|
|
| |
| BGP based Multi-homing in Virtual Private LAN Service |
|
|
Virtual Private LAN Service (VPLS) is a Layer 2 Virtual Private Network (VPN) that gives its customers the appearance that their sites are connected via a Local Area Network (LAN). It is often required for the Service Provider (SP) to give the customer redundant connectivity to some sites, often called "multi-homing". This memo shows how BGP-based multi-homing can be offered in the context of LDP and BGP VPLS solutions. This document updates RFC 4761 by defining new flags in the Control Flags field of the Layer2 Info Extended Community. |
| Weighted Multi-Path Procedures for EVPN Multi-Homing |
|
| draft-ietf-bess-evpn-unequal-lb-25.txt |
| Date: |
13/05/2025 |
| Authors: |
Neeraj Malhotra, Ali Sajassi, Jorge Rabadan, John Drake, Avinash Lingala, Samir Thoria |
| Working Group: |
BGP Enabled ServiceS (bess) |
|
EVPN enables all-active multi-homing for a CE (Customer Equipment) device connected to two or more PE (Provider Equipment) devices via a LAG (Link Aggregation), such that bridged and routed traffic from remote PEs to hosts attached to the Ethernet Segment can be equally load balanced (it uses Equal Cost Multi Path) across the multi-homing PEs. EVPN also enables multi-homing for IP subnets advertised in IP Prefix routes, so that routed traffic from remote PEs to those IP subnets can be load balanced. This document defines extensions to EVPN procedures to optimally handle unequal access bandwidth distribution across a set of multi-homing PEs in order to: * provide greater flexibility, with respect to adding or removing individual multi-homed PE-CE links. * handle multi-homed PE-CE link failures that can result in unequal PE-CE access bandwidth across a set of multi-homing PEs. In order to achieve the above, it specifies signaling extensions and procedures to: * Loadbalance bridged and routed traffic across egress PEs in proportion to PE-CE link bandwidth or a generalized weight distribution. * Achieve BUM (Broadcast, UnknownUnicast, Multicast) DF (Designated Forwarder) election distribution for a given ES (Ethernet Segment) across the multi-homing PE set in proportion to PE-CE link bandwidth. Section 6 of this document further updates RFC 8584, draft-ietf-bess-evpn-per-mcast-flow-df-election and draft-ietf- bess-evpn-pref-df in order for the DF election extension defined in this document to work across different DF election algorithms. |
| EVPN Interworking with IPVPN |
|
|
Ethernet Virtual Private Network (EVPN) is used as a unified control plane for tenant network intra and inter-subnet forwarding. When a tenant network spans not only EVPN domains but also domains where BGP VPN-IP or IP families provide inter-subnet forwarding, there is a need to specify the interworking aspects between BGP domains of type EVPN, VPN-IP and IP, so that the end-to-end tenant connectivity can be accomplished. This document specifies how EVPN interworks with VPN-IPv4/VPN-IPv6 and IPv4/IPv6 BGP families for inter-subnet forwarding. The document also addresses the interconnect of EVPN domains for Inter-Subnet Forwarding routes. In addition, this specification defines a new BGP Path Attribute called D-PATH (Domain PATH) that protects gateways against control plane loops. D-PATH modifies the BGP best path selection for multiprotocol BGP routes of SAFI 128 and EVPN IP Prefix routes, and therefore this document updates the BGP best path selection specification, but only for IPVPN and EVPN families. |
| Seamless Multicast Interoperability between EVPN and MVPN PEs |
|
|
Ethernet Virtual Private Network (EVPN) solution is becoming pervasive for Network Virtualization Overlay (NVO) services in data center (DC), Enterprise networks as well as in service provider (SP) networks. As service providers transform their networks in their Central Offices (COs) towards the next generation data center with Software Defined Networking (SDN) based fabric and Network Function Virtualization (NFV), they want to be able to maintain their offered services including Multicast VPN (MVPN) service between their existing network and their new Service Provider Data Center (SPDC) network seamlessly without the use of gateway devices. They want to have such seamless interoperability between their new SPDCs and their existing networks for a) reducing cost, b) having optimum forwarding, and c) reducing provisioning. This document describes a unified solution based on RFCs 6513 & 6514 for seamless interoperability of Multicast VPN between EVPN and MVPN PEs. Furthermore, it describes how the proposed solution can be used as a routed multicast solution in data centers with only EVPN PEs. |
