
RATS Working Group L. Lundblade
Internet-Draft Security Theory LLC
Intended status: Standards Track G. Mandyam
Expires: November 21, 2022 J. O’Donoghue
 Qualcomm Technologies Inc.
 May 20, 2022

 The Entity Attestation Token (EAT)
 draft-ietf-rats-eat-13

Abstract

 An Entity Attestation Token (EAT) provides an attested claims set
 that describes state and characteristics of an entity, a device like
 a phone, IoT device, network equipment or such. This claims set is
 used by a relying party, server or service to determine how much it
 wishes to trust the entity.

 An EAT is either a CBOR Web Token (CWT) or JSON Web Token (JWT) with
 attestation-oriented claims. To a large degree, all this document
 does is extend CWT and JWT.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 21, 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Lundblade, et al. Expires November 21, 2022 [Page 1]

Internet-Draft EAT May 2022

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Entity Overview . 6
 1.2. CWT, JWT and DEB . 7
 1.3. CDDL, CBOR and JSON 8
 1.4. Operating Model and RATS Architecture 9
 1.4.1. Relationship between Attestation Evidence and
 Attestation Results 9
 2. Terminology . 10
 3. Top-Level Token Definition 11
 4. The Claims . 12
 4.1. Nonce Claim (nonce) 12
 4.2. Claims Describing the Entity 13
 4.2.1. Universal Entity ID Claim (ueid) 13
 4.2.2. Semi-permanent UEIDs (SUEIDs) 16
 4.2.3. Hardware OEM Identification (oemid) 17
 4.2.3.1. Random Number Based OEMID 17
 4.2.3.2. IEEE Based OEMID 17
 4.2.3.3. IANA Private Enterprise Number Based OEMID . . . 18
 4.2.4. Hardware Model Claim (hardware-model) 18
 4.2.5. Hardware Version Claims (hardware-version-claims) . . 19
 4.2.6. Software Name Claim 20
 4.2.7. Software Version Claim 20
 4.2.8. The Security Level Claim (security-level) 20
 4.2.9. Secure Boot Claim (secure-boot) 21
 4.2.10. Debug Status Claim (debug-status) 22
 4.2.10.1. Enabled . 23
 4.2.10.2. Disabled . 23
 4.2.10.3. Disabled Since Boot 23
 4.2.10.4. Disabled Permanently 23
 4.2.10.5. Disabled Fully and Permanently 23
 4.2.11. The Location Claim (location) 24
 4.2.12. The Uptime Claim (uptime) 25
 4.2.13. The Boot Odometer Claim (odometer) 25
 4.2.14. The Boot Seed Claim (boot-seed) 25
 4.2.15. The DLOA (Digital Letter of Approval) Claim (dloas) . 26
 4.2.16. The Software Manifests Claim (manifests) 26
 4.2.17. The Software Evidence Claim (swevidence) 28
 4.2.18. The Measurement Results Claim (measurement-results) . 29
 4.2.19. Submodules (submods) 31

Lundblade, et al. Expires November 21, 2022 [Page 2]

Internet-Draft EAT May 2022

 4.2.19.1. Submodule Types 32
 4.2.19.2. No Inheritance 36
 4.2.19.3. Security Levels 36
 4.2.19.4. Submodule Names 36
 4.3. Claims Describing the Token 36
 4.3.1. Token ID Claim (cti and jti) 36
 4.3.2. Timestamp claim (iat) 37
 4.3.3. The Profile Claim (profile) 37
 4.3.4. The Intended Use Claim (intended-use) 37
 4.4. Including Keys . 38
 5. Detached EAT Bundles . 39
 6. Endorsements and Verification Keys 40
 6.1. Identification Methods 41
 6.1.1. COSE/JWS Key ID 41
 6.1.2. JWS and COSE X.509 Header Parameters 42
 6.1.3. CBOR Certificate COSE Header Parameters 42
 6.1.4. Claim-Based Key Identification 42
 6.2. Other Considerations 42
 7. Profiles . 43
 7.1. Format of a Profile Document 43
 7.2. List of Profile Issues 43
 7.2.1. Use of JSON, CBOR or both 43
 7.2.2. CBOR Map and Array Encoding 44
 7.2.3. CBOR String Encoding 44
 7.2.4. CBOR Preferred Serialization 44
 7.2.5. COSE/JOSE Protection 44
 7.2.6. COSE/JOSE Algorithms 45
 7.2.7. DEB Support . 45
 7.2.8. Verification Key Identification 45
 7.2.9. Endorsement Identification 45
 7.2.10. Freshness . 45
 7.2.11. Required Claims 45
 7.2.12. Prohibited Claims 45
 7.2.13. Additional Claims 46
 7.2.14. Refined Claim Definition 46
 7.2.15. CBOR Tags . 46
 7.2.16. Manifests and Software Evidence Claims 46
 8. Encoding and Collected CDDL 46
 8.1. Claims-Set and CDDL for CWT and JWT 46
 8.2. Encoding Data Types 47
 8.2.1. Common Data Types 47
 8.2.2. JSON Interoperability 47
 8.2.3. Labels . 48
 8.3. CBOR Interoperability 48
 8.3.1. EAT Constrained Device Serialization 49
 8.4. Collected CDDL . 49
 8.4.1. Payload CDDL . 49
 8.4.2. CBOR-Specific CDDL 55

Lundblade, et al. Expires November 21, 2022 [Page 3]

Internet-Draft EAT May 2022

 8.4.3. JSON-Specific CDDL 56
 9. IANA Considerations . 56
 9.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims
 Registries . 56
 9.2. Claim Characteristics 56
 9.2.1. Interoperability and Relying Party Orientation . . . 56
 9.2.2. Operating System and Technology Neutral 57
 9.2.3. Security Level Neutral 57
 9.2.4. Reuse of Extant Data Formats 57
 9.2.5. Proprietary Claims 58
 9.3. Claims Registered by This Document 58
 9.3.1. Claims for Early Assignment 58
 9.3.2. To be Assigned Claims 62
 9.3.3. Version Schemes Registered by this Document 65
 9.3.4. UEID URN Registered by this Document 65
 9.3.5. Tag for Detached EAT Bundle 66
 10. Privacy Considerations 66
 10.1. UEID and SUEID Privacy Considerations 66
 10.2. Location Privacy Considerations 67
 10.3. Replay Protection and Privacy 67
 11. Security Considerations 68
 11.1. Key Provisioning . 68
 11.1.1. Transmission of Key Material 68
 11.2. Transport Security 68
 11.3. Multiple EAT Consumers 69
 12. References . 69
 12.1. Normative References 69
 12.2. Informative References 72
 Appendix A. Examples . 75
 A.1. Payload Examples . 75
 A.1.1. Simple TEE Attestation 75
 A.1.2. Submodules for Board and Device 77
 A.1.3. EAT Produced by Attestation Hardware Block 79
 A.1.4. Key / Key Store Attestation 79
 A.1.5. Submodules for Board and Device 81
 A.1.6. EAT Produced by Attestation Hardware Block 83
 A.1.7. Key / Key Store Attestation 83
 A.1.8. SW Measurements of an IoT Device 85
 A.1.9. Attestation Results in JSON format 87
 A.1.10. JSON-encoded Token with Sumodules 88
 A.2. Full Token Examples 89
 A.2.1. Basic CWT Example 89
 A.2.2. Detached EAT Bundle 90
 A.2.3. JSON-encoded Detached EAT Bundle 92
 Appendix B. UEID Design Rationale 92
 B.1. Collision Probability 93
 B.2. No Use of UUID . 95
 Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity

Lundblade, et al. Expires November 21, 2022 [Page 4]

Internet-Draft EAT May 2022

 (DevID) . 96
 C.1. DevID Used With EAT 96
 C.2. How EAT Provides an Equivalent Secure Device Identity . . 97
 C.3. An X.509 Format EAT 97
 C.4. Device Identifier Permanence 98
 Appendix D. CDDL for CWT and JWT 98
 Appendix E. Changes from Previous Drafts 100
 E.1. From draft-rats-eat-01 100
 E.2. From draft-mandyam-rats-eat-00 100
 E.3. From draft-ietf-rats-eat-01 100
 E.4. From draft-ietf-rats-eat-02 100
 E.5. From draft-ietf-rats-eat-03 101
 E.6. From draft-ietf-rats-eat-04 101
 E.7. From draft-ietf-rats-eat-05 102
 E.8. From draft-ietf-rats-eat-06 102
 E.9. From draft-ietf-rats-eat-07 102
 E.10. From draft-ietf-rats-eat-08 102
 E.11. From draft-ietf-rats-eat-09 102
 E.12. From draft-ietf-rats-eat-10 103
 E.13. From draft-ietf-rats-eat-11 104
 E.14. From draft-ietf-rats-eat-12 104
 Authors’ Addresses . 105

1. Introduction

 EAT provides the definition of a base set of claims that can be made
 about an entity, a device, some software and/or some hardware. This
 claims set is received by a relying party who uses it to decide if
 and how it will interact with the remote entity. It may choose to
 not trust the entity and not interact with it. It may choose to
 trust it. It may partially trust it, for example allowing monetary
 transactions only up to a limit.

 EAT defines the encoding of the claims set in CBOR [RFC8949] and JSON
 [RFC7159]. EAT is an extension to CBOR Web Token (CWT) [RFC8392] and
 JSON Web Token (JWT) [RFC7519].

 The claims set is secured in transit with the same mechanisms used by
 CWT and JWT, in particular CBOR Object Signing and Encryption (COSE)
 [RFC8152] and JSON Object Signing and Encryption (JOSE) [RFC7515]
 [RFC7516]. Authenticity and integrity protection must always be
 provided. Privacy (encryption) may additionally be provided. The
 key material used to sign and encrypt is specifically created and
 provisioned for the purpose of attestation. It is the use of this
 key material that make the claims set "attested" rather than just
 some parameters sent to the relying party by the device.

Lundblade, et al. Expires November 21, 2022 [Page 5]

Internet-Draft EAT May 2022

 EAT is focused on authenticating, identifying and characterizing
 implementations where implementations are devices, chips, hardware,
 software and such. This is distinct from protocols like TLS
 [RFC8446] that authenticate and identify servers and services. It is
 equally distinct from protocols like SASL [RFC4422] that authenticate
 and identify persons.

 The notion of attestation is large, ranging over a broad variety of
 use cases and security levels. Here are a few examples of claims:

 o Make and model of manufactured consumer device

 o Make and model of a chip or processor, particularly for a
 security-oriented chip

 o Identification and measurement of the software running on a device

 o Configuration and state of a device

 o Environmental characteristics of a device like its GPS location

 o Formal certifications received

 EAT also supports nesting of sets of claims and EAT tokens for use
 with complex composite devices.

 This document uses the terminology and main operational model defined
 in [RATS.Architecture]. In particular, it can be used for RATS
 Attestation Evidence and Attestation Results.

1.1. Entity Overview

 The document uses the term "entity" to refer to the target of the
 attestation token. The claims defined in this document are claims
 about an entity.

 An entity is an implementation in hardware, software or both.

 An entity is the same as the Attester Target Environment defined in
 RATS Architecture.

 An entity also corresponds to a "system component" as defined in the
 Internet Security Glossary [RFC4949]. That glossary also defines
 "entity" and "system entity" as something that may be a person or
 organization as well as a system component. Here "entity" never
 refers to a person or organization.

 An entity is never a server or a service.

Lundblade, et al. Expires November 21, 2022 [Page 6]

Internet-Draft EAT May 2022

 An entity may be the whole device or it may be a subsystem, a
 subsystem of a subsystem and so on. EAT allows claims to be
 organized into submodules, nested EATs and so on. See
 Section 4.2.19. The entity to which a claim applies is the submodule
 in which it appears, or to the top-level entity if it doesn’t appear
 in a submodule.

 Some examples of entities:

 o A Secure Element

 o A TEE

 o A card in a network router

 o A network router, perhaps with each card in the router a submodule

 o An IoT device

 o An individual process

 o An app on a smartphone

 o A smartphone with many submodules for its many subsystems

 o A subsystem in a smartphone like the modem or the camera

 An entity may have strong security like defenses against hardware
 invasive attacks. It may also have low security, having no special
 security defenses. There is no minimum security requirement to be an
 entity.

1.2. CWT, JWT and DEB

 An EAT is primarily a claims set about an entity based on one of the
 following:

 o CBOR Web Token (CWT) [RFC8392]

 o JSON Web Token (JWT) [RFC7519]

 All definitions, requirements, creation and validation procedures,
 security considerations, IANA registrations and so on from these
 carry over to EAT.

 This specification extends those specifications by defining
 additional claims for attestation. This specification also describes
 the notion of a "profile" that can narrow the definition of an EAT,

Lundblade, et al. Expires November 21, 2022 [Page 7]

Internet-Draft EAT May 2022

 ensure interoperability and fill in details for specific usage
 scenarios. This specification also adds some considerations for
 registration of future EAT-related claims.

 The identification of a protocol element as an EAT, whether CBOR or
 JSON encoded, follows the general conventions used by CWT, JWT.
 Largely this depends on the protocol carrying the EAT. In some cases
 it may be by content type (e.g., MIME type). In other cases it may
 be through use of CBOR tags. There is no fixed mechanism across all
 use cases.

 This specification adds one more top-level token type:

 o Detached EAT Bundle (DEB), Section 5

 A DEB is structure to hold a collection of detached claims sets and
 the EAT that separately provides integrity and authenticity
 protection for them. It can be either CBOR or JSON encoded.

 Last, the definition of other token types is allowed. Of particular
 use may be a token type that provides no authenticity or integrity
 protection at all for use with transports like TLS that do provide
 that.

1.3. CDDL, CBOR and JSON

 This document defines Concise Binary Object Representation (CBOR)
 [RFC8949] and Javascript Object Notation (JSON) [RFC7159] encoding
 for an EAT. All claims in an EAT MUST use the same encoding except
 where explicitly allowed. It is explicitly allowed for a nested
 token to be of a different encoding. Some claims explicitly contain
 objects and messages that may use a different encoding than the
 enclosing EAT.

 This specification uses Concise Data Definition Language (CDDL)
 [RFC8610] for all definitions. The implementor interprets the CDDL
 to come to either the CBOR or JSON encoding. In the case of JSON,
 Appendix E of [RFC8610] is followed. Additional rules are given in
 Section 8.2.2 where Appendix E is insufficient.

 In most cases where the CDDL for CBOR is different than JSON a CDDL
 Generic named "JC<>" is used. It is described in Appendix D.

 The CWT and JWT specifications were authored before CDDL was
 available and did not use CDDL. This specification includes a CDDL
 definition of most of what is defined in [RFC8392]. Similarly, this
 specification includes CDDL for most of what is defined in [RFC7519].
 These definitions are in Appendix D and are not normative.

Lundblade, et al. Expires November 21, 2022 [Page 8]

Internet-Draft EAT May 2022

1.4. Operating Model and RATS Architecture

 While it is not required that EAT be used with the RATS operational
 model described in Figure 1 in [RATS.Architecture], or even that it
 be used for attestation, this document is oriented around that model.

 To summarize, an Attester generates Attestation Evidence.
 Attestation Evidence is a claims set describing various
 characteristics of an entity. Attestation Evidence also is usually
 signed by a key that proves the entity and the evidence it produces
 are authentic. The claims set includes a nonce or some other means
 to provide freshness. EAT is designed to carry Attestation Evidence.
 The Attestation Evidence goes to a Verifier where the signature is
 verified. Some of the claims may also be checked against Reference
 Values. The Verifier then produces Attestation Results which is also
 usually a claims set. EAT is also designed to carry Attestation
 Results. The Attestation Results go to the Relying Party which is
 the ultimate consumer of the Remote Attestation Procedure. The
 Relying Party uses the Attestation Results as needed for the use
 case, perhaps allowing an entity on the network, allowing a financial
 transaction or such.

 Note that sometimes the Verifier and Relying Party are not separate
 and thus there is no need for a protocol to carry Attestation
 Results.

1.4.1. Relationship between Attestation Evidence and Attestation
 Results

 Any claim defined in this document or in the IANA CWT or JWT registry
 may be used in Attestation Evidence or Attestation Results.

 The relationship of claims in Attestation Results to Attestation
 Evidence is fundamentally governed by the Verifier and the Verifier’s
 Policy.

 A common use case is for the Verifier and its Policy to perform
 checks, calculations and processing with Attestation Evidence as the
 input to produce a summary result in Attestation Results that
 indicates the overall health and status of the entity. For example,
 measurements in Attestation Evidence may be compared to Reference
 Values the results of which are represented as a simple pass/fail in
 Attestation Results.

 It is also possible that some claims in the Attestation Evidence will
 be forwarded unmodified to the Relying Party in Attestation Results.
 This forwarding is subject to the Verifier’s implementation and

Lundblade, et al. Expires November 21, 2022 [Page 9]

Internet-Draft EAT May 2022

 Policy. The Relying Party should be aware of the Verifier’s Policy
 to know what checks it has performed on claims it forwards.

 The Verifier may also modify or transform claims it forwards. This
 may be to implement some privacy preservation functionality.

 It is also possible the Verifier will put claims in the Attestation
 Results that give details about the entity that it has computed or
 looked up in a database. For example, the Verifier may be able to
 put a HW OEM ID Claim in the Attestation Results by performing a look
 up based on a UEID (serial number) it received in Attestation
 Evidence.

 There are no fixed rules for how a Verifier processes Attestation
 Evidence to produce Attestation Results. What is important is the
 Relying Party understand what the Verifier does and what its policies
 are.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document reuses terminology from JWT [RFC7519] and CWT
 [RFC8392].

 Claim: A piece of information asserted about a subject. A claim is
 represented as pair with a value and either a name or key to
 identify it.

 Claim Name: A unique text string that identifies the claim. It is
 used as the claim name for JSON encoding.

 Claim Key: The CBOR map key used to identify a claim.

 Claim Value: The value portion of the claim. A claim value can be
 any CBOR data item or JSON value.

 CWT/JWT Claims Set: The CBOR map or JSON object that contains the
 claims conveyed by the CWT or JWT.

 This document reuses terminology from RATS Architecure
 [RATS.Architecture]

Lundblade, et al. Expires November 21, 2022 [Page 10]

Internet-Draft EAT May 2022

 Attester: A role performed by an entity (typically a device) whose
 Evidence must be appraised in order to infer the extent to which
 the Attester is considered trustworthy, such as when deciding
 whether it is authorized to perform some operation.

 Verifier: A role that appraises the validity of Attestation Evidence
 about an Attester and produces Attestation Results to be used by a
 Relying Party.

 Relying Party: A role that depends on the validity of information
 about an Attester, for purposes of reliably applying application
 specific actions. Compare /relying party/ in [RFC4949].

 Attestation Evidence: A Claims Set generated by an Attester to be
 appraised by a Verifier. Attestation Evidence may include
 configuration data, measurements, telemetry, or inferences.

 Attestation Results: The output generated by a Verifier, typically
 including information about an Attester, where the Verifier
 vouches for the validity of the results

 Reference Values: A set of values against which values of Claims can
 be compared as part of applying an Appraisal Policy for
 Attestation Evidence. Reference Values are sometimes referred to
 in other documents as known-good values, golden measurements, or
 nominal values, although those terms typically assume comparison
 for equality, whereas here Reference Values might be more general
 and be used in any sort of comparison.

3. Top-Level Token Definition

 An EAT is a "message", a "token", or such whose content is a Claims-
 Set about an entity or some number of entities. An EAT MUST always
 contains a Claims-Set.

 An EAT may be encoded in CBOR or JSON as defined here. While not
 encouraged, other documents may define EAT encoding in other formats.

 EAT as defined here is always integrity and authenticity protected
 through use of CWT or JWT. Other token formats using other methods
 of protection may be defined outside this document.

 This document also defines the Detatched EAT Bundle Section 5, a
 bundle of some detached Claims-Sets and CWTs or JWTs that provide
 protection for the detached Claims-Set.

Lundblade, et al. Expires November 21, 2022 [Page 11]

Internet-Draft EAT May 2022

 The following CDDL defines the top-levels of an EAT token as a socket
 indicating future token formats may be defined. See Appendix D for
 the CDDL definitions of a CWT and JWT.

