
The Entity Attestation Token (EAT)

Abstract

An Entity Attestation Token (EAT) provides an attested claims set that describes state and

characteristics of an entity, a device like a smartphone, IoT device, network equipment or such.

This claims set is used by a relying party, server or service to determine how much it wishes to

trust the entity.

An EAT is either a CBOR Web Token (CWT) or JSON Web Token (JWT) with attestation-oriented

claims.

Workgroup:

Internet-Draft:

Published:

Intended Status:

Expires:

Authors:

RATS

draft-ietf-rats-eat-19

19 December 2022

Standards Track

22 June 2023

L. Lundblade

Security Theory LLC

G. Mandyam

Qualcomm Technologies Inc.

J. O'Donoghue

Qualcomm Technologies Inc.

C. Wallace

Red Hound Software, Inc.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that

other groups may also distribute working documents as Internet-Drafts. The list of current

Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,

replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts

as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 June 2023.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Lundblade, et al. Expires 22 June 2023 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Entity Overview

1.2. EAT as a Framework

1.3. Operating Model and RATS Architecture

1.3.1. Relationship between Evidence and Attestation Results

2. Terminology

3. Top-Level Token Definition

4. The Claims

4.1. eat_nonce (EAT Nonce) Claim

4.2. Claims Describing the Entity

4.2.1. ueid (Universal Entity ID) Claim

4.2.2. sueids (Semi-permanent UEIDs) Claim (SUEIDs)

4.2.3. oemid (Hardware OEM Identification) Claim

4.2.3.1. Random Number Based OEMID

4.2.3.2. IEEE Based OEMID

4.2.3.3. IANA Private Enterprise Number Based OEMID

4.2.4. hwmodel (Hardware Model) Claim

4.2.5. hwversion (Hardware Version) Claim

4.2.6. swname (Software Name) Claim

4.2.7. swversion (Software Version) Claim

4.2.8. oemboot (OEM Authorized Boot) Claim

4.2.9. dbgstat (Debug Status) Claim

4.2.9.1. Enabled

4.2.9.2. Disabled

4.2.9.3. Disabled Since Boot

4.2.9.4. Disabled Permanently

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 2

4.2.9.5. Disabled Fully and Permanently

4.2.10. location (Location) Claim

4.2.11. uptime (Uptime) Claim

4.2.12. bootcount (Boot Count) Claim

4.2.13. bootseed (Boot Seed) Claim

4.2.14. dloas (Digital Letters of Approval) Claim

4.2.15. manifests (Software Manifests) Claim

4.2.16. measurements (Measurements) Claim

4.2.17. measres (Software Measurement Results) Claim

4.2.18. submods (Submodules)

4.2.18.1. Submodule Claims-Set

4.2.18.2. Detached Submodule Digest

4.2.18.3. Nested Tokens

4.3. Claims Describing the Token

4.3.1. iat (Timestamp) Claim

4.3.2. eat_profile (EAT Profile) Claim

4.3.3. intuse (Intended Use) Claim

5. Detached EAT Bundles

6. Profiles

6.1. Format of a Profile Document

6.2. List of Profile Issues

6.2.1. Use of JSON, CBOR or both

6.2.2. CBOR Map and Array Encoding

6.2.3. CBOR String Encoding

6.2.4. CBOR Preferred Serialization

6.2.5. CBOR Tags

6.2.6. COSE/JOSE Protection

6.2.7. COSE/JOSE Algorithms

6.2.8. Detached EAT Bundle Support

6.2.9. Key Identification

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 3

6.2.10. Endorsement Identification

6.2.11. Freshness

6.2.12. Claims Requirements

6.3. The Constrained Device Standard Profile

7. Encoding and Collected CDDL

7.1. Claims-Set and CDDL for CWT and JWT

7.2. Encoding Data Types

7.2.1. Common Data Types

7.2.2. JSON Interoperability

7.2.3. Labels

7.2.4. CBOR Interoperability

7.3. Collected CDDL

7.3.1. Payload CDDL

7.3.2. CBOR-Specific CDDL

7.3.3. JSON-Specific CDDL

8. Privacy Considerations

8.1. UEID and SUEID Privacy Considerations

8.2. Location Privacy Considerations

8.3. Boot Seed Privacy Considerations

8.4. Replay Protection and Privacy

9. Security Considerations

9.1. Claim Trustworthiness

9.2. Key Provisioning

9.2.1. Transmission of Key Material

9.3. Freshness

9.4. Multiple EAT Consumers

9.5. Detached EAT Bundle Digest Security Considerations

10. IANA Considerations

10.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims Registries

10.2. CWT and JWT Claims Registered by This Document

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 4

10.3. UEID URN Registered by this Document

10.4. CBOR Tag for Detached EAT Bundle Registered by this Document

10.5. Media Types Registered by this Document

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Examples

A.1. Payload Examples

A.1.1. Simple TEE Attestation

A.1.2. Submodules for Board and Device

A.1.3. EAT Produced by Attestation Hardware Block

A.1.4. Key / Key Store Attestation

A.1.5. Software Measurements of an IoT Device

A.1.6. Attestation Results in JSON format

A.1.7. JSON-encoded Token with Sumodules

A.2. Full Token Examples

A.2.1. Basic CWT Example

A.2.2. Detached EAT Bundle

A.2.3. JSON-encoded Detached EAT Bundle

Appendix B. UEID Design Rationale

B.1. Collision Probability

B.2. No Use of UUID

Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity (DevID)

C.1. DevID Used With EAT

C.2. How EAT Provides an Equivalent Secure Device Identity

C.3. An X.509 Format EAT

C.4. Device Identifier Permanence

Appendix D. CDDL for CWT and JWT

Appendix E. Claim Characteristics

E.1. Interoperability and Relying Party Orientation

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 5

E.2. Operating System and Technology Neutral

E.3. Security Level Neutral

E.4. Reuse of Extant Data Formats

E.5. Proprietary Claims

Appendix F. Endorsements and Verification Keys

F.1. Identification Methods

F.1.1. COSE/JWS Key ID

F.1.2. JWS and COSE X.509 Header Parameters

F.1.3. CBOR Certificate COSE Header Parameters

F.1.4. Claim-Based Key Identification

F.2. Other Considerations

Appendix G. Changes from Previous Drafts

G.1. From draft-ietf-rats-eat-18

Contributors

Authors' Addresses

1. Introduction

An Entity Attestation Token (EAT) is a message or token made up of claims about an entity. An

entity may be a device, some hardware or some software. The claims are ultimately used by a

relying party who decides if and how it will interact with the entity. The relying party may

choose to trust, not trust or partially trust the entity. For example, partial trust may be allowing a

monetary transaction only up to a limit.

The security model and goal for attestation are unique and are not the same as for other security

standards like those for server authentication, user authentication and secured messaging. The

reader is assumed to be familiar with the goals and security model for attestation as described in

.

This document defines some common claims that are potentially of broad use. EAT additionally

allows proprietary claims and for further claims to be standardized. Here are some examples:

Make and model of manufactured consumer device

Make and model of a chip or processor, particularly for a security-oriented chip

Identification and measurement of the software running on a device

[RATS.Architecture]

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 6

Configuration and state of a device

Environmental characteristics of a device like its GPS location

Formal certifications received

EAT is constructed to support a wide range of use cases.

No single set of claims can accommodate all use cases so EAT is constructed as a framework for

defining specific attestation tokens for specific use cases. In particular, EAT provides a profile

mechanism to be able to clearly specify the claims needed, the cryptographic algorithms that

should be used and other for a particular token and use case.

The entity side of an EAT implementation generates the claims and typically signs them with an

attestation key. It is responsible for protecting the attestation key. Some EAT implementations

will use components with very high resistance to attack like TPMs or secure elements. Other may

rely solely on simple SW defenses.

Nesting of tokens and claims sets is accommodated for composite devices that have multiple

subsystems.

An EAT may be encoded in either JSON or CBOR as needed for each use

case. EAT is built on CBOR Web Token (CWT) and JSON Web Token (JWT)

and inherits all their characteristics and their security mechanisms.

•

•

•

[RFC8259] [RFC8949]

[RFC8392] [RFC7519]

1.1. Entity Overview

The document uses the term "entity" to refer to the target of an EAT. Many of the claims defined

in this document are claims about an entity, which is equivalent to an attesting environment as

defined in . An entity may be the whole device, a subsystem, a subsystem of a

subsystem, etc. Correspondingly, the EAT format allows claims to be organized using

mechanisms like submodules and nested EATs (see Section 4.2.18). The entity to which a claim

applies is the submodule in which it appears, or to the top-level entity if it doesn't appear in a

submodule.

An entity also corresponds to a "system component", as defined in the Internet Security Glossary

. That glossary also defines "entity" and "system entity" as something that may be a

person or organization as well as a system component. In the EAT context, "entity" never refers

to a person or organization. The hardware and software that implement a server or service used

by a web site may be an entity, but the organization that runs the web site is not an entity nor is

the web site itself. An entity is an implementation in hardware, software or both.

Some examples of entities:

A Secure Element

A TEE

A network card in a router

A router, perhaps with each network card in the router a submodule

An IoT device

[RATS.Architecture]

[RFC4949]

•

•

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 7

An individual process

An app on a smartphone

A smartphone with many submodules for its many subsystems

A subsystem in a smartphone like the modem or the camera

An entity may have strong security defenses against hardware invasive attacks. It may also have

low security, having no special security defenses. There is no minimum security requirement to

be an entity.

•

•

•

•

1.2. EAT as a Framework

EAT is a framework for defining attestation tokens for specific use cases, not a specific token

definition. While EAT is based on and compatible with CWT and JWT, it can also be described as:

An identification and type system for claims in claims-sets

Definitions of common attestation-oriented claims

Claims are defined in CDDL and serialized using CBOR or JSON

Security envelopes based on COSE and JOSE

Nesting of claims sets and tokens to represent complex and compound devices

A profile mechanism for specifying and identifying specific token formats for specific use

cases

EAT uses the name/value pairs the same as CWT and JWT to identify individual claims. Section 4

defines common attestation-oriented claims that are added to the CWT and JWT IANA registries.

As with CWT and JWT, no claims are mandatory and claims not recognized should be ignored.

Unlike, but compatible with CWT and JWT, EAT defines claims using Concise Data Definition

Language (CDDL) . In most cases the same CDDL definition is used for both the CBOR/

CWT serialization and the JSON/JWT serialization.

Like CWT and JWT, EAT uses COSE and JOSE to provide authenticity, integrity and optionally

confidentiality. EAT places no new restrictions on cryptographic algorithms, retaining all the

cryptographic flexibility of CWT, COSE, JWT and JOSE.

EAT defines a means for nesting tokens and claims sets to accommodate composite devices that

have multiple subsystems and multiple attesters. Full tokens with security envelopes may be

embedded in an enclosing token. The nested token and the enclosing token do not have to use the

same encoding (e.g., a CWT may be enclosed in a JWT).

EAT adds the ability to detach claims sets and send them separately from a security enveloped

EAT that contains a digest of the detached claims set.

This document registers no media or content types for the identification of the type of EAT, its

serialization format or security envelope. The definition and registration of EAT media types is

addressed in .

•

•

•

•

•

•

[RFC8610]

[EAT.media-types]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 8

Finally, the notion of an EAT profile is introduced that facilitates the creation of narrowed

definitions of EAT tokens for specific use cases in follow-on documents.

1.3. Operating Model and RATS Architecture

The EAT format follows the operational model described in Figure 1 in . To

summarize, an attester generates evidence in the form of a claims set describing various

characteristics of an entity. Evidence is usually signed by a key that proves the attester and the

evidence it produces are authentic. The claims set includes a nonce or some other means to

assure freshness.

A verifier confirms an EAT is valid by verifying the signature and may vet some claims using

reference values. The verifier then produces attestation results, which may also be represented

as an EAT. The attestation results are provided to the relying party, which is the ultimate

consumer of the Remote Attestation Procedure. The relying party uses the attestation results as

needed for its use case, perhaps allowing an entity to access a network, allowing a financial

transaction or such. In some cases, the verifier and relying party are not distinct entities.

[RATS.Architecture]

1.3.1. Relationship between Evidence and Attestation Results

Any claim defined in this document or in the IANA CWT or JWT registry may be used in evidence

or attestation results. The relationship of claims in attestation results to evidence is

fundamentally governed by the verifier and the verifier's policy.

A common use case is for the verifier and its policy to perform checks, calculations and

processing with evidence as the input to produce a summary result in attestation results that

indicates the overall health and status of the entity. For example, measurements in evidence may

be compared to reference values the results of which are represented as a simple pass/fail in

attestation results.

It is also possible that some claims in the Evidence will be forwarded unmodified to the relying

party in attestation results. This forwarding is subject to the verifier's implementation and policy.

The relying party should be aware of the verifier's policy to know what checks it has performed

on claims it forwards.

The verifier may modify claims it forwards, for example, to implement a privacy preservation

functionality. It is also possible the verifier will put claims in the attestation results that give

details about the entity that it has computed or looked up in a database. For example, the verifier

may be able to put an "oemid" claim in the attestation results by performing a look up based on a

UEID (serial number) it received in evidence.

This specification does not establish any normative rules for the verifier to follow, as these are a

matter of local policy. It is up to each relying party to understand the processing rules of each

verifier to know how to interpret claims in attestation results.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 9

Claim:

Claim Name:

Claim Key:

Claim Value:

Claims Set:

Attester:

Verifier:

Relying Party:

Evidence:

Attestation Results:

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

In this document, the structure of data is specified in CDDL .

The examples in Appendix A use CBOR diagnostic notation defined in and

.

This document reuses terminology from JWT and CWT :

A piece of information asserted about a subject. A claim is represented as pair with a

value and either a name or key to identify it.

A unique text string that identifies the claim. It is used as the claim name for JSON

encoding.

The CBOR map key used to identify a claim. (The term "Claim Key" comes from CWT.

This document, like COSE, uses the term "label" to refer to CBOR map keys to avoid confusion

with cryptographic keys.)

The value portion of the claim. A claim value can be any CBOR data item or JSON

value.

The CBOR map or JSON object that contains the claims conveyed by the CWT or JWT.

This document reuses terminology from RATS Architecure :

A role performed by an entity (typically a device) whose evidence must be appraised

in order to infer the extent to which the attester is considered trustworthy, such as when

deciding whether it is authorized to perform some operation.

A role that appraises the validity of evidence about an attester and produces

attestation results to be used by a relying party.

A role that depends on the validity of information about an attester, for purposes

of reliably applying application specific actions. Compare /relying party/ in .

A set of claims generated by an attester to be appraised by a verifier. Evidence may

include configuration data, measurements, telemetry, or inferences.

The output generated by a verifier, typically including information about an

attester, where the verifier vouches for the validity of the results

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8610] [RFC9165]

Section 8 of [RFC8949]

Appendix G of [RFC8610]

[RFC7519] [RFC8392]

[RATS.Architecture]

[RFC4949]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 10

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

Reference Values:

Endorsement:

Socket Group:

A set of values against which values of claims can be compared as part of

applying an appraisal policy for evidence. Reference Values are sometimes referred to in

other documents as known-good values, golden measurements, or nominal values, although

those terms typically assume comparison for equality, whereas here reference values might

be more general and be used in any sort of comparison.

A secure statement that an Endorser vouches for the integrity of an attester's

various capabilities such as claims collection and evidence signing.

refers to the mechanism by which a CDDL definition is extended, as described in

 and [RFC8610] [RFC9165]

3. Top-Level Token Definition

An EAT is a "message", a "token", or such whose content is a Claims-Set about an entity or some

number of entities. An EAT always contains a Claims-Set.

Authenticity and integrity protection be provided for EATs. This document relies on CWT

or JWT for this purpose. Extensions to this specification use other methods of protection.

The identification of a protocol element as an EAT follows the general conventions used for CWTs

and JWTs. Identification depends on the protocol carrying the EAT. In some cases it may be by

media type (e.g., in a HTTP Content-Type field). In other cases it may be through use of CBOR tags.

There is no fixed mechanism across all use cases.

This document also defines a new top-level message, the detached EAT bundle (see Section 5),

which holds a collection of detached claims sets and an EAT that provides integrity and

authenticity protection for them. Detached EAT bundles can be either CBOR or JSON encoded.

The following CDDL defines the top-level $EAT-CBOR-Tagged-Token, $EAT-CBOR-Untagged-

Token and $EAT-JSON-Token-Formats sockets (see), enabling future

token formats to be defined. Any new format that plugs into one or more of these sockets

be defined by an IETF standards action. Of particular use may be a token type that provides no

direct authenticity or integrity protection for use with transports mechanisms that do provide

the necessary security services .

Nesting of EATs is allowed and defined in Section 4.2.18.3. This includes the nesting of an EAT

that is a different format than the enclosing EAT. The definition of Nested-Token references the

CDDL defined in this section. When new token formats are defined, the means for identification

in a nested token also be defined.

MUST

MUST

MAY

Section 3.9 of [RFC8610]

MUST

[UCCS]

MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 11

https://rfc-editor.org/rfc/rfc8610#section-3.9

EAT-CBOR-Token = $EAT-CBOR-Tagged-Token / $EAT-CBOR-Untagged-Token

$EAT-CBOR-Tagged-Token /= CWT-Tagged-Message

$EAT-CBOR-Tagged-Token /= BUNDLE-Tagged-Message

$EAT-CBOR-Untagged-Token /= CWT-Untagged-Message

$EAT-CBOR-Untagged-Token /= BUNDLE-Untagged-Message

EAT-JSON-Token = $EAT-JSON-Token-Formats

$EAT-JSON-Token-Formats /= JWT-Message

$EAT-JSON-Token-Formats /= BUNDLE-Untagged-Message

4. The Claims

This section describes new claims defined for attestation that are to be added to the CWT

 and JWT IANA registries.

All definitions, requirements, creation and validation procedures, security considerations, IANA

registrations and so on from CWT and JWT carry over to EAT.

This section also describes how several extant CWT and JWT claims apply in EAT.

The set of claims that an EAT must contain to be considered valid is context dependent and is

outside the scope of this specification. Specific applications of EATs will require implementations

to understand and process some claims in particular ways. However, in the absence of such

requirements, all claims that are not understood by implementations be ignored.

CDDL, along with a text description, is used to define each claim independent of encoding. Each

claim is defined as a CDDL group. In Section 7 on encoding, the CDDL groups turn into CBOR map

entries and JSON name/value pairs.

Each claim defined in this document is added to the $$Claims-Set-Claims socket group. Claims

defined by other specifications also be added to the $$Claims-Set-Claims socket group.

All claims in an EAT use the same encoding except where otherwise explicitly stated (e.g.,

in a CBOR-encoded token, all claims must be CBOR-encoded).

