructed XDR streamif the requester provides no actual round-up
in a Read chunk.

The Position field in read segnents indicates where the containing
Read chunk starts in the RPC nessage XDR stream The value in this
field MUST be a nultiple of four. Mreover, all segnments in the same
Read chunk share the sane Position value, even if one or nore of the
segnents have a non-four-byte aligned | ength.

4.4.4.2. Decoding Read Chunks

XDR decodi ng noves data froman XDR streaminto a data structure
provi ded by an RPC application. Were elenments of the destination
data structure are buffers or strings, the RPC application can either
pre-allocate storage to receive the data, or |eave the string or
buffer fields null and allow the XDR decode stage of RPC processing
to automatically allocate storage of sufficient size.

When decodi ng a nessage froman RDVA transport, the receiver first
decodes the chunk lists fromthe RPC-over-RDVA header, then proceeds
to decode the body of the RPC nessage. Wenever the XDR offset in

t he decode stream matches that of a Read chunk, the transport
initiates an RDMA Read to bring over the chunk data into locally
regi stered nmenmory for the destination buffer.

When processing an RPC request, the responder acknow edges its

conmpl etion of use of the source buffers by sinply replying to the
requester. The requester may then free all source buffers advertised
by the request.

4.4.5. Wite Chunks

A "Wite chunk" represents an XDR data itemthat is to be pushed from
the responder to the requester using RDVA Wite operations

A Wite chunk is an array of one or nore RDVA segnents. Segments in
a Wite chunk do not have a Position field because Wite chunks are
provi ded by a requester |long before the responder prepares the reply
XDR stream

Lever, et al. Expi res June 16, 2016 [Page 17]

Internet-Draft RDVA Transport for RPC Decenber 2015

Whil e constructing the RPC call, the requester also sets up nenory
segnments to catch DDP-eligible reply data. The requester provides as
many segnments as needed to accommodate the | argest possible size of
the data itemin each Wite chunk

The responder transfers the chunk data to the requester using RDVA
Wite operations. The responder copies the responder’s Wite chunk
segrments into the RPC-over-RDVA header to be sent with the reply.
The responder updates the segnent length fields to reflect the actua
anount of data that is being returned in the chunk. The updated
length of a Wite chunk segment MAY be zero if the segnent was not
filled by the responder. However the responder MJUST NOT change the
nunber of segnments in the Wite chunk

The responder then sends the RPC reply via an RDVMA Send operation
After receiving the RPC reply, the requester reconstructs the
transferred data by concatenating the contents of each segnent, in
array order, into RPC reply XDR stream

4.4.5.1. Unused Wite Chunks

There are occasi ons when a requester provides a Wite chunk but the
responder does not use it. For exanple, an Upper Layer Protocol nmay
have a union result where sonme arnms of the union contain a DDP-
eligible data item and other arms do not. To return an unused Wite
chunk, the responder MJST set the length of all segnents in the chunk
to zero.

Unused write chunks, or unused bytes in wite chunk segnents, are not
returned as results and their menmory is returned to the Upper Layer
as part of RPC conpletion. However, the RPC |ayer MJUST NOT assune
that the buffers have not been nodified.

4.4.5.2. Wite Chunk Round-up

XDR requires each encoded data itemto start on four-byte alignnent.
When an odd-length data itemis marshaled, its length is encoded
literally, while the data is padded so the next data itemcan start
on a four-byte boundary in the XDR stream Receivers ignore the
content of the pad bytes.

Data itens renmaining in the XDR stream nust all adhere to the above
paddi ng requirenents. Wen a Wite chunk is renmoved froman XDR
stream the requester MJST renove any needed XDR paddi ng for that
chunk as well. Alignnment of the itens remaining in the streamis
unaf f ect ed.

Lever, et al. Expi res June 16, 2016 [Page 18]

Internet-Draft RDVA Transport for RPC Decenber 2015

4.

5.

The length of a Wite chunk is the sumof the lengths of the segments
that conprise it. |If this sumis not a nultiple of four, the
responder MAY choose not to wite XDR paddi ng. The requester does
not know the actual length of a Wite chunk when it is prepared, but
it SHOULD provide enough segnents to acconmodat e any needed XDR

paddi ng. The requester MJST be prepared to provide appropriate
round-up in its reconstructed XDR streamif the responder provides no
actual round-up in a Wite chunk.

Dat a Exchange

In sunmary, there are three nechanisns for noving data between
requester and responder.

Inline
Data i s noved between requester and responder via an RDVA Send
operati on.

RDVA Read

Data i s noved between requester and responder via an RDMA Read
operation. Address and offset are obtained froma Read chunk in
the requester’s RPC call nessage.

RDVA Wite
Data is noved fromresponder to requester via an RDVA Wite
operation. Address and offset are obtained froma Wite chunk in
the requester’s RPC call message.

Many conbi nations are possible. For instance, an RPC call may
contain sone inline data along with Read or Wite chunks. The reply
to that call may have chunks that the responder RDVA Wites back to
the requester. The follow ng diagrans illustrate RPC calls that use
these nethods to nmove RPC nessage dat a.

Request er Responder
[RPC Cal | [

An RPC with no chunks in the call or reply nmessages

Lever, et al. Expi res June 16, 2016 [Page 19]

Internet-Draft RDVA Transport for RPC Decenber 2015

Request er Responder

| RPC Call + Wite chunks |

Send | -----------imemi e > [
I I
| Chunk 1 |
[O | Wite
I : I
| Chunk n |
| o m e e | Wite
I I
| RPC Repl y |
| L R | Send

An RPC with wite chunks in the call nessage

In the presence of wite chunks, RDVA ordering guarantees that al
data in the RDMA Wite operations has been placed in nmenory prior to
the requester’s RPC reply processing.

Request er Responder

| RPC Call + Read chunks |

Send | --------emeei e > |
I I
| Chunk 1 |
| R e | Read
[R e > [
I : I
[Chunk n |
[Ee L e R | Read
| R > |
I I
[RPC Repl y [
| R | Send

An RPC with read chunks in the call nessage

Lever, et al. Expi res June 16, 2016 [Page 20]

Internet-Draft RDVA Transport for RPC Decenber 2015

Request er Responder
| RPC Call + Read and Wite chunks |

Send | -----------imemi e > [
I I
| Read chunk 1 |
| R e | Read
| B e > |
| : |
| Read chunk n |
[e | Read
| e > |
| _ |
[Wite chunk 1 [
| S e R | Wite
I : I
[Wite chunk n [
[G | Wite
I I
[RPC Repl y [
| SO | Send

An RPC with read and wite chunks in the call nessage
4.6. Message Size

The receiver of RDVA Send operations is required by RDVA to have
previously posted one or nore adequately sized buffers (see
Section 4.3.1). Menory savings can be achi eved on both requesters
and responders by leaving the inline threshold snmall.

4.6.1. Short Messages

RPC nessages are frequently snaller than the connection’s inline
t hr eshol d.

For exanple, the NFS version 3 GETATTR request is only 56 bytes: 20
bytes of RPC header, plus a 32-byte file handl e argunent and 4 bytes
for its length. The reply to this conmon request is about 100 bytes.

Since all RPC nessages conveyed via RPC-over-RDMA require an RDVA
Send operation, the nost efficient way to send an RPC nessage that is
smal l er than the connection’s inline threshold is to append its XDR
streamdirectly to the buffer carrying the RPC over-RDVA header. An
RPC- over - RDMA header with a small RPC call or reply nessage
imediately following is transferred using a single RDVA Send
operation. No RDVA Read or Wite operations are needed.

Lever, et al. Expi res June 16, 2016 [Page 21]

Internet-Draft RDVA Transport for RPC Decenber 2015

4.6.2. Chunked Messages

If DDP-eligible data itens are present in an RPC nessage, a sender
MAY renpove them fromthe RPC nessage, and use RDVA Read or Wite
operations to nove that data. The RPC-over-RDVA header with the
shortened RPC call or reply nessage imediately following is
transferred using a single RDVA Send operation. Renoved DDP-eligible
data itens are conveyed using RDVA Read or Wite operations using
additional information provided in the RPC over-RDVA header

4.6.3. Long Messages

When an RPC nmessage is larger than the connection’s inline threshold,
DDP-eligible data itens are renoved fromthe nmessage and placed in
chunks and noved separately. |If there are no DDP-eligible data itens
in the nessage, or the nessage is still too large after DDP-eligible
itenms have been renoved, the RDVA transport MJST use RDVA Read or
Wite operations to convey the RPC nessage body itself. This
mechanismis referred to as a "Long Message."