 Nesting of EATs is allowed and defined in Section 4.2.19.1.2. This
 nesting includes nesting of a token that is a different format than
 the enclosing token. The definition of Nested-Token references the
 CDDL defined in this section. When new token formats are defined,
 the means for identification in a nested token MUST also be defined.

 EAT-CBOR-Token = $$EAT-CBOR-Tagged-Token / $$EAT-CBOR-Untagged-Token

 $$EAT-CBOR-Tagged-Token /= CWT-Tagged-Message
 $$EAT-CBOR-Tagged-Token /= DEB-Tagged-Message

 $$EAT-CBOR-Untagged-Token /= CWT-Untagged-Message
 $$EAT-CBOR-Untagged-Token /= DEB-Untagged-Message

 EAT-JSON-Token = $$EAT-JSON-Token-Formats

 $$EAT-JSON-Token-Formats /= JWT-Message
 $$EAT-JSON-Token-Formats /= DEB-Untagged-Message

4. The Claims

 This section describes new claims defined for attestation that are to
 be added to the CWT [IANA.CWT.Claims] and JWT [IANA.JWT.Claims] IANA
 registries.

 This section also describes how several extant CWT and JWT claims
 apply in EAT.

 CDDL, along with a text description, is used to define each claim
 independent of encoding. Each claim is defined as a CDDL group. In
 Section 8 on encoding, the CDDL groups turn into CBOR map entries and
 JSON name/value pairs.

 Each claim described has a unique text string and integer that
 identifies it. CBOR encoded tokens MUST use only the integer for
 Claim Keys. JSON encoded tokens MUST use only the text string for
 Claim Names.

4.1. Nonce Claim (nonce)

 All EATs MUST have a nonce to prevent replay attacks.

 This claim is either a single byte or text string or an array of byte
 or text strings. The array is to accommodate multistage EAT

Lundblade, et al. Expires November 21, 2022 [Page 12]

Internet-Draft EAT May 2022

 verification and consumption. See the extensive discussion on
 attestation freshness in Appendix A of RATS Architecture
 [RATS.Architecture].

 A claim named "nonce" is previously defined and registered with IANA
 for JWT, but MUST not be used in an EAT. It does not support
 multiple nonces. No previous nonce claim was defined for CWT.

 The nonce MUST have 64 bits of entropy as fewer bits are unlikely to
 be secure. A maximum nonce size is set to limit the memory required
 for an implementation. All receivers MUST be able to accommodate the
 maximum size.

 In CBOR, the nonce is a byte string and every bit in the byte string
 contributes to entropy. The minimum size is 8 bytes. The maximum
 size is 64 bytes.

 In JSON the nonce is a text string. It is assumed that the only
 characters represented by the lower 7 bits will be used so the text
 string must be one-seventh longer. The minimum size is 10 bytes.
 The maximum size is 74 bytes.

 $$Claims-Set-Claims //=
 (nonce-label => nonce-type / [2* nonce-type])

 nonce-type = JC< tstr .size (10..74), bstr .size (8..64)>

4.2. Claims Describing the Entity

 The claims in this section describe the entity itself. They describe
 the entity whether they occur in Attestation Evidence or occur in
 Attestation Results. See Section 1.4.1 for discussion on how
 Attestation Results relate to Attestation Evidence.

4.2.1. Universal Entity ID Claim (ueid)

 A UEID identifies an individual manufactured entity like a mobile
 phone, a water meter, a Bluetooth speaker or a networked security
 camera. It may identify the entire entity or a submodule. It does
 not identify types, models or classes of entities. It is akin to a
 serial number, though it does not have to be sequential.

 UEIDs MUST be universally and globally unique across manufacturers
 and countries. UEIDs MUST also be unique across protocols and
 systems, as tokens are intended to be embedded in many different
 protocols and systems. No two products anywhere, even in completely
 different industries made by two different manufacturers in two

Lundblade, et al. Expires November 21, 2022 [Page 13]

Internet-Draft EAT May 2022

 different countries should have the same UEID (if they are not global
 and universal in this way, then Relying Parties receiving them will
 have to track other characteristics of the entity to keep entities
 distinct between manufacturers).

 There are privacy considerations for UEIDs. See Section 10.1.

 The UEID is permanent. It MUST never change for a given entity.

 A UEID is constructed of a single type byte followed by the bytes
 that are the identifier. Several types are allowed to accommodate
 different industries, different manufacturing processes and to have
 an alternative that doesn’t require paying a registration fee.

 Creation of new types requires a Standards Action [RFC8126].

 UEIDs are variable length. All implementations MUST be able to
 receive UEIDs that are 33 bytes long (1 type byte and 256 bits). No
 UEID longer than 33 bytes SHOULD be sent.

Lundblade, et al. Expires November 21, 2022 [Page 14]

Internet-Draft EAT May 2022

 +------+------+---+
 | Type | Type | Specification |
 | Byte | Name | |
 +------+------+---+
0x01	RAND	This is a 128, 192 or 256-bit random number
		generated once and stored in the entity. This may
		be constructed by concatenating enough identifiers
		to make up an equivalent number of random bits and
		then feeding the concatenation through a
		cryptographic hash function. It may also be a
		cryptographic quality random number generated once
		at the beginning of the life of the entity and
		stored. It MUST NOT be smaller than 128 bits. See
		the length analysis in Appendix B.
0x02	IEEE	This uses the IEEE company identification registry.
	EUI	An EUI is either an EUI-48, EUI-60 or EUI-64 and
		made up of an OUI, OUI-36 or a CID, different
		registered company identifiers, and some unique
		per-entity identifier. EUIs are often the same as
		or similar to MAC addresses. This type includes
		MAC-48, an obsolete name for EUI-48. (Note that
		while entities with multiple network interfaces may
		have multiple MAC addresses, there is only one UEID
		for an entity) [IEEE.802-2001], [OUI.Guide].
0x03	IMEI	This is a 14-digit identifier consisting of an
		8-digit Type Allocation Code and a 6-digit serial
		number allocated by the manufacturer, which SHALL
		be encoded as byte string of length 14 with each
		byte as the digit’s value (not the ASCII encoding
		of the digit; the digit 3 encodes as 0x03, not
		0x33). The IMEI value encoded SHALL NOT include
		Luhn checksum or SVN information. See
		[ThreeGPP.IMEI].
 +------+------+---+

 Table 1: UEID Composition Types

 UEIDs are not designed for direct use by humans (e.g., printing on
 the case of a device), so no textual representation is defined.

 The consumer of a UEID MUST treat a UEID as a completely opaque
 string of bytes and not make any use of its internal structure. For
 example, they should not use the OUI part of a type 0x02 UEID to
 identify the manufacturer of the entity. Instead, they should use
 the OEMID claim. See Section 4.2.3. The reasons for this are:

 o UEIDs types may vary freely from one manufacturer to the next.

Lundblade, et al. Expires November 21, 2022 [Page 15]

Internet-Draft EAT May 2022

 o New types of UEIDs may be created. For example, a type 0x07 UEID
 may be created based on some other manufacturer registration
 scheme.

 o The manufacturing process for an entity is allowed to change from
 using one type of UEID to another. For example, a manufacturer
 may find they can optimize their process by switching from type
 0x01 to type 0x02 or vice versa.

 A Device Identifier URN is registered for UEIDs. See Section 9.3.4.

 $$Claims-Set-Claims //= (ueid-label => ueid-type)

 ueid-type = JC<base64-url-text .size (12..44) , bstr .size (7..33)>

4.2.2. Semi-permanent UEIDs (SUEIDs)

 An SEUID is of the same format as a UEID, but it MAY change to a
 different value on device life-cycle events. Examples of these
 events are change of ownership, factory reset and on-boarding into an
 IoT device management system. An entity MAY have both a UEID and
 SUEIDs, neither, one or the other.

 There MAY be multiple SUEIDs. Each one has a text string label the
 purpose of which is to distinguish it from others in the token. The
 label MAY name the purpose, application or type of the SUEID.
 Typically, there will be few SUEDs so there is no need for a formal
 labeling mechanism like a registry. The EAT profile MAY describe how
 SUEIDs should be labeled. If there is only one SUEID, the claim
 remains a map and there still must be a label. For example, the
 label for the SUEID used by FIDO Onboarding Protocol could simply be
 "FDO".

 There are privacy considerations for SUEIDs. See Section 10.1.

 A Device Indentifier URN is registered for SUEIDs. See
 Section 9.3.4.

 $$Claims-Set-Claims //= (sueids-label => sueids-type)

 sueids-type = {
 + tstr => ueid-type
 }

Lundblade, et al. Expires November 21, 2022 [Page 16]

Internet-Draft EAT May 2022

4.2.3. Hardware OEM Identification (oemid)

 This claim identifies the Original Equipment Manufacturer (OEM) of
 the hardware. Any of the three forms described below MAY be used at
 the convenience of the claim sender. The receiver of this claim MUST
 be able to handle all three forms.

4.2.3.1. Random Number Based OEMID

 The random number based OEMID MUST always 16 bytes (128 bits).

 The OEM MAY create their own ID by using a cryptographic-quality
 random number generator. They would perform this only once in the
 life of the company to generate the single ID for said company. They
 would use that same ID in every entity they make. This uniquely
 identifies the OEM on a statistical basis and is large enough should
 there be ten billion companies.

 The OEM MAY also use a hash function like SHA-256 and truncate the
 output to 128 bits. The input to the hash should be somethings that
 have at least 96 bits of entropy, but preferably 128 bits of entropy.
 The input to the hash MAY be something whose uniqueness is managed by
 a central registry like a domain name.

 In JSON format tokens this MUST be base64url encoded.

4.2.3.2. IEEE Based OEMID

 The IEEE operates a global registry for MAC addresses and company
 IDs. This claim uses that database to identify OEMs. The contents
 of the claim may be either an IEEE MA-L, MA-M, MA-S or an IEEE CID
 [IEEE.RA]. An MA-L, formerly known as an OUI, is a 24-bit value used
 as the first half of a MAC address. MA-M similarly is a 28-bit value
 uses as the first part of a MAC address, and MA-S, formerly known as
 OUI-36, a 36-bit value. Many companies already have purchased one of
 these. A CID is also a 24-bit value from the same space as an MA-L,
 but not for use as a MAC address. IEEE has published Guidelines for
 Use of EUI, OUI, and CID [OUI.Guide] and provides a lookup service
 [OUI.Lookup].

 Companies that have more than one of these IDs or MAC address blocks
 SHOULD select one and prefer that for all their entities.

 Commonly, these are expressed in Hexadecimal Representation as
 described in [IEEE.802-2001]. It is also called the Canonical
 format. When this claim is encoded the order of bytes in the bstr
 are the same as the order in the Hexadecimal Representation. For

Lundblade, et al. Expires November 21, 2022 [Page 17]

Internet-Draft EAT May 2022

 example, an MA-L like "AC-DE-48" would be encoded in 3 bytes with
 values 0xAC, 0xDE, 0x48.

 This format is always 3 bytes in size in CBOR.

 In JSON format tokens, this MUST be base64url encoded and always 4
 bytes.

4.2.3.3. IANA Private Enterprise Number Based OEMID

 IANA maintains a integer-based company registry called the Private
 Enterprise Number (PEN) [PEN].

 PENs are often used to create an OID. That is not the case here.
 They are used only as an integer.

 In CBOR this value MUST be encoded as a major type 0 integer and is
 typically 3 bytes. In JSON, this value MUST be encoded as a number.

 $$Claims-Set-Claims //= (
 oemid-label => oemid-pen / oemid-ieee / oemid-random
)

 oemid-pen = int

 oemid-ieee = JC<oemid-ieee-json, oemid-ieee-cbor>
 oemid-ieee-cbor = bstr .size 3
 oemid-ieee-json = base64-url-text .size 4

 oemid-random = JC<oemid-random-json, oemid-random-cbor>
 oemid-random-cbor = bstr .size 16
 oemid-random-json = base64-url-text .size 24

4.2.4. Hardware Model Claim (hardware-model)

 This claim differentiates hardware models, products and variants
 manufactured by a particular OEM, the one identified by OEM ID in
 Section 4.2.3.

 This claim must be unique so as to differentiate the models and
 products for the OEM ID. This claim does not have to be globally
 unique, but it can be. A receiver of this claim MUST not assume it
 is globally unique. To globally identify a particular product, the
 receiver should concatenate the OEM ID and this claim.

 The granularity of the model identification is for each OEM to
 decide. It may be very granular, perhaps including some version

Lundblade, et al. Expires November 21, 2022 [Page 18]

Internet-Draft EAT May 2022

 information. It may be very general, perhaps only indicating top-
 level products.

 The purpose of this claim is to identify models within protocols, not
 for human-readable descriptions. The format and encoding of this
 claim should not be human-readable to discourage use other than in
 protocols. If this claim is to be derived from an already-in-use
 human-readable identifier, it can be run through a hash function.

 There is no minimum length so that an OEM with a very small number of
 models can use a one-byte encoding. The maximum length is 32 bytes.
 All receivers of this claim MUST be able to receive this maximum
 size.

 The receiver of this claim MUST treat it as a completely opaque
 string of bytes, even if there is some apparent naming or structure.
 The OEM is free to alter the internal structure of these bytes as
 long as the claim continues to uniquely identify its models.

 $$Claims-Set-Claims //= (
 hardware-model-label => hardware-model-type
)

 hardware-model-type = JC<base64-url-text .size (4..44),
 bytes .size (1..32)>

4.2.5. Hardware Version Claims (hardware-version-claims)

 The hardware version is a text string the format of which is set by
 each manufacturer. The structure and sorting order of this text
 string can be specified using the version-scheme item from CoSWID
 [CoSWID]. It is useful to know how to sort versions so the newer can
 be distinguished from the older.

 The hardware version can also be given by a 13-digit [EAN-13]. A new
 CoSWID version scheme is registered with IANA by this document in
 Section 9.3.3. An EAN-13 is also known as an International Article
 Number or most commonly as a bar code.

 $$Claims-Set-Claims //= (
 hardware-version-label => hardware-version-type
)

 hardware-version-type = [
 version: tstr,
 ? scheme: $version-scheme
]

Lundblade, et al. Expires November 21, 2022 [Page 19]

Internet-Draft EAT May 2022

4.2.6. Software Name Claim

 This is a free-form text claim for the name of the software for the
 entity or submodule. A CoSWID manifest or other type of manifest can
 be used instead if this claim is to limited to correctly characterize
 the SW for the entity or submodule.

 $$Claims-Set-Claims //= (sw-name-label => tstr)

4.2.7. Software Version Claim

 This makes use of the CoSWID version scheme data type to give a
 simple version for the software. A full CoSWID manifest or other
 type of manifest can be instead if this is too simple.

 $$Claims-Set-Claims //= (sw-version-label => sw-version-type)

 sw-version-type = [
 version: tstr
 ? scheme: $version-scheme
]

4.2.8. The Security Level Claim (security-level)

 This claim characterizes the entity’s ability to defend against
 attacks aimed at capturing the signing key, forging claims and
 forging EATs.

 The intent of this claim is only to give the recipient a rough idea
 of the security the entity is aiming for. This is via a simple, non-
 extensible set of three levels.

 This takes a broad view of the range of defenses because EAT is
 targeted at a broad range of use cases. The least secure level
 involves minimal SW defenses. The most secure level involves
 specialized hardware to defend against hardware-based attacks.

 Only through expansive certification programs like Common Criteria
 and FIDO certification is it possible to sharply define security
 levels. Sharp definition of security levels is not possible here
 because the IETF doesn’t define and operate certification programs.
 It is also not possible here because any sharp definition of security
 levels would be a document larger than the EAT specification. Thus,
 this definition takes the view that the security level definition
 possible here is a simple, modest, rough characterization.

 1 - Unrestricted: An entity is categorized as unrestricted when it
 doesn’t meet the criteria for any of the higher levels. This

Lundblade, et al. Expires November 21, 2022 [Page 20]

Internet-Draft EAT May 2022

 level does not indicate there is no protection at all, just that
 the entity doesn’t qualify for the higher levels.

 2 - Restricted: Entities at this level MUST meet the criteria
 defined in Section 4 of FIDO Allowed Restricted Operating
 Environments [FIDO.AROE]. Examples include TEE’s and schemes
 using virtualization-based security. Security at this level is
 aimed at defending against large-scale network/remote attacks by
 having a reduced attack surface.

 3 - Hardware: Entities at this level are indicating they have some
 countermeasures to defend against physical or electrical attacks
 against the entity. Security at this level is aimed at defending
 against attackers that physically capture the entity to attack it.
 Examples include TPMs and Secure Elements.

 The security level claimed should be for the weakest point in the
 entity, not the strongest. For example, if attestation key is
 protected by hardware, but the rest of the attester is in a TEE, the
 claim must be for restriced.

 This set of three is not extensible so this remains a broad
 interoperable description of security level.

 In particular use cases, alternate claims may be defined that give
 finer grained information than this claim.

 See also the DLOAs claim in Section 4.2.15, a claim that specifically
 provides information about certifications received.

 $$Claims-Set-Claims //=
 (security-level-label => security-level-type)

 security-level-type = unrestricted /
 restricted /
 hardware

 unrestricted = JC< "unrestricted", 1>
 restricted = JC< "restricted", 2>
 hardware = JC< "hardware", 3>

4.2.9. Secure Boot Claim (secure-boot)

 The value of true indicates secure boot is enabled. Secure boot is
 considered enabled when the firmware and operating system, are under
 control of the manufacturer of the entity identified in the OEMID
 claim described in Section 4.2.3. Control by the manufacturer of the

Lundblade, et al. Expires November 21, 2022 [Page 21]

Internet-Draft EAT May 2022

 firmware and the operating system may be by it being in ROM, being
 cryptographically authenticated, a combination of the two or similar.

 $$Claims-Set-Claims //= (secure-boot-label => bool)

4.2.10. Debug Status Claim (debug-status)

 This applies to entity-wide or submodule-wide debug facilities of the
 entity like JTAG and diagnostic hardware built into chips. It
 applies to any software debug facilities related to root, operating
 system or privileged software that allow system-wide memory
 inspection, tracing or modification of non-system software like user
 mode applications.

 This characterization assumes that debug facilities can be enabled
 and disabled in a dynamic way or be disabled in some permanent way
 such that no enabling is possible. An example of dynamic enabling is
 one where some authentication is required to enable debugging. An
 example of permanent disabling is blowing a hardware fuse in a chip.
 The specific type of the mechanism is not taken into account. For
 example, it does not matter if authentication is by a global password
 or by per-entity public keys.

 As with all claims, the absence of the debug level claim means it is
 not reported. A conservative interpretation might assume the enabled
 state.

 This claim is not extensible so as to provide a common interoperable
 description of debug status. If a particular implementation
 considers this claim to be inadequate, it can define its own
 proprietary claim. It may consider including both this claim as a
 coarse indication of debug status and its own proprietary claim as a
 refined indication.

 The higher levels of debug disabling requires that all debug
 disabling of the levels below it be in effect. Since the lowest
 level requires that all of the target’s debug be currently disabled,
 all other levels require that too.

 There is no inheritance of claims from a submodule to a superior
 module or vice versa. There is no assumption, requirement or
 guarantee that the target of a superior module encompasses the
 targets of submodules. Thus, every submodule must explicitly
 describe its own debug state. The receiver of an EAT MUST not assume
 that debug is turned off in a submodule because there is a claim
 indicating it is turned off in a superior module.

Lundblade, et al. Expires November 21, 2022 [Page 22]

Internet-Draft EAT May 2022

 An entity may have multiple debug facilities. The use of plural in
 the description of the states refers to that, not to any aggregation
 or inheritance.

 The architecture of some chips or devices may be such that a debug
 facility operates for the whole chip or device. If the EAT for such
 a chip includes submodules, then each submodule should independently
 report the status of the whole-chip or whole-device debug facility.
 This is the only way the receiver can know the debug status of the
 submodules since there is no inheritance.

4.2.10.1. Enabled

 If any debug facility, even manufacturer hardware diagnostics, is
 currently enabled, then this level must be indicated.

4.2.10.2. Disabled

 This level indicates all debug facilities are currently disabled. It
 may be possible to enable them in the future. It may also be that
 they were enabled in the past, but they are currently disabled.

4.2.10.3. Disabled Since Boot

 This level indicates all debug facilities are currently disabled and
 have been so since the entity booted/started.