This specification includes a CDDL definition of most of what is defined in . Similarly,

this specification includes CDDL for most of what is defined in . These definitions are

in Appendix D and are not normative.

Each claim described has a unique text string and integer that identifies it. CBOR-encoded tokens

 use only the integer for claim keys. JSON-encoded tokens use only the text string for

claim names.

[IANA.CWT.Claims] [IANA.JWT.Claims]

MUST

MUST

MUST

[RFC8392]

[RFC7519]

MUST MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 12

4.1. eat_nonce (EAT Nonce) Claim

An EAT nonce is either a byte or text string or an array of byte or text strings. The array option

supports multistage EAT verification and consumption.

A claim named "nonce" was defined and registered with IANA for JWT, but be used

because it does not support multiple nonces. No previous "nonce" claim was defined for CWT. To

distinguish from the previously defined JWT "nonce" claim, this claim is named "eat_nonce" in

JSON-encoded EATs. The CWT nonce defined here is intended for general purpose use and

retains the "Nonce" claim name instead of an EAT-specific name.

An EAT nonce have at least 64 bits of entropy. A maximum EAT nonce size is set to limit the

memory required for an implementation. All receivers be able to accommodate the

maximum size.

In CBOR, an EAT nonce is a byte string. The minimum size is 8 bytes. The maximum size is 64

bytes.

In JSON, an EAT nonce is a text string. It is assumed that only characters represented by the

lower 7 bits of each byte will be used, so the text string must be one-seventh longer because the

8th bit doesn't contribute to entropy. The minimum size for JSON-encoded EATs is 10 bytes and

the maximum size is 74 bytes.

MUST NOT

MUST

MUST

$$Claims-Set-Claims //=

 (nonce-label => nonce-type / [2* nonce-type])

nonce-type = JC< tstr .size (10..74), bstr .size (8..64)>

4.2. Claims Describing the Entity

The claims in this section describe the entity itself. They describe the entity whether they occur

in evidence or occur in attestation results. See Section 1.3.1 for discussion on how attestation

results relate to evidence.

4.2.1. ueid (Universal Entity ID) Claim

The "ueid" claim conveys a UEID, which identifies an individual manufactured entity like a

mobile phone, a water meter, a Bluetooth speaker or a networked security camera. It may

identify the entire entity or a submodule. It does not identify types, models or classes of entities.

It is akin to a serial number, though it does not have to be sequential.

UEIDs be universally and globally unique across manufacturers and countries. UEIDs

also be unique across protocols and systems, as tokens are intended to be embedded in many

different protocols and systems. No two products anywhere, even in completely different

MUST MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 13

industries made by two different manufacturers in two different countries should have the same

UEID (if they are not global and universal in this way, then relying parties receiving them will

have to track other characteristics of the entity to keep entities distinct between manufacturers).

There are privacy considerations for UEIDs. See Section 8.1.

The UEID is permanent. It never change for a given entity.

A UEID is constructed of a single type byte followed by the bytes that are the identifier. Several

types are allowed to accommodate different industries, different manufacturing processes and to

have an alternative that doesn't require paying a registration fee.

Creation of new types requires a Standards Action .

UEIDS are variable length to accommodate the types defined here and new types that may be

defined in the future.

All implementations be able to receive UEIDs up to 33 bytes long. 33 bytes is the longest

defined in this document and gives necessary entropy for probabilistic uniqueness. See Appendix

B.

UEIDs be longer than 33 bytes. If they are longer, there is no guarantee that a

receiver will be able to accept them.

MUST

[RFC8126]

MUST

SHOULD NOT

Type

Byte

Type

Name

Specification

0x01 RAND This is a 128, 192 or 256-bit random number generated once and stored in

the entity. This may be constructed by concatenating enough identifiers to

make up an equivalent number of random bits and then feeding the

concatenation through a cryptographic hash function. It may also be a

cryptographic quality random number generated once at the beginning of

the life of the entity and stored. It be smaller than 128 bits. See

the length analysis in Appendix B.

0x02 IEEE

EUI

This uses the IEEE company identification registry. An EUI is either an

EUI-48, EUI-60 or EUI-64 and made up of an OUI, OUI-36 or a CID, different

registered company identifiers, and some unique per-entity identifier. EUIs

are often the same as or similar to MAC addresses. This type includes

MAC-48, an obsolete name for EUI-48. (Note that while entities with

multiple network interfaces may have multiple MAC addresses, there is

only one UEID for an entity) , .

MUST NOT

[IEEE.802-2001] [OUI.Guide]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 14

UEIDs are not designed for direct use by humans (e.g., printing on the case of a device), so no

textual representation is defined.

The consumer of a UEID treat a UEID as a completely opaque string of bytes and

make any use of its internal structure. For example, they should not use the OUI part of a type

0x02 UEID to identify the manufacturer of the entity. Instead, they should use the "oemid" claim.

See Section 4.2.3. The reasons for this are:

UEIDs types may vary freely from one manufacturer to the next.

New types of UEIDs may be created. For example, a type 0x07 UEID may be created based on

some other manufacturer registration scheme.

The manufacturing process for an entity is allowed to change from using one type of UEID to

another. For example, a manufacturer may find they can optimize their process by switching

from type 0x01 to type 0x02 or vice versa.

The type byte is needed to distinguish UEIDs of different types that by chance have the same

identifier value, but do not identify the same entity. The type byte be treated as part of the

opaque UEID and be used to make use of the internal structure of the UEID.

A Device Identifier URN is registered for UEIDs. See Section 10.3.

Type

Byte

Type

Name

Specification

0x03 IMEI This is a 14-digit identifier consisting of an 8-digit Type Allocation Code

and a 6-digit serial number allocated by the manufacturer, which

be encoded as byte string of length 14 with each byte as the digit's value

(not the ASCII encoding of the digit; the digit 3 encodes as 0x03, not 0x33).

The IMEI value encoded include Luhn checksum or SVN

information. See .

Table 1: UEID Composition Types

SHALL

SHALL NOT

[ThreeGPP.IMEI]

MUST MUST NOT

•

•

•

MUST

MUST NOT

$$Claims-Set-Claims //= (ueid-label => ueid-type)

ueid-type = JC<base64-url-text .size (12..44) , bstr .size (7..33)>

4.2.2. sueids (Semi-permanent UEIDs) Claim (SUEIDs)

The "sueids" claim conveys one or more semi-permanent UEIDs (SUEIDs). An SUEID has the same

format, characteristics and requirements as a UEID, but change to a different value on entity

life-cycle events. An entity have both a UEID and SUEIDs, neither, one or the other.

Examples of life-cycle events are change of ownership, factory reset and on-boarding into an IoT

device management system. It is beyond the scope of this document to specify particular types of

SUEIDs and the life-cycle events that trigger their change. An EAT profile provide this

specification.

MAY

MAY

MAY

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 15

There be multiple SUEIDs. Each has a text string label the purpose of which is to distinguish

it from others. The label name the purpose, application or type of the SUEID. For example,

the label for the SUEID used by XYZ Onboarding Protocol could thus be "XYZ". It is beyond the

scope of this document to specify any SUEID labeling schemes. They are use case specific and

 be specified in an EAT profile.

If there is only one SUEID, the claim remains a map and there still be a label.

An SUEID provides functionality similar to an IEEE LDevID .

There are privacy considerations for SUEIDs. See Section 8.1.

A Device Indentifier URN is registered for SUEIDs. See Section 10.3.

MAY

MAY

MAY

MUST

[IEEE.802.1AR]

$$Claims-Set-Claims //= (sueids-label => sueids-type)

sueids-type = {

 + tstr => ueid-type

}

4.2.3. oemid (Hardware OEM Identification) Claim

The "oemid" claim identifies the Original Equipment Manufacturer (OEM) of the hardware. Any

of the three forms described below be used at the convenience of the claim sender. The

receiver of this claim be able to handle all three forms.

MAY

MUST

4.2.3.1. Random Number Based OEMID

The random number based OEMID always be 16 bytes (128 bits) long.

The OEM create their own ID by using a cryptographic-quality random number generator.

They would perform this only once in the life of the company to generate the single ID for said

company. They would use that same ID in every entity they make. This uniquely identifies the

OEM on a statistical basis and is large enough should there be ten billion companies.

The OEM also use a hash function like SHA-256 and truncate the output to 128 bits. The

input to the hash should be somethings that have at least 96 bits of entropy, but preferably 128

bits of entropy. The input to the hash be something whose uniqueness is managed by a

central registry like a domain name.

In JSON format tokens this be base64url encoded.

MUST

MAY

MAY

MAY

MUST

4.2.3.2. IEEE Based OEMID

The IEEE operates a global registry for MAC addresses and company IDs. This claim uses that

database to identify OEMs. The contents of the claim may be either an IEEE MA-L, MA-M, MA-S or

an IEEE CID . An MA-L, formerly known as an OUI, is a 24-bit value used as the first half

of a MAC address. MA-M similarly is a 28-bit value uses as the first part of a MAC address, and

MA-S, formerly known as OUI-36, a 36-bit value. Many companies already have purchased one of

[IEEE-RA]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 16

these. A CID is also a 24-bit value from the same space as an MA-L, but not for use as a MAC

address. IEEE has published Guidelines for Use of EUI, OUI, and CID and provides a

lookup service .

Companies that have more than one of these IDs or MAC address blocks select one and

prefer that for all their entities.

Commonly, these are expressed in Hexadecimal Representation as described in .

It is also called the Canonical format. When this claim is encoded the order of bytes in the bstr

are the same as the order in the Hexadecimal Representation. For example, an MA-L like "AC-

DE-48" would be encoded in 3 bytes with values 0xAC, 0xDE, 0x48.

This format is always 3 bytes in size in CBOR.

In JSON format tokens, this be base64url encoded and always 4 bytes.

[OUI.Guide]

[OUI.Lookup]

SHOULD

[IEEE.802-2001]

MUST

4.2.3.3. IANA Private Enterprise Number Based OEMID

IANA maintains a registry for Private Enterprise Numbers (PEN) . A PEN is an integer that

identifies an enterprise and may be used to construct an object identifier (OID) relative to the

following OID arc that is managed by IANA: iso(1) identified-organization(3) dod(6) internet(1)

private(4) enterprise(1).

For EAT purposes, only the integer value assigned by IANA as the PEN is relevant, not the full OID

value.

In CBOR this value be encoded as a major type 0 integer and is typically 3 bytes. In JSON,

this value be encoded as a number.

[PEN]

MUST

MUST

$$Claims-Set-Claims //= (

 oemid-label => oemid-pen / oemid-ieee / oemid-random

)

oemid-pen = int

oemid-ieee = JC<oemid-ieee-json, oemid-ieee-cbor>

oemid-ieee-cbor = bstr .size 3

oemid-ieee-json = base64-url-text .size 4

oemid-random = JC<oemid-random-json, oemid-random-cbor>

oemid-random-cbor = bstr .size 16

oemid-random-json = base64-url-text .size 24

4.2.4. hwmodel (Hardware Model) Claim

The "hwmodel" claim differentiates hardware models, products and variants manufactured by a

particular OEM, the one identified by OEM ID in Section 4.2.3. It be unique within a given

OEM ID. The concatenation of the OEM ID and "hwmodel" give a global identifier of a particular

product.

MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 17

The granularity of the model identification is for each OEM to decide. It may be very granular,

perhaps including some version information. It may be very general, perhaps only indicating

top-level products.

The "hwmodel" claim is for use in protocols and not for human consumption. The format and

encoding of this claim should not be human-readable to discourage use other than in protocols. If

this claim is to be derived from an already-in-use human-readable identifier, it can be run

through a hash function.

There is no minimum length so that an OEM with a very small number of models can use a one-

byte encoding. The maximum length is 32 bytes. All receivers of this claim be able to

receive this maximum size.

The receiver of this claim treat it as a completely opaque string of bytes, even if there is

some apparent naming or structure. The OEM is free to alter the internal structure of these bytes

as long as the claim continues to uniquely identify its models.

MUST

MUST

$$Claims-Set-Claims //= (

 hardware-model-label => hardware-model-type

)

hardware-model-type = JC<base64-url-text .size (4..44),

 bytes .size (1..32)>

4.2.5. hwversion (Hardware Version) Claim

The "hwversion" claim is a text string the format of which is set by each manufacturer. The

structure and sorting order of this text string can be specified using the version-scheme item

from CoSWID . It is useful to know how to sort versions so the newer can be

distinguished from the older.

[CoSWID]

$$Claims-Set-Claims //= (

 hardware-version-label => hardware-version-type

)

hardware-version-type = [

 version: tstr,

 ? scheme: $version-scheme

]

4.2.6. swname (Software Name) Claim

The "swname" claim contains a very simple free-form text value for naming the software used by

the entity. Intentionally, no general rules or structure are set. This will make it unsuitable for use

cases that wish precise naming.

If precise and rigourous naming of the software for the entity is needed, the "manifests" claim

Section 4.2.15 may be used instead.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 18

$$Claims-Set-Claims //= (sw-name-label => tstr)

4.2.7. swversion (Software Version) Claim

The "swversion" claim makes use of the CoSWID version scheme data type to give a simple

version for the software. A full CoSWID manifest or other type of manifest can be instead if this is

too simple.

$$Claims-Set-Claims //= (sw-version-label => sw-version-type)

sw-version-type = [

 version: tstr

 ? scheme: $version-scheme

]

4.2.8. oemboot (OEM Authorized Boot) Claim

An "oemboot" claim with value of true indicates the entity booted with software authorized by

the manufacturer of the entity as indicated by the "oemid" claim described in Section 4.2.3. It

indicates the firmware and operating system are fully under control of the OEM and may not be

replaced by the end user or even the enterprise that owns the device. The means of control may

be by cryptographic authentication of the software, by the software being in ROM, a combination

of the two or other. If this claim is present the "oemid" claim always also be present.SHOULD

$$Claims-Set-Claims //= (oem-boot-label => bool)

4.2.9. dbgstat (Debug Status) Claim

The "dbgstat" claim applies to entity-wide or submodule-wide debug facilities of the entity like

 and diagnostic hardware built into chips. It applies to any software debug facilities related

to root, operating system or privileged software that allow system-wide memory inspection,

tracing or modification of non-system software like user mode applications.

This characterization assumes that debug facilities can be enabled and disabled in a dynamic

way or be disabled in some permanent way, such that no enabling is possible. An example of

dynamic enabling is one where some authentication is required to enable debugging. An

example of permanent disabling is blowing a hardware fuse in a chip. The specific type of the

mechanism is not taken into account. For example, it does not matter if authentication is by a

global password or by per-entity public keys.

As with all claims, the absence of the "dbgstat" claim means it is not reported. A conservative

interpretation might assume the enabled state.

[JTAG]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 19

This claim is not extensible so as to provide a common interoperable description of debug status.

If a particular implementation considers this claim to be inadequate, it can define its own

proprietary claim. It may consider including both this claim as a coarse indication of debug

status and its own proprietary claim as a refined indication.

The higher levels of debug disabling requires that all debug disabling of the levels below it be in

effect. Since the lowest level requires that all of the target's debug be currently disabled, all other

levels require that too.

There is no inheritance of claims from a submodule to a superior module or vice versa. There is

no assumption, requirement or guarantee that the target of a superior module encompasses the

targets of submodules. Thus, every submodule must explicitly describe its own debug state. The

receiver of an EAT assume that debug is turned off in a submodule because there is a

claim indicating it is turned off in a superior module.

An entity may have multiple debug facilities. The use of plural in the description of the states

refers to that, not to any aggregation or inheritance.

The architecture of some chips or devices may be such that a debug facility operates for the

whole chip or device. If the EAT for such a chip includes submodules, then each submodule

should independently report the status of the whole-chip or whole-device debug facility. This is

the only way the receiver can know the debug status of the submodules since there is no

inheritance.

MUST NOT

4.2.9.1. Enabled

If any debug facility, even manufacturer hardware diagnostics, is currently enabled, then this

level must be indicated.

4.2.9.2. Disabled

This level indicates all debug facilities are currently disabled. It may be possible to enable them

in the future. It may also be that they were enabled in the past, but they are currently disabled.

4.2.9.3. Disabled Since Boot

This level indicates all debug facilities are currently disabled and have been so since the entity

booted/started.

4.2.9.4. Disabled Permanently

This level indicates all non-manufacturer facilities are permanently disabled such that no end

user or developer can enable them. Only the manufacturer indicated in the "oemid" claim can

enable them. This also indicates that all debug facilities are currently disabled and have been so

since boot/start.

4.2.9.5. Disabled Fully and Permanently

This level indicates that all debug facilities for the entity are permanently disabled.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 20

$$Claims-Set-Claims //= (debug-status-label => debug-status-type)

debug-status-type = ds-enabled /

 disabled /

 disabled-since-boot /

 disabled-permanently /

 disabled-fully-and-permanently

ds-enabled = JC< "enabled", 0 >

disabled = JC< "disabled", 1 >

disabled-since-boot = JC< "disabled-since-boot", 2 >

disabled-permanently = JC< "disabled-permanently", 3 >

disabled-fully-and-permanently =

 JC< "disabled-fully-and-permanently", 4 >

4.2.10. location (Location) Claim

The "location" claim gives the location of the entity from which the attestation originates. It is

derived from the W3C Geolocation API . The latitude, longitude, altitude and

accuracy conform to . The altitude is in meters above the ellipsoid. The

two accuracy values are positive numbers in meters. The heading is in degrees relative to true

north. If the entity is stationary, the heading is NaN (floating-point not-a-number). The speed is

the horizontal component of the entity velocity in meters per second.

The location may have been cached for a period of time before token creation. For example, it

might have been minutes or hours or more since the last contact with a GPS satellite. Either the

timestamp or age data item can be used to quantify the cached period. The timestamp data item

is preferred as it a non-relative time.

The age data item can be used when the entity doesn't know what time it is either because it

doesn't have a clock or it isn't set. The entity still have a "ticker" that can measure a time

interval. The age is the interval between acquisition of the location data and token creation.

See location-related privacy considerations in Section 8.2.

[W3C.GeoLoc]

MUST [WGS84] [WGS84]

MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 21

$$Claims-Set-Claims //= (location-label => location-type)

location-type = {

 latitude => number,

 longitude => number,

 ? altitude => number,

 ? accuracy => number,

 ? altitude-accuracy => number,

 ? heading => number,

 ? speed => number,

 ? timestamp => ~time-int,

 ? age => uint

}

latitude = JC< "latitude", 1 >

longitude = JC< "longitude", 2 >

altitude = JC< "altitude", 3 >

accuracy = JC< "accuracy", 4 >

altitude-accuracy = JC< "altitude-accuracy", 5 >

heading = JC< "heading", 6 >

speed = JC< "speed", 7 >

timestamp = JC< "timestamp", 8 >

age = JC< "age", 9 >

4.2.11. uptime (Uptime) Claim

The "uptime" claim contain a value that represents the number of seconds that have

elapsed since the entity or submod was last booted.