To send an RPC nessage as a Long Message, the sender conveys only the
RPC- over - RDMA header with an RDMA Send operation. The RPC nessage

itself is not included in the Send buffer. Instead, the requester
provi des chunks that the responder uses to nove the whole RPC
nmessage

Long RPC cal |

To handl e an RPC request using a Long Message, the requester

provi des a special Read chunk that contains the RPC call’s XDR
stream Every segnent in this Read chunk MJST contain zero inits
Position field. This chunk is known as a "Position Zero Read
chunk. "

Long RPC reply
To handle an RPC reply using a Long Message, the requester
provides a single special Wite chunk, known as the "Reply chunk"
that contains the RPC reply’'s XDR stream The requester sizes the
Reply chunk to accommodate the | argest possible expected reply for
that Upper Layer operation

Though the purpose of a Long Message is to handl e | arge RPC nessages,
requesters MAY use a Long Message at any tinme to convey an RPC call
Responders SHOULD use a Long Message whenever a Reply chunk has been
provided by a requester. Both types of special chunk MAY be present
in the same RPC nmessage

Because t hese special chunks contain a whole RPC nessage, any XDR
data item MAY appear in one of these special chunks w thout regard to

Lever, et al. Expi res June 16, 2016 [Page 22]

Internet-Draft RDVA Transport for RPC Decenber 2015

its DDP-eligibility. DDP-eligible data itens MAY be renpved from
t hese special chunks and conveyed via normal chunks, but non-eligible
data itenms MJUST NOT appear in normal chunks.

5. RPC-Over-RDMA | n Qperation

An RPC-over- RDMA Versi on One header precedes all RPC nessages
conveyed across an RDMA transport. This header includes a copy of
the message’s transaction ID, data for RDVA flow control credits, and
lists of nmenory addresses used for RDVA Read and Wite operations.

Al'l RPC-over - RDVA header content MJST be XDR encoded.

RPC nmessage | ayout is unchanged fromthat described in [RFC5531]
except for the possible renoval of data itens that are noved by RDVA
Read or Wite operations. |f an RPC nmessage (along with its RPC
over- RDVMA header) is larger than the connection’s inline threshold
even after any |l arge chunks are renoved, then the RPC nessage MAY be
nmoved separately as a chunk, |eaving just the RPC over-RRDVA header in
t he RDMA Send.

5. 1. Fi xed Header Fi el ds

The RPC-over- RDMA header begins with four fixed 32-bit fields that
MUST be present and that control the RDVA interaction including RDVA-
specific flow control. These four fields are:

5.1.1. Transaction ID (Xl D)

The XID generated for the RPC call and reply. Having the XID at a
fixed location in the header nakes it easy for the receiver to
establish context as soon as the nessage arrives. This XID MJST be
the sane as the XID in the RPC header. The receiver MAY performits
processing based solely on the XID in the RPC- over- RDVA header, and
thereby ignore the XID in the RPC header, if it so chooses.

5.1.2. Version nunber

For RPC-over-RDVA Version One, this field MIUST contain the value 1
(one). Further discussion of protocol extensibility can be found in
Section 9.

5.1.3. Flowcontrol credit val ue

When sent in an RPC call message, the requested credit value is
provi ded. Wen sent in an RPC reply nmessage, the granted credit
value is returned. RPC calls SHOULD NOT be sent in excess of the
currently granted limt. Further discussion of flow control can be
found in Section 4.3.

Lever, et al. Expi res June 16, 2016 [Page 23]

Internet-Draft RDVA Transport for RPC Decenber 2015

5.

5.

1.4. Message type

o RDVA MSG = 0 indicates that chunk lists and an RPC nessage foll ow
The format of the chunk lists is discussed bel ow.

o RDVA NOMSG = 1 indicates that after the chunk lists there is no
RPC nessage. In this case, the chunk lists provide information to
all ow the responder to transfer the RPC nessage usi ng RDMA Read or
Wite operations.

o RDVA MSGP = 2 is reserved, and no | onger used.

o RDVA DONE = 3 is reserved, and no | onger used
o RDVA ERROR = 4 is used to signal a responder-detected error in
RDVA chunk encodi ng

For a message of type RDMA MSG the four fixed fields are foll owed by
the Read and Wite lists and the Reply chunk (though any or all three
MAY be marked as not present), then an RPC nessage, beginning with
its XID field. The Send buffer holds two separate XDR streams: the
first XDR stream contains the RPC-over-RDVA header, and the second
XDR stream contai ns the RPC nessage

For a message of type RDMA_NOVMSG the four fixed fields are foll owed
by the Read and Wite chunk lists and the Reply chunk (though any or
all three MAY be nmarked as not present). The Send buffer holds one
XDR stream whi ch contains the RPC- over-RDVA header

For a message of type RDMA ERROR, the four fixed fields are followed
by formatted error information.

The above content (the fixed fields, the chunk lists, and the RPC
message, when present) MJST be conveyed via a single RDVA Send
operation. A gather operation on the Send can be used to nmarshal the
separate RPC-over-RDVA header, the chunk lists, and the RPC nessage
itself. However, the total length of the gathered send buffers
cannot exceed the peer’s inline threshold.

2. Chunk Lists

The chunk lists in an RPC-over-RDVA Version One header are three XDR
optional-data fields that MJST follow the fixed header fields in
RDMA MS5G and RDVA NOVEG type nessages. Read Section 4.19 of

[RFCA506] carefully to understand how optional -data fiel ds work.
Exanpl es of XDR encoded chunk lists are provided in Section 13.1 to
ai d under st andi ng.

Lever, et al. Expi res June 16, 2016 [Page 24]

Internet-Draft RDVA Transport for RPC Decenber 2015

5.2.1. Read List

Each RPC-over- RDVA Versi on One header has one "Read list." The Read
list is alist of zero or nore Read segnents, provided by the
requester, that are grouped by their Position fields into Read
chunks. Each Read chunk advertises the |ocations of data the
responder is to pull via RDVA Read operations. The requester SHOULD
sort the chunks in the Read list in Position order.

Via a Position Zero Read Chunk, a requester nmy provide part or al
of an entire RPC call nessage as the first chunk in this list.

The Read list MAY be empty if the RPC call has no argument data that
is DDP-eligible and the Position Zero Read Chunk is not being used.

5.2.2. Wite List

Each RPC-over-RDMVA Version One header has one "Wite list." The
Wite list is alist of zero or nore Wite chunks, provided by the
requester. Each Wite chunk is an array of RDMA segments, thus the
Wite list is alist of counted arrays. Each Wite chunk advertises
receptacles for DDP-eligible data to be pushed by the responder

When a Wite list is provided for the results of the RPC call, the
responder MJST provide any corresponding data via RDMA Wite to the
menory referenced in the chunk’s segnents. The Wite |list MAY be
enpty if the RPC operation has no DDP-eligible result data.

When multiple Wite chunks are present, the responder fills in each
Wite chunk with a DDP-eligible result until either there are no nore
results or no nore Wite chunks. An Upper Layer Bi ndi ng MJST
determne how Wite list entries are mapped to procedure argunents
for each Upper Layer procedure. For details, see Section 6.

The RPC reply conveys the size of result data by returning the Wite
list to the requester with the lengths rewitten to match the actua
transfer. Decoding the reply therefore perfornms no | ocal data
transfer but nerely returns the I ength obtained fromthe reply.

Each decoded result consunmes one entry in the Wite list, which in
turn consists of an array of RDVA segnents. The length of a Wite
chunk is therefore the sumof all returned lengths in all segnents
conmprising the corresponding list entry. As each Wite chunk is
decoded, the entire entry is consuned.

