
OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: November 30, 2015 Ping Identity

May 29, 2015

Request by JWS ver.1.0 for OAuth 2.0
draft-ietf-oauth-jwsreq-02

Abstract
The authorization request in OAuth 2.0 utilizes query parameter serialization. This specification defines the
authorization request using JWT serialization. The request is sent through request parameter or by reference
through request_uri parameter that points to the JWT, allowing the request to be optionally signed and
encrypted.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

This Internet-Draft will expire on November 30, 2015.

Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents
1. Introduction

1.1. Requirements Language
2. Terminology

2.1. Request Object
2.2. Request Object URI

3. Request Object
4. Request Object URI
5. Authorization Request
6. Authorization Server Response
7. IANA Considerations
8. Security Considerations
9. Acknowledgements
10. Revision History
11. References

11.1. Normative References
11.2. Informative References

Authors' Addresses

1. Introduction
The parameters request and request_uri are introduced as additional authorization request parameters for the
OAuth 2.0 [RFC6749] flows. The request parameter is a JSON Web Token (JWT) [RFC7519] whose JWT
Claims Set holds the JSON encoded OAuth 2.0 authorization request parameters. The [RFC7519] can be
passed to the authorization endpoint by reference, in which case the parameter request_uri is used instead of
the request.

Using [RFC7519] as the request encoding instead of query parameters has several advantages:

1. The request may be signed so that integrity check may be implemented. If a suitable
algorithm is used for the signing, then non-repudiation property may be obtained in addition.

2. The request may be encrypted so that end-to-end confidentiality may be obtained even if in
the case TLS connection is terminated at a gateway or a similar device.

There are a few cases that request by reference are useful such as:

1. When it is detected that the User Agent does not support long URLs: Some extensions may
extend the URL. For example, the client might want to send a public key with the request.

2. Static signature: The client may make a signed Request Object and put it on the client. This
may just be done by a client utility or other process, so that the private key does not have to
reside on the client, simplifying programming.

3. When the server wants the requests to be cache-able: The request_uri may include a sha256
hash of the file, as defined in FIPS180-2 [FIPS180-2], the server knows if the file has
changed without fetching it, so it does not have to re-fetch a same file, which is a win as
well.

4. When the client wants to simplify the implementation without compromising the security. If
the request parameters go through the Browser, they may be tampered in the browser even if
TLS was used. This implies we need to have signature on the request as well. However, if
HTTPS request_uri was used, it is not going to be tampered, thus we now do not have to
sign the request. This simplifies the implementation.

This capability is in use by OpenID Connect [openid_ab].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].

2. Terminology
For the purposes of this specification, the following terms and definitions apply.

2.1. Request Object
JWT [RFC7519] that holds OAuth 2.0 authorization requests as JWT Claims Set

2.2. Request Object URI
Absolute URI from which the Request Object [request_object] can be obtained

3. Request Object
A Request Object [request_object] is used to provide authorization request parameters for OAuth 2.0
authorization request. It contains OAuth 2.0 [RFC6749] authorization request parameters including extension
parameters. It is a JSON Web Signature (JWS) [RFC7515] signed JWT [RFC7519] . The parameters are
included as the top-level members of JSON [RFC7159]. Parameter names and string values MUST be
included as JSON strings. Numerical values MUST be included as JSON numbers. It MAY include any
extension parameters. This JSON [RFC7159] constitutes the [RFC7519] Claims Set.

The Request Object MAY be signed or unsigned (plaintext). When it is plaintext, this is indicated by use of
the none algorithm [RFC7518] in the JWS header. If signed, the Authorization Request Object SHOULD
contain the Claims iss (issuer) and aud (audience) as members, with their semantics being the same as
defined in the JWT [RFC7519] specification.

The Request Object MAY also be encrypted using JWE [RFC7516] after signing, with nesting performed in
the same manner as specified for JWTs [RFC7519]. The Authorization Request Object MAY alternatively be
sent by reference using request_uri parameter.

REQUIRED OAuth 2.0 Authorization Request parameters that are not included in the Request Object MUST
be sent as a query parameter. If a required parameter is not present in neither the query parameter nor the
Request Object, it forms a malformed request.

If the parameter exists in both the query string and the Authorization Request Object, they MUST exactly
match.