MUST

$$Claims-Set-Claims //= (uptime-label => uint)

4.2.12. bootcount (Boot Count) Claim

The "bootcount" claim contains a count of the number times the entity or submod has been

booted. Support for this claim requires a persistent storage on the device.

$$Claims-Set-Claims //= (boot-count-label => uint)

4.2.13. bootseed (Boot Seed) Claim

The "bootseed" claim contains a value created at system boot time that allows differentiation of

attestation reports from different boot sessions of a particular entity (e.g., a certain UEID).

This value is usually public. It is not a secret and be used for any purpose that a secret

seed is needed, such as seeding a random number generator.

There are privacy considerations for this claim. See Section 8.3.

MUST NOT

$$Claims-Set-Claims //= (boot-seed-label => binary-data)

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 22

4.2.14. dloas (Digital Letters of Approval) Claim

The "dloas" claim conveys one or more Digital Letters of Approval (DLOAs)). A DLOA is a

document that describes a certification that an entity has received. Examples of certifications

represented by a DLOA include those issued by Global Platform and those based on Common

Criteria. The DLOA is unspecific to any particular certification type or those issued by any

particular organization.

This claim is typically issued by a verifier, not an attester. Verifiers issue this claim

unless the entity has received the certification indicated by the DLOA.

This claim contain more than one DLOA. If multiple DLOAs are present, verifiers

issue this claim unless the entity has received all of the certifications.

DLOA documents are always fetched from a registrar that stores them. This claim contains

several data items used to construct a URL for fetching the DLOA from the particular registrar.

This claim be encoded as an array with either two or three elements. The first element

 be the URI for the registrar. The second element be a platform label indicating which

platform was certified. If the DLOA applies to an application, then the third element is added

which be an application label. The method of constructing the registrar URI, platform label

and possibly application label is specified in .

[DLOA]

MUST NOT

MAY MUST NOT

MUST

MUST MUST

MUST

[DLOA]

$$Claims-Set-Claims //= (

 dloas-label => [+ dloa-type]

)

dloa-type = [

 dloa_registrar: general-uri

 dloa_platform_label: text

 ? dloa_application_label: text

]

4.2.15. manifests (Software Manifests) Claim

The "manifests" claim contains descriptions of software present on the entity. These manifests

are installed on the entity when the software is installed or are created as part of the installation

process. Installation is anything that adds software to the entity, possibly factory installation, the

user installing elective applications and so on. The defining characteristic is they are created by

the software manufacturer. The purpose of these claims in an EAT is to relay them without

modification to the verifier and possibly to the relying party.

Some manifests may be signed by their software manufacturer before they are put into this EAT

claim. When such manifests are put into this claim, the manufacturer's signature be

included. For example, the manifest might be a CoSWID signed by the software manufacturer, in

which case the full signed CoSWID should be put in this claim.

SHOULD

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 23

This claim allows multiple formats for the manifest. For example, the manifest may be a CBOR-

format CoSWID, an XML-format SWID or other. Identification of the type of manifest is always by

a CoAP Content-Format integer . If there is no CoAP identifier registered for the

manifest format, one should be registered, perhaps in the experimental or first-come-first-served

range.

This claim be an array of one or more manifests. Each manifest in the claim be an

array of two. The first item in the array of two be an integer CoAP Content-Format

identifier. The second item is be the actual manifest.

In JSON-format tokens the manifest, whatever format it is, be placed in a text string. When

a non-text format manifest like a CBOR-encoded CoSWID is put in a JSON-encoded token, the

manifest be base-64 encoded.

This claim allows for multiple manifests in one token since multiple software packages are likely

to be present. The multiple manifests be of different formats. In some cases EAT submodules

may be used instead of the array structure in this claim for multiple manifests.

When the format is used, it be a payload CoSWID, not an evidence CoSWID.

A may be used as a manifest.

This document registers CoAP Content Formats for CycloneDX and SPDX so

they can be used as a manifest.

This claim is extensible for use of manifest formats beyond those mentioned in this document.

No particular manifest format is preferred. For manifest interoperability, an EAT profile, Section

6, should be used that specifies what manifest format(s) are allowed.

[RFC7252]

MUST MUST

MUST

MUST

MUST

MUST

MAY

[CoSWID] MUST

[SUIT.Manifest]

[CycloneDX] [SPDX]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 24

$$Claims-Set-Claims //= (

 manifests-label => manifests-type

)

manifests-type = [+ manifest-format]

manifest-format = [

 content-type: coap-content-format,

 content-format: JC< $manifest-body-json,

 $manifest-body-cbor >

]

$manifest-body-cbor /= bytes .cbor untagged-coswid

$manifest-body-json /= base64-url-text

$manifest-body-cbor /= bytes .cbor SUIT_Envelope

$manifest-body-json /= base64-url-text

$manifest-body-cbor /= spdx-json

$manifest-body-json /= spdx-json

spdx-json = text

$manifest-body-cbor /= cyclone-dx-json

$manifest-body-cbor /= cyclone-dx-xml

$manifest-body-json /= cyclone-dx-json

$manifest-body-json /= cyclone-dx-xml

cyclone-dx-json = text

cyclone-dx-xml = text

suit-directive-process-dependency = 19

4.2.16. measurements (Measurements) Claim

The "measurements" claim contains descriptions, lists, evidence or measurements of the

software that exists on the entity or any other measurable subsystem of the entity (e.g. hash of

sections of a file system or non-volatile memory). The defining characteristic of this claim is that

its contents are created by processes on the entity that inventory, measure or otherwise

characterize the software on the entity. The contents of this claim do not originate from the

manufacturer of the measurable subsystem (e.g. developer of a software library).

This claim can be a . When the CoSWID format is used, it be an evidence CoSWID,

not a payload CoSWID.

Formats other than CoSWID be used. The identification of format is by CoAP Content

Format, the same as the "manifests" claim in Section 4.2.15.

[CoSWID] MUST

MAY

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 25

$$Claims-Set-Claims //= (

 measurements-label => measurements-type

)

measurements-type = [+ measurements-format]

measurements-format = [

 content-type: coap-content-format,

 content-format: JC< $measurements-body-json,

 $measurements-body-cbor >

]

$measurements-body-cbor /= bytes .cbor untagged-coswid

$measurements-body-json /= base64-url-text

4.2.17. measres (Software Measurement Results) Claim

The "measres" claim is a general-purpose structure for reporting comparison of measurements to

expected reference values. This claim provides a simple standard way to report the result of a

comparison as success, failure, fail to run, ...

It is the nature of measurement systems that they are specific to the operating system, software

and hardware of the entity that is being measured. It is not possible to standardize what is

measured and how it is measured across platforms, OS's, software and hardware. The recipient

must obtain the information about what was measured and what it indicates for the

characterization of the security of the entity from the provider of the measurement system. What

this claim provides is a standard way to report basic success or failure of the measurement. In

some use cases it is valuable to know if measurements succeeded or failed in a general way even

if the details of what was measured is not characterized.

This claim be generated by the verifier and sent to the relying party. For example, it could be

the results of the verifier comparing the contents of the "measurements" claim, Section 4.2.16, to

reference values.

This claim also be generated on the entity if the entity has the ability for one subsystem to

measure and evaluate another subsystem. For example, a TEE might have the ability to measure

the software of the rich OS and may have the reference values for the rich OS.

Within an entity, attestation target or submodule, multiple results can be reported. For example,

it may be desirable to report the results for measurements of the file system, chip configuration,

installed software, running software and so on.

Note that this claim is not for reporting the overall result of a verifier. It is solely for reporting

the result of comparison to reference values.

An individual measurement result is an array of two, an identifier of the measurement and an

enumerated type that is the result. The range and values of the measurement identifier varies

from one measurement scheme to another.

MAY

MAY

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 26

1 -- comparison successful:

2 -- comparison fail:

3 -- comparison not run:

4 -- measurement absent:

Each individual measurement result is part of a group that may contain many individual results.

Each group has a text string that names it, typically the name of the measurement scheme or

system.

The claim itself consists of one or more groups.

The values for the results enumerated type are as follows:

Indicates successful comparison to reference values.

The comparison was completed and did not compare correctly to the

reference values.

The comparison was not run. This includes error conditions such as

running out of memory.

The particular measurement was not available for comparison.

$$Claims-Set-Claims //= (

 measurement-results-label =>

 [+ measurement-results-group])

measurement-results-group = [

 measurement-system: tstr,

 measurement-results: [+ individual-result]

]

individual-result = [

 results-id: tstr / binary-data,

 result: result-type,

]

result-type = comparison-successful /

 comparison-fail /

 comparison-not-run /

 measurement-absent

comparison-successful = JC< "success", 1 >

comparison-fail = JC< "fail", 2 >

comparison-not-run = JC< "not-run", 3 >

measurement-absent = JC< "absent", 4 >

4.2.18. submods (Submodules)

Some devices are complex and have many subsystems. A mobile phone is a good example. It may

have subsystems for communications (e.g., Wi-Fi and cellular), low-power audio and video

playback, multiple security-oriented subsystems like a TEE and a Secure Element, and etc. The

claims for a subsystem can be grouped together in a submodule.

Submodules may be used in either evidence or attestation results.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 27

Because system architecture will vary greatly from use case to use case, there are no set

requirements for what a submodule represents either in evidence or in attestation results.

Profiles, Section 6, may wish to impose requirements. An attester that outputs attestation results

with submodules should document the semantics it associates with particular submodules for

the verifier. Likewise, verifier that outputs attestation results with submodules should document

the semantics it associates with the submodules for the relying party.

A submodule claim is a map that holds some number of submodules. Each submodule is named

by its label in the submodule claim map. The value of each entry in a submodule may be a

Claims-Set, nested token or Detached-Submodule-Digest. This allows for the submodule to serve

as its own attester or not and allows for claims for each submodule to be represented directly or

indirectly, i.e., detached.

A submodule may include a submodule, allowing for arbitrary levels of nesting. However,

submodules do not inherit anything from the containing token and must explicitly include all

claims. Submodules may contain claims that are present in any surrounding token or

submodule. For example, the top-level of the token may have a UEID, a submodule may have a

different UEID and a further subordinate submodule may also have a UEID.

The following sub-sections define the three types for representing submodules:

A submodule Claims-Set

The digest of a detached Claims-Set

A nested token, which can be any EAT

The Submodule type definition and Nested-Token type definition vary with the type of encoding.

The definitions for CBOR-encoded EATs are as follows:

The Submodule and Nested-Token definitions for JSON-encoded EATs is as below. This difference

in definitions vs. CBOR is necessary because JSON has no tag mechanism and no byte string type

to help indicate the nested token is CBOR.

•

•

•

Nested-Token = CBOR-Nested-Token

CBOR-Nested-Token =

 JSON-Token-Inside-CBOR-Token /

 CBOR-Token-Inside-CBOR-Token

CBOR-Token-Inside-CBOR-Token = bstr .cbor $EAT-CBOR-Tagged-Token

JSON-Token-Inside-CBOR-Token = tstr

$$Claims-Set-Claims //= (submods-label => { + text => Submodule })

Submodule = Claims-Set / CBOR-Nested-Token /

 Detached-Submodule-Digest

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 28

The Detached-Submodule-Digest type is defined as follows:

Nested tokens can be one of three types as defined in this document or types standardized in

follow-on documents (e.g.,). Nested tokens are the only mechanism by which JSON can be

embedded in CBOR and vice versa.

The addition of further types is accomplished by augmenting the $EAT-CBOR-Tagged-Token

socket or the $JSON-Selector-Type and $JSON-Selector-Value sockets.

When decoding a JSON-encoded EAT, the type of submodule is determined as follows. A JSON

object indicates the submodule is a Claims-Set. In all other cases, it is a JSON-Selector, which is an

array of two elements that indicates whether the submodule is a nested token or a Detached-

Submodule-Digest.The first element in the array indicates the type present in the second element.

If the value is "JWT", "CBOR", "BUNDLE" or a future-standardized token types, e.g., , the

submodule is a nested token of the indicated type, i.e., JWT-Message, CBOR-Token-Inside-JSON-

Token, Detached-EAT-Bundle, or a future type. If the value is "DIGEST", the submodule is a

Detached-Submodule-Digest. Any other value indicates a standaridized extension to this

specification.

When decoding a CBOR-encoded EAT, the CBOR item type indicates the type of the submodule as

follows. A map indicates a CBOR-encoded submodule Claims-Set. An array indicates a CBOR-

encoded Detached-Submodule-Digest. A byte string indicates a CBOR-encoded CBOR-Nested-

Token. A text string indicates a JSON-encoded JSON-Selector. Where JSON-Selector is used in a

CBOR-encoded EAT, the "DIGEST" type and corresponding Detached-Submodule-Digest type

 be used.

Nested-Token = JSON-Selector

$JSON-Selector-Type /= "JWT" / "CBOR" / "BUNDLE" / "DIGEST"

$JSON-Selector-Value /= JWT-Message /

 CBOR-Token-Inside-JSON-Token /

 Detached-EAT-Bundle /

 Detached-Submodule-Digest

JSON-Selector = [

 type : $JSON-Selector-Type,

 nested-token : $JSON-Selector-Value

]

CBOR-Token-Inside-JSON-Token = base64-url-text

$$Claims-Set-Claims //= (submods-label => { + text => Submodule })

Submodule = Claims-Set / JSON-Selector

Detached-Submodule-Digest = [

 hash-algorithm : text / int,

 digest : binary-data

]

[UCCS]

[UCCS]

MUST

NOT

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 29

"JWT":

"CBOR":

"BUNDLE":

"DIGEST":

The type of a CBOR-encoded nested token is always determined by the CBOR tag encountered

after the byte string wrapping is removed in a CBOR-encoded enclosing token or after the base64

wrapping is removed in JSON-encoded enclosing token.

The type of a JSON-encoded nested token is always determined by the string name in JSON-

Selector and is always "JWT", "BUNDLE" or a new name standardized outside this document for a

further type (e.g., "UCCS"). This string name may also be "CBOR" to indicate the nested token is

CBOR-encoded.

The second array item be a JWT formatted according to

The second array item must be some base64url-encoded CBOR that is a tag, typically a

CWT or CBOR-encoded detached EAT bundle

The second array item be a JSON-encoded Detached EAT Bundle as defined in

this document.

The second array item be a JSON-encoded Detached-Submodule-Digest as

defined in this document.

As noted elsewhere, additional EAT types may be defined by a standards action. New type

specifications address the integration of the new type into the Submodule claim type for

submodules.

MUST [RFC7519]

MUST

MUST

MUST

4.2.18.1. Submodule Claims-Set

The Claims-Set type provides a means of representing claims from a submodule that does not

have its own attesting environment, i.e., it has no keys distinct from the attester producing the

surrounding token. Claims are represented as a Claims-Set. Submodule claims represented in this

way are secured by the same mechanism as the enclosing token (e.g., it is signed by the same

attestation key).

The encoding of a submodule Claims-Set be the same as the encoding as the surrounding

EAT, e.g., all submodule Claims-Sets in a CBOR-encoded token must be CBOR-encoded.

MUST

4.2.18.2. Detached Submodule Digest

The Detached-Submodule-Digest type is similar to a submodule Claims-Set, except a digest of the

Claims-Set is included in the claim with the Claims-Set contents conveyed separately. The

separately-conveyed Claims-Set is called a detached claims set. The input to the digest algorithm

is directly the CBOR or JSON-encoded Claims-Set for the submodule. There is no byte-string

wrapping or base 64 encoding.

The data type for this type of submodule is an array consisting of two data items: an algorithm

identifier and a byte string containing the digest. The hash algorithm identifier is always from

the COSE Algorithm registry, . Either the integer or string identifier may

be used. The hash algorithm identifier is never from the JOSE Algorithm registry.

[IANA.COSE.Algorithms]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 30

A detached EAT bundle, described in Section 5, may be used to convey detached claims sets and

the EAT containing the corresponding detached digests. The EAT format, however, doesn't

require use of a detached EAT bundle. Any other protocols may be used to convey detached

claims sets and the EAT containing the corresponding detached digests. Detached Claims-Sets

must not be modified in transit, else validation will fail.

4.2.18.3. Nested Tokens

The CBOR-Nested-Token and JSON-Selector types provide a means of representing claims from a

submodule that has its own attesting environment, i.e., it has keys distinct from the attester

producing the surrounding token. Claims are represented in a signed EAT token.

Inclusion of a signed EAT as a claim cryptographically binds the EAT to the surrounding token. If

it was conveyed in parallel with the surrounding token, there would be no such binding and

attackers could substitute a good attestation from another device for the attestation of an errant

subsystem.

A nested token need not use the same encoding as the enclosing token. This enables composite

devices to be built without regards to the encoding used by components. Thus, a CBOR-encoded

EAT can have a JSON-encoded EAT as a nested token and vice versa.

4.3. Claims Describing the Token

The claims in this section provide meta data about the token they occur in. They do not describe

the entity. They may appear in evidence or attestation results.

4.3.1. iat (Timestamp) Claim

The "iat" claim defined in CWT and JWT is used to indicate the date-of-creation of the token, the

time at which the claims are collected and the token is composed and signed.

The data for some claims may be held or cached for some period of time before the token is

created. This period may be long, even days. Examples are measurements taken at boot or a

geographic position fix taken the last time a satellite signal was received. There are individual

timestamps associated with these claims to indicate their age is older than the "iat" timestamp.

CWT allows the use floating-point for this claim. EAT disallows the use of floating-point. An EAT

token contain an "iat" claim in floating-point format. Any recipient of a token with a

floating-point format "iat" claim consider it an error.

A 64-bit integer representation of the CBOR epoch-based time used by this claim can

represent a range of +/- 500 billion years, so the only point of a floating-point timestamp is to

have precession greater than one second. This is not needed for EAT.

MUST NOT

MUST

[RFC8949]

4.3.2. eat_profile (EAT Profile) Claim

See Section 6 for the detailed description of an EAT profile.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 31

The "eat_profile" claim identifies an EAT profile by either a URL or an OID. Typically, the URI will

reference a document describing the profile. An OID is just a unique identifier for the profile. It

may exist anywhere in the OID tree. There is no requirement that the named document be

publicly accessible. The primary purpose of the "eat_profile" claim is to uniquely identify the

profile even if it is a private profile.

The OID is always absolute and never relative.

See Section 7.2.1 for OID and URI encoding.

$$Claims-Set-Claims //= (profile-label => general-uri / general-oid)

1 -- Generic:

2-- Registration:

3 -- Provisioning:

4 -- Certificate Issuance:

5 -- Proof-of-Possession:

4.3.3. intuse (Intended Use) Claim

EAT's may be used in the context of several different applications. The "intuse" claim provides an

indication to an EAT consumer about the intended usage of the token. This claim can be used as a

way for an application using EAT to internally distinguish between different ways it uses EAT.