Lever, et al. Expi res June 16, 2016 [Page 25]

Internet-Draft RDVA Transport for RPC Decenber 2015

5.2.3. Reply Chunk

Each RPC-over- RDVA Versi on One header has one "Reply Chunk." The
Reply Chunk is a Wite chunk, provided by the requester. The Reply
Chunk is a single counted array of RDVA segnents. A responder MAY
convey part or all of an entire RPC reply nessage in this chunk.

A requester provides the Reply chunk whenever it predicts the
responder’s reply mght not fit in an RDMA Send operation. A
requester MAY choose to provide the Reply chunk even when the
responder can return only a small reply.

5.3. Form ng Messages

5.3.1. Short Messages
A Short Message without chunks is contained entirely within a single
RDVA Send Operation. Since the RPC call nessage i mredi ately foll ows

the RPC-over-RDMA header in the send buffer, the requester MJST set
the message type to RDVA MSG

S RPC- over - RDVA header --------------- >

Fommamann T T I . S ISP
[[[[[NULL | | Wole

| XID | Version | Credits | RDVA MSG | Chunk Lists | | RPC

| | | | | | | Message
Hom e e oo - Fomm e - Fomm e - Fom e e o e e e - R S,

5.3.2. Chunked Messages

A Chunked Message is simlar to a Short Message, but the RPC nessage
does not contain the chunk data. Since the RPC call nessage

i medi ately foll ows the RPC-over-RDVA header in the send buffer, the
requester MJST set the nessage type to RDMA MSG

Lever, et al. Expi res June 16, 2016 [Page 26]

Internet-Draft RDVA Transport for RPC Decenber 2015

S RPC- over - RDMA header --------------- >
Fomm e - - Fomm e oo - Fomm e oo - s o m e e oo o - F R S
[[[| | Modified
| XID | Version | Credits | RDMA_MSG | Chunk Lists | | RPC
I I I I I | | Message
Fommamenn N N N . . I .
I
RCEEEEREEES
(.
+->| Chunks
I
e e e e e m - -

5.3.3. Long Call Messages

To send a Long Call Message, the requester registers the nenory
containing the RPC call nessage and adds a chunk to the Read List at
Position Zero. Since the RPC call nessage does not follow the RPC
over- RDMA header in the send buffer, the requester MJST set the
message type to RDVA NOVBG

S RPC- over - RDVA header --------------- >
oo I I R . +
| | o _ |]
| XID | Version | Credits | RDMA_NOVSG | Chunk Lists |
I I I I I I
Fommnaann N N S . +
I
|
| | RPC Call
+->|
| Message
e e e e o - -

If a responder gets an RPC-over-RDVMA header with a nessage type of
RDMA_NOVBG and finds an initial Read list entry with a zero XDR
position, it allocates a registered buffer and i ssues an RDVA Read of
the RPC nessage into it. The responder then proceeds to XDR decode
the RPC nessage as if it had received it with the Send data. Further
decodi ng may issue additional RDVA Reads to bring over additional
chunks.

Lever, et al. Expi res June 16, 2016 [Page 27]

Internet-Draft RDVA Transport for RPC Decenber 2015

Request er Responder

| RDMA- over - RPC Header |

Send | -----------imemi e > [
I I
| Long RPC Call Msg |
| L R | Read
| .
| RDMVA- over - RPC Repl y |
[R | Send

A long call RPC with request supplied via RDVMA Read
5.3.4. Long Reply Messages

To send a Long Reply Message, the requester MAY register a large
buffer into which the responder can wite an RPC reply. This buffer
is passed to the responder in the RPC call nessage as the Reply
chunk.

If the responder’s reply nessage is too long to return with an RDVA
Send operation, even after Wite chunks are renoved, then the
responder perfornms an RDMA Wite of the RPC reply nessage into the
buffer indicated by the Reply chunk. Since the RPC reply nessage
does not follow the RPC over-RDVA header in the send buffer, the
responder MJST set the nessage type to RDVA NOVBG

S RPC- over - RDVA header --------------- >
oo I I R . +
| | o o |]
| XID | Version | Credits | RDMA_NOVSG | Chunk Lists |
I I I I I I
Fommnaann N N S . +
I
|-
| | RPC Reply
+->|
| Message
e e e e o - -

Lever, et al. Expi res June 16, 2016 [Page 28]

Internet-Draft RDVA Transport for RPC Decenber 2015

Request er Responder

| RPC Call with Reply chunk |

Send | ----------o-iee e > [
I I
| Long RPC Reply Msg |
| L R | Wite
| RDMA- over - RPC Header |
| SO | Send

An RPC with long reply returned via RDVA Wite

The use of RDVMA Wite to return long replies requires that the
requester anticipates a long reply and has sonme know edge of its size
so that an adequately sized buffer can be allocated. Typically the
Upper Layer Protocol can limt the size of RPC replies appropriately.

It is possible for a single RPC procedure to enploy both a |ong cal
for its arguments and a long reply for its results. However, such an
operation is atypical, as few upper |ayers define such exchanges.

5.4. Menory Registration

RDVA requires that data is transferred only between registered nenory
segnments at the source and destination. All protocol headers as well
as separately transferred data chunks use regi stered nenory.

Since the cost of registering and de-regi stering nenory can be a
significant proportion of the RDVMA transaction cost, it is inportant
to mninize registration activity. This is easily achieved within
RPC-controll ed menory by allocating chunk |ist data and RPC headers
in a reusable way from pre-regi stered pool s.

5.4.1. Registration Longevity

Data chunks transferred via RDMA Read and Wite MAY reside in nmenory
that persists outside the bounds of the RPC transaction. Hence, the
default behavior of an RPC-over-RDMA transport is to register and

i nval i date these chunks on every RPC transaction

The requester endpoint nust ensure that these nenory segnments are
properly fenced fromthe responder before all owi ng Upper Layer access
to the data contained in them The data in such segnents nust be at
rest while a responder has access to that menory.

This includes segnents that are associated with canceled RPCs. A
responder cannot know that the requester is no longer waiting for a

Lever, et al. Expi res June 16, 2016 [Page 29]

Internet-Draft RDVA Transport for RPC Decenber 2015

reply, and m ght proceed to read or even update menory that the
requester has rel eased for other use.

5.4.2. Conmunicating DDP-Eligibility

The interface by which an Upper Layer Protocol inplenentation
communi cates the eligibility of a data itemlocally to its |ocal RPC
over - RDMA endpoint is out of scope for this specification

Dependi ng on the inplenentation and constraints inposed by Upper
Layer Bindings, it is possible to inplenent an RPC chunking facility
that is transparent to upper |ayers. Such inplenentations may |ead
to inefficiencies, either because they require the RPC | ayer to
perform expensive registration and de-registration of nenory "on the
fly", or they may require using RDVA chunks in reply nessages, along
with the resulting additional handshaking with the RPC-over- RDVA
peer.

However, these issues are internal and generally confined to the

| ocal interface between RPC and its upper |ayers, one in which

i npl ementations are free to innovate. The only requirement is that
the resulting RPC-over-RDVA protocol sent to the peer is valid for
t he upper |ayer.

5.4.3. Registration Strategies

The choi ce of which nmenory registration strategies to enploy is left
to requester and responder inplenenters. To support the wi dest array
of RDMA inplenentations, as well as the nost general steering tag
scheme, an Ofset field is included in each segment.

Whi |l e zero-based of fset schenes are available in many RDVA

i npl ement ations, their use by RPC requires individual registration of
each segnent. For such inplenentations, this can be a significant
overhead. By providing an offset in each chunk, many pre-
registration or region-based registrations can be readily supported.
By using a single, universal chunk representation, the RPC over- RDVA
protocol inplementation is sinplified to its nost general form

5.5. Handling Errors
When a peer receives an RPC-over-RDMA nessage, it MJST perform basic
validity checks on the header and chunk contents. |f such errors are
detected in the request, an RDVMA ERROR reply MJIST be generated

Two types of errors are defined, version mismatch and invalid chunk
format.