| Controller-based BGP Multicast Signaling |
|
|
This document specifies a way that one or more centralized controllers can use BGP to set up multicast distribution trees (identified by either IP source/destination address pair, or mLDP FEC) in a network. Since the controllers calculate the trees, they can use sophisticated algorithms and constraints to achieve traffic engineering. The controllers directly signal dynamic replication state to tree nodes, leading to very simple multicast control plane on the tree nodes, as if they were using static routes. This can be used for both underlay and overlay multicast trees, including replacing BGP-MVPN signaling. |
| EVPN Network Layer Fault Management |
|
| draft-ietf-bess-evpn-bfd-10.txt |
| Date: |
22/04/2025 |
| Authors: |
Vengada Govindan, Mallik Mudigonda, Ali Sajassi, Greg Mirsky, Donald Eastlake |
| Working Group: |
BGP Enabled ServiceS (bess) |
|
This document specifies proactive, in-band network layer OAM (RFC 9062) mechanisms to detect loss of continuity faults that affect unicast and multi-destination paths (used by Broadcast, Unknown Unicast, and Multicast traffic) in an Ethernet VPN (EVPN, RFC 7432bis) network. The mechanisms specified in this document use the widely adopted Bidirectional Forwarding Detection (RFC 5880) protocol. |
| Multicast and Ethernet VPN with Segment Routing P2MP and Ingress Replication |
|
| draft-ietf-bess-mvpn-evpn-sr-p2mp-13.txt |
| Date: |
27/06/2025 |
| Authors: |
Rishabh Parekh, Dan Voyer, Clarence Filsfils, Mankamana Mishra, Hooman Bidgoli, Zhaohui Zhang |
| Working Group: |
BGP Enabled ServiceS (bess) |
|
A Point-to-Multipoint (P2MP) Tree in a Segment Routing domain carries traffic from a Root to a set of Leaves. This document describes extensions to BGP encodings and procedures for P2MP trees and Ingress Replication used in BGP/MPLS IP VPNs and Ethernet VPNs in a Segment Routing domain. |
| BGP MPLS-Based Ethernet VPN |
|
|
This document describes procedures for Ethernet VPN (EVPN), a BGP MPLS-based solution which addresses the requirements specified in the corresponding RFC - "Requirements for Ethernet VPN (EVPN)". This document obsoletes RFC7432 (BGP MPLS-Based Ethernet VPN) and updates RFC8214 (Virtual Private Wire Service Support in Ethernet VPN). |
| Multicast Source Redundancy in EVPN Networks |
|
|
In Ethernet Virtual Private Networks (EVPNs), IP multicast traffic replication and delivery play a crucial role in enabling efficient and scalable layer-2 and layer-3 services. A common deployment scenario involves redundant multicast sources that ensure high availability and resiliency. However, the presence of redundant sources can lead to duplicate IP multicast traffic in the network, causing inefficiencies and increased overhead. This document specifies extensions to the EVPN multicast procedures that allow for the suppression of duplicate IP multicast traffic from redundant sources. The proposed mechanisms enhance EVPN's capability to deliver multicast traffic efficiently while maintaining high availability. These extensions are applicable to various EVPN deployment scenarios and provide guidelines to ensure consistent and predictable behavior across diverse network topologies. |
| EVPN Multi-Homing Mechanism for Layer-2 Gateway Protocols |
|
|
The existing EVPN multi-homing load-balancing modes do not adequately represent ethernet-segments facing access networks with Layer-2 Gateway protocols such as G.8032, (M)STP, etc. This document defines a new multi-homing mechanism to support these loop-preventing Layer-2 protocols. |
| Cumulative DMZ Link Bandwidth and load-balancing |
|
| draft-ietf-bess-ebgp-dmz-06.txt |
| Date: |
02/01/2025 |
| Authors: |
MOHANTY Satya, Arie Vayner, Akshay Gattani, Ajay Kini, Jeff Tantsura, Reshma Das |