Generic attestation describes an application where the EAT consumer requires the

most up-to-date security assessment of the attesting entity. It is expected that this is the most

commonly-used application of EAT.

Entities that are registering for a new service may be expected to provide an

attestation as part of the registration process. This "intuse" setting indicates that the

attestation is not intended for any use but registration.

Entities may be provisioned with different values or settings by an EAT

consumer. Examples include key material or device management trees. The consumer may

require an EAT to assess entity security state of the entity prior to provisioning.

Certification Authorities (CAs) may require attestation results (which in

a background check model might require receiving evidence to be passed to a verifier) to

make decisions about the issuance of certificates. An EAT may be used as part of the

certificate signing request (CSR).

An EAT consumer may require an attestation as part of an

accompanying proof-of-possession (PoP) application. More precisely, a PoP transaction is

intended to provide to the recipient cryptographically-verifiable proof that the sender has

possession of a key. This kind of attestation may be necessary to verify the security state of the

entity storing the private key used in a PoP application.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 32

$$Claims-Set-Claims //= (intended-use-label => intended-use-type)

intended-use-type = generic /

 registration /

 provisioning /

 csr /

 pop

generic = JC< "generic", 1 >

registration = JC< "registration", 2 >

provisioning = JC< "provisioning", 3 >

csr = JC< "csr", 4 >

pop = JC< "pop", 5 >

5. Detached EAT Bundles

A detached EAT bundle is a structure to convey a fully-formed and signed token plus detached

claims set that relate to that token. It is a top-level EAT message like a CWT or JWT. It can be

occur any place that CWT or JWT messages occur. It may also be sent as a submodule.

A detached EAT bundle consists of two parts.

The first part is a full top-level token. This top-level token have at least one submodule that

is a detached digest. This top-level token may be either CBOR or JSON-encoded. It be a CWT,

or JWT but be a detached EAT bundle. It also be some future-defined token type.

The same mechanism for distinguishing the type for nested token submodules is employed here.

The second part is a map/object containing the detached Claims-Sets corresponding to the

detached digests in the full token. When the detached EAT bundle is CBOR-encoded, each

detached Claims-Set be CBOR-encoded and wrapped in a byte string. When the detached

EAT bundle is JSON-encoded, each detached Claims-Set be JSON-encoded and base64url

encoded. All the detached Claims-Sets be encoded in the same format as the detached EAT

bundle. No mixing of encoding formats is allowed for the Claims-Sets in a detached EAT bundle.

For CBOR-encoded detached EAT bundles, tag TBD602 can be used to identify it. The normal rules

apply for use or non-use of a tag. When it is sent as a submodule, it is always sent as a tag to

distinguish it from the other types of nested tokens.

The digests of the detached claims sets are associated with detached Claims-Sets by label/name. It

is up to the constructor of the detached EAT bundle to ensure the names uniquely identify the

detached claims sets. Since the names are used only in the detached EAT bundle, they can be

very short, perhaps one byte.

MUST

MAY

MUST NOT MAY

MUST

MUST

MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 33

BUNDLE-Messages = BUNDLE-Tagged-Message / BUNDLE-Untagged-Message

BUNDLE-Tagged-Message = #6.TBD(BUNDLE-Untagged-Message)

BUNDLE-Untagged-Message = Detached-EAT-Bundle

Detached-EAT-Bundle = [

 main-token : Nested-Token,

 detached-claims-sets: {

 + tstr => JC<json-wrapped-claims-set,

 cbor-wrapped-claims-set>

 }

]

json-wrapped-claims-set = base64-url-text

cbor-wrapped-claims-set = bstr .cbor Claims-Set

6. Profiles

EAT makes normative use of CBOR, JSON, COSE, JOSE, CWT and JWT. Most of these have

implementation options to accommodate a range of use cases.

For example, COSE doesn't require a particular set of cryptographic algorithms so as to

accommodate different usage scenarios and evolution of algorithms over time. Section 10 of

 describes the profiling considerations for COSE.

The use of encryption is optional for both CWT and JWT. Section 8 of describes

implementation requirement and recommendations for JWT.

Similarly, CBOR provides indefinite length encoding, which is not commonly used, but valuable

for very constrained devices. For EAT itself, in a particular use case some claims will be used and

others will not. Section 4 of describes serialization considerations for CBOR.

For example a mobile phone use case may require the device make and model, and prohibit

UEID and location for privacy reasons. The general EAT standard retains all this flexibility

because it too is aimed to accommodate a broad range of use cases.

It is necessary to explicitly narrow these implementation options to guarantee interoperability.

EAT chooses one general and explicit mechanism, the profile, to indicate the choices made for

these implementation options for all aspects of the token.

Below is a list of the various issues that should be addressed by a profile.

The "eat_profile" claim in Section 4.3.2 provides a unique identifier for the profile a particular

token uses.

A profile can apply to evidence or to attestation results or both.

[RFC9052]

[RFC7519]

[RFC8949]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 34

6.1. Format of a Profile Document

A profile document doesn't have to be in any particular format. It may be simple text, something

more formal or a combination.

A profile may define, and possibly register, one or more new claims if needed. A profile may also

reuse one or more already defined claims, either as-is or with values constrained to a subset or

subrange.

6.2. List of Profile Issues

The following is a list of EAT, CWT, JWT, COSE, JOSE and CBOR options that a profile should

address.

6.2.1. Use of JSON, CBOR or both

A profile should specify whether CBOR, JSON or both may be sent. A profile should specify that

the receiver can accept all encoding formats that the sender is allowed to send.

This should be specified for the top-level and all nested tokens. For example, a profile might

require all nested tokens to be of the same encoding of the top level token.

6.2.2. CBOR Map and Array Encoding

A profile should specify whether definite-length arrays/maps, indefinite-length arrays/maps or

both may be sent. A profile should specify that the receiver be able to accept all length encodings

that the sender is allowed to send.

This applies to individual EAT claims, CWT and COSE parts of the implementation.

For most use cases, specifying that only definite-length arrays/maps may be sent is suitable.

6.2.3. CBOR String Encoding

A profile should specify whether definite-length strings, indefinite-length strings or both may be

sent. A profile should specify that the receiver be able to accept all types of string encodings that

the sender is allowed to send.

For most use cases, specifying that only definite-length strings may be sent is suitable.

6.2.4. CBOR Preferred Serialization

A profile should specify whether or not CBOR preferred serialization must be sent or not. A

profile should specify the receiver be able to accept preferred and/or non-preferred serialization

so it will be able to accept anything sent by the sender.

6.2.5. CBOR Tags

The profile should specify whether the token should be a CWT Tag or not.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 35

When COSE protection is used, the profile should specify whether COSE tags are used or not. Note

that RFC 8392 requires COSE tags be used in a CWT tag.

Often a tag is unnecessary because the surrounding or carrying protocol identifies the object as

an EAT.

6.2.6. COSE/JOSE Protection

COSE and JOSE have several options for signed, MACed and encrypted messages. JWT may use

the JOSE NULL protection option. It is possible to implement no protection, sign only, MAC only,

sign then encrypt and so on. All combinations allowed by COSE, JOSE, JWT, and CWT are allowed

by EAT.

A profile should specify all signing, encryption and MAC message formats that may be sent. For

example, a profile might allow only COSE_Sign1 to be sent. For another example, a profile might

allow COSE_Sign and COSE_Encrypt to be sent to carry multiple signatures for post quantum

cryptography and to use encryption to provide confidentiality.

A profile should specify the receiver accepts all message formats that are allowed to be sent.

When both signing and encryption are allowed, a profile should specify which is applied first.

6.2.7. COSE/JOSE Algorithms

See the section on "Application Profiling Considerations" in for a discussion on

selection of cryptographic algorithms and related issues.

The profile require the protocol or system using EAT provide an algorithm negotiation

mechanism.

If not, The profile document should list a set of algorithms for each COSE and JOSE message type

allowed by the profile per Section 6.2.6. The verifier should implement all of them. The attester

may implement any of them it wishes, possibly just one for each message type.

If detached submodule digests are used the profile should address the determination of the hash

algorithm(s) for the digests.

[RFC9052]

MAY

6.2.8. Detached EAT Bundle Support

A profile should specify whether or not a detached EAT bundle (Section 5) can be sent. A profile

should specify that a receiver be able to accept a detached EAT bundle if the sender is allowed to

send it.

6.2.9. Key Identification

A profile should specify what must be sent to identify the verification, decryption or MAC key or

keys. If multiple methods of key identification may be sent, a profile should require the receiver

support them all.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 36

Appendix F describes a number of methods for identifying verification keys. When encryption is

used, there are further considerations. In some cases key identification may be very simple and

in others involve multiple components. For example, it may be simple through use of COSE key

ID or it may be complex through use of an X.509 certificate hierarchy.

While not always possible, a profile should specify or make reference to, a full end-end

specification for key identification. For example, a profile should specify in full detail how COSE

key IDs are to be created, their lifecycle and such rather than just specifying that a COSE key ID

be used. For example, a profile should specify the full details of an X.509 hierarchy including

extension processing, algorithms allowed and so on rather than just saying X.509 certificates are

used.

6.2.10. Endorsement Identification

Similar to, or perhaps the same as verification key identification, the profile may wish to specify

how endorsements are to be identified. However note that endorsement identification is

optional, whereas key identification is not.

6.2.11. Freshness

Security considerations, see Section 9.3, require a mechanism to provide freshness. This may be

the EAT nonce claim in Section 4.1, or some claim or mechanism defined outside this document.

The section on freshness in describes several options. A profile should

specify which freshness mechanism or mechanisms can be used.

If the EAT nonce claim is used, a profile should specify whether multiple nonces may be sent. If a

profile allows multiple nonces to be sent, it should require the receiver to process multiple

nonces.

[RATS.Architecture]

6.2.12. Claims Requirements

A profile may define new claims that are not defined in this document.

This document requires an EAT receiver must accept all claims it does not understand. A profile

for a specific use case may reverse this and allow a receiver to reject tokens with claims it does

not understand. A profile for a specific use case may specify that specific claims are prohibited.

A profile for a specific use case may modify this and specify that some claims are required.

A profile may constrain the definition of claims that are defined in this document or elsewhere.

For example, a profile may require the EAT nonce be a certain length or the "location" claim

always include the altitude.

Some claims are "pluggable" in that they allow different formats for their content. The

"manifests" claim (Section 4.2.15) along with the measurement and "measurements" (Section

4.2.16)) claims are examples of this, allowing the use of CoSWID, TEEP Manifests and other

formats. A profile should specify which formats are allowed to be sent, with the assumption that

the corresponding COAP content types have been registered. A profile should require the

receiver to accept all formats that are allowed to be sent.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 37

Further, if there is variation within a format that is allowed, the profile should specify which

variations can be sent. For example, there are variations in the CoSWID format. A profile that

require the receiver to accept all variations that are allowed to be sent.

6.3. The Constrained Device Standard Profile

It is anticipated that there will be many profiles defined for EAT for many different use cases.

This section standardizes one profile that is good for many constrained device use cases.

The identifier for this profile is "https://www.rfc-editor.org/rfc/rfcTBD".

Issue Profile Definition

CBOR/JSON CBOR only

CBOR Encoding Only definite length maps and arrays are allowed

CBOR Encoding Only definite length strings are allowed

CBOR Serialization Only preferred serialization is allowed

COSE Protection Only COSE_Sign1 format is used

Algorithms Receiver accept ES256, ES384 and ES512; sender send one

of these

Detached EAT

Bundle Usage

Detached EAT bundles may not be sent with this profile

Verification Key

Identification

Either the COSE kid or the UEID be used to identify the

verification key. If both are present, the kid takes precedence

Endorsements This profile contains no endorsement identifier

Nonce A new single unique nonce be used for every token request

Claims No requirement is made on the presence or absence of claims other

than requiring an EAT nonce. As per general EAT rules, the receiver

 error out on claims it doesn't understand.

Table 2

Strictly speaking, even slight modifications, such as the use of a different means of key

identification, are a divergence from this profile and require allocation of a different profile

identifier.

A profile that is similar to this can be defined and/or standardized by making normative

reference to this section and adding requirements. Such a profile have a different profile

identifier.

MUST MUST

MUST

MUST

MUST NOT

MUST

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 38

7. Encoding and Collected CDDL

An EAT is fundamentally defined using CDDL. This document specifies how to encode the CDDL

in CBOR or JSON. Since CBOR can express some things that JSON can't (e.g., tags) or that are

expressed differently (e.g., labels) there is some CDDL that is specific to the encoding format.

7.1. Claims-Set and CDDL for CWT and JWT

CDDL was not used to define CWT or JWT. It was not available at the time.

This document defines CDDL for both CWT and JWT. This document does not change the

encoding or semantics of anything in a CWT or JWT.

A Claims-Set is the central data structure for EAT, CWT and JWT. It holds all the claims and is the

structure that is secured by signing or other means. It is not possible to define EAT, CWT, or JWT

in CDDL without it. The CDDL definition of Claims-Set here is applicable to EAT, CWT and JWT.

This document specifies how to encode a Claims-Set in CBOR or JSON.

With the exception of nested tokens and some other externally defined structures (e.g., SWIDs)

an entire Claims-Set must be in encoded in either CBOR or JSON, never a mixture.

CDDL for the seven claims defined by and is included here.[RFC8392] [RFC7519]

7.2. Encoding Data Types

This makes use of the types defined in Appendix D, Standard Prelude.[RFC8610]

7.2.1. Common Data Types

time-int is identical to the epoch-based time, but disallows floating-point representation.

The OID encoding from is used without the tag number in CBOR-encoded tokens. In

JSON tokens OIDs are a text string in the common form of "nn.nn.nn...".

Unless expliclity indicated, URIs are not the URI tag defined in . They are just text

strings that contain a URI.

[RFC9090]

[RFC8949]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 39

time-int = #6.1(int)

binary-data = JC< base64-url-text, bstr>

base64-url-text = tstr .regexp "[A-Za-z0-9_=-]+"

general-oid = JC< json-oid, ~oid >

json-oid = tstr .regexp "([0-2])((\.0)|(\.[1-9][0-9]*))*"

general-uri = JC< text, ~uri >

coap-content-format = uint .le 65535

7.2.2. JSON Interoperability

JSON should be encoded per , Appendix E. In addition, the following CDDL types are

encoded in JSON as follows:

bstr -- be base64url encoded

time -- be encoded as NumericDate as described in Section 2 of .

string-or-uri -- be encoded as StringOrURI as described in Section 2 of .

uri -- be a URI .

oid -- be encoded as a string using the well established dotted-decimal notation (e.g.,

the text "1.2.250.1").

The CDDL generic "JC< >" is used in most places where there is a variance between CBOR and

JSON. The first argument is the CDDL for JSON and the second is CDDL for CBOR.

[RFC8610]

• MUST

• MUST [RFC7519]

• MUST [RFC7519]

• MUST [RFC3986]

• MUST

7.2.3. Labels

Most map labels, Claims-Keys, Claim-Names and enumerated-type values are integers for CBOR-

encoded tokens and strings for JSON-encoded tokens. When this is the case the "JC < >" CDDL

construct is used to give both the integer and string values.

7.2.4. CBOR Interoperability

CBOR allows data items to be serialized in more than one form to accommodate a variety of use

cases. This is addressed in Section 6.

7.3. Collected CDDL

7.3.1. Payload CDDL

This CDDL defines all the EAT Claims that are added to the main definition of a Claim-Set in

Appendix D. Claims-Set is the payload for CWT, JWT and potentially other token types. This is for

both CBOR and JSON. When there is variation between CBOR and JSON, the JC<> CDDL generic

defined in Appendix D.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 40

This CDDL uses, but doesn't define Submodule or nested tokens because the definition for these

types varies between CBOR and JSON and the JC<> generic can't be used to define it. The

submodule claim is the one place that that a CBOR token can be nested inside a JSON token and

vice versa. Encoding-specific definitions are provided in the following sections.

time-int = #6.1(int)

binary-data = JC< base64-url-text, bstr>

base64-url-text = tstr .regexp "[A-Za-z0-9_=-]+"

general-oid = JC< json-oid, ~oid >

json-oid = tstr .regexp "([0-2])((\.0)|(\.[1-9][0-9]*))*"

general-uri = JC< text, ~uri >

coap-content-format = uint .le 65535

$$Claims-Set-Claims //=

 (nonce-label => nonce-type / [2* nonce-type])

nonce-type = JC< tstr .size (10..74), bstr .size (8..64)>

$$Claims-Set-Claims //= (ueid-label => ueid-type)

ueid-type = JC<base64-url-text .size (12..44) , bstr .size (7..33)>

$$Claims-Set-Claims //= (sueids-label => sueids-type)

sueids-type = {

 + tstr => ueid-type

}

$$Claims-Set-Claims //= (

 oemid-label => oemid-pen / oemid-ieee / oemid-random

)

oemid-pen = int

oemid-ieee = JC<oemid-ieee-json, oemid-ieee-cbor>

oemid-ieee-cbor = bstr .size 3

oemid-ieee-json = base64-url-text .size 4

oemid-random = JC<oemid-random-json, oemid-random-cbor>

oemid-random-cbor = bstr .size 16

oemid-random-json = base64-url-text .size 24

$$Claims-Set-Claims //= (

 hardware-version-label => hardware-version-type

)

hardware-version-type = [

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 41

 version: tstr,

 ? scheme: $version-scheme

]

$$Claims-Set-Claims //= (

 hardware-model-label => hardware-model-type

)

hardware-model-type = JC<base64-url-text .size (4..44),

 bytes .size (1..32)>

$$Claims-Set-Claims //= (sw-name-label => tstr)

$$Claims-Set-Claims //= (sw-version-label => sw-version-type)

sw-version-type = [

 version: tstr

 ? scheme: $version-scheme

]

$$Claims-Set-Claims //= (oem-boot-label => bool)

$$Claims-Set-Claims //= (debug-status-label => debug-status-type)

debug-status-type = ds-enabled /

 disabled /

 disabled-since-boot /

 disabled-permanently /

 disabled-fully-and-permanently

ds-enabled = JC< "enabled", 0 >

disabled = JC< "disabled", 1 >

disabled-since-boot = JC< "disabled-since-boot", 2 >

disabled-permanently = JC< "disabled-permanently", 3 >

disabled-fully-and-permanently =

 JC< "disabled-fully-and-permanently", 4 >

$$Claims-Set-Claims //= (location-label => location-type)

location-type = {

 latitude => number,

 longitude => number,

 ? altitude => number,

 ? accuracy => number,

 ? altitude-accuracy => number,

 ? heading => number,

 ? speed => number,

 ? timestamp => ~time-int,

 ? age => uint

}

latitude = JC< "latitude", 1 >

longitude = JC< "longitude", 2 >

altitude = JC< "altitude", 3 >

accuracy = JC< "accuracy", 4 >

altitude-accuracy = JC< "altitude-accuracy", 5 >

heading = JC< "heading", 6 >

speed = JC< "speed", 7 >

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 42

timestamp = JC< "timestamp", 8 >

age = JC< "age", 9 >

$$Claims-Set-Claims //= (uptime-label => uint)

$$Claims-Set-Claims //= (boot-seed-label => binary-data)

$$Claims-Set-Claims //= (boot-count-label => uint)

$$Claims-Set-Claims //= (intended-use-label => intended-use-type)

intended-use-type = generic /

 registration /

 provisioning /

 csr /

 pop

generic = JC< "generic", 1 >

registration = JC< "registration", 2 >

provisioning = JC< "provisioning", 3 >

csr = JC< "csr", 4 >

pop = JC< "pop", 5 >

$$Claims-Set-Claims //= (

 dloas-label => [+ dloa-type]