4.2.10.4. Disabled Permanently

 This level indicates all non-manufacturer facilities are permanently
 disabled such that no end user or developer can enable them. Only
 the manufacturer indicated in the OEMID claim can enable them. This
 also indicates that all debug facilities are currently disabled and
 have been so since boot/start.

4.2.10.5. Disabled Fully and Permanently

 This level indicates that all debug facilities for the entity are
 permanently disabled.

Lundblade, et al. Expires November 21, 2022 [Page 23]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (debug-status-label => debug-status-type)

 debug-status-type = ds-enabled /
 disabled /
 disabled-since-boot /
 disabled-permanently /
 disabled-fully-and-permanently

 ds-enabled = JC< "enabled", 0 >
 disabled = JC< "disabled", 1 >
 disabled-since-boot = JC< "disabled-since-boot", 2 >
 disabled-permanently = JC< "disabled-permanently", 3 >
 disabled-fully-and-permanently = JC< "disabled-fully-and-permanently",
 4 >

4.2.11. The Location Claim (location)

 The location claim gives the location of the entity from which the
 attestation originates. It is derived from the W3C Geolocation API
 [W3C.GeoLoc]. The latitude, longitude, altitude and accuracy must
 conform to [WGS84]. The altitude is in meters above the [WGS84]
 ellipsoid. The two accuracy values are positive numbers in meters.
 The heading is in degrees relative to true north. If the entity is
 stationary, the heading is NaN (floating-point not-a-number). The
 speed is the horizontal component of the entity velocity in meters
 per second.

 The location may have been cached for a period of time before token
 creation. For example, it might have been minutes or hours or more
 since the last contact with a GPS satellite. Either the timestamp or
 age data item can be used to quantify the cached period. The
 timestamp data item is preferred as it a non-relative time.

 The age data item can be used when the entity doesn’t know what time
 it is either because it doesn’t have a clock or it isn’t set. The
 entity MUST still have a "ticker" that can measure a time interval.
 The age is the interval between acquisition of the location data and
 token creation.

 See location-related privacy considerations in Section 10.2.

Lundblade, et al. Expires November 21, 2022 [Page 24]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (location-label => location-type)

 location-type = {
 latitude => number,
 longitude => number,
 ? altitude => number,
 ? accuracy => number,
 ? altitude-accuracy => number,
 ? heading => number,
 ? speed => number,
 ? timestamp => ˜time-int,
 ? age => uint
 }

 latitude = JC< "latitude", 1 >
 longitude = JC< "longitude", 2 >
 altitude = JC< "altitude", 3 >
 accuracy = JC< "accuracy", 4 >
 altitude-accuracy = JC< "altitude-accuracy", 5 >
 heading = JC< "heading", 6 >
 speed = JC< "speed", 7 >
 timestamp = JC< "timestamp", 8 >
 age = JC< "age", 9 >

4.2.12. The Uptime Claim (uptime)

 The "uptime" claim MUST contain a value that represents the number of
 seconds that have elapsed since the entity or submod was last booted.

 $$Claims-Set-Claims //= (uptime-label => uint)

4.2.13. The Boot Odometer Claim (odometer)

 The "odometer" claim contains a value that represents the number of
 times the entity or submod has been booted. Support for this claim
 requires a persistent storage on the device.

 $$Claims-Set-Claims //= (odometer-label => uint)

4.2.14. The Boot Seed Claim (boot-seed)

 The Boot Seed claim MUST contain a random value created at system
 boot time that will allow differentiation of reports from different
 boot sessions.

 This value is usually public. It is not a secret and MUST NOT be
 used for any purpose that a secret seed is needed, such as seeding a
 random number generator.

Lundblade, et al. Expires November 21, 2022 [Page 25]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (boot-seed-label => binary-data)

4.2.15. The DLOA (Digital Letter of Approval) Claim (dloas)

 A DLOA (Digital Letter of Approval) [DLOA] is an XML document that
 describes a certification that an entity has received. Examples of
 certifications represented by a DLOA include those issued by Global
 Platform and those based on Common Criteria. The DLOA is unspecific
 to any particular certification type or those issued by any
 particular organization.

 This claim is typically issued by a Verifier, not an Attester. When
 this claim is issued by a Verifier, it MUST be because the entity has
 received the certification in the DLOA.

 This claim MAY contain more than one DLOA. If multiple DLOAs are
 present, it MUST be because the entity received all of the
 certifications.

 DLOA XML documents are always fetched from a registrar that stores
 them. This claim contains several data items used to construct a URL
 for fetching the DLOA from the particular registrar.

 This claim MUST be encoded as an array with either two or three
 elements. The first element MUST be the URI for the registrar. The
 second element MUST be a platform label indicating which platform was
 certified. If the DLOA applies to an application, then the third
 element is added which MUST be an application label. The method of
 constructing the registrar URI, platform label and possibly
 application label is specified in [DLOA].

 $$Claims-Set-Claims //= (
 dloas-label => [+ dloa-type]
)

 dloa-type = [
 dloa_registrar: general-uri
 dloa_platform_label: text
 ? dloa_application_label: text
]

4.2.16. The Software Manifests Claim (manifests)

 This claim contains descriptions of software present on the entity.
 These manifests are installed on the entity when the software is
 installed or are created as part of the installation process.
 Installation is anything that adds software to the entity, possibly
 factory installation, the user installing elective applications and

Lundblade, et al. Expires November 21, 2022 [Page 26]

Internet-Draft EAT May 2022

 so on. The defining characteristic is they are created by the
 software manufacturer. The purpose of these claims in an EAT is to
 relay them without modification to the Verifier and possibly to the
 Relying Party.

 Some manifests may be signed by their software manufacturer before
 they are put into this EAT claim. When such manifests are put into
 this claim, the manufacturer’s signature SHOULD be included. For
 example, the manifest might be a CoSWID signed by the software
 manufacturer, in which case the full signed CoSWID should be put in
 this claim.

 This claim allows multiple formats for the manifest. For example,
 the manifest may be a CBOR-format CoSWID, an XML-format SWID or
 other. Identification of the type of manifest is always by a CoAP
 Content-Format integer [RFC7252]. If there is no CoAP identifier
 registered for the manifest format, one should be registered, perhaps
 in the experimental or first-come-first-served range.

 This claim MUST be an array of one or more manifests. Each manifest
 in the claim MUST be an array of two. The first item in the array of
 two MUST be an integer CoAP Content-Format identifier. The second
 item is MUST be the actual manifest.

 In CBOR-encoded EATs the manifest, whatever format it is, MUST be
 placed in a byte string.

 In JSON-format tokens the manifest, whatever format it is, MUST be
 placed in a text string. When a non-text format manifest like a
 CBOR-encoded CoSWID is put in a JSON-encoded token, the manifest MUST
 be base-64 encoded.

 This claim allows for multiple manifests in one token since multiple
 software packages are likely to be present. The multiple manifests
 MAY be of different formats. In some cases EAT submodules may be
 used instead of the array structure in this claim for multiple
 manifests.

 When the [CoSWID] format is used, it MUST be a payload CoSWID, not an
 evidence CoSWID.

Lundblade, et al. Expires November 21, 2022 [Page 27]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (
 manifests-label => manifests-type
)

 manifests-type = [+ manifest-format]

 manifest-format = [
 content-type: uint,
 content-format: JC< $$manifest-body-json,
 $$manifest-body-cbor >
]

 $$manifest-body-cbor /= bytes .cbor untagged-coswid
 $$manifest-body-json /= base64-url-text

 $$manifest-body-cbor /= bytes .cbor SUIT_Envelope
 $$manifest-body-json /= base64-url-text

 suit-directive-process-dependency = 19

4.2.17. The Software Evidence Claim (swevidence)

 This claim contains descriptions, lists, evidence or measurements of
 the software that exists on the entity. The defining characteristic
 of this claim is that its contents are created by processes on the
 entity that inventory, measure or otherwise characterize the software
 on the entity. The contents of this claim do not originate from the
 software manufacturer.

 This claim can be a [CoSWID]. When the CoSWID format is used, it
 MUST be evidence CoSWIDs, not payload CoSWIDS.

 Formats other than CoSWID can be used. The identification of format
 is by CoAP Content Format, the same as the manifests claim in
 Section 4.2.16.

Lundblade, et al. Expires November 21, 2022 [Page 28]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (
 swevidence-label => swevidence-type
)

 swevidence-type = [+ swevidence-format]

 swevidence-format = [
 content-type: uint,
 content-format: JC< $$swevidence-body-json,
 $$swevidence-body-cbor >
]

 $$swevidence-body-cbor /= bytes .cbor untagged-coswid
 $$swevidence-body-json /= base64-url-text

4.2.18. The Measurement Results Claim (measurement-results)

 This claim is a general-purpose structure for reporting comparison of
 measurements to expected Reference Values. This claim provides a
 simple standard way to report the result of a comparison as success,
 failure, fail to run, ...

 It is the nature of measurement systems that they are specific to the
 operating system, software and hardware of the entity that is being
 measured. It is not possible to standardize what is measured and how
 it is measured across platforms, OS’s, software and hardware. The
 recipient must obtain the information about what was measured and
 what it indicates for the characterization of the security of the
 entity from the provider of the measurement system. What this claim
 provides is a standard way to report basic success or failure of the
 measurement. In some use cases it is valuable to know if
 measurements succeeded or failed in a general way even if the details
 of what was measured is not characterized.

 This claim MAY be generated by the Verifier and sent to the Relying
 Party. For example, it could be the results of the Verifier
 comparing the contents of the swevidence claim, {#swevidence}, to
 Reference Values.

 This claim MAY also be generated on the entity if the entity has the
 ability for one subsystem to measure and evaluate another subsystem.
 For example, a TEE might have the ability to measure the software of
 the rich OS and may have the Reference Values for the rich OS.

 Within an entity, attestation target or submodule, multiple results
 can be reported. For example, it may be desirable to report the

Lundblade, et al. Expires November 21, 2022 [Page 29]

Internet-Draft EAT May 2022

 results for measurements of the file system, chip configuration,
 installed software, running software and so on.

 Note that this claim is not for reporting the overall result of a
 Verifier. It is solely for reporting the result of comparison to
 reference values.

 An individual measurement result is an array of two, an identifier of
 the measurement and an enumerated type that is the result. The range
 and values of the measurement identifier varies from one measurement
 scheme to another.

 Each individual measurement result is part of a group that may
 contain many individual results. Each group has a text string that
 names it, typically the name of the measurement scheme or system.

 The claim itself consists of one or more groups.

 The values for the results enumerated type are as follows:

 1 - comparison successful Indicates successful comparison to
 reference values.

 2 - comparison fail The comparison was completed and did not compare
 correctly to the Reference Values.

 3 - comparison not run The comparison was not run. This includes
 error conditions such as running out of memory.

 4 - measurement absent The particular measurement was not available
 for comparison.

Lundblade, et al. Expires November 21, 2022 [Page 30]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (
 measurement-results-label =>
 [+ measurement-results-group])

 measurement-results-group = [
 measurement-system: tstr,
 measruement-results: [+ individual-result]
]

 individual-result = [
 results-id: tstr / binary-data,
 result: result-type,
]

 result-type = comparison-successful /
 comparison-fail /
 comparison-not-run /
 measurement-absent

 comparison-successful = JC< "success", 1 >
 comparison-fail = JC< "fail", 2 >
 comparison-not-run = JC< "not-run", 3 >
 measurement-absent = JC< "absent", 4 >

4.2.19. Submodules (submods)

 Some devices are complex, having many subsystems. A mobile phone is
 a good example. It may have several connectivity subsystems for
 communications (e.g., Wi-Fi and cellular). It may have subsystems
 for low-power audio and video playback. It may have multiple
 security-oriented subsystems like a TEE and a Secure Element.

 The claims for a subsystem can be grouped together in a submodule or
 submod.

 The submods are in a single map/object, one entry per submodule.
 There is only one submods map/object in a token. It is identified by
 its specific label. It is a peer to other claims, but it is not
 called a claim because it is a container for a claims set rather than
 an individual claim. This submods part of a token allows what might
 be called recursion. It allows claims sets inside of claims sets
 inside of claims sets...

Lundblade, et al. Expires November 21, 2022 [Page 31]

Internet-Draft EAT May 2022

4.2.19.1. Submodule Types

 The following sections define the three types of submodules:

 o A submodule Claims-Set

 o A nested token, which can be any valid EAT token, CBOR or JSON

 o The digest of a detached Claims-Set

 $$Claims-Set-Claims //= (submods-label => { + text => Submodule })

 Submodule = Claims-Set / Nested-Token / Detached-Submodule-Digest

4.2.19.1.1. Submodule Claims-Set

 This is a subordinate Claims-Set containing claims about the
 submodule.

 The submodule Claims-Set is produced by the same Attester as the
 surrounding token. It is secured using the same mechanism as the
 enclosing token (e.g., it is signed by the same attestation key). It
 roughly corresponds to an Attester Target Environment, as described
 in the RATS architecture.

 It may contain claims that are the same as its surrounding token or
 superior submodules. For example, the top-level of the token may
 have a UEID, a submod may have a different UEID and a further
 subordinate submodule may also have a UEID.

 The encoding of a submodule Claims-Set MUST be the same as the
 encoding as the token it is part of.

 This data type for this type of submodule is a map/object. It is
 identified when decoding by it’s type being a map/object.

4.2.19.1.2. Nested Token

 This type of submodule is a fully formed complete token. It is
 typically produced by a separate Attester. It is typically used by a
 Composite Device as described in RATS Architecture
 [RATS.Architecture] In being a submodule of the surrounding token, it
 is cryptographically bound to the surrounding token. If it was
 conveyed in parallel with the surrounding token, there would be no
 such binding and attackers could substitute a good attestation from
 another device for the attestation of an errant subsystem.

Lundblade, et al. Expires November 21, 2022 [Page 32]

Internet-Draft EAT May 2022

 A nested token does not need to use the same encoding as the
 enclosing token. This is to allow Composite Devices to be built
 without regards to the encoding supported by their Attesters. Thus,
 a CBOR-encoded token like a CWT can have a JWT as a nested token
 submodule and vice versa.

4.2.19.1.2.1. Surrounding EAT is CBOR-Encoded

 This describes the encoding and decoding of CBOR or JSON-encoded
 tokens nested inside a CBOR-encoded token.

 If the nested token is CBOR-encoded, then it MUST be a CBOR tag and
 MUST be wrapped in a byte string. The tag identifies whether the
 nested token is a CWT, a CBOR-encoded DEB, or some other CBOR-format
 token defined in the future. A nested CBOR-encoded token that is not
 a CBOR tag is NOT allowed.

 If the nested token is JSON-encoded, then the data item MUST be a
 text string containing JSON. The JSON is defined in CDDL by JSON-
 Nested-Token in the next section.

 When decoding, if a byte string is encountered, it is known to be a
 nested CBOR-encoded token. The byte string wrapping is removed. The
 type of the token is determined by the CBOR tag.

 When decoding, if a text string is encountered, it is known to be a
 JSON-encoded token. The two-item array is decoded and tells the type
 of the JSON-encoded token.

 Nested-Token = CBOR-Nested-Token

 CBOR-Nested-Token =
 JSON-Token-Inside-CBOR-Token /
 CBOR-Token-Inside-CBOR-Token

 CBOR-Token-Inside-CBOR-Token = bstr .cbor $$EAT-CBOR-Tagged-Token

 JSON-Token-Inside-CBOR-Token = tstr

4.2.19.1.2.2. Surrounding EAT is JSON-Encoded

 This describes the encoding and decoding of CBOR or JSON-encoded
 tokens nested inside a JSON-encoded token.

 The nested token MUST be an array of two, a text string type
 indicator and the actual token.

Lundblade, et al. Expires November 21, 2022 [Page 33]

Internet-Draft EAT May 2022

 The string identifying the JSON-encoded token MUST be one of the
 following:

 "JWT": The second array item MUST be a JWT formatted according to
 [RFC7519]

 "CBOR": The second array item must be some base64url-encoded CBOR
 that is a tag, typically a CWT or CBOR-encoded DEB

 "DEB": The second array item MUST be a JSON-encoded Detached EAT
 Bundle as defined in this document.

 Additional types may be defined by a standards action.

 When decoding, the array of two is decoded. The first item indicates
 the type and encoding of the nested token. If the type string is not
 "CBOR", then the token is JSON-encoded and of the type indicated by
 the string.

 If the type string is "CBOR", then the token is CBOR-encoded. The
 base64url encoding is removed. The CBOR-encoded data is then
 decoded. The type of nested token is determined by the CBOR-tag. It
 is an error if the CBOR is not a tag.

 Nested-Token = JSON-Nested-Token

 JSON-Nested-Token = [
 type : "JWT" / "CBOR" / "DEB",
 nested-token : JWT-Message /
 CBOR-Token-Inside-JSON-Token /
 Detached-EAT-Bundle
]

 CBOR-Token-Inside-JSON-Token = base64-url-text

4.2.19.1.3. Detached Submodule Digest

 This is type of submodule equivalent to a Claims-Set submodule,
 except the Claims-Set is conveyed separately outside of the token.

 This type of submodule consists of a digest made using a
 cryptographic hash of a Claims-Set. The Claims-Set is not included
 in the token. It is conveyed to the Verifier outside of the token.
 The submodule containing the digest is called a detached digest. The
 separately conveyed Claims-Set is called a detached claims set.

 The input to the digest is exactly the byte-string wrapped encoded
 form of the Claims-Set for the submodule. That Claims-Set can

Lundblade, et al. Expires November 21, 2022 [Page 34]

Internet-Draft EAT May 2022

 include other submodules including nested tokens and detached
 digests.

 The primary use for this is to facilitate the implementation of a
 small and secure attester, perhaps purely in hardware. This small,
 secure attester implements COSE signing and only a few claims,
 perhaps just UEID and hardware identification. It has inputs for
 digests of submodules, perhaps 32-byte hardware registers. Software
 running on the device constructs larger claim sets, perhaps very
 large, encodes them and digests them. The digests are written into
 the small secure attesters registers. The EAT produced by the small
 secure attester only contains the UEID, hardware identification and
 digests and is thus simple enough to be implemented in hardware.
 Probably, every data item in it is of fixed length.

 The integrity protection for the larger Claims Sets will not be as
 secure as those originating in hardware block, but the key material
 and hardware-based claims will be. It is possible for the hardware
 to enforce hardware access control (memory protection) on the digest
 registers so that some of the larger claims can be more secure. For
 example, one register may be writable only by the TEE, so the
 detached claims from the TEE will have TEE-level security.

 The data type for this type of submodule MUST be an array It contains
 two data items, an algorithm identifier and a byte string containing
 the digest.

 When decoding a CBOR format token the detached digest type is
 distringuished from the other types by it being an array. In CBOR
 the none of other submodule types are arrays.

 When decoding a JSON format token, a little more work is required
 because both the nested token and detached digest types are an array.
 To distinguish the nested token from the detached digest, the first
 element in the array is examined. If it is "JWT" or "DEB", then the
 submodule is a nested token. Otherwise it will contain an algorithm
 identifier and is a detached digest.

 A DEB, described in Section 5, may be used to convey detached claims
 sets and the token with their detached digests. EAT, however,
 doesn’t require use of a DEB. Any other protocols may be used to
 convey detached claims sets and the token with their detached
 digests. Note that since detached Claims-Sets are signed, protocols
 conveying them must make sure they are not modified in transit.

Lundblade, et al. Expires November 21, 2022 [Page 35]

Internet-Draft EAT May 2022

 Detached-Submodule-Digest = [
 algorithm : JC< text, int >
 digest : binary-data
]

4.2.19.2. No Inheritance

 The subordinate modules do not inherit anything from the containing
 token. The subordinate modules must explicitly include all of their
 claims. This is the case even for claims like the nonce.

 This rule is in place for simplicity. It avoids complex inheritance
 rules that might vary from one type of claim to another.

4.2.19.3. Security Levels

 The security level of the non-token subordinate modules should always
 be less than or equal to that of the containing modules in the case
 of non-token submodules. It makes no sense for a module of lesser
 security to be signing claims of a module of higher security. An
 example of this is a TEE signing claims made by the non-TEE parts
 (e.g. the high-level OS) of the device.