Following is the example of the JSON that constitutes the [RFC7519] Claims Set.

{
 "redirect_url":"https://example.com/rp/endpoint_url",
 "cliend_id":"http://example.com/rp/"
}

The following is a non-normative example of a [RFC7519] encoded authorization request object. It includes
extension variables such as "nonce", "userinfo", and "id_token". Note that the line wraps within the values
are for display purpose only:

JWT algorithm = HS256
HMAC HASH Key = 'aaa'

JSON Encoded Header = "{"alg":"HS256","typ":"JWT"}"

JSON Encoded Payload = "{"response_type":"code id_token",
 "client_id":"s6BhdRkqt3",
 "redirect_uri":"https://client.example.com/cb",
 "scope":"openid profile",
 "state":"af0ifjsldkj",
 "nonce":"n-0S6_WzA2Mj",
 "userinfo":{"claims":{"name":null,"nickname":{"optional":true},
 "email":null,"verified":null,
 "picture":{"optional":true}},"format":"signed"},
 "id_token":{"max_age":86400,"iso29115":"2"}}"

JWT = eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJyZXNwb25zZV90eXBlIjoiY29kZ
 SBpZF90b2tlbiIsImNsaWVudF9pZCI6InM2QmhkUmtxdDMiLCJyZWRpcmVjdF91cmkiO
 iJodHRwczpcL1wvY2xpZW50LmV4YW1wbGUuY29tXC9jYiIsInNjb3BlIjoib3BlbmlkI
 HByb2ZpbGUiLCJzdGF0ZSI6ImFmMGlmanNsZGtqIiwidXNlcmluZm8iOnsiY2xhaW1zI
 jp7Im5hbWUiOm51bGwsIm5pY2tuYW1lIjp7Im9wdGlvbmFsIjp0cnVlfSwiZW1haWwiO
 m51bGwsInZlcmlmaWVkIjpudWxsLCJwaWN0dXJlIjp7Im9wdGlvbmFsIjp0cnVlfX0sI
 mZvcm1hdCI6InNpZ25lZCJ9LCJpZF90b2tlbiI6eyJtYXhfYWdlIjo4NjQwMCwiaXNvM
 jkxMTUiOiIyIn19.2OiqRgrbrHkA1FZ5p_7bc_RSdTbH-wo_Agk-ZRpD3wY

4. Request Object URI
Instead of sending the Request Object in an OAuth 2.0 authorization request directly, this specification
allows it to be obtained from the Request Object URI. Using this method has an advantage of reducing the
request size, enabling the caching of the Request Object, and generally not requiring integrity protection
through a cryptographic operation on the Request Object if the channel itself is protected.

The Request Object URI is sent as a part of the OAuth Authorization Request as the value for the parameter
called request_uri. How the Request Object is registered at Request Object URI is out of scope of this
specification, but it MUST be done in a protected channel.

NOTE: the Request Object MAY be registered at the Authorization Server at the client registration time.

When the Authorization Server obtains the Request Object from Request Object URI, it MUST do so over a
protected channel. If it is obtained from a remote server, it SHOULD use either HTTP over TLS 1.2 as
defined in [RFC5246] AND/OR [RFC7515] with the algorithm considered appropriate at the time.

When sending the request by request_uri, the client MAY provide the sha256 hash as defined in FIPS180-2
[FIPS180-2]of the Request Object as the fragment to it to assist the cache utilization decision of the
Authorization Server.

5. Authorization Request
The client constructs the authorization request URI by adding the following parameters to the query
component of the authorization endpoint URI using the application/x-www-form-urlencoded format:

request
REQUIRED unless request_uri is specified. The Request Object [aro] that holds authorization request
parameters stated in the section 4 of OAuth 2.0 [RFC6749].

request_uri
REQUIRED unless request is specified. The absolute URL that points to the Request Object [aro] that
holds authorization request parameters stated in the section 4 of OAuth 2.0 [RFC6749].

state
RECOMMENDED. OAuth 2.0 [RFC6749] state.

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other
means available to it via the user-agent.

For example, the client directs the end-user's user-agent to make the following HTTPS request (line breaks
are for display purposes only):

GET /authorize?request_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

The authorization request object MAY be signed AND/OR encrypted.