)

dloa-type = [

 dloa_registrar: general-uri

 dloa_platform_label: text

 ? dloa_application_label: text

]

$$Claims-Set-Claims //= (profile-label => general-uri / general-oid)

$$Claims-Set-Claims //= (

 manifests-label => manifests-type

)

manifests-type = [+ manifest-format]

manifest-format = [

 content-type: coap-content-format,

 content-format: JC< $manifest-body-json,

 $manifest-body-cbor >

]

$manifest-body-cbor /= bytes .cbor untagged-coswid

$manifest-body-json /= base64-url-text

$manifest-body-cbor /= bytes .cbor SUIT_Envelope

$manifest-body-json /= base64-url-text

$manifest-body-cbor /= spdx-json

$manifest-body-json /= spdx-json

spdx-json = text

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 43

$manifest-body-cbor /= cyclone-dx-json

$manifest-body-cbor /= cyclone-dx-xml

$manifest-body-json /= cyclone-dx-json

$manifest-body-json /= cyclone-dx-xml

cyclone-dx-json = text

cyclone-dx-xml = text

suit-directive-process-dependency = 19

$$Claims-Set-Claims //= (

 measurements-label => measurements-type

)

measurements-type = [+ measurements-format]

measurements-format = [

 content-type: coap-content-format,

 content-format: JC< $measurements-body-json,

 $measurements-body-cbor >

]

$measurements-body-cbor /= bytes .cbor untagged-coswid

$measurements-body-json /= base64-url-text

$$Claims-Set-Claims //= (

 measurement-results-label =>

 [+ measurement-results-group])

measurement-results-group = [

 measurement-system: tstr,

 measurement-results: [+ individual-result]

]

individual-result = [

 results-id: tstr / binary-data,

 result: result-type,

]

result-type = comparison-successful /

 comparison-fail /

 comparison-not-run /

 measurement-absent

comparison-successful = JC< "success", 1 >

comparison-fail = JC< "fail", 2 >

comparison-not-run = JC< "not-run", 3 >

measurement-absent = JC< "absent", 4 >

Detached-Submodule-Digest = [

 hash-algorithm : text / int,

 digest : binary-data

]

BUNDLE-Messages = BUNDLE-Tagged-Message / BUNDLE-Untagged-Message

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 44

BUNDLE-Tagged-Message = #6.TBD(BUNDLE-Untagged-Message)

BUNDLE-Untagged-Message = Detached-EAT-Bundle

Detached-EAT-Bundle = [

 main-token : Nested-Token,

 detached-claims-sets: {

 + tstr => JC<json-wrapped-claims-set,

 cbor-wrapped-claims-set>

 }

]

json-wrapped-claims-set = base64-url-text

cbor-wrapped-claims-set = bstr .cbor Claims-Set

nonce-label = JC< "eat_nonce", 10 >

ueid-label = JC< "ueid", 256 >

sueids-label = JC< "sueids", 257 >

oemid-label = JC< "oemid", 258 >

hardware-model-label = JC< "hwmodel", 259 >

hardware-version-label = JC< "hwversion", 260 >

oem-boot-label = JC< "oemboot", 262 >

debug-status-label = JC< "dbgstat", 263 >

location-label = JC< "location", 264 >

profile-label = JC< "eat_profile",265 >

submods-label = JC< "submods", 266 >

uptime-label = JC< "uptime", TBD >

boot-seed-label = JC< "bootseed", TBD >

intended-use-label = JC< "intuse", TBD >

dloas-label = JC< "dloas", TBD >

sw-name-label = JC< "swname", TBD >

sw-version-label = JC< "swversion", TBD >

manifests-label = JC< "manifests", TBD >

measurements-label = JC< "measurements", TBD >

measurement-results-label = JC< "measres" , TBD >

boot-count-label = JC< "bootcount", TBD >

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 45

7.3.2. CBOR-Specific CDDL

EAT-CBOR-Token = $EAT-CBOR-Tagged-Token / $EAT-CBOR-Untagged-Token

$EAT-CBOR-Tagged-Token /= CWT-Tagged-Message

$EAT-CBOR-Tagged-Token /= BUNDLE-Tagged-Message

$EAT-CBOR-Untagged-Token /= CWT-Untagged-Message

$EAT-CBOR-Untagged-Token /= BUNDLE-Untagged-Message

Nested-Token = CBOR-Nested-Token

CBOR-Nested-Token =

 JSON-Token-Inside-CBOR-Token /

 CBOR-Token-Inside-CBOR-Token

CBOR-Token-Inside-CBOR-Token = bstr .cbor $EAT-CBOR-Tagged-Token

JSON-Token-Inside-CBOR-Token = tstr

$$Claims-Set-Claims //= (submods-label => { + text => Submodule })

Submodule = Claims-Set / CBOR-Nested-Token /

 Detached-Submodule-Digest

7.3.3. JSON-Specific CDDL

EAT-JSON-Token = $EAT-JSON-Token-Formats

$EAT-JSON-Token-Formats /= JWT-Message

$EAT-JSON-Token-Formats /= BUNDLE-Untagged-Message

Nested-Token = JSON-Selector

$JSON-Selector-Type /= "JWT" / "CBOR" / "BUNDLE" / "DIGEST"

$JSON-Selector-Value /= JWT-Message /

 CBOR-Token-Inside-JSON-Token /

 Detached-EAT-Bundle /

 Detached-Submodule-Digest

JSON-Selector = [

 type : $JSON-Selector-Type,

 nested-token : $JSON-Selector-Value

]

CBOR-Token-Inside-JSON-Token = base64-url-text

$$Claims-Set-Claims //= (submods-label => { + text => Submodule })

Submodule = Claims-Set / JSON-Selector

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 46

8. Privacy Considerations

Certain EAT claims can be used to track the owner of an entity and therefore, implementations

should consider providing privacy-preserving options dependent on the intended usage of the

EAT. Examples would include suppression of location claims for EAT's provided to

unauthenticated consumers.

8.1. UEID and SUEID Privacy Considerations

A UEID is usually not privacy-preserving. Relying parties receiving tokens that happen to be from

a particular entity will be able to know the tokens are from the same entity and be able to

identify the entity issuing those tokens.

Thus the use of the claim may violate privacy policies. In other usage situations a UEID will not

be allowed for certain products like browsers that give privacy for the end user. It will often be

the case that tokens will not have a UEID for these reasons.

An SUEID is also usually not privacy-preserving. In some cases it may have fewer privacy issues

than a UEID depending on when and how and when it is generated.

There are several strategies that can be used to still be able to put UEIDs and SUEIDs in tokens:

The entity obtains explicit permission from the user of the entity to use the UEID/SUEID. This

may be through a prompt. It may also be through a license agreement. For example,

agreements for some online banking and brokerage services might already cover use of a

UEID/SUEID.

The UEID/SUEID is used only in a particular context or particular use case. It is used only by

one relying party.

The entity authenticates the relying party and generates a derived UEID/SUEID just for that

particular relying party. For example, the relying party could prove their identity

cryptographically to the entity, then the entity generates a UEID just for that relying party by

hashing a proofed relying party ID with the main entity UEID/SUEID.

Note that some of these privacy preservation strategies result in multiple UEIDs and SUEIDs per

entity. Each UEID/SUEID is used in a different context, use case or system on the entity. However,

from the view of the relying party, there is just one UEID and it is still globally universal across

manufacturers.

•

•

•

8.2. Location Privacy Considerations

Geographic location is most always considered personally identifiable information.

Implementers should consider laws and regulations governing the transmission of location data

from end user devices to servers and services. Implementers should consider using location

management facilities offered by the operating system on the entity generating the attestation.

For example, many mobile phones prompt the user for permission before sending location data.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 47

8.3. Boot Seed Privacy Considerations

The "bootseed" claim is effectively a stable entity identifier within a given boot epoch. Therefore,

it is not suitable for use in attestation schemes that are privacy-preserving.

8.4. Replay Protection and Privacy

EAT defines the nonce claim for replay protection and token freshness. The nonce claim is based

on a value usually derived remotely (outside of the entity). This claim might be used to extract

and convey personally identifying information either inadvertently or by intention. For instance,

an implementor may choose a nonce equivalent to a username associated with the device (e.g.,

account login). If the token is inspected by a 3rd-party then this information could be used to

identify the source of the token or an account associated with the token. To avoid the conveyance

of privacy-related information in the nonce claim, it should be derived using a salt that

originates from a true and reliable random number generator or any other source of

randomness that would still meet the target system requirements for replay protection and token

freshness.

9. Security Considerations

The security considerations provided in Section 8 of and Section 11 of apply

to EAT in its CWT and JWT form, respectively. Moreover, Chapter 12 of is also

applicable to implementations of EAT. In addition, implementors should consider the following.

[RFC8392] [RFC7519]

[RATS.Architecture]

9.1. Claim Trustworthiness

This specification defines semantics for each claim. It does not require any particular level of

security in the implementation of the claims or even the attester itself. Such specification is far

beyond the scope of this document which is about a message format not the security level of an

implementation.

The receiver of an EAT comes to know the trustworthiness of the claims in it by understanding

the implementation made by the attester vendor and/or understanding the checks and

processing performed by the verifier.

For example, this document says that a UEID is permanent and that it must not change, but it

doesn't say what degree of attack to change it must be defended.

The degree of security will vary from use case to use case. In some cases the receiver may only

need to know something of the implementation such as that it was implemented in a TEE. In

other cases the receiver may require the attester be certified by a particular certification

program. Or perhaps the receiver is content with very little security.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 48

9.2. Key Provisioning

Private key material can be used to sign and/or encrypt the EAT, or can be used to derive the keys

used for signing and/or encryption. In some instances, the manufacturer of the entity may create

the key material separately and provision the key material in the entity itself. The manufacturer

of any entity that is capable of producing an EAT should take care to ensure that any private key

material be suitably protected prior to provisioning the key material in the entity itself. This can

require creation of key material in an enclave (see for definition of "enclave"), secure

transmission of the key material from the enclave to the entity using an appropriate protocol,

and persistence of the private key material in some form of secure storage to which (preferably)

only the entity has access.

[RFC4949]

9.2.1. Transmission of Key Material

Regarding transmission of key material from the enclave to the entity, the key material may pass

through one or more intermediaries. Therefore some form of protection ("key wrapping") may

be necessary. The transmission itself may be performed electronically, but can also be done by

human courier. In the latter case, there should be minimal to no exposure of the key material to

the human (e.g. encrypted portable memory). Moreover, the human should transport the key

material directly from the secure enclave where it was created to a destination secure enclave

where it can be provisioned.

9.3. Freshness

All EAT use must provide a freshness mechanism to prevent replay and related attacks. The

extensive discussions on freshness in including security considerations

apply here. The EAT nonce claim, in Section 4.1, is one option to provide freshness.

[RATS.Architecture]

9.4. Multiple EAT Consumers

In many cases, more than one EAT consumer may be required to fully verify the entity

attestation. Examples include individual consumers for nested EATs, or consumers for individual

claims with an EAT. When multiple consumers are required for verification of an EAT, it is

important to minimize information exposure to each consumer. In addition, the communication

between multiple consumers should be secure.

For instance, consider the example of an encrypted and signed EAT with multiple claims. A

consumer may receive the EAT (denoted as the "receiving consumer"), decrypt its payload, verify

its signature, but then pass specific subsets of claims to other consumers for evaluation

("downstream consumers"). Since any COSE encryption will be removed by the receiving

consumer, the communication of claim subsets to any downstream consumer should leverage a

communication security protocol (e.g. Transport Layer Security).

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 49

However, assume the EAT of the previous example is hierarchical and each claim subset for a

downstream consumer is created in the form of a nested EAT. Then, Transport Layer Security

between the receiving and downstream consumers is not strictly required. Nevertheless,

downstream consumers of a nested EAT should provide a nonce unique to the EAT they are

consuming.

9.5. Detached EAT Bundle Digest Security Considerations

A detached EAT bundle is composed of a nested full token appended to an unsigned claims set as

per Section 5 . Although the attached claims set is vulnerable to modification in transit, any

modification can be detected by the receiver through the associated digest, which is a claim fully

contained within an EAT. Moreover, the digest itself can only be derived using an appropriate

COSE hash algorithm, implying that an attacker cannot induce false detection of a modified

detached claims because the algorithms in the COSE registry are assumed to be of sufficient

cryptographic strength.

10. IANA Considerations

10.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims Registries

Claims defined for EAT are compatible with those of CWT and JWT so the CWT and JWT Claims

Registries, and , are re-used. No new IANA registry is

created.

All EAT claims defined in this document are placed in both registries. All new EAT claims defined

subsequently should be placed in both registries.

Appendix E describes some considerations when defining new claims.

[IANA.CWT.Claims] [IANA.JWT.Claims]

10.2. CWT and JWT Claims Registered by This Document

This specification adds the following values to the "JSON Web Token Claims" registry established

by and the "CBOR Web Token Claims Registry" established by . Each entry

below is an addition to both registries.

The "Claim Description", "Change Controller" and "Specification Documents" are common and

equivalent for the JWT and CWT registries. The "Claim Key" and "Claim Value Types(s)" are for

the CWT registry only. The "Claim Name" is as defined for the CWT registry, not the JWT registry.

The "JWT Claim Name" is equivalent to the "Claim Name" in the JWT registry.

IANA is requested to register the following claims.

RFC Editor: Please make the following adjustments and remove this paragraph. Replace "this

document" with this RFC number. In the following, the claims with "Claim Key: TBD" need to be

assigned a value in the Specification Required Range, preferrably starting around 267. Those

[RFC7519] [RFC8392]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 50

below already with a Claim Key number were given early assignment. No change is requested

for them except for Claim Key 262. Claim 262 should be renamed from "secboot" to "oemboot" in

the JWT registry and it's description changed in both the CWT and JWT registries.

Claim Name: Nonce

Claim Description: Nonce

JWT Claim Name: "eat_nonce"

Claim Key: 10

Claim Value Type(s): byte string

Change Controller: IESG

Specification Document(s): this document

Claim Name: UEID

Claim Description: The Universal Entity ID

JWT Claim Name: "ueid"

CWT Claim Key: 256

Claim Value Type(s): byte string

Change Controller: IESG

Specification Document(s): this document

Claim Name: SUEIDs

Claim Description: Semi-permanent UEIDs

JWT Claim Name: "sueids"

CWT Claim Key: 257

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): this document

Claim Name: Hardware OEMID

Claim Description: Hardware OEM ID

JWT Claim Name: "oemid"

Claim Key: 258

Claim Value Type(s): byte string or integer

Change Controller: IESG

Specification Document(s): this document

Claim Name: Hardware Model

Claim Description: Model identifier for hardware

JWT Claim Name: "hwmodel"

Claim Key: 259

Claim Value Type(s): byte string

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 51

Change Controller: IESG

Specification Document(s): this document

Claim Name: Hardware Version

Claim Description: Hardware Version Identifier

JWT Claim Name: "hwversion"

Claim Key: TBD 260

Claim Value Type(s): array

Change Controller: IESG

Specification Document(s): this document

Claim Name: OEM Authortised Boot

Claim Description: Indicate whether the software booted was OEM authorized

JWT Claim Name: "oemboot"

Claim Key: 262

Claim Value Type(s): Boolean

Change Controller: IESG

Specification Document(s): this document

Claim Name: Debug Status

Claim Description: Indicate status of debug facilities

JWT Claim Name: "dbgstat"

Claim Key: 263

Claim Value Type(s): integer or string

Change Controller: IESG

Specification Document(s): this document

Claim Name: Location

Claim Description: The geographic location

JWT Claim Name: "location"

Claim Key: 264

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): this document

Claim Name: EAT Profile

Claim Description: Indicates the EAT profile followed

JWT Claim Name: "eat_profile"

Claim Key: 265

Claim Value Type(s): URI or OID

Change Controller: IESG

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 52

Specification Document(s): this document

Claim Name: Submodules Section

Claim Description: The section containing submodules

JWT Claim Name: "submods"

Claim Key: 266

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): this document

Claim Name: Uptime

Claim Description: Uptime

JWT Claim Name: "uptime"

Claim Key: TBD

Claim Value Type(s): unsigned integer

Change Controller: IESG

Specification Document(s): this document

Claim Name: Boot Count

Claim Description: The number times the entity or submodule has been booted

JWT Claim Name: "bootcount"

Claim Key: TBD

Claim Value Type(s): uint

Change Controller: IESG

Specification Document(s): this document

Claim Name: Boot Seed

Claim Description: Identifies a boot cycle

JWT Claim Name: "bootseed"

Claim Key: TBD

Claim Value Type(s): bytes

Change Controller: IESG

Specification Document(s): this document

Claim Name: DLOAs

Claim Description: Certifications received as Digital Letters of Approval

JWT Claim Name: "dloas"

Claim Key: TBD

Claim Value Type(s): array

Change Controller: IESG

Specification Document(s): this document

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 53

Claim Name: Software Name

Claim Description: The name of the software running in the entity

JWT Claim Name: "swname"

Claim Key: TBD

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): this document

Claim Name: Software Version

Claim Description: The version of software running in the entity

JWT Claim Name: "swversion"

Claim Key: TBD

Claim Value Type(s): map

Change Controller: IESG

Specification Document(s): this document

Claim Name: Software Manifests

Claim Description: Manifests describing the software installed on the entity

JWT Claim Name: "manifests"

Claim Key: TBD

Claim Value Type(s): array

Change Controller: IESG

Specification Document(s): this document

Claim Name: Measurements

Claim Description: Measurements of the software, memory configuration and such on the

entity

JWT Claim Name: "measurements"

Claim Key: TBD

Claim Value Type(s): array

Change Controller: IESG

Specification Document(s): this document

Claim Name: Software Measurement Results

Claim Description: The results of comparing software measurements to reference values

JWT Claim Name: "measres"

Claim Key: TBD

Claim Value Type(s): array

Change Controller: IESG

Specification Document(s): this document

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 54

Claim Name: Intended Use

Claim Description: Indicates intended use of the EAT

JWT Claim Name: "intuse"

Claim Key: TBD

Claim Value Type(s): integer or string

Change Controller: IESG

Specification Document(s): this document

•

•

•

•

•

•

•

10.3. UEID URN Registered by this Document

IANA is requested to register the following new subtypes in the "DEV URN Subtypes" registry

under "Device Identification". See .