Lever, et al. Expi res June 16, 2016 [Page 30]

Internet-Draft RDVA Transport for RPC Decenber 2015

0 \When a responder detects an RPC-over- RDVA header version that it
does not support (currently this docunent defines only Version
One), it replies with an error code of ERR VERS, and provides the
| ow and high inclusive version nunbers it does, in fact, support.
The version nunber in this reply MJST be any val ue ot herw se valid
at the receiver.

0 \When a responder detects other decoding errors in the header or
chunks, one of the followi ng errors MIST be returned: either an
RPC decode error such as RPC _GARBAGEARGS, or the RPC-over- RDVA
error code ERR_CHUNK.

When a requester cannot parse a responder’s reply, the requester
SHOULD drop the RPC request and return an error to the application to
prevent retransm ssion of an operation that can never conplete.

A requester might not provide a responder with enough resources to
reply. For exanple, if a requester’s receive buffer is too small,
the responder’s Send operation conpletes with a Local Length Error
and the connection is dropped. O, if the requester’s Reply chunk is
too small to accommpdate the whole RPC reply, the responder can tel
as it is constructing the reply. The responder SHOULD send a reply
with RDMA ERROR to signal to the requester that no RPC-level reply is
possi bl e, and the XID should not be retried.

It is assuned that the link itself will provide some degree of error
detection and retransm ssion. iWARP's Marker PDU Aligned (MPA) | ayer
(when used over TCP), Stream Control Transm ssion Protocol (SCTP), as
well as the InfiniBand link layer all provide Cyclic Redundancy Check
(CRC) protection of the RDVA payl oad, and CRC-cl ass protection is a
general attribute of such transports.

Additionally, the RPC | ayer itself can accept errors fromthe |ink
| evel and recover via retransm ssion. RPC recovery can handl e
conplete | oss and re-establishnent of the link. The details of
reporting and recovery from RDVA |ink |layer errors are outside the
scope of this protocol specification

See Section 10 for further discussion of the use of RPC-Ieve
integrity schenes to detect errors and related efficiency issues.

5.6. XDR Language Description

Code conponents extracted fromthis document nust include the
followi ng license boilerplate.

<CODE BEG NS>

Lever, et al. Expi res June 16, 2016 [Page 31]

Internet-Draft RDVA Transport for RPC Decenber 2015

Copyright (c) 2010, 2015 I ETF Trust and the persons
identified as authors of the code. All rights reserved.

The aut hors of the code are:
B. Callaghan, T. Tal pey, and C. Lever.

Redi stribution and use in source and binary forns, with
or without nodification, are permtted provided that the
followi ng conditions are net:

- Redistributions of source code nust retain the above
copyright notice, this list of conditions and the
foll owi ng discl ai ner.

- Redistributions in binary form nust reproduce the above
copyright notice, this list of conditions and the
followi ng disclainer in the docunentati on and/or other
materials provided with the distribution

- Neither the nanme of Internet Society, |ETF or |IETF
Trust, nor the names of specific contributors, may be
used to endorse or pronote products derived fromthis
software wi thout specific prior witten perm ssion

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
AND CONTRI BUTORS "AS |'S" AND ANY EXPRESS OR | MPLI ED
WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS
FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO
EVENT SHALL THE COPYRI GHT OWNER OR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT
NOT LIM TED TGO, PROCUREMENT OF SUBSTI TUTE GOODS OR
SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS
| NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF

LI ABI LI TY, WHETHER | N CONTRACT, STRI CT LI ABILITY,

OR TORT (| NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
IN ANY WAY OQUT OF THE USE OF TH S SOFTWARE, EVEN I F
ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGE

L S T T T T N I N R S B R N I I . . S R R L R

/

struct rpcrdmal_segnent {
ui nt 32 rdna_handl e;
ui nt 32 rdma_| engt h;
ui nt 64 rdma_of f set;

Lever, et al. Expi res June 16, 2016 [Page 32]

Internet-Draft RDVA Transport for RPC Decenber 2015

struct rpcrdmal_read_segnent {
ui nt 32 rdma_position
struct rpcrdmal_segnent rdne_target;

b

struct rpcrdnmal _read list {
struct rpcrdmal_read_segnent rdma_entry;
struct rpcrdmal_read_li st *rdma_next;

H

struct rpcrdnmal _wite_chunk {
struct rpcrdnmal_segnent rdme_target <>;
b

struct rpcrdmal_wite_ list {
struct rpcrdmal wite chunk rdma_entry;
struct rpcrdnmal wite |list *rdma_next;

b

struct rpcrdmal_nsg {
ui nt 32 rdma_xi d;
ui nt 32 rdnma_vers
ui nt 32 rdnma_credit;
rpcrdmal_body rdma_body;

i

enum rpcrdmal_proc {
RDVA_MSG = 0
RDVA_NOVBG = 1,
RDVA MSGP = 2, [/* Reserved */
RDMA DONE = 3, /* Reserved */
RDVA ERROR = 4

b

struct rpcrdmal_chunks {
struct rpcrdnal_read |i st *rdma_reads;
struct rpcrdmal wite list *rdma_wites;
struct rpcrdmal_wite_chunk *rdme_reply;

H

enum rpcrdnmal_errcode {
RDMA ERR VERS = 1,
RDMA ERR CHUNK = 2
b
union rpcrdnmal_error switch (rpcrdmal_errcode err) {

case RDVA ERR VERS
ui nt 32 rdrma_vers_| ow

Lever, et al. Expi res June 16, 2016 [Page 33]

Internet-Draft RDVA Transport for RPC Decenber 2015

ui nt 32 rdma_ver s_hi gh;
case RDMA ERR CHUNK:
voi d;

b

uni on rdma_body switch (rpcrdmal _proc proc) {
case RDVA_MSG
case RDVA NOVBG
rpcrdmal_chunks rdma_chunks;
case RDVA MSGP:
ui nt 32 rdma_al i gn;
ui nt 32 rdma_t hresh;
rpcrdmal_chunks rdma_achunks;
case RDVA DONE:
voi d;
case RDVA ERRCR
rpcrdmal_error rdnma_error;

b
<CODE ENDS>

5.7. Deprecated Protocol El enents
5.7.1. RDVA MSGP

| mpl enenters of RPC-over-RDVA Version One have neglected to nake use
of the RDMA MSGP nessage type. Therefore RDMA MSGP i s deprecated.

Senders SHOULD NOT send RDVMA MSGP type nessages. Receivers MJST
treat received RDMA MSGP type nmessages as they would treat RDVA MSG
type messages. The additional alignment information is an
optim zation hint that may be ignored.

5.7.2. RDVA_DONE
Because i npl enent ati ons of RPC-over-RDVA Version One do not use the
Read- Read transfer nodel, there should never be any need to send an
RDVA DONE type nessage. Therefore RDMA DONE i s deprecated.

Recei vers MUST drop RDVMA DONE type nessages wi t hout additional
processi ng.

6. Upper Layer Binding Specifications

Each RPC program and version tuple that operates on an RDVA transport
MUST have an Upper Layer Binding specification. A ULB nay be part of

Lever, et al. Expi res June 16, 2016 [Page 34]

Internet-Draft RDVA Transport for RPC Decenber 2015

anot her protocol specification, or it may be a stand-al one docunent,
simlar to [RFC5667] .

A ULB specification MJST provide four inportant pieces of
i nformation:

0 Which XDR data itens in the RPC programare eligible for Direct
Dat a Pl acenent

0 How a responder utilizes chunks provided in a Wite |ist
0 How DDP-eligibility violations are reported to peers

0 An rpcbind port assignnent for operation of the RPC program on
RDMA transports

6.1. Deternmining DDP-Eligibility

A DDP-eligible XDR data itemis one that MAY be noved in a chunk.

Al'l other XDR data itenms MJUST NOT be noved in a chunk that is part of
a Short or Chunked Message, nor as a separate chunk in a Long
Message.