 The opposite may be true for the nested tokens. They usually have
 their own more secure key material. An example of this is an
 embedded secure element.

4.2.19.4. Submodule Names

 The label or name for each submodule in the submods map is a text
 string naming the submodule. No submodules may have the same name.

4.3. Claims Describing the Token

 The claims in this section provide meta data about the token they
 occur in. They do not describe the entity.

 They may appear in Attestation Evidence or Attestation Results. When
 these claims appear in Attestation Evidence, they SHOULD not be
 passed through the Verifier into Attestation Results.

4.3.1. Token ID Claim (cti and jti)

 CWT defines the "cti" claim. JWT defines the "jti" claim. These are
 equivalent to each other in EAT and carry a unique token identifier
 as they do in JWT and CWT. They may be used to defend against re use
 of the token but are distinct from the nonce that is used by the
 Relying Party to guarantee freshness and defend against replay.

Lundblade, et al. Expires November 21, 2022 [Page 36]

Internet-Draft EAT May 2022

4.3.2. Timestamp claim (iat)

 The "iat" claim defined in CWT and JWT is used to indicate the date-
 of-creation of the token, the time at which the claims are collected
 and the token is composed and signed.

 The data for some claims may be held or cached for some period of
 time before the token is created. This period may be long, even
 days. Examples are measurements taken at boot or a geographic
 position fix taken the last time a satellite signal was received.
 There are individual timestamps associated with these claims to
 indicate their age is older than the "iat" timestamp.

 CWT allows the use floating-point for this claim. EAT disallows the
 use of floating-point. An EAT token MUST NOT contain an iat claim in
 float-point format. Any recipient of a token with a floating-point
 format iat claim MUST consider it an error. A 64-bit integer
 representation of epoch time can represent a range of +/- 500 billion
 years, so the only point of a floating-point timestamp is to have
 precession greater than one second. This is not needed for EAT.

4.3.3. The Profile Claim (profile)

 See Section 7 for the detailed description of a profile.

 A profile is identified by either a URL or an OID. Typically, the
 URI will reference a document describing the profile. An OID is just
 a unique identifier for the profile. It may exist anywhere in the
 OID tree. There is no requirement that the named document be
 publicly accessible. The primary purpose of the profile claim is to
 uniquely identify the profile even if it is a private profile.

 The OID is always absolute and never relative.

 See Section 8.2.1 for OID and URI encoding.

 Note that this is named "eat_profile" for JWT and is distinct from
 the already registered "profile" claim in the JWT claims registry.

 $$Claims-Set-Claims //= (profile-label => general-uri / general-oid)

4.3.4. The Intended Use Claim (intended-use)

 EAT’s may be used in the context of several different applications.
 The intended-use claim provides an indication to an EAT consumer
 about the intended usage of the token. This claim can be used as a
 way for an application using EAT to internally distinguish between
 different ways it uses EAT.

Lundblade, et al. Expires November 21, 2022 [Page 37]

Internet-Draft EAT May 2022

 1 - Generic: Generic attestation describes an application where the
 EAT consumer requires the most up-to-date security assessment of
 the attesting entity. It is expected that this is the most
 commonly-used application of EAT.

 2- Registration: Entities that are registering for a new service may
 be expected to provide an attestation as part of the registration
 process. This intended-use setting indicates that the attestation
 is not intended for any use but registration.

 3 - Provisioning: Entities may be provisioned with different values
 or settings by an EAT consumer. Examples include key material or
 device management trees. The consumer may require an EAT to
 assess entity security state of the entity prior to provisioning.

 4 - Certificate Issuance Certification Authorities (CA’s) may
 require attestations prior to the issuance of certificates related
 to keypairs hosted at the entity. An EAT may be used as part of
 the certificate signing request (CSR).

 5 - Proof-of-Possession: An EAT consumer may require an attestation
 as part of an accompanying proof-of-possession (PoP) application.
 More precisely, a PoP transaction is intended to provide to the
 recipient cryptographically-verifiable proof that the sender has
 possession of a key. This kind of attestation may be necceesary
 to verify the security state of the entity storing the private key
 used in a PoP application.

 $$Claims-Set-Claims //= (intended-use-label => intended-use-type)

 intended-use-type = generic /
 registration /
 provisioning /
 csr /
 pop

 generic = JC< "generic", 1 >
 registration = JC< "registration", 2 >
 provisioning = JC< "provisioning", 3 >
 csr = JC< "csr", 4 >
 pop = JC< "pop", 5 >

4.4. Including Keys

 An EAT may include a cryptographic key such as a public key. The
 signing of the EAT binds the key to all the other claims in the
 token.

Lundblade, et al. Expires November 21, 2022 [Page 38]

Internet-Draft EAT May 2022

 The purpose for inclusion of the key may vary by use case. For
 example, the key may be included as part of an IoT device onboarding
 protocol. When the FIDO protocol includes a public key in its
 attestation message, the key represents the binding of a user, device
 and Relying Party. This document describes how claims containing
 keys should be defined for the various use cases. It does not define
 specific claims for specific use cases.

 Keys in CBOR format tokens SHOULD be the COSE_Key format [RFC8152]
 and keys in JSON format tokens SHOULD be the JSON Web Key format
 [RFC7517]. These two formats support many common key types. Their
 use avoids the need to decode other serialization formats. These two
 formats can be extended to support further key types through their
 IANA registries.

 The general confirmation claim format [RFC8747], [RFC7800] may also
 be used. It provides key encryption. It also allows for inclusion
 by reference through a key ID. The confirmation claim format may
 employed in the definition of some new claim for a a particular use
 case.

 When the actual confirmation claim is included in an EAT, this
 document associates no use case semantics other than proof of
 possession. Different EAT use cases may choose to associate further
 semantics. The key in the confirmation claim MUST be protected in
 the same way as the key used to sign the EAT. That is, the same,
 equivalent or better hardware defenses, access controls, key
 generation and such must be used.

5. Detached EAT Bundles

 A detached EAT bundle is a structure to convey a fully-formed and
 signed token plus detached claims set that relate to that token. It
 is a top-level EAT message like a CWT or JWT. It can be occur any
 place that CWT or JWT messages occur. It may also be sent as a
 submodule.

 A DEB has two main parts.

 The first part is a full top-level token. This top-level token must
 have at least one submodule that is a detached digest. This top-
 level token may be either CBOR or JSON-encoded. It may be a CWT, or
 JWT but not a DEB. It may also be some future-defined token type.
 The same mechanism for distinguishing the type for nested token
 submodules is used here.

 The second part is a map/object containing the detached Claims-Sets
 corresponding to the detached digests in the full token. When the

Lundblade, et al. Expires November 21, 2022 [Page 39]

Internet-Draft EAT May 2022

 DEB is CBOR-encoded, each Claims-Set is wrapped in a byte string.
 When the DEB is JSON-encoded, each Claims-Set is base64url encoded.
 All the detached Claims-Sets MUST be encoded in the same format as
 the DEB. No mixing of encoding formats is allowed for the Claims-
 Sets in a DEB.

 For CBOR-encoded DEBs, tag TBD602 can be used to identify it. The
 normal rules apply for use or non-use of a tag. When it is sent as a
 submodule, it is always sent as a tag to distinguish it from the
 other types of nested tokens.

 The digests of the detached claims sets are associated with detached
 Claims-Sets by label/name. It is up to the constructor of the
 detached EAT bundle to ensure the names uniquely identify the
 detachedclaims sets. Since the names are used only in the detached
 EAT bundle, they can be very short, perhaps one byte.

 DEB-Messages = DEB-Tagged-Message / DEB-Untagged-Message

 DEB-Tagged-Message = #6.TBD(DEB-Untagged-Message)
 DEB-Untagged-Message = Detached-EAT-Bundle

 Detached-EAT-Bundle = [
 main-token : Nested-Token,
 detached-claims-sets: {
 + tstr => JC<json-wrapped-claims-set,
 cbor-wrapped-claims-set>
 }
]

 json-wrapped-claims-set = base64-url-text

 cbor-wrapped-claims-set = bstr .cbor Claims-Set

6. Endorsements and Verification Keys

 The Verifier must possess the correct key when it performs the
 cryptographic part of an EAT verification (e.g., verifying the COSE/
 JOSE signature). This section describes several ways to identify the
 verification key. There is not one standard method.

 The verification key itself may be a public key, a symmetric key or
 something complicated in the case of a scheme like Direct Anonymous
 Attestation (DAA).

 RATS Architecture [RATS.Architecture] describes what is called an
 Endorsement. This is an input to the Verifier that is usually the

Lundblade, et al. Expires November 21, 2022 [Page 40]

Internet-Draft EAT May 2022

 basis of the trust placed in an EAT and the Attester that generated
 it. It may contain the public key for verification of the signature
 on the EAT. It may contain Reference Values to which EAT claims are
 compared as part of the verification process. It may contain implied
 claims, those that are passed on to the Relying Party in Attestation
 Results.

 There is not yet any standard format(s) for an Endorsement. One
 format that may be used for an Endorsement is an X.509 certificate.
 Endorsement data like Reference Values and implied claims can be
 carried in X.509 v3 extensions. In this use, the public key in the
 X.509 certificate becomes the verification key, so identification of
 the Endorsement is also identification of the verification key.

 The verification key identification and establishment of trust in the
 EAT and the attester may also be by some other means than an
 Endorsement.

 For the components (Attester, Verifier, Relying Party,...) of a
 particular end-end attestation system to reliably interoperate, its
 definition should specify how the verification key is identified.
 Usually, this will be in the profile document for a particular
 attestation system.

6.1. Identification Methods

 Following is a list of possible methods of key identification. A
 specific attestation system may employ any one of these or one not
 listed here.

 The following assumes Endorsements are X.509 certificates or
 equivalent and thus does not mention or define any identifier for
 Endorsements in other formats. If such an Endorsement format is
 created, new identifiers for them will also need to be created.

6.1.1. COSE/JWS Key ID

 The COSE standard header parameter for Key ID (kid) may be used. See
 [RFC8152] and [RFC7515]

 COSE leaves the semantics of the key ID open-ended. It could be a
 record locator in a database, a hash of a public key, an input to a
 KDF, an authority key identifier (AKI) for an X.509 certificate or
 other. The profile document should specify what the key ID’s
 semantics are.

Lundblade, et al. Expires November 21, 2022 [Page 41]

Internet-Draft EAT May 2022

6.1.2. JWS and COSE X.509 Header Parameters

 COSE X.509 [COSE.X509.Draft] and JSON Web Siganture [RFC7515] define
 several header parameters (x5t, x5u,...) for referencing or carrying
 X.509 certificates any of which may be used.

 The X.509 certificate may be an Endorsement and thus carrying
 additional input to the Verifier. It may be just an X.509
 certificate, not an Endorsement. The same header parameters are used
 in both cases. It is up to the attestation system design and the
 Verifier to determine which.

6.1.3. CBOR Certificate COSE Header Parameters

 Compressed X.509 and CBOR Native certificates are defined by CBOR
 Certificates [CBOR.Cert.Draft]. These are semantically compatible
 with X.509 and therefore can be used as an equivalent to X.509 as
 described above.

 These are identified by their own header parameters (c5t, c5u,...).

6.1.4. Claim-Based Key Identification

 For some attestation systems, a claim may be re-used as a key
 identifier. For example, the UEID uniquely identifies the entity and
 therefore can work well as a key identifier or Endorsement
 identifier.

 This has the advantage that key identification requires no additional
 bytes in the EAT and makes the EAT smaller.

 This has the disadvantage that the unverified EAT must be
 substantially decoded to obtain the identifier since the identifier
 is in the COSE/JOSE payload, not in the headers.

6.2. Other Considerations

 In all cases there must be some way that the verification key is
 itself verified or determined to be trustworthy. The key
 identification itself is never enough. This will always be by some
 out-of-band mechanism that is not described here. For example, the
 Verifier may be configured with a root certificate or a master key by
 the Verifier system administrator.

 Often an X.509 certificate or an Endorsement carries more than just
 the verification key. For example, an X.509 certificate might have
 key usage constraints and an Endorsement might have Reference Values.
 When this is the case, the key identifier must be either a protected

Lundblade, et al. Expires November 21, 2022 [Page 42]

Internet-Draft EAT May 2022

 header or in the payload such that it is cryptographically bound to
 the EAT. This is in line with the requirements in section 6 on Key
 Identification in JSON Web Signature [RFC7515].

7. Profiles

 This EAT specification does not gaurantee that implementations of it
 will interoperate. The variability in this specification is
 necessary to accommodate the widely varying use cases. An EAT
 profile narrows the specification for a specific use case. An ideal
 EAT profile will guarantee interoperability.

 The profile can be named in the token using the profile claim
 described in Section 4.3.3.

 A profile can apply to Attestation Evidence or to Attestation Results
 or both.

7.1. Format of a Profile Document

 A profile document doesn’t have to be in any particular format. It
 may be simple text, something more formal or a combination.

 In some cases CDDL may be created that replaces CDDL in this or other
 document to express some profile requirements. For example, to
 require the altitude data item in the location claim, CDDL can be
 written that replicates the location claim with the altitude no
 longer optional.

7.2. List of Profile Issues

 The following is a list of EAT, CWT, JWS, COSE, JOSE and CBOR options
 that a profile should address.

7.2.1. Use of JSON, CBOR or both

 The profile should indicate whether the token format should be CBOR,
 JSON, both or even some other encoding. If some other encoding, a
 specification for how the CDDL described here is serialized in that
 encoding is necessary.

 This should be addressed for the top-level token and for any nested
 tokens. For example, a profile might require all nested tokens to be
 of the same encoding of the top level token.

Lundblade, et al. Expires November 21, 2022 [Page 43]

Internet-Draft EAT May 2022

7.2.2. CBOR Map and Array Encoding

 The profile should indicate whether definite-length arrays/maps,
 indefinite-length arrays/maps or both are allowed. A good default is
 to allow only definite-length arrays/maps.

 An alternate is to allow both definite and indefinite-length arrays/
 maps. The decoder should accept either. Encoders that need to fit
 on very small hardware or be actually implement in hardware can use
 indefinite-length encoding.

 This applies to individual EAT claims, CWT and COSE parts of the
 implementation.

7.2.3. CBOR String Encoding

 The profile should indicate whether definite-length strings,
 indefinite-length strings or both are allowed. A good default is to
 allow only definite-length strings. As with map and array encoding,
 allowing indefinite-length strings can be beneficial for some smaller
 implementations.

7.2.4. CBOR Preferred Serialization

 The profile should indicate whether encoders must use preferred
 serialization. The profile should indicate whether decoders must
 accept non-preferred serialization.

7.2.5. COSE/JOSE Protection

 COSE and JOSE have several options for signed, MACed and encrypted
 messages. JWT may use the JOSE NULL protection option. It is
 possible to implement no protection, sign only, MAC only, sign then
 encrypt and so on. All combinations allowed by COSE, JOSE, JWT, and
 CWT are allowed by EAT.

 The profile should list the protections that must be supported by all
 decoders implementing the profile. The encoders them must implement
 a subset of what is listed for the decoders, perhaps only one.

 Implementations may choose to sign or MAC before encryption so that
 the implementation layer doing the signing or MACing can be the
 smallest. It is often easier to make smaller implementations more
 secure, perhaps even implementing in solely in hardware. The key
 material for a signature or MAC is a private key, while for
 encryption it is likely to be a public key. The key for encryption
 requires less protection.

Lundblade, et al. Expires November 21, 2022 [Page 44]

Internet-Draft EAT May 2022

7.2.6. COSE/JOSE Algorithms

 The profile document should list the COSE algorithms that a Verifier
 must implement. The Attester will select one of them. Since there
 is no negotiation, the Verifier should implement all algorithms
 listed in the profile. If detached submodules are used, the COSE
 algorithms allowed for their digests should also be in the profile.

7.2.7. DEB Support

 A Detatched EAT Bundle Section 5 is a special case message that will
 not often be used. A profile may prohibit its use.

7.2.8. Verification Key Identification

 Section Section 6 describes a number of methods for identifying a
 verification key. The profile document should specify one of these
 or one that is not described. The ones described in this document
 are only roughly described. The profile document should go into the
 full detail.

7.2.9. Endorsement Identification

 Similar to, or perhaps the same as Verification Key Identification,
 the profile may wish to specify how Endorsements are to be
 identified. However note that Endorsement Identification is
 optional, where as key identification is not.

7.2.10. Freshness

 Just about every use case will require some means of knowing the EAT
 is recent enough and not a replay of an old token. The profile
 should describe how freshness is achieved. The section on Freshness
 in [RATS.Architecture] describes some of the possible solutions to
 achieve this.

7.2.11. Required Claims

 The profile can list claims whose absence results in Verification
 failure.

7.2.12. Prohibited Claims

 The profile can list claims whose presence results in Verification
 failure.

Lundblade, et al. Expires November 21, 2022 [Page 45]

Internet-Draft EAT May 2022

7.2.13. Additional Claims

 The profile may describe entirely new claims. These claims can be
 required or optional.

7.2.14. Refined Claim Definition

 The profile may lock down optional aspects of individual claims. For
 example, it may require altitude in the location claim, or it may
 require that HW Versions always be described using EAN-13.

7.2.15. CBOR Tags

 The profile should specify whether the token should be a CWT Tag or
 not.

 When COSE protection is used, the profile should specify whether COSE
 tags are used or not. Note that RFC 8392 requires COSE tags be used
 in a CWT tag.

 Often a tag is unncessary because the surrounding or carrying
 protocol identifies the object as an EAT.

7.2.16. Manifests and Software Evidence Claims

 The profile should specify which formats are allowed for the
 manifests and software evidence claims. The profile may also go on
 to say which parts and options of these formats are used, allowed and
 prohibited.

8. Encoding and Collected CDDL

 An EAT is fundamentally defined using CDDL. This document specifies
 how to encode the CDDL in CBOR or JSON. Since CBOR can express some
 things that JSON can’t (e.g., tags) or that are expressed differently
 (e.g., labels) there is some CDDL that is specific to the encoding
 format.

8.1. Claims-Set and CDDL for CWT and JWT

 CDDL was not used to define CWT or JWT. It was not available at the
 time.

 This document defines CDDL for both CWT and JWT. This document does
 not change the encoding or semantics of anything in a CWT or JWT.

 A Claims-Set is the central data structure for EAT, CWT and JWT. It
 holds all the claims and is the structure that is secured by signing

Lundblade, et al. Expires November 21, 2022 [Page 46]

Internet-Draft EAT May 2022

 or other means. It is not possible to define EAT, CWT, or JWT in
 CDDL without it. The CDDL definition of Claims-Set here is
 applicable to EAT, CWT and JWT.

 This document specifies how to encode a Claims-Set in CBOR or JSON.

 With the exception of nested tokens and some other externally defined
 structures (e.g., SWIDs) an entire Claims-Set must be in encoded in
 either CBOR or JSON, never a mixture.

 CDDL for the seven claims defined by [RFC8392] and [RFC7519] is
 included here.

8.2. Encoding Data Types

 This makes use of the types defined in [RFC8610] Appendix D, Standard
 Prelude.

8.2.1. Common Data Types

 time-int is identical to the epoch-based time, but disallows
 floating-point representation.

 The OID encoding from [RFC9090] is used without the tag number in
 CBOR-encoded tokens. In JSON tokens OIDs are a text string in the
 common form of "nn.nn.nn...".

 Unless expliclity indicated, URIs are not the URI tag defined in
 [RFC8949]. They are just text strings that contain a URI.

 time-int = #6.1(int)

 binary-data = JC< base64-url-text, bstr>

 base64-url-text = tstr .regexp "[A-Za-z0-9_=-]+"

 general-oid = JC< json-oid, ˜oid >

 json-oid = tstr .regexp "[0-9\.]+"

 general-uri = JC< text, ˜uri >

8.2.2. JSON Interoperability

 JSON should be encoded per [RFC8610] Appendix E. In addition, the
 following CDDL types are encoded in JSON as follows:

 o bstr - must be base64url encoded

Lundblade, et al. Expires November 21, 2022 [Page 47]

Internet-Draft EAT May 2022

 o time - must be encoded as NumericDate as described section 2 of
 [RFC7519].

 o string-or-uri - must be encoded as StringOrURI as described
 section 2 of [RFC7519].

 o uri - must be a URI [RFC3986].

 o oid - encoded as a string using the well established dotted-
 decimal notation (e.g., the text "1.2.250.1").