Subtype Description Reference

ueid Universal Entity Identifier This document

sueid Semi-permanent Universal Entity Identifier This document

Table 3

[RFC9039]

10.4. CBOR Tag for Detached EAT Bundle Registered by this Document

In the registry , IANA is requested to allocate the following tag from the FCFS

space, with the present document as the specification reference.

Tag Data Items Semantics

TBD602 array Detached EAT Bundle Section 5

Table 4

[IANA.cbor-tags]

10.5. Media Types Registered by this Document

It is requested that the CoAP Content-Format for SPDX and CycloneDX be been registered in the

"CoAP Content-Formats" subregistry within the "Constrained RESTful Environments (CoRE)

Parameters" registry :

Media Type: application/spdx+json

Encoding: binary

ID: TBD

Reference:

Media Type: vendor/vnd.cyclonedx+xml

Encoding: binary

ID: TBD

[IANA.core-parameters]

•

•

•

• [SPDX]

•

•

•

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 55

[CoSWID]

[CycloneDX]

[DLOA]

[IANA.cbor-tags]

[IANA.core-parameters]

[IANA.COSE.Algorithms]

[IANA.CWT.Claims]

[IANA.JWT.Claims]

[PEN]

[RFC2119]

[RFC3986]

[RFC7252]

11. References

11.1. Normative References

, , , and ,

, ,

, 20 July 2022,

.

, .

, November 2015,

.

, ,

.

, ,

.

, ,

.

, ,

.

, , .

, ,

.

, , ,

, , March 1997,

.

, , and ,

, , , , January 2005,

.

, , and ,

, , , June 2014,

.

Reference:

Media Type: vendor/vnd.cyclonedx+json

Encoding: binary

ID: TBD

Reference:

• [CycloneDX]

•

•

•

• [CycloneDX]

Birkholz, H. Fitzgerald-McKay, J. Schmidt, C. D. Waltermire "Concise

Software Identification Tags" Work in Progress Internet-Draft, draft-ietf-sacm-

coswid-22 <https://www.ietf.org/archive/id/draft-ietf-sacm-

coswid-22.txt>

"CycloneDX" <https://cyclonedx.org/specification/overview/>

"Digital Letter of Approval" <https://globalplatform.org/wp-

content/uploads/2015/12/GPC_DigitalLetterOfApproval_v1.0.pdf>

IANA "Concise Binary Object Representation (CBOR) Tags" <https://

www.iana.org/assignments/cbor-tags>

IANA "Constrained RESTful Environments (CoRE) Parameters"

<https://www.iana.org/assignments/core-parameters>

IANA "CBOR Object Signing and Encryption (COSE)" <https://

www.iana.org/assignments/cose>

IANA "CBOR Web Token (CWT) Claims" <https://www.iana.org/

assignments/cwt>

IANA "JSON Web Token (JWT)" <https://www.iana.org/assignments/jwt>

"Private Enterprise Number (PEN) Request" n.d. <https://pen.iana.org/pen/

PenApplication.page>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 56

https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-22.txt
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-22.txt
https://cyclonedx.org/specification/overview/
https://globalplatform.org/wp-content/uploads/2015/12/GPC_DigitalLetterOfApproval_v1.0.pdf
https://globalplatform.org/wp-content/uploads/2015/12/GPC_DigitalLetterOfApproval_v1.0.pdf
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/cose
https://www.iana.org/assignments/cose
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/jwt
https://pen.iana.org/pen/PenApplication.page
https://pen.iana.org/pen/PenApplication.page
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

[RFC7515]

[RFC7519]

[RFC8126]

[RFC8174]

[RFC8259]

[RFC8392]

[RFC8610]

[RFC8792]

[RFC8949]

[RFC9052]

[RFC9090]

[RFC9165]

[SPDX]

, , and , , ,

, May 2015, .

, , and , , ,

, May 2015, .

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

, ,

, , , December 2017,

.

, , , and ,

, , , May 2018,

.

, , and ,

, ,

, June 2019, .

, , , and ,

, , , June

2020, .

 and , ,

, , , December 2020,

.

,

, , , , August 2022,

.

,

, , , July 2021,

.

,

, , , December 2021,

.

, 2020,

.

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515

DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token

(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/

info/rfc8392>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in

Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-

editor.org/info/rfc8949>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and

Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://

www.rfc-editor.org/info/rfc9052>

Bormann, C. "Concise Binary Object Representation (CBOR) Tags for Object

Identifiers" RFC 9090 DOI 10.17487/RFC9090 <https://www.rfc-

editor.org/info/rfc9090>

Bormann, C. "Additional Control Operators for the Concise Data Definition

Language (CDDL)" RFC 9165 DOI 10.17487/RFC9165 <https://

www.rfc-editor.org/info/rfc9165>

"Software Package Data Exchange (SPDX)" <https://spdx.dev/wp-content/

uploads/sites/41/2020/08/SPDX-specification-2-2.pdf>

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 57

https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9090
https://www.rfc-editor.org/info/rfc9090
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf
https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf

[SUIT.Manifest]

[ThreeGPP.IMEI]

[WGS84]

[BirthdayAttack]

[CBOR.Cert.Draft]

[COSE.X509.Draft]

[EAT.media-types]

[IEEE-RA]

[IEEE.802-2001]

[IEEE.802.1AR]

[JTAG]

, , , , and ,

, ,

, 9 November 2022,

.

,

, 2019,

.

,

, 8 July 2014,

.

11.2. Informative References

, .

, , , , and ,

, ,

, 10 July 2022,

.

,

, ,

, 13 October 2022,

.

, , and , ,

, , 19 October 2022,

.

,

.

, , , July 2014,

.

, , , July 2018,

.

, February 2010,

.

Moran, B. Tschofenig, H. Birkholz, H. Zandberg, K. O. Rønningstad "A

Concise Binary Object Representation (CBOR)-based Serialization Format for the

Software Updates for Internet of Things (SUIT) Manifest" Work in Progress

Internet-Draft, draft-ietf-suit-manifest-21 <https://

www.ietf.org/archive/id/draft-ietf-suit-manifest-21.txt>

3GPP "3rd Generation Partnership Project; Technical Specification Group

Core Network and Terminals; Numbering, addressing and identification"

<https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=729>

National Geospatial-Intelligence Agency (NGA) "WORLD GEODETIC SYSTEM

1984, NGA.STND.0036_1.0.0_WGS84" <https://earth-info.nga.mil/php/

download.php?file=coord-wgs84>

"Birthday attack" <https://en.wikipedia.org/wiki/Birthday_attack.>

Mattsson, J. P. Selander, G. Raza, S. Höglund, J. M. Furuhed "CBOR

Encoded X.509 Certificates (C509 Certificates)" Work in Progress Internet-Draft,

draft-ietf-cose-cbor-encoded-cert-04 <https://www.ietf.org/archive/

id/draft-ietf-cose-cbor-encoded-cert-04.txt>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Header parameters

for carrying and referencing X.509 certificates" Work in Progress Internet-

Draft, draft-ietf-cose-x509-09 <https://www.ietf.org/archive/id/

draft-ietf-cose-x509-09.txt>

Lundblade, L. Birkholz, H. T. Fossati "EAT Media Types" Work in

Progress Internet-Draft, draft-ietf-rats-eat-media-type-01

<https://www.ietf.org/archive/id/draft-ietf-rats-eat-media-type-01.txt>

"IEEE Registration Authority" <https://standards.ieee.org/products-services/

regauth/index.html>

"IEEE Standard for Local and Metropolitan Area Networks: Overview and

Architecture" IEEE standard DOI 10.1109/ieeestd.2014.6847097

<https://doi.org/10.1109/ieeestd.2014.6847097>

"IEEE Standard for Local and Metropolitan Area Networks - Secure Device

Identity" IEEE standard DOI 10.1109/ieeestd.2018.8423794 <https://

doi.org/10.1109/ieeestd.2018.8423794>

"IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port

and Boundary-Scan Architecture" <https://ieeexplore.ieee.org/

document/5412866>

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 58

https://www.ietf.org/archive/id/draft-ietf-suit-manifest-21.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-21.txt
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=729
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=729
https://earth-info.nga.mil/php/download.php?file=coord-wgs84
https://earth-info.nga.mil/php/download.php?file=coord-wgs84
https://en.wikipedia.org/wiki/Birthday_attack.
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-04.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-04.txt
https://www.ietf.org/archive/id/draft-ietf-cose-x509-09.txt
https://www.ietf.org/archive/id/draft-ietf-cose-x509-09.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-media-type-01.txt
https://standards.ieee.org/products-services/regauth/index.html
https://standards.ieee.org/products-services/regauth/index.html
https://doi.org/10.1109/ieeestd.2014.6847097
https://doi.org/10.1109/ieeestd.2018.8423794
https://doi.org/10.1109/ieeestd.2018.8423794
https://ieeexplore.ieee.org/document/5412866
https://ieeexplore.ieee.org/document/5412866

[OUI.Guide]

[OUI.Lookup]

[RATS.Architecture]

[RFC4122]

[RFC4949]

[RFC7120]

[RFC9039]

[UCCS]

[W3C.GeoLoc]

, August 2017,

.

,

.

, , , , and ,

, ,

, 28 September 2022,

.

, , and ,

, , , July 2005,

.

, , , ,

, August 2007, .

, , ,

, , January 2014,

.

, , and ,

, , , June 2021,

.

, , , and ,

, ,

, 11 July 2022, .

, ,

, , 24 October 2013,

.

"Guidelines for Use of Extended Unique Identifier (EUI), Organizationally

Unique Identifier (OUI), and Company ID (CID)" <https://

standards.ieee.org/content/dam/ieee-standards/standards/web/documents/

tutorials/eui.pdf>

"IEEE Registration Authority Assignments" <https://regauth.standards.ieee.org/

standards-ra-web/pub/view.html#registries>

Birkholz, H. Thaler, D. Richardson, M. Smith, N. W. Pan "Remote

Attestation Procedures Architecture" Work in Progress Internet-Draft, draft-

ietf-rats-architecture-22 <https://www.ietf.org/archive/id/

draft-ietf-rats-architecture-22.txt>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI

10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Cotton, M. "Early IANA Allocation of Standards Track Code Points" BCP 100 RFC

7120 DOI 10.17487/RFC7120 <https://www.rfc-editor.org/info/

rfc7120>

Arkko, J. Jennings, C. Z. Shelby "Uniform Resource Names for Device

Identifiers" RFC 9039 DOI 10.17487/RFC9039 <https://www.rfc-

editor.org/info/rfc9039>

Birkholz, H. O'Donoghue, J. Cam-Winget, N. C. Bormann "A CBOR Tag for

Unprotected CWT Claims Sets" Work in Progress Internet-Draft, draft-ietf-rats-

uccs-03 <https://www.ietf.org/archive/id/draft-ietf-rats-uccs-03.txt>

Popescu, A., Ed. "Geolocation API Specification" W3C REC REC-geolocation-

API-20131024 W3C REC-geolocation-API-20131024 <https://

www.w3.org/TR/2013/REC-geolocation-API-20131024/>

Appendix A. Examples

Most examples are shown as just a Claims-Set that would be a payload for a CWT, JWT, detached

EAT bundle or future token types. It is shown this way because the payload is all the claims, the

most interesting part and showing full tokens makes it harder to show the claims.

Some examples of full tokens are also given.

WARNING: These examples use tag and label numbers not yet assigned by IANA.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 59

https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc9039
https://www.rfc-editor.org/info/rfc9039
https://www.ietf.org/archive/id/draft-ietf-rats-uccs-03.txt
https://www.w3.org/TR/2013/REC-geolocation-API-20131024/
https://www.w3.org/TR/2013/REC-geolocation-API-20131024/

A.1. Payload Examples

A.1.1. Simple TEE Attestation

This is a simple attestation of a TEE that includes a manifest that is a payload CoSWID to describe

the TEE's software.

/ This is an EAT payload that describes a simple TEE. /

{

 / eat_nonce / 10: h'948f8860d13a463e',

 / oemboot / 262: true,

 / dbgstat / 263: 2, / disabled-since-boot /

 / manifests / 273: [

 [

 121, / CoAP Content ID. A /

 / made up one until one /

 / is assigned for CoSWID /

 / This is byte-string wrapped /

 / payload CoSWID. It gives the TEE /

 / software name, the version and /

 / the name of the file it is in. /

 / {0: "3a24", /

 / 12: 1, /

 / 1: "Acme TEE OS", /

 / 13: "3.1.4", /

 / 2: [{31: "Acme TEE OS", 33: 1}, /

 / {31: "Acme TEE OS", 33: 2}], /

 / 6: { /

 / 17: { /

 / 24: "acme_tee_3.exe" /

 / } /

 / } /

 / } /

 h' a60064336132340c01016b

 41636d6520544545204f530d65332e31

 2e340282a2181f6b41636d6520544545

 204f53182101a2181f6b41636d652054

 4545204f5318210206a111a118186e61

 636d655f7465655f332e657865'

]

]

}

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 60

/ A payload CoSWID created by the SW vendor. All this really does /

/ is name the TEE SW, its version and lists the one file that /

/ makes up the TEE. /

1398229316({

 / Unique CoSWID ID / 0: "3a24",

 / tag-version / 12: 1,

 / software-name / 1: "Acme TEE OS",

 / software-version / 13: "3.1.4",

 / entity / 2: [

 {

 / entity-name / 31: "Acme TEE OS",

 / role / 33: 1 / tag-creator /

 },

 {

 / entity-name / 31: "Acme TEE OS",

 / role / 33: 2 / software-creator /

 }

],

 / payload / 6: {

 / ...file / 17: {

 / ...fs-name / 24: "acme_tee_3.exe"

 }

 }

})

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 61

A.1.2. Submodules for Board and Device

/ This example shows use of submodules to give information /

/ about the chip, board and overall device. /

/ /

/ The main attestation is associated with the chip with the /

/ CPU and running the main OS. It is what has the keys and /

/ produces the token. /

/ /

/ The board is made by a different vendor than the chip. /

/ Perhaps it is some generic IoT board. /

/ /

/ The device is some specific appliance that is made by a /

/ different vendor than either the chip or the board. /

/ /

/ Here the board and device submodules aren't the typical /

/ target environments as described by the RATS architecture /

/ document, but they are a valid use of submodules. /

{

 / eat_nonce / 10: h'948f8860d13a463e8e',

 / ueid / 256: h'0198f50a4ff6c05861c8860d13a638ea',

 / oemid / 258: h'894823', / IEEE OUI format OEM ID /

 / hwmodel / 259: h'549dcecc8b987c737b44e40f7c635ce8'

 / Hash of chip model name /,

 / hwversion / 260: ["1.3.4", 1], / Multipartnumeric /

 / swname / 271: "Acme OS",

 / swversion / 272: ["3.5.5", 1],

 / oemboot / 262: true,

 / dbgstat / 263: 3, / permanent-disable /

 / timestamp (iat) / 6: 1526542894,

 / submods / 266: {

 / A submodule to hold some claims about the circuit board /

 "board" : {

 / oemid / 258: h'9bef8787eba13e2c8f6e7cb4b1f4619a',

 / hwmodel / 259: h'ee80f5a66c1fb9742999a8fdab930893'

 / Hash of board module name /,

 / hwversion / 260: ["2.0a", 2] / multipartnumeric+sfx /

 },

 / A submodule to hold claims about the overall device /

 "device" : {

 / oemid / 258: 61234, / PEN Format OEM ID /

 / hwversion / 260: ["4.0", 1] / Multipartnumeric /

 }

 }

}

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 62

A.1.3. EAT Produced by Attestation Hardware Block

/ This is an example of a token produced by a HW block /

/ purpose-built for attestation. Only the nonce claim changes /

/ from one attestation to the next as the rest either come /

/ directly from the hardware or from one-time-programmable memory /

/ (e.g. a fuse). 47 bytes encoded in CBOR (8 byte nonce, 16 byte /

/ UEID). /

{

 / eat_nonce / 10: h'948f8860d13a463e',

 / ueid / 256: h'0198f50a4ff6c05861c8860d13a638ea',

 / oemid / 258: 64242, / Private Enterprise Number /

 / oemboot / 262: true,

 / dbgstat / 263: 3, / disabled-permanently /

 / hwversion / 260: ["3.1", 1] / Type is multipartnumeric /

}

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 63

A.1.4. Key / Key Store Attestation

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 64

/ This is an attestation of a public key and the key store /

/ implementation that protects and manages it. The key store /

/ implementation is in a security-oriented execution /

/ environment separate from the high-level OS, for example a /

/ TEE. The key store is the Attester. /

/ /

/ There is some attestation of the high-level OS, just version /

/ and boot & debug status. It is a Claims-Set submodule because/

/ it has lower security level than the key store. The key /

/ store's implementation has access to info about the HLOS, so /

/ it is able to include it. /

/ /

/ A key and an indication of the user authentication given to /

/ allow access to the key is given. The labels for these are /

/ in the private space since this is just a hypothetical /

/ example, not part of a standard protocol. /

/ /

/ This is similar to Android Key Attestation. /

{

 / eat_nonce / 10: h'948f8860d13a463e',

 / oemboot / 262: true,

 / dbgstat / 263: 2, / disabled-since-boot /

 / manifests / 273: [

 [121, / CoAP Content ID. A /

 / made up one until one /

 / is assigned for CoSWID /

 h'a600683762623334383766

 0c000169436172626f6e6974650d6331

 2e320e0102a2181f75496e6475737472

 69616c204175746f6d6174696f6e1821

 02'

]

 / Above is an encoded CoSWID /

 / with the following data /

 / SW Name: "Carbonite" /

 / SW Vers: "1.2" /

 / SW Creator: /

 / "Industrial Automation" /

],

 / exp / 4: 1634324274, / 2021-10-15T18:57:54Z /

 / iat / 6: 1634317080, / 2021-10-15T16:58:00Z /

 -80000 : "fingerprint",

 -80001 : { / The key -- A COSE_Key /

 / kty / 1: 2, / EC2, eliptic curve with x & y /

 / kid / 2: h'36675c206f96236c3f51f54637b94ced',

 / curve / -1: 2, / curve is P-256 /

 / x-coord / -2: h'65eda5a12577c2bae829437fe338701a

 10aaa375e1bb5b5de108de439c08551d',

 / y-coord / -3: h'1e52ed75701163f7f9e40ddf9f341b3d

 c9ba860af7e0ca7ca7e9eecd0084d19c'