Only an XDR data itemthat night benefit fromDirect Data Pl acenent
shoul d be transferred in a chunk. An Upper Layer Binding
specification should consider an XDR data itemfor DDP-eligibility if
the data itemcan be |larger than a Send buffer, and at |east one of
the foll ow ng:

0 |Is sensitive to page alignment (eg. it would require pullup on the
recei ver before it can be used)

0 Is not translated or marshal ed when it is XDR encoded (eg. an
opaque array)

0o |Is not imediately used by applications (eg. is part of data
backup or replication)

The Upper Layer Protocol inplenmentation or the RDVA transport

i mpl ement ati on deci de when to nove a DDP-eligible data iteminto a
chunk instead of leaving the itemin the RPC nessage’s XDR stream
The interface by which an Upper Layer inplenentation conmmunicates the
chunk eligibility of a data itemlocally to the RPC transport is out
of scope for this specification. The only requirenment is that the
resulting RPC over-RDVA protocol sent to the peer is valid for the
Upper Layer.

Lever, et al. Expi res June 16, 2016 [Page 35]

Internet-Draft RDVA Transport for RPC Decenber 2015

The XDR | anguage definition of DDP-eligible data itens is not
decorated in any way.

It is the responsibility of the protocol’s Upper Layer Binding to
specify DDP-eligibity rules so that if a DDP-eligible XDR data item
i s enbedded within another, only one of these two objects is to be
represented by a chunk. This ensures that the mapping from XDR
position to the XDR object represented i s unanbi guous.

6.2. Wite List Odering

A requester constructs the Wite list for an RPC transaction before
the responder has fornulated the transaction s reply.

When there is only one result data itemthat is DDP-eligible, the
requester appends only a single Wite chunk to that Wite list. |If
the responder popul ates that chunk with data, there is no anbiguity
about which result is contained init.

However, an Upper Layer Binding MAY pernit a reply where nore than
one result data itemis DDP-eligible. For exanple, an NFSv4 COVPOUND
reply is conposed of individual NFSv4 operations, nore than one of

whi ch can contain a DDP-eligible result.

A requester provides nultiple Wite chunks when it expects the RPC
reply to contain nore than one data itemthat is DDP-el egible.

Anbi guities can arise when replies contain XDR unions or arrays of
conpl ex data types which allow a responder options about whether a
DDP-eligible data itemis included or not.

Request er and responder nust agree beforehand which data itens appear
in which Wite chunk. Therefore an Upper Layer Bindi ng MJST
determ ne how Wite list entries are mapped to procedure argunents
for each Upper Layer procedure.

6.3. DDP-Eligibility Violation

If the Upper Layer on a receiver is not aware of the presence and
operation of an RPC-over-RDMA transport under it, it could be
chal l enging to di scover when a sender has violated an Upper Layer
Bi ndi ng rul e.

If a violation does occur, RFC 5666 does not define an unanbi guous
mechani sm for reporting the violation. The violation of Binding
rules is an Upper Layer Protocol issue, but it is likely that there
is nothing the Upper Layer can do but reply with the equival ent of
BAD XDR

Lever, et al. Expi res June 16, 2016 [Page 36]

Internet-Draft RDVA Transport for RPC Decenber 2015

When an erroneously-constructed reply reaches a requester, there is
no recourse but to drop the reply, and perhaps the transport
connection as well.

Policing DDP-eligibility nmust be done in co-operation with the Upper
Layer Protocol by its receive endpoint inplenentation

It is the Upper Layer Binding' s responsibility to specify how a
responder nust reply if a requester violates a DDP-eligibilty rule.
The Bi ndi ng specification should provide simlar gui dance for
requesters about handling invalid RPC over-RDVA replies.

6.4. Oher Binding Information

An Upper Layer Binding may recommend inline threshold values for RPC
over - RDMA Versi on One connections bearing that Upper Layer Protocol
However, note that RPC-over-RDVA connections can be shared by nore

t han one Upper Layer Protocol, and that an inplenmentation may use the
sane inline threshold for all connections and Protocols that flow

bet ween two peers.

If an Upper Layer Protocol specifies a nethod for exchanging inline
threshold i nformation, the sender can find out the receiver’s
threshol d val ue only subsequent to establishing an RPC-over- RDVA
connection. The new threshold value can take effect only when a new
connection is established.

7. RPC Bind Paraneters

In setting up a new RDVA connection, the first action by a requester
is to obtain a transport address for the responder. The mechani sm
used to obtain this address, and to open an RDMA connection is
dependent on the type of RDMA transport, and is the responsibility of
each RPC protocol binding and its |local inplenentation.

RPC services normally register with a portmap or rpcbind [RFC1833]
service, which associates an RPC program nunber with a service
address. (In the case of UDP or TCP, the service address for NFS is
normal |y port 2049.) This policy is no different with RDVA
transports, although it may require the allocation of port nunbers
appropriate to each Upper Layer Protocol that uses the RPC framni ng
defined here.

When mapped atop the i WARP transport [RFC5040] [RFC5041], which uses
I P port addressing due to its layering on TCP and/or SCTP, port
mapping is trivial and consists nerely of issuing the port in the
connection process. The NFS/ RDMA protocol service address has been
assigned port 20049 by | ANA, for both i WARP/ TCP and i WARP/ SCTP.

Lever, et al. Expi res June 16, 2016 [Page 37]

Internet-Draft RDVA Transport for RPC Decenber 2015

8.

When mapped atop InfiniBand [IB], which uses a Goup Identifier

(A D)-based service endpoint nani ng schene, a translation MJST be
enpl oyed. One such translation is defined in the InfiniBand Port
Addr essi ng Annex [IBPORT], which is appropriate for translating IP
port addressing to the InfiniBand network. Therefore, in this case,
| P port addressing may be readily enpl oyed by the upper |ayer.

When a mappi ng standard or convention exists for |P ports on an RDVA
i nterconnect, there are several possibilities for each upper layer to
consi der:

0 One possibility is to have responder register its nmapped |P port
with the rpcbind service, under the netid (or netid s) defined
here. An RPC-over- RDMA-aware requester can then resolve its
desired service to a mappabl e port, and proceed to connect. This
is the nost flexible and conpati bl e approach, for those upper
| ayers that are defined to use the rpchind service

0 A second possibility is to have the responder’s portmapper
register itself on the RDMA interconnect at a "well known" service
address. (On UDP or TCP, this corresponds to port 111.) A
requester could connect to this service address and use the
portmap protocol to obtain a service address in response to a
program nunber, e.g., an i WARP port nunber, or an InfiniBand G D

0o Alternatively, the requester could sinply connect to the mapped
wel | -known port for the service itself, if it is appropriately
defined. By convention, the NFS/ RDVA service, when operating atop
such an InfiniBand fabric, will use the sane 20049 assi gnhnment as
for i WARP.

Hi storically, different RPC protocols have taken different approaches
to their port assignment; therefore, the specific nethod is left to
each RPC-over - RDVA- enabl ed Upper Layer binding, and not addressed

her e.

In Section 12, "I ANA Considerations", this specification defines two
new "netid" values, to be used for registration of upper |ayers atop
i WARP [RFC5040] [RFC5041] and (when a suitable port translation
service is available) InfiniBand [IB]. Additional RDMVA-capabl e

net wor ks MAY define their own netids, or if they provide a port
transl ation, MAY share the one defined here.

Bi -Directional RPC-Over - RDVA

Lever, et al. Expi res June 16, 2016 [Page 38]

Internet-Draft RDVA Transport for RPC Decenber 2015

8.1. RPC Direction
8.1.1. Forward Direction

A traditional ONC RPC client is always a requester. A traditiona
ONC RPC service is always a responder. This traditional formof ONC
RPC nmessage passing is referred to as operation in the "forward
direction.”

During forward direction operation, the ONC RPC client is responsible
for establishing transport connections.

8.1.2. Backward Direction

The ONC RPC standard does not forbid passing nessages in the other
direction. An ONC RPC service endpoint can act as a requester, in

whi ch case an ONC RPC client endpoint acts as a responder. This form
of message passing is referred to as operation in the "backward
direction."

Duri ng backward direction operation, the ONC RPC client is
responsi bl e for establishing transport connections, even though ONC
RPC Calls cone fromthe ONC RPC server.