 The CDDL generic "JC< >" is used in most places where there is a
 variance between CBOR and JSON. The first argument is the CDDL for
 JSON and the second is CDDL for CBOR.

8.2.3. Labels

 Map labels, including Claims-Keys and Claim-Names, and enumerated-
 type values are always integers when encoding in CBOR and strings
 when encoding in JSON. There is an exception to this for naming
 submodules and detached claims sets in a DEB. These are strings in
 CBOR.

 The CDDL in most cases gives both the integer label and the string
 label as it is not convenient to have conditional CDDL for such.

8.3. CBOR Interoperability

 CBOR allows data items to be serialized in more than one form. If
 the sender uses a form that the receiver can’t decode, there will not
 be interoperability.

 This specification gives no blanket requirements to narrow CBOR
 serialization for all uses of EAT. This allows individual uses to
 tailor serialization to the environment. It also may result in EAT
 implementations that don’t interoperate.

 One way to guarantee interoperability is to clearly specify CBOR
 serialization in a profile document. See Section 7 for a list of
 serialization issues that should be addressed.

 EAT will be commonly used where the entity generating the attestation
 is constrained and the receiver/Verifier of the attestation is a
 capacious server. Following is a set of serialization requirements
 that work well for that use case and are guaranteed to interoperate.
 Use of this serialization is recommended where possible, but not
 required. An EAT profile may just reference the following section
 rather than spell out serialization details.

Lundblade, et al. Expires November 21, 2022 [Page 48]

Internet-Draft EAT May 2022

8.3.1. EAT Constrained Device Serialization

 o Preferred serialization described in section 4.1 of [RFC8949] is
 not required. The EAT decoder must accept all forms of number
 serialization. The EAT encoder may use any form it wishes.

 o The EAT decoder must accept indefinite length arrays and maps as
 described in section 3.2.2 of [RFC8949]. The EAT encoder may use
 indefinite length arrays and maps if it wishes.

 o The EAT decoder must accept indefinite length strings as described
 in section 3.2.3 of [RFC8949]. The EAT encoder may use indefinite
 length strings if it wishes.

 o Sorting of maps by key is not required. The EAT decoder must not
 rely on sorting.

 o Deterministic encoding described in Section 4.2 of [RFC8949] is
 not required.

 o Basic validity described in section 5.3.1 of [RFC8949] must be
 followed. The EAT encoder must not send duplicate map keys/labels
 or invalid UTF-8 strings.

8.4. Collected CDDL

8.4.1. Payload CDDL

 This CDDL defines all the EAT Claims that are added to the main
 definition of a Claim-Set in Appendix D. Claims-Set is the payload
 for CWT, JWT and potentially other token types. This is for both
 CBOR and JSON. When there is variation between CBOR and JSON, the
 JC<> CDDL generic defined in Appendix D.

 This CDDL uses, but doesn’t define Nested-Token because its
 definition varies between CBOR and JSON and the JC<> generic can’t be
 used to define it. Nested-Token is the one place that that a CBOR
 token can be nested inside a JSON token and vice versa. Nested-Token
 is defined in the following sections.

 time-int = #6.1(int)

 binary-data = JC< base64-url-text, bstr>

 base64-url-text = tstr .regexp "[A-Za-z0-9_=-]+"

 general-oid = JC< json-oid, ˜oid >

Lundblade, et al. Expires November 21, 2022 [Page 49]

Internet-Draft EAT May 2022

 json-oid = tstr .regexp "[0-9\.]+"

 general-uri = JC< text, ˜uri >

 $$Claims-Set-Claims //=
 (nonce-label => nonce-type / [2* nonce-type])

 nonce-type = JC< tstr .size (10..74), bstr .size (8..64)>

 $$Claims-Set-Claims //= (ueid-label => ueid-type)

 ueid-type = JC<base64-url-text .size (12..44) , bstr .size (7..33)>

 $$Claims-Set-Claims //= (sueids-label => sueids-type)

 sueids-type = {
 + tstr => ueid-type
 }

 $$Claims-Set-Claims //= (
 oemid-label => oemid-pen / oemid-ieee / oemid-random
)

 oemid-pen = int

 oemid-ieee = JC<oemid-ieee-json, oemid-ieee-cbor>
 oemid-ieee-cbor = bstr .size 3
 oemid-ieee-json = base64-url-text .size 4

 oemid-random = JC<oemid-random-json, oemid-random-cbor>
 oemid-random-cbor = bstr .size 16
 oemid-random-json = base64-url-text .size 24

 $$Claims-Set-Claims //= (
 hardware-version-label => hardware-version-type
)

 hardware-version-type = [
 version: tstr,
 ? scheme: $version-scheme
]

 $$Claims-Set-Claims //= (
 hardware-model-label => hardware-model-type
)

Lundblade, et al. Expires November 21, 2022 [Page 50]

Internet-Draft EAT May 2022

 hardware-model-type = JC<base64-url-text .size (4..44),
 bytes .size (1..32)>

 $$Claims-Set-Claims //= (sw-name-label => tstr)

 $$Claims-Set-Claims //= (sw-version-label => sw-version-type)

 sw-version-type = [
 version: tstr
 ? scheme: $version-scheme
]

 $$Claims-Set-Claims //=
 (security-level-label => security-level-type)

 security-level-type = unrestricted /
 restricted /
 hardware

 unrestricted = JC< "unrestricted", 1>
 restricted = JC< "restricted", 2>
 hardware = JC< "hardware", 3>

 $$Claims-Set-Claims //= (secure-boot-label => bool)

 $$Claims-Set-Claims //= (debug-status-label => debug-status-type)

 debug-status-type = ds-enabled /
 disabled /
 disabled-since-boot /
 disabled-permanently /
 disabled-fully-and-permanently

 ds-enabled = JC< "enabled", 0 >
 disabled = JC< "disabled", 1 >
 disabled-since-boot = JC< "disabled-since-boot", 2 >
 disabled-permanently = JC< "disabled-permanently", 3 >
 disabled-fully-and-permanently = JC< "disabled-fully-and-permanently",
 4 >

 $$Claims-Set-Claims //= (location-label => location-type)

 location-type = {
 latitude => number,
 longitude => number,
 ? altitude => number,
 ? accuracy => number,
 ? altitude-accuracy => number,

Lundblade, et al. Expires November 21, 2022 [Page 51]

Internet-Draft EAT May 2022

 ? heading => number,
 ? speed => number,
 ? timestamp => ˜time-int,
 ? age => uint
 }

 latitude = JC< "latitude", 1 >
 longitude = JC< "longitude", 2 >
 altitude = JC< "altitude", 3 >
 accuracy = JC< "accuracy", 4 >
 altitude-accuracy = JC< "altitude-accuracy", 5 >
 heading = JC< "heading", 6 >
 speed = JC< "speed", 7 >
 timestamp = JC< "timestamp", 8 >
 age = JC< "age", 9 >

 $$Claims-Set-Claims //= (uptime-label => uint)

 $$Claims-Set-Claims //= (boot-seed-label => binary-data)

 $$Claims-Set-Claims //= (odometer-label => uint)

 $$Claims-Set-Claims //= (intended-use-label => intended-use-type)

 intended-use-type = generic /
 registration /
 provisioning /
 csr /
 pop

 generic = JC< "generic", 1 >
 registration = JC< "registration", 2 >
 provisioning = JC< "provisioning", 3 >
 csr = JC< "csr", 4 >
 pop = JC< "pop", 5 >

 $$Claims-Set-Claims //= (
 dloas-label => [+ dloa-type]
)

 dloa-type = [
 dloa_registrar: general-uri
 dloa_platform_label: text
 ? dloa_application_label: text
]

 $$Claims-Set-Claims //= (profile-label => general-uri / general-oid)

Lundblade, et al. Expires November 21, 2022 [Page 52]

Internet-Draft EAT May 2022

 $$Claims-Set-Claims //= (
 manifests-label => manifests-type
)

 manifests-type = [+ manifest-format]

 manifest-format = [
 content-type: uint,
 content-format: JC< $$manifest-body-json,
 $$manifest-body-cbor >
]

 $$manifest-body-cbor /= bytes .cbor untagged-coswid
 $$manifest-body-json /= base64-url-text

 $$manifest-body-cbor /= bytes .cbor SUIT_Envelope
 $$manifest-body-json /= base64-url-text

 suit-directive-process-dependency = 19

 $$Claims-Set-Claims //= (
 swevidence-label => swevidence-type
)

 swevidence-type = [+ swevidence-format]

 swevidence-format = [
 content-type: uint,
 content-format: JC< $$swevidence-body-json,
 $$swevidence-body-cbor >
]

 $$swevidence-body-cbor /= bytes .cbor untagged-coswid
 $$swevidence-body-json /= base64-url-text

 $$Claims-Set-Claims //= (
 measurement-results-label =>
 [+ measurement-results-group])

 measurement-results-group = [
 measurement-system: tstr,
 measruement-results: [+ individual-result]
]

 individual-result = [
 results-id: tstr / binary-data,
 result: result-type,

Lundblade, et al. Expires November 21, 2022 [Page 53]

Internet-Draft EAT May 2022

]

 result-type = comparison-successful /
 comparison-fail /
 comparison-not-run /
 measurement-absent

 comparison-successful = JC< "success", 1 >
 comparison-fail = JC< "fail", 2 >
 comparison-not-run = JC< "not-run", 3 >
 measurement-absent = JC< "absent", 4 >

 $$Claims-Set-Claims //= (submods-label => { + text => Submodule })

 Submodule = Claims-Set / Nested-Token / Detached-Submodule-Digest

 Detached-Submodule-Digest = [
 algorithm : JC< text, int >
 digest : binary-data
]

 DEB-Messages = DEB-Tagged-Message / DEB-Untagged-Message

 DEB-Tagged-Message = #6.TBD(DEB-Untagged-Message)
 DEB-Untagged-Message = Detached-EAT-Bundle

 Detached-EAT-Bundle = [
 main-token : Nested-Token,
 detached-claims-sets: {
 + tstr => JC<json-wrapped-claims-set,
 cbor-wrapped-claims-set>
 }
]

 json-wrapped-claims-set = base64-url-text

 cbor-wrapped-claims-set = bstr .cbor Claims-Set

 nonce-label = JC< "eat_nonce", 10 >
 ueid-label = JC< "ueid", 256 >
 sueids-label = JC< "sueids", 257 >

Lundblade, et al. Expires November 21, 2022 [Page 54]

Internet-Draft EAT May 2022

 oemid-label = JC< "oemid", 258 >
 hardware-model-label = JC< "hwmodel", 259 >
 hardware-version-label = JC< "hwvers", 260 >
 secure-boot-label = JC< "secboot", 262 >
 debug-status-label = JC< "dbgstat", 263 >
 location-label = JC< "location", 264 >
 profile-label = JC< "eat_profile",265 >
 submods-label = JC< "submods", 266 >

 security-level-label = JC< "seclevel", TBD >
 uptime-label = JC< "uptime", TBD >
 boot-seed-label = JC< "bootseed", TBD >
 intended-use-label = JC< "intuse", TBD >
 dloas-label = JC< "dloas", TBD >
 sw-name-label = JC< "swname", TBD >
 sw-version-label = JC< "swversion", TBD >
 manifests-label = JC< "manifests", TBD >
 swevidence-label = JC< "swevidence", TBD >
 measurement-results-label = JC< "measres" , TBD >
 odometer-label = JC< "odometer", TBD >

8.4.2. CBOR-Specific CDDL

 EAT-CBOR-Token = $$EAT-CBOR-Tagged-Token / $$EAT-CBOR-Untagged-Token

 $$EAT-CBOR-Tagged-Token /= CWT-Tagged-Message
 $$EAT-CBOR-Tagged-Token /= DEB-Tagged-Message

 $$EAT-CBOR-Untagged-Token /= CWT-Untagged-Message
 $$EAT-CBOR-Untagged-Token /= DEB-Untagged-Message

 Nested-Token = CBOR-Nested-Token

 CBOR-Nested-Token =
 JSON-Token-Inside-CBOR-Token /
 CBOR-Token-Inside-CBOR-Token

 CBOR-Token-Inside-CBOR-Token = bstr .cbor $$EAT-CBOR-Tagged-Token

 JSON-Token-Inside-CBOR-Token = tstr

Lundblade, et al. Expires November 21, 2022 [Page 55]

Internet-Draft EAT May 2022

8.4.3. JSON-Specific CDDL

 EAT-JSON-Token = $$EAT-JSON-Token-Formats

 $$EAT-JSON-Token-Formats /= JWT-Message
 $$EAT-JSON-Token-Formats /= DEB-Untagged-Message

 Nested-Token = JSON-Nested-Token

 JSON-Nested-Token = [
 type : "JWT" / "CBOR" / "DEB",
 nested-token : JWT-Message /
 CBOR-Token-Inside-JSON-Token /
 Detached-EAT-Bundle
]

 CBOR-Token-Inside-JSON-Token = base64-url-text

9. IANA Considerations

9.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims Registries

 Claims defined for EAT are compatible with those of CWT and JWT so
 the CWT and JWT Claims Registries, [IANA.CWT.Claims] and
 [IANA.JWT.Claims], are re used. No new IANA registry is created.

 All EAT claims defined in this document are placed in both
 registries. All new EAT claims defined subsequently should be placed
 in both registries.

9.2. Claim Characteristics

 The following is design guidance for creating new EAT claims,
 particularly those to be registered with IANA.

 Much of this guidance is generic and could also be considered when
 designing new CWT or JWT claims.

9.2.1. Interoperability and Relying Party Orientation

 It is a broad goal that EATs can be processed by Relying Parties in a
 general way regardless of the type, manufacturer or technology of the
 device from which they originate. It is a goal that there be
 general-purpose verification implementations that can verify tokens
 for large numbers of use cases with special cases and configurations
 for different device types. This is a goal of interoperability of

Lundblade, et al. Expires November 21, 2022 [Page 56]

Internet-Draft EAT May 2022

 the semantics of claims themselves, not just of the signing, encoding
 and serialization formats.

 This is a lofty goal and difficult to achieve broadly requiring
 careful definition of claims in a technology neutral way. Sometimes
 it will be difficult to design a claim that can represent the
 semantics of data from very different device types. However, the
 goal remains even when difficult.

9.2.2. Operating System and Technology Neutral

 Claims should be defined such that they are not specific to an
 operating system. They should be applicable to multiple large high-
 level operating systems from different vendors. They should also be
 applicable to multiple small embedded operating systems from multiple
 vendors and everything in between.

 Claims should not be defined such that they are specific to a SW
 environment or programming language.

 Claims should not be defined such that they are specific to a chip or
 particular hardware. For example, they should not just be the
 contents of some HW status register as it is unlikely that the same
 HW status register with the same bits exists on a chip of a different
 manufacturer.

 The boot and debug state claims in this document are an example of a
 claim that has been defined in this neutral way.

9.2.3. Security Level Neutral

 Many use cases will have EATs generated by some of the most secure
 hardware and software that exists. Secure Elements and smart cards
 are examples of this. However, EAT is intended for use in low-
 security use cases the same as high-security use case. For example,
 an app on a mobile device may generate EATs on its own.

 Claims should be defined and registered on the basis of whether they
 are useful and interoperable, not based on security level. In
 particular, there should be no exclusion of claims because they are
 just used only in low-security environments.

9.2.4. Reuse of Extant Data Formats

 Where possible, claims should use already standardized data items,
 identifiers and formats. This takes advantage of the expertise put
 into creating those formats and improves interoperability.

Lundblade, et al. Expires November 21, 2022 [Page 57]

Internet-Draft EAT May 2022

 Often extant claims will not be defined in an encoding or
 serialization format used by EAT. It is preferred to define a CBOR
 and JSON format for them so that EAT implementations do not require a
 plethora of encoders and decoders for serialization formats.

 In some cases, it may be better to use the encoding and serialization
 as is. For example, signed X.509 certificates and CRLs can be
 carried as-is in a byte string. This retains interoperability with
 the extensive infrastructure for creating and processing X.509
 certificates and CRLs.

9.2.5. Proprietary Claims

 EAT allows the definition and use of proprietary claims.

 For example, a device manufacturer may generate a token with
 proprietary claims intended only for verification by a service
 offered by that device manufacturer. This is a supported use case.

 In many cases proprietary claims will be the easiest and most obvious
 way to proceed, however for better interoperability, use of general
 standardized claims is preferred.

9.3. Claims Registered by This Document

 This specification adds the following values to the "JSON Web Token
 Claims" registry established by [RFC7519] and the "CBOR Web Token
 Claims Registry" established by [RFC8392]. Each entry below is an
 addition to both registries (except for the nonce claim which is
 already registered for JWT, but not registered for CWT).

 The "Claim Description", "Change Controller" and "Specification
 Documents" are common and equivalent for the JWT and CWT registries.
 The "Claim Key" and "Claim Value Types(s)" are for the CWT registry
 only. The "Claim Name" is as defined for the CWT registry, not the
 JWT registry. The "JWT Claim Name" is equivalent to the "Claim Name"
 in the JWT registry.

9.3.1. Claims for Early Assignment

 RFC Editor: in the final publication this section should be combined
 with the following section as it will no longer be necessary to
 distinguish claims with early assignment. Also, the following
 paragraph should be removed.

 The claims in this section have been (requested for / given) early
 assignment according to [RFC7120]. They have been assigned values
 and registered before final publication of this document. While

Lundblade, et al. Expires November 21, 2022 [Page 58]

Internet-Draft EAT May 2022

 their semantics is not expected to change in final publication, it is
 possible that they will. The JWT Claim Names and CWT Claim Keys are
 not expected to change.

 In draft -06 an early allocation was described. The processing of
 that early allocation was never correctly completed. This early
 allocation assigns different numbers for the CBOR claim labels. This
 early allocation will presumably complete correctly

 o Claim Name: Nonce

 o Claim Description: Nonce

 o JWT Claim Name: "nonce" (already registered for JWT)

 o Claim Key: TBD (requested value 10)

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): [OpenIDConnectCore], *this document*

 o Claim Name: UEID

 o Claim Description: The Universal Entity ID

 o JWT Claim Name: "ueid"

 o CWT Claim Key: TBD (requested value 256)

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SUEIDs

 o Claim Description: Semi-permanent UEIDs

 o JWT Claim Name: "sueids"

 o CWT Claim Key: TBD (requested value 257)

 o Claim Value Type(s): map

 o Change Controller: IESG

Lundblade, et al. Expires November 21, 2022 [Page 59]

Internet-Draft EAT May 2022

 o Specification Document(s): *this document*

 o Claim Name: Hardware OEMID

 o Claim Description: Hardware OEM ID

 o JWT Claim Name: "oemid"

 o Claim Key: TBD (requeste value 258)

 o Claim Value Type(s): byte string or integer

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Hardware Model

 o Claim Description: Model identifier for hardware

 o JWT Claim Name: "hwmodel"

 o Claim Key: TBD (requested value 259)

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Hardware Version

 o Claim Description: Hardware Version Identifier

 o JWT Claim Name: "hwversion"

 o Claim Key: TBD (requested value 260)

 o Claim Value Type(s): array

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Secure Boot

 o Claim Description: Indicate whether the boot was secure

Lundblade, et al. Expires November 21, 2022 [Page 60]

Internet-Draft EAT May 2022

 o JWT Claim Name: "secboot"

 o Claim Key: 262

 o Claim Value Type(s): Boolean

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Debug Status

 o Claim Description: Indicate status of debug facilities

 o JWT Claim Name: "dbgstat"

 o Claim Key: 263

 o Claim Value Type(s): integer or string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Location

 o Claim Description: The geographic location

 o JWT Claim Name: "location"

 o Claim Key: TBD (requested value 264)

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Profile

 o Claim Description: Indicates the EAT profile followed

 o JWT Claim Name: "eat_profile"

 o Claim Key: TBD (requested value 265)

 o Claim Value Type(s): URI or OID

Lundblade, et al. Expires November 21, 2022 [Page 61]

Internet-Draft EAT May 2022

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Submodules Section

 o Claim Description: The section containing submodules

 o JWT Claim Name: "submods"

 o Claim Key: TBD (requested value 266)

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

9.3.2. To be Assigned Claims

 (Early assignment is NOT requested for these claims. Implementers
 should be aware they may change)

 o Claim Name: Security Level

 o Claim Description: Characterization of the security of an Attester
 or submodule

 o JWT Claim Name: "seclevel"

 o Claim Key: TBD

 o Claim Value Type(s): integer or string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Uptime

 o Claim Description: Uptime

 o JWT Claim Name: "uptime"

 o Claim Key: TBD

 o Claim Value Type(s): unsigned integer

Lundblade, et al. Expires November 21, 2022 [Page 62]

Internet-Draft EAT May 2022

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Boot Seed

 o Claim Description: Identifies a boot cycle

 o JWT Claim Name: "bootseed"

 o Claim Key: TBD

 o Claim Value Type(s): bytes

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Intended Use

 o Claim Description: Indicates intended use of the EAT

 o JWT Claim Name: "intuse"

 o Claim Key: TBD

 o Claim Value Type(s): integer or string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: DLOAs

 o Claim Description: Certifications received as Digital Letters of
 Approval

 o JWT Claim Name: "dloas"

 o Claim Key: TBD

 o Claim Value Type(s): array

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SW Name

Lundblade, et al. Expires November 21, 2022 [Page 63]

Internet-Draft EAT May 2022

 o Claim Description: The name of the SW running in the entity

 o JWT Claim Name: "swname"

 o Claim Key: TBD

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SW Version

 o Claim Description: The version of SW running in the entity

 o JWT Claim Name: "swversion"

 o Claim Key: TBD

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SW Manifests

 o Claim Description: Manifests describing the SW installed on the
 entity

 o JWT Claim Name: "manifests"

 o Claim Key: TBD

 o Claim Value Type(s): array

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SW Evidence

 o Claim Description: Measurements of the SW, memory configuration
 and such on the entity

 o JWT Claim Name: "swevidence"

Lundblade, et al. Expires November 21, 2022 [Page 64]

Internet-Draft EAT May 2022

 o Claim Key: TBD

 o Claim Value Type(s): array

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: SW Measurment Results

 o Claim Description: The results of comparing SW measurements to
 reference values

 o JWT Claim Name: "swresults"

 o Claim Key: TBD

 o Claim Value Type(s): array

 o Change Controller: IESG

 o Specification Document(s): *this document*

9.3.3. Version Schemes Registered by this Document

 IANA is requested to register a new value in the "Software Tag
 Version Scheme Values" established by [CoSWID].