 },

 / submods / 266 : {

 "HLOS" : { / submod for high-level OS /

 / eat_nonce / 10: h'948f8860d13a463e',

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 65

 / oemboot / 262: true,

 / manifests / 273: [

 [121, / CoAP Content ID. A /

 / made up one until one /

 / is assigned for CoSWID /

 h'a600687337

 6537346b78380c000168

 44726f6964204f530d65

 52322e44320e0302a218

 1F75496E647573747269

 616c204175746f6d6174

 696f6e182102'

]

 / Above is an encoded CoSWID /

 / with the following data: /

 / SW Name: "Droid OS" /

 / SW Vers: "R2.D2" /

 / SW Creator: /

 / "Industrial Automation"/

]

 }

 }

}

A.1.5. Software Measurements of an IoT Device

This is a simple token that might be for and IoT device. It includes CoSWID format measurments

of the SW. The CoSWID is in byte-string wrapped in the token and also shown in diagnostic form.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 66

/ This EAT payload is for an IoT device with a TEE. The attestation /

/ is produced by the TEE. There is a submodule for the IoT OS (the /

/ main OS of the IoT device that is not as secure as the TEE). The /

/ submodule contains claims for the IoT OS. The TEE also measures /

/ the IoT OS and puts the measurements in the submodule. /

{

 / eat_nonce / 10: h'948f8860d13a463e',

 / oemboot / 262: true,

 / dbgstat / 263: 2, / disabled-since-boot /

 / oemid / 258: h'8945ad', / IEEE CID based /

 / ueid / 256: h'0198f50a4ff6c05861c8860d13a638ea',

 / submods / 266: {

 "OS" : {

 / oemboot / 262: true,

 / dbgstat / 263: 2, / disabled-since-boot /

 / measurements / 274: [

 [

 121, / CoAP Content ID. A /

 / made up one until one /

 / is assigned for CoSWID /

 / This is a byte-string wrapped /

 / evidence CoSWID. It has /

 / hashes of the main files of /

 / the IoT OS. /

 h'a600663463613234350c

 17016d41636d6520522d496f542d4f

 530d65332e312e3402a2181f724163

 6d6520426173652041747465737465

 7218210103a11183a318187161636d

 655f725f696f745f6f732e65786514

 1a0044b349078201582005f6b327c1

 73b4192bd2c3ec248a292215eab456

 611bf7a783e25c1782479905a31818

 6d7265736f75726365732e72736314

 1a000c38b10782015820c142b9aba4

 280c4bb8c75f716a43c99526694caa

 be529571f5569bb7dc542f98a31818

 6a636f6d6d6f6e2e6c6962141a0023

 3d3b0782015820a6a9dcdfb3884da5

 f884e4e1e8e8629958c2dbc7027414

 43a913e34de9333be6'

]

]

 }

 }

}

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 67

/ An evidence CoSWID created for the "Acme R-IoT-OS" created by /

/ the "Acme Base Attester" (both fictious names). It provides /

/ measurements of the SW (other than the attester SW) on the /

/ device. /

1398229316({

 / Unique CoSWID ID / 0: "4ca245",

 / tag-version / 12: 23, / Attester-maintained counter /

 / software-name / 1: "Acme R-IoT-OS",

 / software-version / 13: "3.1.4",

 / entity / 2: {

 / entity-name / 31: "Acme Base Attester",

 / role / 33: 1 / tag-creator /

 },

 / evidence / 3: {

 / ...file / 17: [

 {

 / ...fs-name / 24: "acme_r_iot_os.exe",

 / ...size / 20: 4502345,

 / ...hash / 7: [

 1, / SHA-256 /

 h'05f6b327c173b419

 2bd2c3ec248a2922

 15eab456611bf7a7

 83e25c1782479905'

]

 },

 {

 / ...fs-name / 24: "resources.rsc",

 / ...size / 20: 800945,

 / ...hash / 7: [

 1, / SHA-256 /

 h'c142b9aba4280c4b

 b8c75f716a43c995

 26694caabe529571

 f5569bb7dc542f98'

]

 },

 {

 / ...fs-name / 24: "common.lib",

 / ...size / 20: 2309435,

 / ...hash / 7: [

 1, / SHA-256 /

 h'a6a9dcdfb3884da5

 f884e4e1e8e86299

 58c2dbc702741443

 a913e34de9333be6'

]

 }

]

 }

})

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 68

A.1.6. Attestation Results in JSON format

This is a JSON-format payload that might be the output of a verifier that evaluated the IoT

Attestation example immediately above.

This particular verifier knows enough about the TEE attester to be able to pass claims like debug

status directly through to the relying party. The verifier also knows the reference values for the

measured software components and is able to check them. It informs the relying party that they

were correct in the "measres" claim. "Trustus Verifications" is the name of the services that

verifies the software component measurements.

{

 "eat_nonce": "jkd8KL-8=Qlzg4",

 "oemboot": true,

 "dbgstat": "disabled-since-boot",

 "oemid": "iUWt",

 "ueid": "AZj1Ck_2wFhhyIYNE6Y4",

 "swname": "Acme R-IoT-OS",

 "swversion": [

 "3.1.4"

],

 "measres": [

 [

 "Trustus Measurements",

 [

 [

 "all",

 "success"

]

]

]

]

}

A.1.7. JSON-encoded Token with Sumodules

This example has its lines wrapped per .[RFC8792]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 69

{

 "eat_nonce": "lI-IYNE6Rj6O",

 "ueid": "AJj1Ck_2wFhhyIYNE6Y46g==",

 "secboot": true,

 "dbgstat": "disabled-permanently",

 "iat": 1526542894,

 "submods": {

 "Android App Foo": {

 "swname": "Foo.app"

 },

 "Secure Element Eat": [

 "CBOR",

 "2D3ShEOhASagWGaoCkiUj4hg0TpGPhkBAFABmPUKT_bAWGHIhg0TpjjqGQ\

ECGfryGQEFBBkBBvUZAQcDGQEEgmMzLjEBGQEKoWNURUWCL1gg5c-V_ST6txRGdC3VjU\

Pa4XjlX-K5QpGpKRCC_8JjWgtYQPaQywOIZ3-mJKN3X9fLxOhAnsmBa-MvpHRzOw-Ywn\

-67bvJljuctezAPD41s6_At7NbSV3qwJlxIuqGfwe41es="

],

 "Linux Android": {

 "swname": "Android"

 },

 "Subsystem J": [

 "JWT",

 "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJKLUF0dGVzd\

GVyIiwiaWF0IjoxNjUxNzc0ODY4LCJleHAiOm51bGwsImF1ZCI6IiIsInN1YiI6IiJ9.\

gjw4nFMhLpJUuPXvMPzK1GMjhyJq2vWXg1416XKszwQ"

]

 }

}

A.2. Full Token Examples

A.2.1. Basic CWT Example

This is a simple ECDSA signed CWT-format token.

/ This is a full CWT-format token with a very simple payloal. /

/ The main structure visible here is that of the COSE_Sign1. /

61(18([

 h'A10126', / protected headers /

 {}, / empty unprotected headers /

 h'A20B46024A6B0978DE0A49000102030405060708', / payload /

 h'9B9B2F5E470000F6A20C8A4157B5763FC45BE759

 9A5334028517768C21AFFB845A56AB557E0C8973

 A07417391243A79C478562D285612E292C622162

 AB233787' / signature /

]))

A.2.2. Detached EAT Bundle

In this detached EAT bundle, the main token is produced by a HW attestation block. The detached

Claims-Set is produced by a TEE and is largely identical to the Simple TEE examples above. The

TEE digests its Claims-Set and feeds that digest to the HW block.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 70

In a better example the attestation produced by the HW block would be a CWT and thus signed

and secured by the HW block. Since the signature covers the digest from the TEE that Claims-Set

is also secured.

The detached EAT bundle itself can be assembled by untrusted software.

/ This is a detached EAT bundle tag. Note that 602, the tag /

/ identifying a detached EAT bundle is not yet registered /

/ with IANA /

602([

 / First part is a full EAT token with claims like nonce and /

 / UEID. Most importantly, it includes a submodule that is a /

 / detached digest which is the hash of the "TEE" claims set /

 / in the next section. The COSE payload follows: /

 / { /

 / 10: h'948F8860D13A463E', /

 / 256: h'0198F50A4FF6C05861C8860D13A638EA', /

 / 258: 64242, /

 / 262: true, /

 / 263: 3, /

 / 260: ["3.1", 1], /

 / 266: { /

 / "TEE": [/

 / -16, /

 / h'8DEF652F47000710D9F466A4C666E209 /

 / DD74F927A1CEA352B03143E188838ABE' /

 /] /

 / } /

 / } /

 h'D83DD28443A10126A05866A80A48948F8860D13A463E1901

 00500198F50A4FF6C05861C8860D13A638EA19010219FAF2

 19010504190106F5190107031901048263332E310119010A

 A163544545822F58208DEF652F47000710D9F466A4C666E2

 09DD74F927A1CEA352B03143E188838ABE5840F690CB0388

 677FA624A3775FD7CBC4E8409EC9816BE32FA474733B0F98

 C27FBAEDBBC9963B9CB5ECC03C3E35B3AFC0B7B35B495DEA

 C0997122EA867F07B8D5EB',

 {

 / A CBOR-encoded byte-string wrapped EAT claims-set. It /

 / contains claims suitable for a TEE /

 "TEE" : h'a40a48948f8860d13a463e190106f519010702

 190111818218795858a60064336132340c0101

 6b41636d6520544545204f530d65332e312e34

 0282a2181f6b41636d6520544545204f531821

 01a2181f6b41636d6520544545204f53182102

 06a111a118186e61636d655f7465655f332e65

 7865'

 }

])

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 71

/ This example contains submodule that is a detached digest, /

/ which is the hash of a Claims-Set convey outside this token. /

/ Other than that is is the other example of a token from an /

/ attestation HW block /

{

 / eat_nonce / 10: h'948f8860d13a463e',

 / ueid / 256: h'0198f50a4ff6c05861c8860d13a638ea',

 / oemid / 258: 64242, / Private Enterprise Number /

 / oemboot / 262: true,

 / dbgstat / 263: 3, / disabled-permanently /

 / hwversion / 260: ["3.1", 1], / multipartnumeric /

 / submods/ 266: {

 "TEE": [/ detached digest submod /

 -16, / SHA-256 /

 h'e5cf95fd24fab7144674

 2dd58d43dae178e55fe2

 b94291a9291082ffc263

 5a0b'

]

 }

}

A.2.3. JSON-encoded Detached EAT Bundle

In this bundle there are two detached Claims-Sets, "CS1" and "CS2". The JWT at the start of the

bundle has detached signature submodules with hashes of "CS1" and "CS2". TODO: make the JWT

actually be correct verifiable JWT.

This example has its lines wrapped per .[RFC8792]

[

 [

 "JWT",

 "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJKLUF0dGVzdGVy\

IiwiaWF0IjoxNjUxNzc0ODY4LCJleHAiOm51bGwsImF1ZCI6IiIsInN1YiI6IiJ9.gjw\

4nFMhLpJUuPXvMPzK1GMjhyJq2vWXg1416XKszwQ"

],

 {

 "Audio Subsystem Claims": "ewogICAgICAgICAgICAibm9uY2UiOiAgICA\

gImxJK0lZTkU2Umo2TyIsCiAgICAgICAgICAgICJpYXQiOiAgICAgIDE1MjY1NDI4OTQ\

KICAgICAgICAgfQo=",

 "Graphics Subsystem Claims": "ewogICAgICAgICAgICAibm9uY2UiOiAg\

ICJsSStJWU5FNlJqNk8iLAogICAgICAgICAgICAiaWF0IjogICAgIDE1MjY1NDI4OTQK\

ICAgICAgICB9"

 }

]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 72

Appendix B. UEID Design Rationale

B.1. Collision Probability

This calculation is to determine the probability of a collision of UEIDs given the total possible

entity population and the number of entities in a particular entity management database.

Three different sized databases are considered. The number of devices per person roughly

models non-personal devices such as traffic lights, devices in stores they shop in, facilities they

work in and so on, even considering individual light bulbs. A device may have individually

attested subsystems, for example parts of a car or a mobile phone. It is assumed that the largest

database will have at most 10% of the world's population of devices. Note that databases that

handle more than a trillion records exist today.

The trillion-record database size models an easy-to-imagine reality over the next decades. The

quadrillion-record database is roughly at the limit of what is imaginable and should probably be

accommodated. The 100 quadrillion datadbase is highly speculative perhaps involving

nanorobots for every person, livestock animal and domesticated bird. It is included to round out

the analysis.

Note that the items counted here certainly do not have IP address and are not individually

connected to the network. They may be connected to internal buses, via serial links, Bluetooth

and so on. This is not the same problem as sizing IP addresses.

People Devices /

Person

Subsystems /

Device

Database

Portion

Database Size

10 billion 100 10 10% trillion (10^12)

10 billion 100,000 10 10% quadrillion (10^15)

100

billion

1,000,000 10 10% 100 quadrillion

(10^17)

Table 5

This is conceptually similar to the Birthday Problem where m is the number of possible

birthdays, always 365, and k is the number of people. It is also conceptually similar to the

Birthday Attack where collisions of the output of hash functions are considered.

The proper formula for the collision calculation is

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 73

However, for the very large values involved here, this formula requires floating point precision

higher than commonly available in calculators and software so this simple approximation is

used. See .

For this calculation:

Database Size 128-bit UEID 192-bit UEID 256-bit UEID

trillion (10^12) 2 * 10^-15 8 * 10^-35 5 * 10^-55

quadrillion (10^15) 2 * 10^-09 8 * 10^-29 5 * 10^-49

100 quadrillion (10^17) 2 * 10^-05 8 * 10^-25 5 * 10^-45

Table 6

Next, to calculate the probability of a collision occurring in one year's operation of a database, it

is assumed that the database size is in a steady state and that 10% of the database changes per

year. For example, a trillion record database would have 100 billion states per year. Each of

those states has the above calculated probability of a collision.

This assumption is a worst-case since it assumes that each state of the database is completely

independent from the previous state. In reality this is unlikely as state changes will be the

addition or deletion of a few records.

The following tables gives the time interval until there is a probability of a collision based on

there being one tenth the number of states per year as the number of records in the database.

 p = 1 - e^{-k^2/(2n)}

 p Collision Probability

 n Total possible population

 k Actual population

[BirthdayAttack]

 p = k^2 / 2n

 p Collision Probability

 n Total population based on number of bits in UEID

 k Population in a database

 t = 1 / ((k / 10) * p)

 t Time until a collision

 p Collision probability for UEID size

 k Database size

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 74

Database Size 128-bit UEID 192-bit UEID 256-bit UEID

trillion (10^12) 60,000 years 10^24 years 10^44 years

quadrillion (10^15) 8 seconds 10^14 years 10^34 years

100 quadrillion (10^17) 8 microseconds 10^11 years 10^31 years

Table 7

Clearly, 128 bits is enough for the near future thus the requirement that UEIDs be a minimum of

128 bits.

There is no requirement for 256 bits today as quadrillion-record databases are not expected in

the near future and because this time-to-collision calculation is a very worst case. A future

update of the standard may increase the requirement to 256 bits, so there is a requirement that

implementations be able to receive 256-bit UEIDs.

B.2. No Use of UUID

A UEID is not a UUID by conscious choice for the following reasons.

UUIDs are limited to 128 bits which may not be enough for some future use cases.

Today, cryptographic-quality random numbers are available from common CPUs and hardware.

This hardware was introduced between 2010 and 2015. Operating systems and cryptographic

libraries give access to this hardware. Consequently, there is little need for implementations to

construct such random values from multiple sources on their own.

Version 4 UUIDs do allow for use of such cryptographic-quality random numbers, but do so by

mapping into the overall UUID structure of time and clock values. This structure is of no value

here yet adds complexity. It also slightly reduces the number of actual bits with entropy.

The design of UUID accommodates the construction of a unique identifier by combination of

several identifiers that separately do not provide sufficient uniqueness. UEID takes the view that

this construction is no longer needed, in particular because cryptographic-quality random

number generators are readily available. It takes the view that hardware, software and/or

manufacturing process implement UEID in a simple and direct way.

[RFC4122]

Appendix C. EAT Relation to IEEE.802.1AR Secure Device

Identity (DevID)

This section describes several distinct ways in which an IEEE IDevID relates to

EAT, particularly to UEID and SUEID.

 orients around the definition of an implementation called a "DevID Module." It

describes how IDevIDs and LDevIDs are stored, protected and accessed using a DevID Module. A

particular level of defense against attack that should be achieved to be a DevID is defined. The

[IEEE.802.1AR]

[IEEE.802.1AR]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 75

intent is that IDevIDs and LDevIDs can be used with any network protocol or message format. In

these protocols and message formats the DevID secret is used to sign a nonce or similar to prove

the association of the DevID certificates with the device.

By contrast, EAT standardize a message format that is sent to a relying party, the very thing that

is not defined in . Nor does EAT give details on how keys, data and such are stored

protected and accessed. EAT is intended to work with a variety of different on-device

implementations ranging from minimal protection of assets to the highest levels of asset

protection. It does not define any particular level of defense against attack, instead providing a

set of security considerations.

EAT and DevID can be viewed as complimentary when used together or as competing to provide

a device identity service.

[IEEE.802.1AR]

C.1. DevID Used With EAT

As just described, EAT standardizes a message format and doesn't. Vice versa, EAT

doesn't define a an device implementation and DevID does.

Hence, EAT can be the message format that a DevID is used with. The DevID secret becomes the

attestation key used to sign EATs. The DevID and its certificate chain become the endorsement

sent to the verifier.

In this case, the EAT and the DevID are likely to both provide a device identifier (e.g. a serial

number). In the EAT it is the UEID (or SUEID). In the DevID (used as an endorsement), it is a

device serial number included in the subject field of the DevID certificate. It is probably a good

idea in this use for them to be the same serial number or for the UEID to be a hash of the DevID

serial number.

[IEEE.802.1AR]

C.2. How EAT Provides an Equivalent Secure Device Identity

The UEID, SUEID and other claims like OEM ID are equivalent to the secure device identity put

into the subject field of a DevID certificate. These EAT claims can represent all the same fields

and values that can be put in a DevID certificate subject. EAT explicitly and carefully defines a

variety of useful claims.

EAT secures the conveyance of these claims by having them signed on the device by the

attestation key when the EAT is generated. EAT also signs the nonce that gives freshness at this

time. Since these claims are signed for every EAT generated, they can include things that vary

over time like GPS location.

DevID secures the device identity fields by having them signed by the manufacturer of the device

sign them into a certificate. That certificate is created once during the manufacturing of the

device and never changes so the fields cannot change.