8.1.3. Bi-direction

A pair of endpoints may choose to use only forward or only backward
direction operations on a particular transport. O, the endpoints
may send operations in both directions concurrently on the sane
transport.

Bi -directional operation occurs when both transport endpoints act as
a requester and a responder at the sanme tinme. As above, the ONC RPC
client is responsible for establishing transport connecti ons.

8.1.4. XIDs with Bi-direction

During bi-directional operation, the forward and backward directions
use i ndependent xid spaces.

In other words, a forward direction requester MAY use the sane xid
value at the sanme tinme as a backward direction requester on the sane
transport connection, but such concurrent requests use represent
distinct ONC RPC transacti ons.

Lever, et al. Expi res June 16, 2016 [Page 39]

Internet-Draft RDVA Transport for RPC Decenber 2015

8. 2. Backward Direction Flow Contro
8.2.1. Backward RPC-over-RDVA Credits

Credits work the sane way in the backward direction as they do in the
forward direction. However, forward direction credits and backward
direction credits are accounted separately.

In other words, the forward direction credit value is the sane

whet her or not there are backward direction resources associated with
an RPC-over-RDMA transport connection. The backward direction credit
val ue MAY be different than the forward direction credit value. The
rdma_credit field in a backward direction RPC over- RDVMA message MJST
NOT contain the val ue zero

A backward direction requester (an RPC-over-RDVA service endpoint)
requests credits fromthe Responder (an RPC-over-RDVA client
endpoint). The Responder reports how nany credits it can grant.
This is the nunber of backward direction Calls the Responder is
prepared to handl e at once.

When an RPC-over- RDVA server endpoint is operating correctly, it
sends no nore outstanding requests at a tinme than the client
endpoint’s advertised backward direction credit val ue.

8.2.2. Receive Buffer Managenent

An RPC-over-RDVA transport endpoint nust pre-post receive buffers
before it can receive and process i ncom ng RPC over- RDVA nessages.
If a sender transnits a nmessage for a receiver which has no posted
receive buffer, the RDVA provider is allowed to drop the RDVA
connecti on.

8.2.2.1. dient Receive Buffers

Typically an RPC-over-RDVA cal |l er posts only as many receive buffers
as there are outstanding RPC Calls. A client endpoint wthout
backward direction support mght therefore at times have no pre-
posted receive buffers.

To receive incomng backward direction Calls, an RPC-over-RDVA client
endpoi nt nmust pre-post enough additional receive buffers to match its
advertised backward direction credit value. Each outstanding forward
direction RPC requires an additional receive buffer above this

ni ni mum

When an RDMVA transport connection is lost, all active receive buffers
are flushed and are no | onger available to receive incom ng nessages.

Lever, et al. Expi res June 16, 2016 [Page 40]

Internet-Draft RDVA Transport for RPC Decenber 2015

When a fresh transport connection is established, a client endpoint
must re-post a receive buffer to handle the Reply for each
retransmtted forward direction Call, and a full set of receive
buffers to handl e backward direction Calls.

8.2.2.2. Server Receive Buffers

A forward direction RPC- over-RDVA service endpoint posts as many
receive buffers as it expects incomng forward direction Calls. That
is, it posts no fewer buffers than the nunber of RPC-over- RDVA
credits it advertises in the rdna_credit field of forward direction
RPC replies.

To receive incom ng backward direction replies, an RPC- over- RDVA
server endpoint nmust pre-post a receive buffer for each backward
direction Call it sends.

When the existing transport connection is lost, all active receive
buffers are flushed and are no | onger available to receive incon ng
messages. Wien a fresh transport connection is established, a server
endpoi nt nust re-post a receive buffer to handle the Reply for each
retransmtted backward direction Call, and a full set of receive
buffers for receiving forward direction Calls.

8.3. Conventions For Backward QOperation
8.3.1. In the Absense of Backward Direction Support

An RPC-over-RDVA transport endpoint mght not support backward
direction operation. There night be no nechanismin the transport
i mpl ementation to do so, or the Upper Layer Protocol consumer night
not yet have configured the transport to handl e backward direction
traffic.

A loss of the RDVA connection may result if the receiver is not
prepared to receive an incom ng nessage. Thus a denial -of -service
could result if a sender continues to send backchannel nessages after
every transport reconnect to an endpoint that is not prepared to
receive them

For RPC-over-RDVA Version One transports, the Upper Layer Protocol is
responsible for infornming its peer when it has established a backward
direction capability. Oherw se even a sinple backward direction
NULL probe froma peer would result in a |lost connection

An Upper Layer Protocol consuner MJST NOT perform backward direction

ONC RPC operations unless the peer consuner has indicated it is
prepared to handle them A description of Upper Layer Protoco

Lever, et al. Expi res June 16, 2016 [Page 41]

Internet-Draft RDVA Transport for RPC Decenber 2015

nmechani snms used for this indication is outside the scope of this
docunent .

8.3.2. Backward Direction Retransm ssion

In rare cases, an ONC RPC transaction cannot be conpleted within a
certain time. This can be because the transport connection was | ost,
the Call or Reply nmessage was dropped, or because the Upper Layer
consuner del ayed or dropped the ONC RPC request. Typically, the
requester sends the transaction again, reusing the sane RPC Xl D.

This is known as an "RPC retransmni ssion".

In the forward direction, the Caller is the ONC RPC client. The
client is always responsible for establishing a transport connection
bef ore sendi ng agai n.

In the backward direction, the Caller is the ONC RPC server. Because
an ONC RPC server does not establish transport connections with
clients, it cannot send a retransnission if there is no transport
connection. It nust wait for the ONC RPC client to re-establish the
transport connection before it can retransmt ONC RPC transactions in
t he backward direction

If an ONC RPC client has no work to do, it nmay be sone tine before it
re-establishes a transport connection. Backward direction Callers
must be prepared to wait indefinitely before a connection is

est abli shed before a pending backward directi on ONC RPC Call can be
retransmtted

8.3.3. Backward Direction Message Size

RPC- over - RDMA backward direction nmessages are transnmitted and

recei ved using the same buffers as nmessages in the forward direction
Therefore they are constrained to be no | arger than receive buffers
posted for forward nessages. Typical inplenentations have chosen to
use 1024-byte buffers.

It is expected that the Upper Layer Protocol consuner establishes an
appropriate payload size limt for backward direction operations,
either by advertising that size limt to its peers, or by convention
If that is done, backward direction nessages do not exceed the size
of receive buffers at either endpoint.

If a sender transnmits a backward direction nmessage that is |arger

than the receiver is prepared for, the RDVA provider drops the
message and the RDVA connection

Lever, et al. Expi res June 16, 2016 [Page 42]

Internet-Draft RDVA Transport for RPC Decenber 2015

If a sender transnmits an RDMA nessage that is too snmall to convey a
compl ete and valid RPC-over-RDVMA and RPC nmessage in either direction,
the receiver MIUST NOT use any value in the fields that were
transmitted. Nanely, the rdna_credit field MJUST be ignored, and the
message dropped.

8.3.4. Sending A Backward Direction Call

To form a backward directi on RPC-over-RDVA Call nmessage on an RPC
over- RDMA Version One transport, an ONC RPC service endpoint
constructs an RPC-over- RDVA header containing a fresh RPC XID in the
rdma_xid field.

The rdnma_vers field MIUST contain the value one. The nunber of
requested credits is placed in the rdma_credit field.

The rdna_proc field in the RPC over- RDVA header MJST contain the
value RDMA MSG. All three chunk lists MJST be enpty.

The ONC RPC Call header MUST follow inmrediately, starting with the
same XID value that is present in the RPC over-RDVA header. The Call
header’s nsg_type field MJST contain the value CALL.

8.3.5. Sending A Backward Direction Reply

To form a backward directi on RPC- over-RDVA Reply nessage on an RPC
over - RDMA Version One transport, an ONC RPC client endpoint
constructs an RPC-over- RDVA header containing a copy of the matching
ONC RPC Call’s RPC XID in the rdma_xid field.

The rdma_vers field MJST contain the value one. The nunber of
granted credits is placed in the rdnma_credit field.