 The new value is a version scheme a 13-digit European Article Number
 [EAN-13]. An EAN-13 is also known as an International Article Number
 or most commonly as a bar code. This version scheme is the ASCII
 text representation of EAN-13 digits, the same ones often printed
 with a bar code. This version scheme must comply with the EAN
 allocation and assignment rules. For example, this requires the
 manufacturer to obtain a manufacture code from GS1.

 +-------+---------------------+---------------+
 | Index | Version Scheme Name | Specification |
 +-------+---------------------+---------------+
 | 5 | ean-13 | This document |
 +-------+---------------------+---------------+

9.3.4. UEID URN Registered by this Document

 IANA is requested to register the following new subtypes in the "DEV
 URN Subtypes" registry under "Device Identification". See [RFC9039].

Lundblade, et al. Expires November 21, 2022 [Page 65]

Internet-Draft EAT May 2022

 +---------+---+---------------+
 | Subtype | Description | Reference |
 +---------+---+---------------+
ueid	Universal Entity Identifier	This document
sueid	Semi-permanent Universal Entity	This document
	Identifier	
 +---------+---+---------------+

9.3.5. Tag for Detached EAT Bundle

 In the registry [IANA.cbor-tags], IANA is requested to allocate the
 following tag from the FCFS space, with the present document as the
 specification reference.

 +--------+------------+-------------------------------+
 | Tag | Data Items | Semantics |
 +--------+------------+-------------------------------+
 | TBD602 | array | Detached EAT Bundle Section 5 |
 +--------+------------+-------------------------------+

10. Privacy Considerations

 Certain EAT claims can be used to track the owner of an entity and
 therefore, implementations should consider providing privacy-
 preserving options dependent on the intended usage of the EAT.
 Examples would include suppression of location claims for EAT’s
 provided to unauthenticated consumers.

10.1. UEID and SUEID Privacy Considerations

 A UEID is usually not privacy-preserving. Any set of Relying Parties
 that receives tokens that happen to be from a particular entity will
 be able to know the tokens are all from the same entity and be able
 to track it.

 Thus, in many usage situations UEID violates governmental privacy
 regulation. In other usage situations a UEID will not be allowed for
 certain products like browsers that give privacy for the end user.
 It will often be the case that tokens will not have a UEID for these
 reasons.

 An SUEID is also usually not privacy-preserving. In some cases it
 may have fewer privacy issues than a UEID depending on when and how
 and when it is generated.

 There are several strategies that can be used to still be able to put
 UEIDs and SUEIDs in tokens:

Lundblade, et al. Expires November 21, 2022 [Page 66]

Internet-Draft EAT May 2022

 o The entity obtains explicit permission from the user of the entity
 to use the UEID/SUEID. This may be through a prompt. It may also
 be through a license agreement. For example, agreements for some
 online banking and brokerage services might already cover use of a
 UEID/SUEID.

 o The UEID/SUEID is used only in a particular context or particular
 use case. It is used only by one Relying Party.

 o The entity authenticates the Relying Party and generates a derived
 UEID/SUEID just for that particular Relying Party. For example,
 the Relying Party could prove their identity cryptographically to
 the entity, then the entity generates a UEID just for that Relying
 Party by hashing a proofed Relying Party ID with the main entity
 UEID/SUEID.

 Note that some of these privacy preservation strategies result in
 multiple UEIDs and SUEIDs per entity. Each UEID/SUEID is used in a
 different context, use case or system on the entity. However, from
 the view of the Relying Party, there is just one UEID and it is still
 globally universal across manufacturers.

10.2. Location Privacy Considerations

 Geographic location is most always considered personally identifiable
 information. Implementers should consider laws and regulations
 governing the transmission of location data from end user devices to
 servers and services. Implementers should consider using location
 management facilities offered by the operating system on the entity
 generating the attestation. For example, many mobile phones prompt
 the user for permission when before sending location data.

10.3. Replay Protection and Privacy

 EAT offers 2 primary mechanisms for token replay protection (also
 sometimes known as token "freshness"): the cti/jti claim and the
 nonce claim. The cti/jti claim in a CWT/JWT is a field that may be
 optionally included in the EAT and is in general derived on the same
 device in which the entity is instantiated. The nonce claim is based
 on a value that is usually derived remotely (outside of the entity).
 These claims can be used to extract and convey personally-identifying
 information either inadvertently or by intention. For instance, an
 implementor may choose a cti that is equivalent to a username
 associated with the device (e.g., account login). If the token is
 inspected by a 3rd-party then this information could be used to
 identify the source of the token or an account associated with the
 token (e.g., if the account name is used to derive the nonce). In
 order to avoid the conveyance of privacy-related information in

Lundblade, et al. Expires November 21, 2022 [Page 67]

Internet-Draft EAT May 2022

 either the cti/jti or nonce claims, these fields should be derived
 using a salt that originates from a true and reliable random number
 generator or any other source of randomness that would still meet the
 target system requirements for replay protection.

11. Security Considerations

 The security considerations provided in Section 8 of [RFC8392] and
 Section 11 of [RFC7519] apply to EAT in its CWT and JWT form,
 respectively. In addition, implementors should consider the
 following.

11.1. Key Provisioning

 Private key material can be used to sign and/or encrypt the EAT, or
 can be used to derive the keys used for signing and/or encryption.
 In some instances, the manufacturer of the entity may create the key
 material separately and provision the key material in the entity
 itself. The manfuacturer of any entity that is capable of producing
 an EAT should take care to ensure that any private key material be
 suitably protected prior to provisioning the key material in the
 entity itself. This can require creation of key material in an
 enclave (see [RFC4949] for definition of "enclave"), secure
 transmission of the key material from the enclave to the entity using
 an appropriate protocol, and persistence of the private key material
 in some form of secure storage to which (preferably) only the entity
 has access.

11.1.1. Transmission of Key Material

 Regarding transmission of key material from the enclave to the
 entity, the key material may pass through one or more intermediaries.
 Therefore some form of protection ("key wrapping") may be necessary.
 The transmission itself may be performed electronically, but can also
 be done by human courier. In the latter case, there should be
 minimal to no exposure of the key material to the human (e.g.
 encrypted portable memory). Moreover, the human should transport the
 key material directly from the secure enclave where it was created to
 a destination secure enclave where it can be provisioned.

11.2. Transport Security

 As stated in Section 8 of [RFC8392], "The security of the CWT relies
 upon on the protections offered by COSE". Similar considerations
 apply to EAT when sent as a CWT. However, EAT introduces the concept
 of a nonce to protect against replay. Since an EAT may be created by
 an entity that may not support the same type of transport security as
 the consumer of the EAT, intermediaries may be required to bridge

Lundblade, et al. Expires November 21, 2022 [Page 68]

Internet-Draft EAT May 2022

 communications between the entity and consumer. As a result, it is
 RECOMMENDED that both the consumer create a nonce, and the entity
 leverage the nonce along with COSE mechanisms for encryption and/or
 signing to create the EAT.

 Similar considerations apply to the use of EAT as a JWT. Although
 the security of a JWT leverages the JSON Web Encryption (JWE) and
 JSON Web Signature (JWS) specifications, it is still recommended to
 make use of the EAT nonce.

11.3. Multiple EAT Consumers

 In many cases, more than one EAT consumer may be required to fully
 verify the entity attestation. Examples include individual consumers
 for nested EATs, or consumers for individual claims with an EAT.
 When multiple consumers are required for verification of an EAT, it
 is important to minimize information exposure to each consumer. In
 addition, the communication between multiple consumers should be
 secure.

 For instance, consider the example of an encrypted and signed EAT
 with multiple claims. A consumer may receive the EAT (denoted as the
 "receiving consumer"), decrypt its payload, verify its signature, but
 then pass specific subsets of claims to other consumers for
 evaluation ("downstream consumers"). Since any COSE encryption will
 be removed by the receiving consumer, the communication of claim
 subsets to any downstream consumer should leverage a secure protocol
 (e.g.one that uses transport-layer security, i.e. TLS),

 However, assume the EAT of the previous example is hierarchical and
 each claim subset for a downstream consumer is created in the form of
 a nested EAT. Then transport security between the receiving and
 downstream consumers is not strictly required. Nevertheless,
 downstream consumers of a nested EAT should provide a nonce unique to
 the EAT they are consuming.

12. References

12.1. Normative References

 [CoSWID] Birkholz, H., Fitzgerald-McKay, J., Schmidt, C., and D.
 Waltermire, "Concise Software Identification Tags", draft-
 ietf-sacm-coswid-21 (work in progress), March 2022.

 [DLOA] "Digital Letter of Approval", November 2015,
 <https://globalplatform.org/wp-content/uploads/2015/12/
 GPC_DigitalLetterOfApproval_v1.0.pdf>.

Lundblade, et al. Expires November 21, 2022 [Page 69]

Internet-Draft EAT May 2022

 [EAN-13] GS1, "International Article Number - EAN/UPC barcodes",
 2019, <https://www.gs1.org/standards/barcodes/ean-upc>.

 [FIDO.AROE]
 The FIDO Alliance, "FIDO Authenticator Allowed Restricted
 Operating Environments List", November 2020,
 <https://fidoalliance.org/specs/fido-security-
 requirements/fido-authenticator-allowed-restricted-
 operating-environments-list-v1.2-fd-20201102.html>.

 [IANA.cbor-tags]
 "IANA CBOR Tags Registry", n.d.,
 <https://www.iana.org/assignments/cbor-tags/cbor-
 tags.xhtml>.

 [IANA.CWT.Claims]
 IANA, "CBOR Web Token (CWT) Claims",
 <http://www.iana.org/assignments/cwt>.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token (JWT) Claims",
 <https://www.iana.org/assignments/jwt>.

 [OpenIDConnectCore]
 Sakimura, N., Bradley, J., Jones, M., Medeiros, B. D., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [PEN] "Private Enterprise Number (PEN) Request", n.d.,
 <https://pen.iana.org/pen/PenApplication.page>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

Lundblade, et al. Expires November 21, 2022 [Page 70]

Internet-Draft EAT May 2022

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Lundblade, et al. Expires November 21, 2022 [Page 71]

Internet-Draft EAT May 2022

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC9090] Bormann, C., "Concise Binary Object Representation (CBOR)
 Tags for Object Identifiers", RFC 9090,
 DOI 10.17487/RFC9090, July 2021,
 <https://www.rfc-editor.org/info/rfc9090>.

 [ThreeGPP.IMEI]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Core Network and Terminals; Numbering,
 addressing and identification", 2019,
 <https://portal.3gpp.org/desktopmodules/Specifications/
 SpecificationDetails.aspx?specificationId=729>.

 [WGS84] National Geospatial-Intelligence Agency (NGA), "WORLD
 GEODETIC SYSTEM 1984, NGA.STND.0036_1.0.0_WGS84", July
 2014, <https://earth-info.nga.mil/php/
 download.php?file=coord-wgs84>.

12.2. Informative References

 [BirthdayAttack]
 "Birthday attack",
 <https://en.wikipedia.org/wiki/Birthday_attack.>.

 [CBOR.Cert.Draft]
 Mattsson, J. P., Selander, G., Raza, S., Hoeglund, J., and
 M. Furuhed, "CBOR Encoded X.509 Certificates (C509
 Certificates)", draft-ietf-cose-cbor-encoded-cert-03 (work
 in progress), January 2022.

 [Common.Criteria]
 "Common Criteria for Information Technology Security
 Evaluation", April 2017,
 <https://www.commoncriteriaportal.org/cc/>.

Lundblade, et al. Expires November 21, 2022 [Page 72]

Internet-Draft EAT May 2022

 [COSE.X509.Draft]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Header parameters for carrying and referencing X.509
 certificates", draft-ietf-cose-x509-08 (work in progress),
 December 2020.

 [FIPS-140]
 National Institue of Standards, "Security Requirements for
 Cryptographic Modules", May 2001,
 <https://csrc.nist.gov/publications/detail/fips/140/2/
 final>.

 [IEEE.802-2001]
 "IEEE Standard For Local And Metropolitan Area Networks
 Overview And Architecture", 2007,
 <https://webstore.ansi.org/standards/ieee/
 ieee8022001r2007>.

 [IEEE.802.1AR]
 "IEEE Standard, "IEEE 802.1AR Secure Device Identifier"",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [IEEE.RA] "IEEE Registration Authority",
 <https://standards.ieee.org/products-services/regauth/
 index.html>.

 [OUI.Guide]
 "Guidelines for Use of Extended Unique Identifier (EUI),
 Organizationally Unique Identifier (OUI), and Company ID
 (CID)", August 2017,
 <https://standards.ieee.org/content/dam/ieee-
 standards/standards/web/documents/tutorials/eui.pdf>.

 [OUI.Lookup]
 "IEEE Registration Authority Assignments",
 <https://regauth.standards.ieee.org/standards-ra-web/pub/
 view.html#registries>.

 [RATS.Architecture]
 Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote Attestation Procedures Architecture",
 draft-ietf-rats-architecture-15 (work in progress),
 February 2022.

Lundblade, et al. Expires November 21, 2022 [Page 73]

Internet-Draft EAT May 2022

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
 2014, <https://www.rfc-editor.org/info/rfc7120>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9039] Arkko, J., Jennings, C., and Z. Shelby, "Uniform Resource
 Names for Device Identifiers", RFC 9039,
 DOI 10.17487/RFC9039, June 2021,
 <https://www.rfc-editor.org/info/rfc9039>.

 [W3C.GeoLoc]
 Worldwide Web Consortium, "Geolocation API Specification
 2nd Edition", January 2018, <https://www.w3.org/TR/
 geolocation-API/#coordinates_interface>.

Lundblade, et al. Expires November 21, 2022 [Page 74]

Internet-Draft EAT May 2022

Appendix A. Examples

 Most examples are shown as just a Claims-Set that would be a payload
 for a CWT, JWT, DEB or future token types. It is shown this way
 because the payload is all the claims, the most interesting part and
 showing full tokens makes it harder to show the claims.

 Some examples of full tokens are also given.

 WARNING: These examples use tag and label numbers not yet assigned by
 IANA.

A.1. Payload Examples

A.1.1. Simple TEE Attestation

 This is a simple attestation of a TEE that includes a manifest that
 is a payload CoSWID to describe the TEE’s software.

Lundblade, et al. Expires November 21, 2022 [Page 75]

Internet-Draft EAT May 2022

 / This is an EAT payload that describes a simple TEE. /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 261: 2, / restricted /
 / secure-boot / 262: true,
 / debug-status / 263: 2, / disabled-since-boot /
 / manfests / 273: [
 [
 121, / CoAP Content ID. A /
 / made up one until one /
 / is assigned for CoSWID /

 / This is byte-string wrapped /
 / payload CoSWID. It gives the TEE /
 / software name, the version and /
 / the name of the file it is in. /
 / {0: "3a24", /
 / 12: 1, /
 / 1: "Acme TEE OS", /
 / 13: "3.1.4", /
 / 2: [{31: "Acme TEE OS", 33: 1}, /
 / {31: "Acme TEE OS", 33: 2}], /
 / 6: { /
 / 17: { /
 / 24: "acme_tee_3.exe" /
 / } /
 / } /
 / } /
 h’ a60064336132340c01016b
 41636d6520544545204f530d65332e31
 2e340282a2181f6b41636d6520544545
 204f53182101a2181f6b41636d652054
 4545204f5318210206a111a118186e61
 636d655f7465655f332e657865’
]
]
 }

Lundblade, et al. Expires November 21, 2022 [Page 76]

Internet-Draft EAT May 2022

 / A payload CoSWID created by the SW vendor. All this really does /
 / is name the TEE SW, its version and lists the one file that /
 / makes up the TEE. /

 1398229316({
 / Unique CoSWID ID / 0: "3a24",
 / tag-version / 12: 1,
 / software-name / 1: "Acme TEE OS",
 / software-version / 13: "3.1.4",
 / entity / 2: [
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 1 / tag-creator /
 },
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 2 / software-creator /
 }
],
 / payload / 6: {
 / ...file / 17: {
 / ...fs-name / 24: "acme_tee_3.exe"
 }
 }
 })

A.1.2. Submodules for Board and Device

Lundblade, et al. Expires November 21, 2022 [Page 77]

Internet-Draft EAT May 2022

/ This example shows use of submodules to give information /
/ about the chip, board and overall device. /
/ /
/ The main attestation is associated with the chip with the /
/ CPU and running the main OS. It is what has the keys and /
/ produces the token. /
/ /
/ The board is made by a different vendor than the chip. /
/ Perhaps it is some generic IoT board. /
/ /
/ The device is some specific appliance that is made by a /
/ different vendor than either the chip or the board. /
/ /
/ Here the board and device submodules aren’t the typical /
/ target environments as described by the RATS architecture /
/ document, but they are a valid use of submodules. /

{
 / nonce / 10: h’948f8860d13a463e8e’,
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / HW OEM ID / 258: h’894823’, / IEEE OUI format OEM ID /
 / HW Model ID / 259: h’549dcecc8b987c737b44e40f7c635ce8’
 / Hash of chip model name /,
 / HW Version / 260: ["1.3.4", 1], / Multipartnumeric version /
 / SW Name / 271: "Acme OS",
 / SW Version / 272: ["3.5.5", 1],
 / secure-boot / 262: true,
 / debug-status / 263: 3, / permanent-disable /
 / timestamp (iat) / 6: 1526542894,
 / security-level / 261: 2, / restricted OS /
 / submods / 266: {
 / A submodule to hold some claims about the circuit board /
 "board" : {
 / HW OEM ID / 258: h’9bef8787eba13e2c8f6e7cb4b1f4619a’,
 / HW Model ID / 259: h’ee80f5a66c1fb9742999a8fdab930893’
 / Hash of board module name /,
 / HW Version / 260: ["2.0a", 2] / multipartnumeric+suffix /
 },