Upon receipt of request_uri in the request, the authorization server MUST send a GET request to the
request_uri to retrieve the authorization request object unless it is already cached at the Authorization
Server.

If the response was signed AND/OR encrypted, it has to be decoded accordingly before being processed.

Then, the Authorization Server MUST reconstruct the complete client request from the original HTTP request
and the content of the request object. Then, the process continues as described in Section 3 of OAuth 2.0
[RFC6749] .

6. Authorization Server Response
Authorization Server Response is created and sent to the client as in Section 4 of OAuth 2.0 [RFC6749] .

In addition, this document defines additional 'error' values as follows:

invalid_request_uri
The provided request_uri was not available.

invalid_request_format
The Request Object format was invalid.

invalid_request_params
The parameter set provided in the Request Object was invalid.

7. IANA Considerations
This document registers following error strings to the OAuth Error Registry.

invalid_request_uri
The provided request_uri was not available.

invalid_request_format
The Request Object format was invalid.

invalid_request_params
The parameter set provided in the Request Object was invalid.

8. Security Considerations
In addition to the all the security considerations discussed in OAuth 2.0 [RFC6819], the following security
considerations SHOULD be taken into account.

When sending the authorization request object through request parameter, it SHOULD be signed with then
considered appropriate algorithm using [RFC7515]. The alg=none SHOULD NOT be used in such a case.

If the request object contains personally identifiable or sensitive information, the "request_uri" MUST be of
one-time use and MUST have large enough entropy deemed necessary with applicable security policy. For
higher security requirement, using [RFC7516] is strongly recommended.

9. Acknowledgements
Following people contributed to creating this document through the OpenID Connect 1.0 [openid_ab].

Breno de Medeiros (Google), Hideki Nara (TACT), John Bradley (Ping Identity) <author>, Nat Sakimura
(NRI) <author/editor>, Ryo Itou (Yahoo! Japan), George Fletcher (AOL), Justin Richer (MITRE), Edmund Jay
(Illumila), (add yourself).

In addition following people contributed to this and previous versions through The OAuth Working Group.

David Recordon (Facebook), Luke Shepard (Facebook), James H. Manger (Telstra), Marius Scurtescu
(Google), John Panzer (Google), Dirk Balfanz (Google), (add yourself).

10. Revision History
-02

Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

-01

Copy Edits.

11. References

11.1. Normative References

[FIPS180-2] U.S. Department of Commerce and National Institute of Standards and Technology, "Secure
Hash Signature Standard", FIPS 180-2, August 2002.

Defines Secure Hash Algorithm 256 (SHA256)

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC
5246, August 2008.

[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012.
[RFC6819] Lodderstedt, T., McGloin, M. and P. Hunt, "OAuth 2.0 Threat Model and Security

Considerations", RFC 6819, January 2013.
[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, March

2014.
[RFC7515] Jones, M., Bradley, J. and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, May 2015.
[RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, May 2015.
[RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, May 2015.
[RFC7519] Jones, M., Bradley, J. and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, May 2015.

11.2. Informative References

[openid_ab] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and C. Mortimore, "OpenID Connect Core
1.0", February 2014.

Authors' Addresses
Nat Sakimura (editor)

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc7515
http://tools.ietf.org/html/rfc7516
http://tools.ietf.org/html/rfc7518
http://tools.ietf.org/html/rfc7519

Nomura Research Institute
1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
Chiyoda-ku, Tokyo 100-0005
Japan
Phone: +81-3-5533-2111
EMail: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

John Bradley
Ping Identity
Casilla 177, Sucursal Talagante
Talagante, RM
Chile
Phone: +44 20 8133 3718
EMail: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/

mailto:n-sakimura@nri.co.jp
http://nat.sakimura.org/
mailto:ve7jtb@ve7jtb.com
http://www.thread-safe.com/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Terminology
	2.1. Request Object
	2.2. Request Object URI
	3. Request Object
	4. Request Object URI
	5. Authorization Request
	6. Authorization Server Response
	7. IANA Considerations
	8. Security Considerations
	9. Acknowledgements
	10. Revision History
	11. References
	11.1. Normative References
	11.2. Informative References
	Authors' Addresses

