LAMPS M. Ounsworth
Internet-Draft J. Gray
Intended status: Standards Track Entrust
Expires: 22 June 2024 M. Pala
CableLabs
J. Klaussner
D-Trust GmbH
20 December 2023
Composite Signatures For Use In Internet PKI
draft-ounsworth-pq-composite-sigs-11
Abstract
The migration to post-quantum cryptography is unique in the history
of modern digital cryptography in that neither the old outgoing nor
the new incoming algorithms are fully trusted to protect data for the
required data lifetimes. The outgoing algorithms, such as RSA and
elliptic curve, may fall to quantum cryptanalysis, while the incoming
post-quantum algorithms face uncertainty about both the underlying
mathematics as well as hardware and software implementations that
have not had sufficient maturing time to rule out classical
cryptanalytic attacks and implementation bugs.
Cautious implementers may wish to layer cryptographic algorithms such
that an attacker would need to break all of them in order to
compromise the data being protected using either a Post-Quantum /
Traditional Hybrid, Post-Quantum / Post-Quantum Hybrid, or
combinations thereof. This document, and its companions, defines a
specific instantiation of hybrid paradigm called "composite" where
multiple cryptographic algorithms are combined to form a single key
or signature such that they can be treated as a single atomic object
at the protocol level.
This document defines the structures CompositeSignaturePublicKey,
CompositeSignaturePrivateKey and CompositeSignatureValue, which are
sequences of the respective structure for each component algorithm.
Composite signature algorithm identifiers are specified in this
document which represent the explicit combinations of the underlying
component algorithms.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Ounsworth, et al. Expires 22 June 2024 [Page 1]
Internet-Draft PQ Composite Sigs December 2023
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 22 June 2024.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Changes in version -11 . . . . . . . . . . . . . . . . . . . 3
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Composite Design Philosophy . . . . . . . . . . . . . . . 6
2.3. Composite Signatures . . . . . . . . . . . . . . . . . . 6
2.3.1. Composite KeyGen . . . . . . . . . . . . . . . . . . 7
2.3.2. Composite Sign . . . . . . . . . . . . . . . . . . . 7
2.3.3. Composite Verify . . . . . . . . . . . . . . . . . . 9
2.4. OID Concatenation . . . . . . . . . . . . . . . . . . . . 11
2.5. PreHashing the Message . . . . . . . . . . . . . . . . . 13
2.6. Algorithm Selection Criteria . . . . . . . . . . . . . . 13
3. Composite Signature Structures . . . . . . . . . . . . . . . 14
3.1. pk-CompositeSignature . . . . . . . . . . . . . . . . . . 14
3.2. CompositeSignaturePublicKey . . . . . . . . . . . . . . . 15
3.3. CompositeSignaturePrivateKey . . . . . . . . . . . . . . 15
3.4. Encoding Rules . . . . . . . . . . . . . . . . . . . . . 16
3.5. Key Usage Bits . . . . . . . . . . . . . . . . . . . . . 16
4. Composite Signature Structures . . . . . . . . . . . . . . . 17
4.1. sa-CompositeSignature . . . . . . . . . . . . . . . . . . 17
4.2. CompositeSignatureValue . . . . . . . . . . . . . . . . . 18
Ounsworth, et al. Expires 22 June 2024 [Page 2]
Internet-Draft PQ Composite Sigs December 2023
5. Algorithm Identifiers . . . . . . . . . . . . . . . . . . . . 18
5.1. Notes on id-MLDSA44-RSA2048-PSS-SHA256 . . . . . . . . . 21
5.2. Notes on id-MLDSA65-RSA3072-PSS-SHA512 . . . . . . . . . 22
6. ASN.1 Module . . . . . . . . . . . . . . . . . . . . . . . . 22
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30
7.1. Object Identifier Allocations . . . . . . . . . . . . . . 30
7.1.1. Module Registration - SMI Security for PKIX Module
Identifier . . . . . . . . . . . . . . . . . . . . . 30
7.1.2. Object Identifier Registrations - SMI Security for PKIX
Algorithms . . . . . . . . . . . . . . . . . . . . . 30
8. Security Considerations . . . . . . . . . . . . . . . . . . . 33
8.1. Policy for Deprecated and Acceptable Algorithms . . . . . 33
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1. Normative References . . . . . . . . . . . . . . . . . . 33
9.2. Informative References . . . . . . . . . . . . . . . . . 35