 / A submodule to hold claims about the overall device /
 "device" : {
 / HW OEM ID / 258: 61234, / PEN Format OEM ID /
 / HW Version / 260: ["4012345123456", 5] / EAN-13 format (barco
de) /
 }
 }
}

Lundblade, et al. Expires November 21, 2022 [Page 78]

Internet-Draft EAT May 2022

A.1.3. EAT Produced by Attestation Hardware Block

 / This is an example of a token produced by a HW block /
 / purpose-built for attestation. Only the nonce claim changes /
 / from one attestation to the next as the rest either come /
 / directly from the hardware or from one-time-programmable memory /
 / (e.g. a fuse). 47 bytes encoded in CBOR (8 byte nonce, 16 byte /
 / UEID). /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / OEMID / 258: 64242, / Private Enterprise Number /
 / security-level / 261: 3, / hardware level security /
 / secure-boot / 262: true,
 / debug-status / 263: 3, / disabled-permanently /
 / HW version / 260: ["3.1", 1] / Type is multipartnumeric /
 }

A.1.4. Key / Key Store Attestation

Lundblade, et al. Expires November 21, 2022 [Page 79]

Internet-Draft EAT May 2022

 / This is an EAT payload that describes a simple TEE. /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 261: 2, / restricted /
 / secure-boot / 262: true,
 / debug-status / 263: 2, / disabled-since-boot /
 / manfests / 273: [
 [
 121, / CoAP Content ID. A /
 / made up one until one /
 / is assigned for CoSWID /

 / This is byte-string wrapped /
 / payload CoSWID. It gives the TEE /
 / software name, the version and /
 / the name of the file it is in. /
 / {0: "3a24", /
 / 12: 1, /
 / 1: "Acme TEE OS", /
 / 13: "3.1.4", /
 / 2: [{31: "Acme TEE OS", 33: 1}, /
 / {31: "Acme TEE OS", 33: 2}], /
 / 6: { /
 / 17: { /
 / 24: "acme_tee_3.exe" /
 / } /
 / } /
 / } /
 h’ a60064336132340c01016b
 41636d6520544545204f530d65332e31
 2e340282a2181f6b41636d6520544545
 204f53182101a2181f6b41636d652054
 4545204f5318210206a111a118186e61
 636d655f7465655f332e657865’
]
]
 }

Lundblade, et al. Expires November 21, 2022 [Page 80]

Internet-Draft EAT May 2022

 / A payload CoSWID created by the SW vendor. All this really does /
 / is name the TEE SW, its version and lists the one file that /
 / makes up the TEE. /

 1398229316({
 / Unique CoSWID ID / 0: "3a24",
 / tag-version / 12: 1,
 / software-name / 1: "Acme TEE OS",
 / software-version / 13: "3.1.4",
 / entity / 2: [
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 1 / tag-creator /
 },
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 2 / software-creator /
 }
],
 / payload / 6: {
 / ...file / 17: {
 / ...fs-name / 24: "acme_tee_3.exe"
 }
 }
 })

A.1.5. Submodules for Board and Device

Lundblade, et al. Expires November 21, 2022 [Page 81]

Internet-Draft EAT May 2022

/ This example shows use of submodules to give information /
/ about the chip, board and overall device. /
/ /
/ The main attestation is associated with the chip with the /
/ CPU and running the main OS. It is what has the keys and /
/ produces the token. /
/ /
/ The board is made by a different vendor than the chip. /
/ Perhaps it is some generic IoT board. /
/ /
/ The device is some specific appliance that is made by a /
/ different vendor than either the chip or the board. /
/ /
/ Here the board and device submodules aren’t the typical /
/ target environments as described by the RATS architecture /
/ document, but they are a valid use of submodules. /

{
 / nonce / 10: h’948f8860d13a463e8e’,
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / HW OEM ID / 258: h’894823’, / IEEE OUI format OEM ID /
 / HW Model ID / 259: h’549dcecc8b987c737b44e40f7c635ce8’
 / Hash of chip model name /,
 / HW Version / 260: ["1.3.4", 1], / Multipartnumeric version /
 / SW Name / 271: "Acme OS",
 / SW Version / 272: ["3.5.5", 1],
 / secure-boot / 262: true,
 / debug-status / 263: 3, / permanent-disable /
 / timestamp (iat) / 6: 1526542894,
 / security-level / 261: 2, / restricted OS /
 / submods / 266: {
 / A submodule to hold some claims about the circuit board /
 "board" : {
 / HW OEM ID / 258: h’9bef8787eba13e2c8f6e7cb4b1f4619a’,
 / HW Model ID / 259: h’ee80f5a66c1fb9742999a8fdab930893’
 / Hash of board module name /,
 / HW Version / 260: ["2.0a", 2] / multipartnumeric+suffix /
 },

 / A submodule to hold claims about the overall device /
 "device" : {
 / HW OEM ID / 258: 61234, / PEN Format OEM ID /
 / HW Version / 260: ["4012345123456", 5] / EAN-13 format (barco
de) /
 }
 }
}

Lundblade, et al. Expires November 21, 2022 [Page 82]

Internet-Draft EAT May 2022

A.1.6. EAT Produced by Attestation Hardware Block

 / This is an example of a token produced by a HW block /
 / purpose-built for attestation. Only the nonce claim changes /
 / from one attestation to the next as the rest either come /
 / directly from the hardware or from one-time-programmable memory /
 / (e.g. a fuse). 47 bytes encoded in CBOR (8 byte nonce, 16 byte /
 / UEID). /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / OEMID / 258: 64242, / Private Enterprise Number /
 / security-level / 261: 3, / hardware level security /
 / secure-boot / 262: true,
 / debug-status / 263: 3, / disabled-permanently /
 / HW version / 260: ["3.1", 1] / Type is multipartnumeric /
 }

A.1.7. Key / Key Store Attestation

 / This is an attestation of a public key and the key store /
 / implementation that protects and manages it. The key store /
 / implementation is in a security-oriented execution /
 / environment separate from the high-level OS, for example a /
 / TEE. The key store is the Attester. /
 / /
 / There is some attestation of the high-level OS, just version /
 / and boot & debug status. It is a Claims-Set submodule because/
 / it has lower security level than the key store. The key /
 / store’s implementation has access to info about the HLOS, so /
 / it is able to include it. /
 / /
 / A key and an indication of the user authentication given to /
 / allow access to the key is given. The labels for these are /
 / in the private space since this is just a hypothetical /
 / example, not part of a standard protocol. /
 / /
 / This is similar to Android Key Attestation. /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 261: 2, / restricted /
 / secure-boot / 262: true,
 / debug-status / 263: 2, / disabled-since-boot /
 / manifests / 273: [

Lundblade, et al. Expires November 21, 2022 [Page 83]

Internet-Draft EAT May 2022

 [121, / CoAP Content ID. A /
 / made up one until one /
 / is assigned for CoSWID /
 h’a600683762623334383766
 0c000169436172626f6e6974650d6331
 2e320e0102a2181f75496e6475737472
 69616c204175746f6d6174696f6e1821
 02’
]
 / Above is an encoded CoSWID /
 / with the following data /
 / SW Name: "Carbonite" /
 / SW Vers: "1.2" /
 / SW Creator: /
 / "Industrial Automation" /
],
 / expiration / 4: 1634324274, / 2021-10-15T18:57:54Z /
 / creation time / 6: 1634317080, / 2021-10-15T16:58:00Z /
 -80000 : "fingerprint",
 -80001 : { / The key -- A COSE_Key /
 / kty / 1: 2, / EC2, eliptic curve with x & y /
 / kid / 2: h’36675c206f96236c3f51f54637b94ced’,
 / curve / -1: 2, / curve is P-256 /
 / x-coord / -2: h’65eda5a12577c2bae829437fe338701a
 10aaa375e1bb5b5de108de439c08551d’,
 / y-coord / -3: h’1e52ed75701163f7f9e40ddf9f341b3d
 c9ba860af7e0ca7ca7e9eecd0084d19c’
 },

 / submods / 266 : {
 "HLOS" : { / submod for high-level OS /
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 261: 1, / unrestricted /
 / secure-boot / 262: true,
 / manifests / 273: [
 [121, / CoAP Content ID. A /
 / made up one until one /
 / is assigned for CoSWID /
 h’a600687337
 6537346b78380c000168
 44726f6964204f530d65
 52322e44320e0302a218
 1F75496E647573747269
 616c204175746f6d6174
 696f6e182102’
]
 / Above is an encoded CoSWID /
 / with the following data: /

Lundblade, et al. Expires November 21, 2022 [Page 84]

Internet-Draft EAT May 2022

 / SW Name: "Droid OS" /
 / SW Vers: "R2.D2" /
 / SW Creator: /
 / "Industrial Automation"/
]
 }
 }
 }

A.1.8. SW Measurements of an IoT Device

 This is a simple token that might be for and IoT device. It includes
 CoSWID format measurments of the SW. The CoSWID is in byte-string
 wrapped in the token and also shown in diagnostic form.

 / This EAT payload is for an IoT device with a TEE. The attestation /
 / is produced by the TEE. There is a submodule for the IoT OS (the /
 / main OS of the IoT device that is not as secure as the TEE). The /
 / submodule contains claims for the IoT OS. The TEE also measures /
 / the IoT OS and puts the measurements in the submodule. /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 261: 2, / restricted /
 / secure-boot / 262: true,
 / debug-status / 263: 2, / disabled-since-boot /
 / OEMID / 258: h’8945ad’, / IEEE CID based /
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / sumods / 266: {
 "OS" : {
 / security-level / 261: 2, / restricted /
 / secure-boot / 262: true,
 / debug-status / 263: 2, / disabled-since-boot /
 / swevidence / 274: [
 [
 121, / CoAP Content ID. A /
 / made up one until one /
 / is assigned for CoSWID /

 / This is a byte-string wrapped /
 / evidence CoSWID. It has /
 / hashes of the main files of /
 / the IoT OS. /
 h’a600663463613234350c
 17016d41636d6520522d496f542d4f
 530d65332e312e3402a2181f724163

Lundblade, et al. Expires November 21, 2022 [Page 85]

Internet-Draft EAT May 2022

 6d6520426173652041747465737465
 7218210103a11183a318187161636d
 655f725f696f745f6f732e65786514
 1a0044b349078201582005f6b327c1
 73b4192bd2c3ec248a292215eab456
 611bf7a783e25c1782479905a31818
 6d7265736f75726365732e72736314
 1a000c38b10782015820c142b9aba4
 280c4bb8c75f716a43c99526694caa
 be529571f5569bb7dc542f98a31818
 6a636f6d6d6f6e2e6c6962141a0023
 3d3b0782015820a6a9dcdfb3884da5
 f884e4e1e8e8629958c2dbc7027414
 43a913e34de9333be6’
]
]
 }
 }
 }

 / An evidence CoSWID created for the "Acme R-IoT-OS" created by /
 / the "Acme Base Attester" (both fictious names). It provides /
 / measurements of the SW (other than the attester SW) on the /
 / device. /

 1398229316({
 / Unique CoSWID ID / 0: "4ca245",
 / tag-version / 12: 23, / Attester-maintained counter /
 / software-name / 1: "Acme R-IoT-OS",
 / software-version / 13: "3.1.4",
 / entity / 2: {
 / entity-name / 31: "Acme Base Attester",
 / role / 33: 1 / tag-creator /
 },
 / evidence / 3: {
 / ...file / 17: [
 {
 / ...fs-name / 24: "acme_r_iot_os.exe",
 / ...size / 20: 4502345,
 / ...hash / 7: [
 1, / SHA-256 /
 h’05f6b327c173b419
 2bd2c3ec248a2922
 15eab456611bf7a7
 83e25c1782479905’
]
 },

Lundblade, et al. Expires November 21, 2022 [Page 86]

Internet-Draft EAT May 2022

 {
 / ...fs-name / 24: "resources.rsc",
 / ...size / 20: 800945,
 / ...hash / 7: [
 1, / SHA-256 /
 h’c142b9aba4280c4b
 b8c75f716a43c995
 26694caabe529571
 f5569bb7dc542f98’
]
 },
 {
 / ...fs-name / 24: "common.lib",
 / ...size / 20: 2309435,
 / ...hash / 7: [
 1, / SHA-256 /
 h’a6a9dcdfb3884da5
 f884e4e1e8e86299
 58c2dbc702741443
 a913e34de9333be6’
]
 }
]
 }
 })

A.1.9. Attestation Results in JSON format

 This is a JSON-format payload that might be the output of a Verifier
 that evaluated the IoT Attestation example immediately above.

 This particular Verifier knows enough about the TEE Attester to be
 able to pass claims like security level directly through to the
 Relying Party. The Verifier also knows the Reference Values for the
 measured SW components and is able to check them. It informs the
 Relying Party that they were correct in the swresults claim.
 "Trustus Verifications" is the name of the services that verifies the
 SW component measurements.

Lundblade, et al. Expires November 21, 2022 [Page 87]

Internet-Draft EAT May 2022

 {
 "eat_nonce" : "jkd8KL-8=Qlzg4",
 "seclevel" : "restricted",
 "secboot" : true,
 "dbgstat" : "disabled-since-boot",
 "oemid" : "iUWt",
 "ueid" : "AZj1Ck_2wFhhyIYNE6Y4",
 "swname" : "Acme R-IoT-OS",
 "swversion" : [
 "3.1.4"
],
 "measres" : [
 [
 "Trustus Measurements",
 [
 ["all" , "success"]
]
]
]
 }

A.1.10. JSON-encoded Token with Sumodules

Lundblade, et al. Expires November 21, 2022 [Page 88]

Internet-Draft EAT May 2022

{
 "eat_nonce": "lI-IYNE6Rj6O",
 "ueid": "AJj1Ck_2wFhhyIYNE6Y46g==",
 "secboot": true,
 "dbgstat": "disabled-permanently",
 "iat": 1526542894,
 "seclevel": "restricted",
 "submods": {
 "Android App Foo" : {
 "seclevel": "unrestricted"
 },

 "Secure Element Eat" : [
 "CBOR",
 "2D3ShEOhASagWGaoCkiUj4hg0TpGPhkBAFABmPUKT_bAWGHIhg0TpjjqGQECGfr
yGQEFBBkBBvUZAQcDGQEEgmMzLjEBGQEKoWNURUWCL1gg5c-V_ST6txRGdC3VjUPa4XjlX-K5QpG
pKRCC_8JjWgtYQPaQywOIZ3-mJKN3X9fLxOhAnsmBa-MvpHRzOw-Ywn-67bvJljuctezAPD41s6_
At7NbSV3qwJlxIuqGfwe41es="
],

 "Linux Android": {
 "seclevel": "unrestricted"
 },

 "Subsystem J": [
 "JWT",
 "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJKLUF0dGVzdGVyIi
wiaWF0IjoxNjUxNzc0ODY4LCJleHAiOm51bGwsImF1ZCI6IiIsInN1YiI6IiJ9.gjw4nFMhLpJUu
PXvMPzK1GMjhyJq2vWXg1416XKszwQ"
]
 }
}

A.2. Full Token Examples

A.2.1. Basic CWT Example

 This is a simple ECDSA signed CWT-format token.

 / This is a full CWT-format token with a very simple payloal. /
 / The main structure visible here is that of the COSE_Sign1. /

 61(18([
 h’A10126’, / protected headers /
 {}, / empty unprotected headers /
 h’A20B46024A6B0978DE0A49000102030405060708’, / payload /
 h’9B9B2F5E470000F6A20C8A4157B5763FC45BE759
 9A5334028517768C21AFFB845A56AB557E0C8973
 A07417391243A79C478562D285612E292C622162
 AB233787’ / signature /
]))

Lundblade, et al. Expires November 21, 2022 [Page 89]

Internet-Draft EAT May 2022

A.2.2. Detached EAT Bundle

 In this DEB main token is produced by a HW attestation block. The
 detached Claims-Set is produced by a TEE and is largely identical to
 the Simple TEE examples above. The TEE digests its Claims-Set and
 feeds that digest to the HW block.

 In a better example the attestation produced by the HW block would be
 a CWT and thus signed and secured by the HW block. Since the
 signature covers the digest from the TEE that Claims-Set is also
 secured.

 The DEB itself can be assembled by untrusted SW.

Lundblade, et al. Expires November 21, 2022 [Page 90]

Internet-Draft EAT May 2022

/ This is a detached EAT bundle (DEB) tag. /
/ Note that 602, the tag identifying a DEB is not yet registered with IANA /

602([

 / First part is a full EAT token with claims like nonce and /
 / UEID. Most importantly, it includes a submodule that is a /
 / detached digest which is the hash of the "TEE" claims set /
 / in the next section. The COSE payload follows: /
 / { /
 / 10: h’948F8860D13A463E’, /
 / 256: h’0198F50A4FF6C05861C8860D13A638EA’, /
 / 258: 64242, /
 / 261: 4, /
 / 262: true, /
 / 263: 3, /
 / 260: ["3.1", 1], /
 / 266: { /
 / "TEE": [/
 / -16, /
 / h’E5CF95FD24FAB71446742DD58D43DAE1 /
 / 78E55FE2B94291A9291082FFC2635A0B’ /
 /] /
 / } /
 / } /
 h’D83DD28443A10126A05866A80A48948F8860D13A463E1901
 00500198F50A4FF6C05861C8860D13A638EA19010219FAF2
 19010504190106F5190107031901048263332E310119010A
 A163544545822F5820E5CF95FD24FAB71446742DD58D43DA
 E178E55FE2B94291A9291082FFC2635A0B5840F690CB0388
 677FA624A3775FD7CBC4E8409EC9816BE32FA474733B0F98
 C27FBAEDBBC9963B9CB5ECC03C3E35B3AFC0B7B35B495DEA
 C0997122EA867F07B8D5EB’,
 {
 / A CBOR-encoded byte-string wrapped EAT claims-set. It /
 / contains claims suitable for a TEE /
 "TEE" : h’a50a48948f8860d13a463e19010503190106
 f519010702190111818218795858a6006433
 6132340c01016b41636d6520544545204f53
 0d65332e312e340282a2181f6b41636d6520
 544545204f53182101a2181f6b41636d6520
 544545204f5318210206a111a118186e6163
 6d655f7465655f332e657865’
 }
])

Lundblade, et al. Expires November 21, 2022 [Page 91]

Internet-Draft EAT May 2022

 / This example contains submodule that is a detached digest, /
 / which is the hash of a Claims-Set convey outside this token. /
 / Other than that is is the other example of a token from an /
 / attestation HW block /

 {
 / nonce / 10: h’948f8860d13a463e’,
 / UEID / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / OEMID / 258: 64242, / Private Enterprise Number /
 / security-level / 261: 3, / hardware level security /
 / secure-boot / 262: true,
 / debug-status / 263: 3, / disabled-permanently /
 / hw version / 260: ["3.1", 1], / multipartnumeric /
 / submods/ 266: {
 "TEE": [/ detached digest submod /
 -16, / SHA-256 /
 h’e5cf95fd24fab7144674
 2dd58d43dae178e55fe2
 b94291a9291082ffc2635
 a0b’
]
 }
 }

A.2.3. JSON-encoded Detached EAT Bundle

 In this bundle there are two detached Claims-Sets, "CS1" and "CS2".
 The JWT at the start of the bundle has detached signature submodules
 with hashes of "CS1" and "CS2". TODO: make the JWT actually be
 correct verifiable JWT.

[
 ["JWT",
 "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJKLUF0dGVzdGVyIiwiaWF0
IjoxNjUxNzc0ODY4LCJleHAiOm51bGwsImF1ZCI6IiIsInN1YiI6IiJ9.gjw4nFMhLpJUuPXvMPz
K1GMjhyJq2vWXg1416XKszwQ"
],
 {
 "Audio Subsystem Claims": "ewogICAgICAgICAgICAibm9uY2UiOiAgICAgImxJK
0lZTkU2Umo2TyIsCiAgICAgICAgICAgICJpYXQiOiAgICAgIDE1MjY1NDI4OTQKICAgICAgICAgf
Qo=",
 "Graphics Subsystem Claims": "ewogICAgICAgICAgICAibm9uY2UiOiAgICJsSS
tJWU5FNlJqNk8iLAogICAgICAgICAgICAiaWF0IjogICAgIDE1MjY1NDI4OTQKICAgICAgICB9"
 }
]

Appendix B. UEID Design Rationale

Lundblade, et al. Expires November 21, 2022 [Page 92]

Internet-Draft EAT May 2022

B.1. Collision Probability

 This calculation is to determine the probability of a collision of
 UEIDs given the total possible entity population and the number of
 entities in a particular entity management database.