| Working Group: |
BGP Enabled ServiceS (bess) |
|
The DMZ Link Bandwidth draft provides a way to load-balance traffic to a destination which is reachable via more than one path according to the weight attahced. Typically, the link bandwidth (either configured on the link of the EBGP egress interface or set via a policy) is encoded in an extended community and then sent to the IBGP peer that employs multi-path. The link-bandwidth value is then extracted from the extended community and is used as a weight in the RIB/FIB, which does the load-balancing. This draft extends the usage of the DMZ link bandwidth to another setting where the ingress BGP speaker requires knowledge of the cumulative bandwidth while doing the load-balancing. The draft also proposes neighbor-level knobs to enable the link bandwidth extended community to be regenerated and then advertised to EBGP peers to override the default behavior of not advertising optional non-transitive attributes to EBGP peers. |
| EVPN-VPWS Seamless Integration with L2VPN VPWS |
|
|
This document presents a solution for migrating L2VPN Virtual Private Wire Service (VPWS) to Ethernet VPN Virtual Private Wire Service (EVPN-VPWS) services. The solution allows the coexistence of EVPN and L2VPN services under the same point-to-point VPN instance. By using this seamless integration solution, a service provider can introduce EVPN into their existing L2VPN network or migrate from an existing L2VPN based network to EVPN. The migration may be done per pseudowire or per flexible-crossconnect (FXC) service basis. This document specifies control-plane and forwarding behaviors. |
| Segment Routing over IPv6 Argument Signaling for BGP Services |
|
|
RFC9252 defines procedures and messages for BGP Overlay Services for Segment Routing over IPv6 (SRv6) including Layer 3 Virtual Private Network, Ethernet Virtual Private Network, and Global Internet Routing. This document updates RFC9252 and provides more detailed specifications for the signaling and processing of SRv6 Segment Identifiers advertisements for BGP Overlay Service routes associated with SRv6 Endpoint Behaviors that support arguments. |
| EVPN Support for L3 Fast Convergence and Aliasing/Backup Path |
|
|
This document proposes an EVPN extension to allow several of its multi-homing functions, fast convergence, and aliasing/backup path, to be used in conjunction with inter-subnet forwarding. The extension is limited to All-Active and Single-Active redundancy modes. |
| Domain Path (D-PATH) for Ethernet VPN (EVPN) Interconnect Networks |
|
| draft-ietf-bess-evpn-dpath-02.txt |
| Date: |
03/03/2025 |
| Authors: |
Jorge Rabadan, Senthil Sathappan, Mallika Gautam, Patrice Brissette, Wen Lin |
| Working Group: |
BGP Enabled ServiceS (bess) |
|
The BGP Domain PATH (D-PATH) attribute is defined for Inter-Subnet Forwarding (ISF) BGP Sub-Address Families that advertise IP prefixes. When used along with EVPN IP Prefix routes or IP-VPN routes, it identifies the domain(s) through which the routes have passed and that information can be used by the receiver BGP speakers to detect routing loops or influence the BGP best path selection. This document extends the use of D-PATH so that it can also be used along with other EVPN route types. |
| Ethernet VPN Virtual Private Wire Services Gateway Solution |
|
|
Ethernet Virtual Private Network Virtual Private Wire Services (EVPN VPWS) need to be deployed in high scale multi-domain networks, where each domain can use a different transport technology, such as MPLS, VXLAN or Segment Routing with MPLS or IPv6 Segment Identifiers (SIDs). While transport interworking solutions on border routers spare the border routers from having to process service routes, they do not always meet the multi-homing, redundancy, and operational requirements, or provide the isolation that each domain requires. This document analyzes the scenarios in which an interconnect solution for EVPN VPWS using EVPN Domain Gateways is needed, and adds the required extensions to support it. |
| EVPN Fast Reroute |
|
|
This document summarises EVPN convergence mechanisms and specifies procedures for EVPN networks to achieve fast and scale-independent convergence. |