The rdna_proc field in the RPC over-RDVA header MJST contain the
value RDMA MSG. All three chunk lists MJST be enpty.

The ONC RPC Reply header MJST follow inmediately, starting with the
same XID value that is present in the RPC over-RDMA header. The
Reply header’s nsg_type field MIST contain the val ue REPLY.

8.4. Backward Direction Upper Layer Binding

RPC prograns that operate on RPC-over-RDVA Version One only in the
backward direction do not require an Upper Layer Binding
specification. Because RPC- over-RDVA Version One operation in the
backward direction does not allow chunking, there can be no DDP-
eligible data itens in such a program Backward direction operation

Lever, et al. Expi res June 16, 2016 [Page 43]

Internet-Draft RDVA Transport for RPC Decenber 2015

occurs on an al ready-established connection, thus there is no need to
specify RPC bind paraneters.

9. Transport Protocol Extensibility

RPC prograns are defined solely by their XDR definitions. They are
i ndependent of the transport mechani smused to convey base RPC
messages. Protocols defined by XDR often have signifcant
extensibility restrictions placed on them

Not all extensibility restrictions on RPC based Upper Layer Protocols
may be appropriate for an RPC transport protocol. TCP [RFC0793], for
exanple, is an RPC transport protocol that has been extended nmany

ti mes independently of the RPC and XDR st andards.

RPC- over - RDMA ni ght be consi dered as an extension of the RPC protoco
rat her than a separate transport, however.

0 The nmechanisns that TCP uses to nove data are opaque to the RPC
i mpl ement ati on and RPC prograns using it. Upper Layer Protocols
are often aware that RPC-over-RDVA is present, as they identify
data itens that can be noved via direct data placenent.

0 RPC-over-RDMA is used only for noving RPC nessages, and not ever
for generic data transfer.

0 RPC-over-RDVA relies on a nore sophisticated set of base transport
operations than traditional socket-based transports.
I nteroperability depends on RPC-over-RDMVA i npl enent ati ons using
these operations in a predictable way.

0 The RPC-over-RDVA header is specified using XDR, unlike other RPC
transport protocols.

9.1. Bunping The RPC-over-RDVA Version
Pl ace hol der section
Because the version nunber is encoded as part of the RPC- over- RDVA
header and the RDMA ERROR nessage type is used to indicate errors
these first four fields and the start of the chunk lists MJST al ways
remai n aligned at the same fixed offsets for all versions of the RPC
over - RDMA header .

The val ue of the RPC-over-RDVA header’s version field MIUST be changed

Lever, et al. Expi res June 16, 2016 [Page 44]

Internet-Draft RDVA Transport for RPC Decenber 2015

10.

10.

10.

0 Whenever the on-the-wire format of the RPC over-RDVA header is
changed in a way that prevents interoperability with current
i mpl enent ati ons

0 \Whenever the set of abstract RDVA operations that nmay be used is
changed

o Wenever the set of allowable transfer npdels is altered
Security Considerations
1. Menory Protection

A primary consideration is the protection of the integrity and
privacy of |ocal nenory by an RPC-over-RDVA transport. The use of
RPC- over - RDMA MUST NOT introduce any vulnerabilities to system nenory
contents, nor to nenory owned by user processes.

It is REQU RED that any RDVA provider used for RPC transport be
conformant to the requirenments of [RFC5042] in order to satisfy these
protections. These protections are provided by the RDVA | ayer
specifications, and specifically their security nodels.

0 The use of Protection Domains to limt the exposure of nenory
segnments to a single connection is critical. Any attenpt by a
host not participating in that connection to re-use handles w |l
result in a connection failure. Because Upper Layer Protoco
security nechanisns rely on this aspect of Reliable Connection
behavi or, strong authentication of the renpte is recomended.

0 Unpredictable menmory handl es shoul d be used for any operation
requiring advertised menory segnents. Advertising a continuously
regi stered nmenory region allows a renote host to read or wite to
that region even when an RPC involving that nenory is not under
way. Therefore advertising persistently registered nenory shoul d
be avoi ded.

0 Advertised nenory segnments should be invalidated as soon as
rel ated RPC operations are conplete. |Invalidation and DVA
unnmappi ng of segnents shoul d be conplete before an RPC application
is allowed to continue execution and use the contents of a nenory
regi on.

2. Using GSS Wth RPC Over - RDVA
ONC RPC provides its own security via the RPCSEC GSS franework

[RFC2203]. RPCSEC GSS can provi de nessage authentication, integrity
checking, and privacy. This security nechanismis unaffected by the

Lever, et al. Expi res June 16, 2016 [Page 45]

Internet-Draft RDVA Transport for RPC Decenber 2015

11.

RDVA transport. However, there is nuch data novement associated with
comput ation and verification of integrity, or encryption/decryption
so certain performance advant ages nmay be | ost.

For efficiency, a nore appropriate security nechanismfor RDVA |inks
may be |ink-level protection, such as certain configurations of

| Psec, which may be co-located in the RDVA hardware. The use of
Iink-1evel protection MAY be negotiated through the use of the
RPCSEC _GSS nmechani sm defined in [RFC5403] in conjunction with the
Channel Bi ndi ng nmechani sm [RFC5056] and | Psec Channel Connection
Latching [RFC5660]. Use of such nmechanisns is REQUI RED where
integrity and/or privacy is desired, and where efficiency is
required.

Once delivered securely by the RDVA provider, any RDVA-exposed nmenory
will contain only RPC payl oads in the chunk lists, transferred under
the protection of RPCSEC GSS integrity and privacy. By these neans,
the data will be protected end-to-end, as required by the RPC | ayer
security nodel

| ANA Consi derations
Three new assignnents are specified by this docunent:
- A new set of RPC "netids" for resolving RPC over-RDVA services
- Optional service port assignnents for Upper Layer Bindings
- An RPC program nunber assignnent for the configuration protoco
These assi gnnments have been established, as bel ow
The new RPC transport has been assigned an RPC "netid", which is an
rpchi nd [RFC1833] string used to describe the underlying protocol in
order for RPC to select the appropriate transport fram ng, as well as
the format of the service addresses and ports.
The following "Netid" registry strings are defined for this purpose:

NC_RDVA "rdma"
NC_RDVA6 "rdma6"

These netids MAY be used for any RDVA network satisfying the
requirenents of Section 2, and able to identify service endpoints
using | P port addressing, possibly through use of a translation
service as described above in Section 10, "RPC Binding". The "rdm"

Lever, et al. Expi res June 16, 2016 [Page 46]

Internet-Draft RDVA Transport for RPC Decenber 2015

12.

13.

13.

netid is to be used when | Pv4 addressing is enployed by the
underlying transport, and "rdma6" for |Pv6 addressing.

The netid assignnent policy and registry are defined in [RFC5665].

As a new RPC transport, this protocol has no effect on RPC program
nunbers or existing registered port nunbers. However, new port
nunbers MAY be registered for use by RPC- over- RDVA- enabl ed servi ces,
as appropriate to the new networks over which the services wll
operate.

For exanple, the NFS/ RDVA service defined in [RFC5667] has been
assigned the port 20049, in the | ANA registry:

nfsrdma 20049/tcp Network File System (NFS) over RDVA
nfsrdma 20049/ udp Network File System (NFS) over RDVA
nfsrdma 20049/ sctp Network File System (NFS) over RDVA

The RPC program nunmber assignnent policy and registry are defined in
[RFC5531] .

Acknowl edgrent s

The editor gratefully acknow edges the work of Brent Callaghan and
Tom Tal pey on the original RPC over-RDVA Version One specification
[RFC5666] .

The comments and contri butions of Karen Deitke, Dai Ngo, Chunli
Zhang, Dominique Martinet, and Mahesh Siddheshwar are accepted with
many and great thanks. The editor also wi shes to thank Dave Noveck
and Bill Baker for their unwavering support of this work.

Speci al thanks go to nfsv4d Working G oup Chair Spencer Shepler and
nfsv4 Working Group Secretary Thonas Haynes for their support.