So in one case the signing of the identity happens on the device and the other in a manufacturing

facility, but in both cases the signing of the nonce that proves the binding to the actual device

happens on the device.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 76

While EAT does not specify how the signing keys, signature process and storage of the identity

values should be secured against attack, an EAT implementation may have equal defenses

against attack. One reason EAT uses CBOR is because it is simple enough that a basic EAT

implementation can be constructed entirely in hardware. This allows EAT to be implemented

with the strongest defenses possible.

C.3. An X.509 Format EAT

It is possible to define a way to encode EAT claims in an X.509 certificate. For example, the EAT

claims might be mapped to X.509 v3 extensions. It is even possible to stuff a whole CBOR-encoded

unsigned EAT token into a X.509 certificate.

If that X.509 certificate is an IDevID or LDevID, this becomes another way to use EAT and DevID

together.

Note that the DevID must still be used with an authentication protocol that has a nonce or

equivalent. The EAT here is not being used as the protocol to interact with the rely party.

C.4. Device Identifier Permanence

In terms of permanence, an IDevID is similar to a UEID in that they do not change over the life of

the device. They cease to exist only when the device is destroyed.

An SUEID is similar to an LDevID. They change on device life-cycle events.

 describes much of this permanence as resistant to attacks that seek to change the

ID. IDevID permanence can be described this way because is oriented around the

definition of an implementation with a particular level of defense against attack.

EAT is not defined around a particular implementation and must work on a range of devices that

have a range of defenses against attack. EAT thus can't be defined permanence in terms of

defense against attack. EAT's definition of permanence is in terms of operations and device

lifecycle.

[IEEE.802.1AR]

[IEEE.802.1AR]

Appendix D. CDDL for CWT and JWT

 was published before CDDL was available and thus is specified in prose, not CDDL.

Following is CDDL specifying CWT as it is needed to complete this specification. This CDDL also

covers the Claims-Set for JWT.

Note that Section 4.3.1 requires that the iat claim be the type ~time-int (Section 7.2.1), not the type

~time when it is used in an EAT as floating-point values are not allowed for the "iat" claim in EAT.

The COSE-related types in this CDDL are defined in .

This however is NOT a normative or standard definition of CWT or JWT in CDDL. The prose in

CWT and JWT remain the normative definition.

[RFC8392]

[RFC9052]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 77

; This is replicated from draft-ietf-rats-uccs

Claims-Set = {

 * $$Claims-Set-Claims

 * Claim-Label .feature "extended-claims-label" => any

}

Claim-Label = int / text

string-or-uri = text

$$Claims-Set-Claims //= (iss-claim-label => string-or-uri)

$$Claims-Set-Claims //= (sub-claim-label => string-or-uri)

$$Claims-Set-Claims //= (aud-claim-label => string-or-uri)

$$Claims-Set-Claims //= (exp-claim-label => ~time)

$$Claims-Set-Claims //= (nbf-claim-label => ~time)

$$Claims-Set-Claims //= (iat-claim-label => ~time)

$$Claims-Set-Claims //= (cti-claim-label => bytes)

iss-claim-label = JC<"iss", 1>

sub-claim-label = JC<"sub", 2>

aud-claim-label = JC<"aud", 3>

exp-claim-label = JC<"exp", 4>

nbf-claim-label = JC<"nbf", 5>

iat-claim-label = JC<"iat", 6>

cti-claim-label = CBOR-ONLY<7> ; jti in JWT: different name and text

JSON-ONLY<J> = J .feature "json"

CBOR-ONLY<C> = C .feature "cbor"

JC<J,C> = JSON-ONLY<J> / CBOR-ONLY<C>

; A JWT message is either a JWS or JWE in compact serialization form

; with the payload a Claims-Set. Compact serialization is the

; protected headers, payload and signature, each b64url encoded and

; separated by a ".". This CDDL simply matches top-level syntax of of

; a JWS or JWE since it is not possible to do more in CDDL.

JWT-Message =

 text .regexp "[A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]+"

; Note that the payload of a JWT is defined in claims-set.cddl. That

; definition is common to CBOR and JSON.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 78

; This is some CDDL describing a CWT at the top level This is

; not normative. RFC 8392 is the normative definition of CWT.

CWT-Messages = CWT-Tagged-Message / CWT-Untagged-Message

; The payload of the COSE_Message is always a Claims-Set

; The contents of a CWT Tag must always be a COSE tag

CWT-Tagged-Message = #6.61(COSE_Tagged_Message)

; An untagged CWT may be a COSE tag or not

CWT-Untagged-Message = COSE_Messages

Appendix E. Claim Characteristics

The following is design guidance for creating new EAT claims, particularly those to be registered

with IANA.

Much of this guidance is generic and could also be considered when designing new CWT or JWT

claims.

E.1. Interoperability and Relying Party Orientation

It is a broad goal that EATs can be processed by relying parties in a general way regardless of the

type, manufacturer or technology of the device from which they originate. It is a goal that there

be general-purpose verification implementations that can verify tokens for large numbers of use

cases with special cases and configurations for different device types. This is a goal of

interoperability of the semantics of claims themselves, not just of the signing, encoding and

serialization formats.

This is a lofty goal and difficult to achieve broadly requiring careful definition of claims in a

technology neutral way. Sometimes it will be difficult to design a claim that can represent the

semantics of data from very different device types. However, the goal remains even when

difficult.

E.2. Operating System and Technology Neutral

Claims should be defined such that they are not specific to an operating system. They should be

applicable to multiple large high-level operating systems from different vendors. They should

also be applicable to multiple small embedded operating systems from multiple vendors and

everything in between.

Claims should not be defined such that they are specific to a software environment or

programming language.

Claims should not be defined such that they are specific to a chip or particular hardware. For

example, they should not just be the contents of some HW status register as it is unlikely that the

same HW status register with the same bits exists on a chip of a different manufacturer.

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 79

The boot and debug state claims in this document are an example of a claim that has been

defined in this neutral way.

E.3. Security Level Neutral

Many use cases will have EATs generated by some of the most secure hardware and software

that exists. Secure Elements and smart cards are examples of this. However, EAT is intended for

use in low-security use cases the same as high-security use case. For example, an app on a mobile

device may generate EATs on its own.

Claims should be defined and registered on the basis of whether they are useful and

interoperable, not based on security level. In particular, there should be no exclusion of claims

because they are just used only in low-security environments.

E.4. Reuse of Extant Data Formats

Where possible, claims should use already standardized data items, identifiers and formats. This

takes advantage of the expertise put into creating those formats and improves interoperability.

Often extant claims will not be defined in an encoding or serialization format used by EAT. It is

preferred to define a CBOR and JSON format for them so that EAT implementations do not

require a plethora of encoders and decoders for serialization formats.

In some cases, it may be better to use the encoding and serialization as is. For example, signed X.

509 certificates and CRLs can be carried as-is in a byte string. This retains interoperability with

the extensive infrastructure for creating and processing X.509 certificates and CRLs.

E.5. Proprietary Claims

EAT allows the definition and use of proprietary claims.

For example, a device manufacturer may generate a token with proprietary claims intended only

for verification by a service offered by that device manufacturer. This is a supported use case.

In many cases proprietary claims will be the easiest and most obvious way to proceed, however

for better interoperability, use of general standardized claims is preferred.

Appendix F. Endorsements and Verification Keys

The verifier must possess the correct key when it performs the cryptographic part of an EAT

verification (e.g., verifying the COSE/JOSE signature). This section describes several ways to

identify the verification key. There is not one standard method.

The verification key itself may be a public key, a symmetric key or something complicated in the

case of a scheme like Direct Anonymous Attestation (DAA).

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 80

RATS Architecture describes what is called an endorsement. This is an input

to the verifier that is usually the basis of the trust placed in an EAT and the attester that

generated it. It may contain the public key for verification of the signature on the EAT. It may

contain reference values to which EAT claims are compared as part of the verification process. It

may contain implied claims, those that are passed on to the relying party in attestation results.

There is not yet any standard format(s) for an endorsement. One format that may be used for an

endorsement is an X.509 certificate. Endorsement data like reference values and implied claims

can be carried in X.509 v3 extensions. In this use, the public key in the X.509 certificate becomes

the verification key, so identification of the endorsement is also identification of the verification

key.

The verification key identification and establishment of trust in the EAT and the attester may also

be by some other means than an endorsement.

For the components (attester, verifier, relying party,...) of a particular end-end attestation system

to reliably interoperate, its definition should specify how the verification key is identified.

Usually, this will be in the profile document for a particular attestation system.

[RATS.Architecture]

F.1. Identification Methods

Following is a list of possible methods of key identification. A specific attestation system may

employ any one of these or one not listed here.

The following assumes endorsements are X.509 certificates or equivalent and thus does not

mention or define any identifier for endorsements in other formats. If such an endorsement

format is created, new identifiers for them will also need to be created.

F.1.1. COSE/JWS Key ID

The COSE standard header parameter for Key ID (kid) may be used. See and

COSE leaves the semantics of the key ID open-ended. It could be a record locator in a database, a

hash of a public key, an input to a KDF, an authority key identifier (AKI) for an X.509 certificate or

other. The profile document should specify what the key ID's semantics are.

[RFC9052] [RFC7515]

F.1.2. JWS and COSE X.509 Header Parameters

COSE X.509 and JSON Web Siganture define several header

parameters (x5t, x5u,...) for referencing or carrying X.509 certificates any of which may be used.

The X.509 certificate may be an endorsement and thus carrying additional input to the verifier. It

may be just an X.509 certificate, not an endorsement. The same header parameters are used in

both cases. It is up to the attestation system design and the verifier to determine which.

[COSE.X509.Draft] [RFC7515]

F.1.3. CBOR Certificate COSE Header Parameters

Compressed X.509 and CBOR Native certificates are defined by CBOR Certificates

. These are semantically compatible with X.509 and therefore can be used as an

equivalent to X.509 as described above.

[CBOR.Cert.Draft]

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 81

These are identified by their own header parameters (c5t, c5u,...).

F.1.4. Claim-Based Key Identification

For some attestation systems, a claim may be re-used as a key identifier. For example, the UEID

uniquely identifies the entity and therefore can work well as a key identifier or endorsement

identifier.

This has the advantage that key identification requires no additional bytes in the EAT and makes

the EAT smaller.

This has the disadvantage that the unverified EAT must be substantially decoded to obtain the

identifier since the identifier is in the COSE/JOSE payload, not in the headers.

F.2. Other Considerations

In all cases there must be some way that the verification key is itself verified or determined to be

trustworthy. The key identification itself is never enough. This will always be by some out-of-

band mechanism that is not described here. For example, the verifier may be configured with a

root certificate or a master key by the verifier system administrator.

Often an X.509 certificate or an endorsement carries more than just the verification key. For

example, an X.509 certificate might have key usage constraints and an endorsement might have

reference values. When this is the case, the key identifier must be either a protected header or in

the payload such that it is cryptographically bound to the EAT. This is in line with the

requirements in section 6 on Key Identification in JSON Web Signature .[RFC7515]

Appendix G. Changes from Previous Drafts

The following is a list of known changes since the immediately previous drafts. This list is non-

authoritative. It is meant to help reviewers see the significant differences. A comprehensive

history is available via the IETF Datatracker's record for this document.

G.1. From draft-ietf-rats-eat-18

Update IANA section, particularly CWT and JWT claims to be registered

Remove sentence discussing pass through of claims about the token in section 4.3

Add paragraph to appendix D noting that the "iat" claim is ~time-int

•

•

•

Contributors

Many thanks to the following contributors to draft versions of this document:

Henk Birkholz

Fraunhofer SIT

 henk.birkholz@sit.fraunhofer.de Email:

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 82

mailto:henk.birkholz@sit.fraunhofer.de

Thomas Fossati

Arm Limited

 thomas.fossati@arm.com Email:

Miguel Ballesteros

Michael Richardson

Sandelman Software Works

 mcr+ietf@sandelman.ca Email:

Patrick Uiterwijk

Mathias Brossard

Hannes Tschofenig

Arm Limited

 hannes.tschofenig@arm.com Email:

Paul Crowley

Authors' Addresses

Laurence Lundblade

Security Theory LLC

 lgl@securitytheory.com Email:

Giridhar Mandyam

Qualcomm Technologies Inc.

5775 Morehouse Drive

, San Diego California

United States of America

 +1 858 651 7200 Phone:

 mandyam@qti.qualcomm.com Email:

Jeremy O'Donoghue

Qualcomm Technologies Inc.

279 Farnborough Road

Farnborough

GU14 7LS

United Kingdom

 +44 1252 363189 Phone:

 jodonogh@qti.qualcomm.com Email:

Carl Wallace

Red Hound Software, Inc.

 carl@redhoundsoftware.com Email:

Internet-Draft EAT December 2022

Lundblade, et al. Expires 22 June 2023 Page 83

mailto:thomas.fossati@arm.com
mailto:mcr+ietf@sandelman.ca
mailto:hannes.tschofenig@arm.com
mailto:lgl@securitytheory.com
tel:+1%20858%20651%207200
mailto:mandyam@qti.qualcomm.com
tel:+44%201252%20363189
mailto:jodonogh@qti.qualcomm.com
mailto:carl@redhoundsoftware.com

	The Entity Attestation Token (EAT)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Entity Overview
	1.2. EAT as a Framework
	1.3. Operating Model and RATS Architecture
	1.3.1. Relationship between Evidence and Attestation Results

	2. Terminology
	3. Top-Level Token Definition
	4. The Claims
	4.1. eat_nonce (EAT Nonce) Claim
	4.2. Claims Describing the Entity
	4.2.1. ueid (Universal Entity ID) Claim
	4.2.2. sueids (Semi-permanent UEIDs) Claim (SUEIDs)
	4.2.3. oemid (Hardware OEM Identification) Claim
	4.2.3.1. Random Number Based OEMID
	4.2.3.2. IEEE Based OEMID
	4.2.3.3. IANA Private Enterprise Number Based OEMID

	4.2.4. hwmodel (Hardware Model) Claim
	4.2.5. hwversion (Hardware Version) Claim
	4.2.6. swname (Software Name) Claim
	4.2.7. swversion (Software Version) Claim
	4.2.8. oemboot (OEM Authorized Boot) Claim
	4.2.9. dbgstat (Debug Status) Claim
	4.2.9.1. Enabled
	4.2.9.2. Disabled
	4.2.9.3. Disabled Since Boot
	4.2.9.4. Disabled Permanently
	4.2.9.5. Disabled Fully and Permanently

	4.2.10. location (Location) Claim
	4.2.11. uptime (Uptime) Claim
	4.2.12. bootcount (Boot Count) Claim
	4.2.13. bootseed (Boot Seed) Claim
	4.2.14. dloas (Digital Letters of Approval) Claim
	4.2.15. manifests (Software Manifests) Claim
	4.2.16. measurements (Measurements) Claim
	4.2.17. measres (Software Measurement Results) Claim
	4.2.18. submods (Submodules)
	4.2.18.1. Submodule Claims-Set
	4.2.18.2. Detached Submodule Digest
	4.2.18.3. Nested Tokens

	4.3. Claims Describing the Token
	4.3.1. iat (Timestamp) Claim
	4.3.2. eat_profile (EAT Profile) Claim
	4.3.3. intuse (Intended Use) Claim

	5. Detached EAT Bundles
	6. Profiles
	6.1. Format of a Profile Document
	6.2. List of Profile Issues
	6.2.1. Use of JSON, CBOR or both
	6.2.2. CBOR Map and Array Encoding
	6.2.3. CBOR String Encoding
	6.2.4. CBOR Preferred Serialization
	6.2.5. CBOR Tags
	6.2.6. COSE/JOSE Protection
	6.2.7. COSE/JOSE Algorithms
	6.2.8. Detached EAT Bundle Support
	6.2.9. Key Identification
	6.2.10. Endorsement Identification
	6.2.11. Freshness
	6.2.12. Claims Requirements

	6.3. The Constrained Device Standard Profile

	7. Encoding and Collected CDDL
	7.1. Claims-Set and CDDL for CWT and JWT
	7.2. Encoding Data Types
	7.2.1. Common Data Types
	7.2.2. JSON Interoperability
	7.2.3. Labels
	7.2.4. CBOR Interoperability

	7.3. Collected CDDL
	7.3.1. Payload CDDL
	7.3.2. CBOR-Specific CDDL
	7.3.3. JSON-Specific CDDL

	8. Privacy Considerations
	8.1. UEID and SUEID Privacy Considerations
	8.2. Location Privacy Considerations
	8.3. Boot Seed Privacy Considerations
	8.4. Replay Protection and Privacy

	9. Security Considerations
	9.1. Claim Trustworthiness
	9.2. Key Provisioning
	9.2.1. Transmission of Key Material

	9.3. Freshness
	9.4. Multiple EAT Consumers
	9.5. Detached EAT Bundle Digest Security Considerations

	10. IANA Considerations
	10.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims Registries
	10.2. CWT and JWT Claims Registered by This Document
	10.3. UEID URN Registered by this Document
	10.4. CBOR Tag for Detached EAT Bundle Registered by this Document
	10.5. Media Types Registered by this Document

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Examples
	A.1. Payload Examples
	A.1.1. Simple TEE Attestation
	A.1.2. Submodules for Board and Device
	A.1.3. EAT Produced by Attestation Hardware Block
	A.1.4. Key / Key Store Attestation
	A.1.5. Software Measurements of an IoT Device
	A.1.6. Attestation Results in JSON format
	A.1.7. JSON-encoded Token with Sumodules

	A.2. Full Token Examples
	A.2.1. Basic CWT Example
	A.2.2. Detached EAT Bundle
	A.2.3. JSON-encoded Detached EAT Bundle

	Appendix B. UEID Design Rationale
	B.1. Collision Probability
	B.2. No Use of UUID

	Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity (DevID)
	C.1. DevID Used With EAT
	C.2. How EAT Provides an Equivalent Secure Device Identity
	C.3. An X.509 Format EAT
	C.4. Device Identifier Permanence

	Appendix D. CDDL for CWT and JWT
	Appendix E. Claim Characteristics
	E.1. Interoperability and Relying Party Orientation
	E.2. Operating System and Technology Neutral
	E.3. Security Level Neutral
	E.4. Reuse of Extant Data Formats
	E.5. Proprietary Claims

	Appendix F. Endorsements and Verification Keys
	F.1. Identification Methods
	F.1.1. COSE/JWS Key ID
	F.1.2. JWS and COSE X.509 Header Parameters
	F.1.3. CBOR Certificate COSE Header Parameters
	F.1.4. Claim-Based Key Identification

	F.2. Other Considerations

	Appendix G. Changes from Previous Drafts
	G.1. From draft-ietf-rats-eat-18

	Contributors
	Authors' Addresses