 Three different sized databases are considered. The number of
 devices per person roughly models non-personal devices such as
 traffic lights, devices in stores they shop in, facilities they work
 in and so on, even considering individual light bulbs. A device may
 have individually attested subsystems, for example parts of a car or
 a mobile phone. It is assumed that the largest database will have at
 most 10% of the world’s population of devices. Note that databases
 that handle more than a trillion records exist today.

 The trillion-record database size models an easy-to-imagine reality
 over the next decades. The quadrillion-record database is roughly at
 the limit of what is imaginable and should probably be accommodated.
 The 100 quadrillion datadbase is highly speculative perhaps involving
 nanorobots for every person, livestock animal and domesticated bird.
 It is included to round out the analysis.

 Note that the items counted here certainly do not have IP address and
 are not individually connected to the network. They may be connected
 to internal buses, via serial links, Bluetooth and so on. This is
 not the same problem as sizing IP addresses.

 +---------+------------+--------------+------------+----------------+
 | People | Devices / | Subsystems / | Database | Database Size |
 | | Person | Device | Portion | |
 +---------+------------+--------------+------------+----------------+
10	100	10	10%	trillion
billion				(10^12)
10	100,000	10	10%	quadrillion
billion				(10^15)
100	1,000,000	10	10%	100
billion				quadrillion
				(10^17)
 +---------+------------+--------------+------------+----------------+

 This is conceptually similar to the Birthday Problem where m is the
 number of possible birthdays, always 365, and k is the number of
 people. It is also conceptually similar to the Birthday Attack where
 collisions of the output of hash functions are considered.

 The proper formula for the collision calculation is

Lundblade, et al. Expires November 21, 2022 [Page 93]

Internet-Draft EAT May 2022

 p = 1 - e^{-k^2/(2n)}

 p Collision Probability
 n Total possible population
 k Actual population

 However, for the very large values involved here, this formula
 requires floating point precision higher than commonly available in
 calculators and SW so this simple approximation is used. See
 [BirthdayAttack].

 p = k^2 / 2n

 For this calculation:

 p Collision Probability
 n Total population based on number of bits in UEID
 k Population in a database

 +----------------------+--------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +----------------------+--------------+--------------+--------------+
trillion (10^12)	2 * 10^-15	8 * 10^-35	5 * 10^-55
quadrillion (10^15)	2 * 10^-09	8 * 10^-29	5 * 10^-49
100 quadrillion	2 * 10^-05	8 * 10^-25	5 * 10^-45
(10^17)			
 +----------------------+--------------+--------------+--------------+

 Next, to calculate the probability of a collision occurring in one
 year’s operation of a database, it is assumed that the database size
 is in a steady state and that 10% of the database changes per year.
 For example, a trillion record database would have 100 billion states
 per year. Each of those states has the above calculated probability
 of a collision.

 This assumption is a worst-case since it assumes that each state of
 the database is completely independent from the previous state. In
 reality this is unlikely as state changes will be the addition or
 deletion of a few records.

 The following tables gives the time interval until there is a
 probability of a collision based on there being one tenth the number
 of states per year as the number of records in the database.

Lundblade, et al. Expires November 21, 2022 [Page 94]

Internet-Draft EAT May 2022

 t = 1 / ((k / 10) * p)

 t Time until a collision
 p Collision probability for UEID size
 k Database size

 +---------------------+---------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +---------------------+---------------+--------------+--------------+
trillion (10^12)	60,000 years	10^24 years	10^44 years
quadrillion (10^15)	8 seconds	10^14 years	10^34 years
100 quadrillion	8	10^11 years	10^31 years
(10^17)	microseconds		
 +---------------------+---------------+--------------+--------------+

 Clearly, 128 bits is enough for the near future thus the requirement
 that UEIDs be a minimum of 128 bits.

 There is no requirement for 256 bits today as quadrillion-record
 databases are not expected in the near future and because this time-
 to-collision calculation is a very worst case. A future update of
 the standard may increase the requirement to 256 bits, so there is a
 requirement that implementations be able to receive 256-bit UEIDs.

B.2. No Use of UUID

 A UEID is not a UUID [RFC4122] by conscious choice for the following
 reasons.

 UUIDs are limited to 128 bits which may not be enough for some future
 use cases.

 Today, cryptographic-quality random numbers are available from common
 CPUs and hardware. This hardware was introduced between 2010 and
 2015. Operating systems and cryptographic libraries give access to
 this hardware. Consequently, there is little need for
 implementations to construct such random values from multiple sources
 on their own.

 Version 4 UUIDs do allow for use of such cryptographic-quality random
 numbers, but do so by mapping into the overall UUID structure of time
 and clock values. This structure is of no value here yet adds
 complexity. It also slightly reduces the number of actual bits with
 entropy.

 UUIDs seem to have been designed for scenarios where the implementor
 does not have full control over the environment and uniqueness has to
 be constructed from identifiers at hand. UEID takes the view that

Lundblade, et al. Expires November 21, 2022 [Page 95]

Internet-Draft EAT May 2022

 hardware, software and/or manufacturing process directly implement
 UEID in a simple and direct way. It takes the view that
 cryptographic quality random number generators are readily available
 as they are implemented in commonly used CPU hardware.

Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity (DevID)

 This section describes several distinct ways in which an IEEE IDevID
 [IEEE.802.1AR] relates to EAT, particularly to UEID and SUEID.

 [IEEE.802.1AR] orients around the definition of an implementation
 called a "DevID Module." It describes how IDevIDs and LDevIDs are
 stored, protected and accessed using a DevID Module. A particular
 level of defense against attack that should be achieved to be a DevID
 is defined. The intent is that IDevIDs and LDevIDs are used with an
 open set of network protocols for authentication and such. In these
 protocols the DevID secret is used to sign a nonce or similar to
 proof the association of the DevID certificates with the device.

 By contrast, EAT defines network protocol for proving trustworthiness
 to a Relying Party, the very thing that is not defined in
 [IEEE.802.1AR]. Nor does not give details on how keys, data and such
 are stored protected and accessed. EAT is intended to work with a
 variety of different on-device implementations ranging from minimal
 protection of assets to the highest levels of asset protection. It
 does not define any particular level of defense against attack,
 instead providing a set of security considerations.

 EAT and DevID can be viewed as complimentary when used together or as
 competing to provide a device identity service.

C.1. DevID Used With EAT

 As just described, EAT defines a network protocol and [IEEE.802.1AR]
 doesn’t. Vice versa, EAT doesn’t define a an device implementation
 and DevID does.

 Hence, EAT can be the network protocol that a DevID is used with.
 The DevID secret becomes the attestation key used to sign EATs. The
 DevID and its certificate chain become the Endorsement sent to the
 Verifier.

 In this case the EAT and the DevID are likely to both provide a
 device identifier (e.g. a serial number). In the EAT it is the UEID
 (or SUEID). In the DevID (used as an endorsement), it is a device
 serial number included in the subject field of the DevID certificate.
 It is probably a good idea in this use for them to be the same serial
 number or for the UEID to be a hash of the DevID serial number.

Lundblade, et al. Expires November 21, 2022 [Page 96]

Internet-Draft EAT May 2022

C.2. How EAT Provides an Equivalent Secure Device Identity

 The UEID, SUEID and other claims like OEM ID are equivalent to the
 secure device identity put into the subject field of a DevID
 certificate. These EAT claims can represent all the same fields and
 values that can be put in a DevID certificate subject. EAT
 explicitly and carefully defines a variety of useful claims.

 EAT secures the conveyance of these claims by having them signed on
 the device by the attestation key when the EAT is generated. EAT
 also signs the nonce that gives freshness at this time. Since these
 claims are signed for every EAT generated, they can include things
 that vary over time like GPS location.

 DevID secures the device identity fields by having them signed by the
 manufacturer of the device sign them into a certificate. That
 certificate is created once during the manufacturing of the device
 and never changes so the fields cannot change.

 So in one case the signing of the identity happens on the device and
 the other in a manufacturing facility, but in both cases the signing
 of the nonce that proves the binding to the actual device happens on
 the device.

 While EAT does not specify how the signing keys, signature process
 and storage of the identity values should be secured against attack,
 an EAT implementation may have equal defenses against attack. One
 reason EAT uses CBOR is because it is simple enough that a basic EAT
 implementation can be constructed entirely in hardware. This allows
 EAT to be implemented with the strongest defenses possible.

C.3. An X.509 Format EAT

 It is possible to define a way to encode EAT claims in an X.509
 certificate. For example, the EAT claims might be mapped to X.509 v3
 extensions. It is even possible to stuff a whole CBOR-encoded
 unsigned EAT token into a X.509 certificate.

 If that X.509 certificate is an IDevID or LDevID, this becomes
 another way to use EAT and DevID together.

 Note that the DevID must still be used with an authentication
 protocol that has a nonce or equivalent. The EAT here is not being
 used as the protocol to interact with the rely party.

Lundblade, et al. Expires November 21, 2022 [Page 97]

Internet-Draft EAT May 2022

C.4. Device Identifier Permanence

 In terms of permanence, an IDevID is similar to a UEID in that they
 do not change over the life of the device. They cease to exist only
 when the device is destroyed.

 An SUEID is similar to an LDevID. They change on device life-cycle
 events.

 [IEEE.802.1AR] describes much of this permanence as resistant to
 attacks that seek to change the ID. IDevID permanence can be
 described this way because [IEEE.802.1AR] is oriented around the
 definition of an implementation with a particular level of defense
 against attack.

 EAT is not defined around a particular implementation and must work
 on a range of devices that have a range of defenses against attack.
 EAT thus can’t be defined permanence in terms of defense against
 attack. EAT’s definition of permanence is in terms of operations and
 device lifecycle.

Appendix D. CDDL for CWT and JWT

 [RFC8392] was published before CDDL was available and thus is
 specified in prose, not CDDL. Following is CDDL specifying CWT as it
 is needed to complete this specification. This CDDL also covers the
 Claims-Set for JWT.

 This however is NOT a normative or standard definition of CWT or JWT
 in CDDL. The prose in CWT and JWT remain the normative definition.

Lundblade, et al. Expires November 21, 2022 [Page 98]

Internet-Draft EAT May 2022

 ; This is replicated from draft-ietf-rats-uccs

 Claims-Set = {
 * $$Claims-Set-Claims
 * Claim-Label .feature "extended-claims-label" => any
 }
 Claim-Label = int / text
 string-or-uri = text

 $$Claims-Set-Claims //= (iss-claim-label => string-or-uri)
 $$Claims-Set-Claims //= (sub-claim-label => string-or-uri)
 $$Claims-Set-Claims //= (aud-claim-label => string-or-uri)
 $$Claims-Set-Claims //= (exp-claim-label => ˜time)
 $$Claims-Set-Claims //= (nbf-claim-label => ˜time)
 $$Claims-Set-Claims //= (iat-claim-label => ˜time)
 $$Claims-Set-Claims //= (cti-claim-label => bytes)

 iss-claim-label = JC<"iss", 1>
 sub-claim-label = JC<"sub", 2>
 aud-claim-label = JC<"aud", 3>
 exp-claim-label = JC<"exp", 4>
 nbf-claim-label = JC<"nbf", 5>
 iat-claim-label = JC<"iat", 6>
 cti-claim-label = CBOR-ONLY<7> ; jti in JWT: different name and text

 JSON-ONLY<J> = J .feature "json"
 CBOR-ONLY<C> = C .feature "cbor"

 ; Be sure to have cddl 0.8.29 or higher for this to work
 JC<J,C> = JSON-ONLY<J> / CBOR-ONLY<C>

; A JWT message is either a JWS or JWE in compact serialization form
; with the payload a Claims-Set. Compact serialization is the
; protected headers, payload and signature, each b64url encoded and
; separated by a ".". This CDDL simply matches top-level syntax of of
; a JWS or JWE since it is not possible to do more in CDDL.

JWT-Message = text .regexp "[A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]
+"

; Note that the payload of a JWT is defined in claims-set.cddl. That
; definition is common to CBOR and JSON.

Lundblade, et al. Expires November 21, 2022 [Page 99]

Internet-Draft EAT May 2022

 ; This is some CDDL describing a CWT at the top level This is
 ; not normative. RFC 8392 is the normative definition of CWT.

 CWT-Messages = CWT-Tagged-Message / CWT-Untagged-Message

 ; The payload of the COSE_Message is always a Claims-Set

 ; The contents of a CWT Tag must always be a COSE tag
 CWT-Tagged-Message = #6.61(COSE_Tagged_Message)

 ; An untagged CWT may be a COSE tag or not
 CWT-Untagged-Message = COSE_Messages

Appendix E. Changes from Previous Drafts

 The following is a list of known changes from the previous drafts.
 This list is non-authoritative. It is meant to help reviewers see
 the significant differences.

E.1. From draft-rats-eat-01

 o Added UEID design rationale appendix

E.2. From draft-mandyam-rats-eat-00

 This is a fairly large change in the orientation of the document, but
 no new claims have been added.

 o Separate information and data model using CDDL.

 o Say an EAT is a CWT or JWT

 o Use a map to structure the boot_state and location claims

E.3. From draft-ietf-rats-eat-01

 o Clarifications and corrections for OEMID claim

 o Minor spelling and other fixes

 o Add the nonce claim, clarify jti claim

E.4. From draft-ietf-rats-eat-02

 o Roll all EUIs back into one UEID type

 o UEIDs can be one of three lengths, 128, 192 and 256.

Lundblade, et al. Expires November 21, 2022 [Page 100]

Internet-Draft EAT May 2022

 o Added appendix justifying UEID design and size.

 o Submods part now includes nested eat tokens so they can be named
 and there can be more tha one of them

 o Lots of fixes to the CDDL

 o Added security considerations

E.5. From draft-ietf-rats-eat-03

 o Split boot_state into secure-boot and debug-disable claims

 o Debug disable is an enumerated type rather than Booleans

E.6. From draft-ietf-rats-eat-04

 o Change IMEI-based UEIDs to be encoded as a 14-byte string

 o CDDL cleaned up some more

 o CDDL allows for JWTs and UCCSs

 o CWT format submodules are byte string wrapped

 o Allows for JWT nested in CWT and vice versa

 o Allows UCCS (unsigned CWTs) and JWT unsecured tokens

 o Clarify tag usage when nesting tokens

 o Add section on key inclusion

 o Add hardware version claims

 o Collected CDDL is now filled in. Other CDDL corrections.

 o Rename debug-disable to debug-status; clarify that it is not
 extensible

 o Security level claim is not extensible

 o Improve specification of location claim and added a location
 privacy section

 o Add intended use claim

Lundblade, et al. Expires November 21, 2022 [Page 101]

Internet-Draft EAT May 2022

E.7. From draft-ietf-rats-eat-05

 o CDDL format issues resolved

 o Corrected reference to Location Privacy section

E.8. From draft-ietf-rats-eat-06

 o Added boot-seed claim

 o Rework CBOR interoperability section

 o Added profiles claim and section

E.9. From draft-ietf-rats-eat-07

 o Filled in IANA and other sections for possible preassignment of
 Claim Keys for well understood claims

E.10. From draft-ietf-rats-eat-08

 o Change profile claim to be either a URL or an OID rather than a
 test string

E.11. From draft-ietf-rats-eat-09

 o Add SUEIDs

 o Add appendix comparing IDevID to EAT

 o Added section on use for Evidence and Attestation Results

 o Fill in the key ID and endorsements identificaiton section

 o Remove origination claim as it is replaced by key IDs and
 endorsements

 o Added manifests and software evidence claims

 o Add string labels non-claim labels for use with JSON (e.g. labels
 for members of location claim)

 o EAN-13 HW versions are no longer a separate claim. Now they are
 folded in as a CoSWID version scheme.

Lundblade, et al. Expires November 21, 2022 [Page 102]

Internet-Draft EAT May 2022

E.12. From draft-ietf-rats-eat-10

 o Hardware version is made into an array of two rather than two
 claims

 o Corrections and wording improvements for security levels claim

 o Add swresults claim

 o Add dloas claim - Digitial Letter of Approvals, a list of
 certifications

 o CDDL for each claim no longer in a separate sub section

 o Consistent use of terminology from RATS architecture document

 o Consistent use of terminology from CWT and JWT documents

 o Remove operating model and procedures; refer to CWT, JWT and RATS
 architecture instead

 o Some reorganization of Section 1

 o Moved a few references, including RATS Architecture, to
 informative.

 o Add detached submodule digests and detached eat bundles (DEBs)

 o New simpler and more universal scheme for identifying the encoding
 of a nested token

 o Made clear that CBOR and JSON are only mixed when nesting a token
 in another token

 o Clearly separate CDDL for JSON and CBOR-specific data items

 o Define UJCS (unsigned JWTs)

 o Add CDDL for a general Claims-Set used by UCCS, UJCS, CWT, JWT and
 EAT

 o Top level CDDL for CWT correctly refers to COSE

 o OEM ID is specifically for HW, not for SW

 o HW OEM ID can now be a PEN

 o HW OEM ID can now be a 128-bit random number

Lundblade, et al. Expires November 21, 2022 [Page 103]

Internet-Draft EAT May 2022

 o Expand the examples section

 o Add software and version claims as easy / JSON alternative to
 CoSWID

E.13. From draft-ietf-rats-eat-11

 o Add HW model claim

 o Change reference for CBOR OID draft to RFC 9090

 o Correct the iat claim in some examples

 o Make HW Version just one claim rather than 3 (device, board and
 chip)

 o Remove CDDL comments from CDDL blocks

 o More clearly define "entity" and use it more broadly, particularly
 instead of "device"

 o Re do early allocation of CBOR labels since last one didn’t
 complete correctly

 o Lots of rewording and tightening up of section 1

 o Lots of wording improvements in section 3, particularly better use
 of normative language

 o Improve wording in submodules section, particularly how to
 distinguish types when decoding

 o Remove security-level from early allocation

 o Add boot odometer claim

 o Add privacy considerations for replay protection

E.14. From draft-ietf-rats-eat-12

 o Make use of the JC<> generic to express CDDL for both JSON and
 CBOR

 o Reorganize claims into 4 sections, particularly claims about the
 entity and about the token

 o Nonce wording - say nonce is required and other improvements

Lundblade, et al. Expires November 21, 2022 [Page 104]

Internet-Draft EAT May 2022

 o Clarify relationship of claims in evidence to results when
 forwarding

 o Clarify manufacturer switching UEID types

 o Add new section on the top-level token type that has CBOR-specific
 and JSON-specific CDDL since the top-level can’t be handled with
 JC<>

 o Remove definition of UCCS and UJCS, replacing it with a CDDL
 socket and mention of future token types

 o Split the examples into payload and top level tokens since UCCS
 can’t be used for examples any more (It was nice because you could
 see the payload claims in it easily, where you can’t with CWT)

 o DEB tag number is TBD rather than hard coded

 o Add appendix with non-normative CDDL for a Claims-Set, CWT and JWT

 o (Large reorganization of the document build and example
 verification makefile)

 o Use CoAP content format ID to distinguish manifest and evidence
 formats instead of CBOR tag

 o Added more examples, both CBOR and JSON

 o All CDDL is validating against all examples

 o Unassigned IANA requests are clearly TBD in the document (and have
 real values as is necessary in the example validation process)

 o Improve security-level claim

 o swresults claim is now measurement results claim

 o substantial redesign of measurement results claim

Authors’ Addresses

 Laurence Lundblade
 Security Theory LLC

 EMail: lgl@securitytheory.com

Lundblade, et al. Expires November 21, 2022 [Page 105]

Internet-Draft EAT May 2022

 Giridhar Mandyam
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 7200
 EMail: mandyam@qti.qualcomm.com

 Jeremy O’Donoghue
 Qualcomm Technologies Inc.
 279 Farnborough Road
 Farnborough GU14 7LS
 United Kingdom

 Phone: +44 1252 363189
 EMail: jodonogh@qti.qualcomm.com

Lundblade, et al. Expires November 21, 2022 [Page 106]