Appendi ces
1. Appendix 1: XDR Exanpl es
RPC- over - RDVA chunk |ists are conplex data types. |In this appendix,
illustrations are provided to help readers grasp how chunk lists are
represented inside an RPC- over - RDMA header.
An RDVA segnent is the sinplest conponent, being made up of a 32-bit

handle (H), a 32-bit length (L), and 64-bits of offset (0O. Once
flattened into an XDR stream RDMA segnents appear as

Lever, et al. Expi res June 16, 2016 [Page 47]

Internet-Draft RDVA Transport for RPC Decenber 2015

HLOO

A Read segnent has an additional 32-bit position field. Read
segnment s appear as

PHLCO

A Read chunk is a list of Read segnents. Each segnent is preceded by
a 32-bit word containing a one if there is a segment, or a zero if
there are no nore segnents (optional-data). In XDR form this would
| ook Iike

1 PHLOO 1 PHLOO 1 PHLOO O

where P would hold the same value for each segment belonging to the
sanme Read chunk.

The Read List is also a |list of Read segnents. 1In XDR form this
would ook a lot Iike a Read chunk, except that the P values could
vary across the list. An enpty Read List is encoded as a single
32-bit zero

One Wite chunk is a counted array of segnents. 1In XDR form the
count woul d appear as the first 32-bit word, followed by an HLOO for

each el enment of the array. For instance, a Wite chunk with three
el ements woul d | ook Iike

3 HLOO HLOO HLOO

The Wite List is a list of counted arrays. In XDR form this is a
combi nation of optional-data and counted arrays. To represent a
Wite List containing a Wite chunk with three segnents and a Wite
chunk with two segnents, XDR woul d encode

1 3 HLOO HLOO HLOO 1 2 HLOO HLOO 0

An enpty Wite List is encoded as a single 32-bit zero.

Lever, et al. Expi res June 16, 2016 [Page 48]

Internet-Draft RDVA Transport for RPC Decenber 2015

14.

14.

The Reply chunk is the sane as a Wite chunk. Since it is an
optional -data field, however, there is a 32-bit field in front of it
that contains a one if the Reply chunk is present, or a zero if it is
not. After encoding, a Reply chunk with 2 segnents would | ook |ike

1 2 HLOO HLOO

Frequently a requester does not provide any chunks. |In that case,
after the four fixed fields in the RPC over- RDVA header, there are
simply three 32-bit fields that contain zero.

Ref er ences
1. Normative References

[RFC1833] Srinivasan, R, "Binding Protocols for ONC RPC Version 2",
RFC 1833, DO 10. 17487/ RFC1833, August 1995,
<http://ww.rfc-editor.org/info/rfcl833>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, DO 10.17487/
RFC2119, March 1997,
<http://wwv rfc-editor.org/info/rfc2119>.

[RFC2203] Eisler, M, Chiu, A, and L. Ling, "RPCSEC GSS Protocol
Speci fication", RFC 2203, DO 10.17487/ RFC2203, Septenber
1997, <http://ww.rfc-editor.org/info/rfc2203>.

[RFCA506] Eisler, M, Ed., "XDR External Data Representation
Standard", STD 67, RFC 4506, DO 10.17487/ RFCA506, May
2006, <http://www.rfc-editor.org/info/rfc4506>.

[RFC5042] Pinkerton, J. and E. Del eganes, "Direct Data Pl acenent
Protocol (DDP) / Renote Direct Menory Access Protocol
(RDMAP) Security", RFC 5042, DO 10.17487/ RFC5042, Cctober
2007, <http://ww. rfc-editor.org/info/rfc5042>.

[RFC5056] WIllians, N, "On the Use of Channel Bindings to Secure
Channel s", RFC 5056, DO 10. 17487/ RFC5056, Novenber 2007,
<http://wwv. rfc-editor.org/info/rfc5056>.

[RFC5403] Eisler, M, "RPCSEC GSS Version 2", RFC 5403, DO
10. 17487/ RFC5403, February 2009,
<http://ww.rfc-editor.org/info/rfc5403>.

Lever, et al. Expi res June 16, 2016 [Page 49]

Internet-Draft

[RFC5531]

[RFC5660]

[RFC5665]

[RFC5666]

14. 2.

[1B]

RDVA Transport for RPC Decenber 2015

Thurlow, R, "RPC. Renote Procedure Call Protocol
Speci fication Version 2", RFC 5531, DA 10.17487/ RFC5531,
May 2009, <http://ww. rfc-editor.org/info/rfc5531>.

Wllians, N, "lIPsec Channels: Connection Latching", RFC
5660, DO 10. 17487/ RFC5660, Cctober 2009,
<http://wwmv rfc-editor.org/info/rfc5660>.

Eisler, M, "I ANA Considerations for Renote Procedure Call
(RPC) Network ldentifiers and Universal Address Formats",
RFC 5665, DO 10.17487/ RFC5665, January 2010,

<http://wwmv rfc-editor.org/info/rfc5665>.

Tal pey, T. and B. Callaghan, "Renote Direct Menory Access
Transport for Renote Procedure Call", RFC 5666, DO

10. 17487/ RFC5666, January 2010,
<http://ww.rfc-editor.org/info/rfc5666>.

I nformati ve Ref erences

[| BPORT]

[RFC0793]

[RFC1094]

[RFC1813]

[RFC5040]

[RFC5041]

Lever,

et al.

I nfini Band Trade Association, "InfiniBand Architecture
Speci fications", <http://ww.infinibandta.org>.

I nfini Band Trade Association, "IP Addressing Annex",
<htt p://www. i nfini bandta. or g>.

Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, DO 10.17487/ RFC0793, Septenber 1981,
<http://ww.rfc-editor.org/info/rfc793>.

Nowi cki, B., "NFS: Network File System Protocol
specification", RFC 1094, DO 10.17487/ RFC1094, March
1989, <http://ww.rfc-editor.org/info/rfcl094>.

Cal I aghan, B., Pawl owski, B., and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, DO 10.17487/
RFC1813, June 1995,

<http://ww. rfc-editor.org/info/rfcl813>.

Recio, R, Metzler, B., Culley, P., Hlland, J., and D
Garcia, "A Renote Direct Menory Access Protocol
Speci fication", RFC 5040, DO 10.17487/ RFC5040, Cctober
2007, <http://ww. rfc-editor.org/info/rfc5040>.

Shah, H., Pinkerton, J., Recio, R, and P. Culley, "D rect
Data Pl acenent over Reliable Transports", RFC 5041, DA
10. 17487/ RFC5041, Cctober 2007,

<http://wwv. rfc-editor.org/info/rfc5041>.

Expi res June 16, 2016 [Page 50]

Internet-Draft RDVA Transport for RPC Decenber 2015

[RFC5532] Talpey, T. and C. Juszczak, "Network File System (NFS)
Renote Direct Menory Access (RDMA) Problem Statenment", RFC
5532, DA 10.17487/ RFC5532, May 2009,
<http://ww.rfc-editor.org/info/rfc5532>.

[RFC5661] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
Protocol ", RFC 5661, DO 10.17487/ RFC5661, January 2010,
<http://ww. rfc-editor.org/info/rfc5661>.

[RFC5667] Tal pey, T. and B. Callaghan, "Network File System (NFS)
Direct Data Placenent", RFC 5667, DO 10.17487/ RFC5667,
January 2010, <http://ww.rfc-editor.org/info/rfc5667>.

[RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
(NFS) Version 4 Protocol", RFC 7530, DA 10.17487/ RFC7530,
March 2015, <http://www.rfc-editor.org/info/rfc7530>.

Aut hors’ Addr esses

Charl es Lever (editor)
Oracl e Corporation
1015 G anger Avenue
Ann Arbor, M 48104
USA

Phone: +1 734 274 2396
Emai | : chuck. | ever @r acl e. com

WIlliam Al en Sinpson
DayDr eaner

1384 Font ai ne

Madi son Heights, M 48071

USA
Email: williamallen.sinpson@unmail.com
Tom Tal pey

M crosoft Corp.
One M crosoft Way
Rednond, WA 98052
USA

Phone: +1 425 704-9945
Enai | : ttal pey@ri crosoft.com

Lever, et al. Expi res June 16, 2016 [Page 51]