Appendix A. Samples . . . . . . . . . . . . . . . . . . . . . . 37
A.1. Explicit Composite Signature Examples . . . . . . . . . . 37
A.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key . . . . . . . . 38
A.1.2. MLDSA44-ECDSA-P256 Private Key . . . . . . . . . . . 38
A.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate . . . 40
Appendix B. Implementation Considerations . . . . . . . . . . . 42
B.1. FIPS certification . . . . . . . . . . . . . . . . . . . 42
B.2. Backwards Compatibility . . . . . . . . . . . . . . . . . 42
B.2.1. Parallel PKIs . . . . . . . . . . . . . . . . . . . . 43
B.2.2. Hybrid Extensions (Keys and Signatures) . . . . . . . 44
Appendix C. Intellectual Property Considerations . . . . . . . . 44
Appendix D. Contributors and Acknowledgements . . . . . . . . . 44
D.1. Making contributions . . . . . . . . . . . . . . . . . . 45
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 45
1. Changes in version -11
* Remove ambiguity and made it clear that all component signature
MUST be verified
* Added language to ensure that component keys MUST not be used in
any other context
* Changed the content of the OID artifact to the DER encoded OID
* Reduced number of pre-hashing algorithm by removing SHA384 and
SHAKE and replacing those with SHA512
* Updated the prototype OIDs since the changes in this draft are not
compatible with version -10
* Fixed other nits
Ounsworth, et al. Expires 22 June 2024 [Page 3]
Internet-Draft PQ Composite Sigs December 2023
2. Introduction
During the transition to post-quantum cryptography, there will be
uncertainty as to the strength of cryptographic algorithms; we will
no longer fully trust traditional cryptography such as RSA, Diffie-
Hellman, DSA and their elliptic curve variants, but we will also not
fully trust their post-quantum replacements until they have had
sufficient scrutiny and time to discover and fix implementation bugs.
Unlike previous cryptographic algorithm migrations, the choice of
when to migrate and which algorithms to migrate to, is not so clear.
Even after the migration period, it may be advantageous for an
entity's cryptographic identity to be composed of multiple public-key
algorithms.
Cautious implementers may wish to combine cryptographic algorithms
such that an attacker would need to break all of them in order to
compromise the data being protected. Such mechanisms are referred to
as Post-Quantum / Traditional Hybrids
[I-D.driscoll-pqt-hybrid-terminology].
PQ/T Hybrid cryptography can, in general, provide solutions to two
migration problems:
* Algorithm strength uncertainty: During the transition period, some
post-quantum signature and encryption algorithms will not be fully
trusted, while also the trust in legacy public key algorithms will
start to erode. A relying party may learn some time after
deployment that a public key algorithm has become untrustworthy,
but in the interim, they may not know which algorithm an adversary
has compromised.
* Ease-of-migration: During the transition period, systems will
require mechanisms that allow for staged migrations from fully
classical to fully post-quantum-aware cryptography.
* Safeguard against faulty algorithm implementations and compromised
keys: Even for long known algorithms there is a non-negligible
risk of severe implementation faults. Latest examples are the
ROCA attack and ECDSA psychic signatures. Using more than one
algorithms will mitigate these risks.
This document defines a specific instantiation of the PQ/T Hybrid
paradigm called "composite" where multiple cryptographic algorithms
are combined to form a single signature such that it can be treated
as a single atomic algorithm at the protocol level. Composite
algorithms address algorithm strength uncertainty because the
composite algorithm remains strong so long as one of its components
remains strong. Concrete instantiations of composite signature
Ounsworth, et al. Expires 22 June 2024 [Page 4]
Internet-Draft PQ Composite Sigs December 2023
algorithms are provided based on ML-DSA, Falcon, RSA and ECDSA.
Backwards compatibility is not directly covered in this document, but
is the subject of Appendix B.2.
This document is intended for general applicability anywhere that
digital signatures are used within PKIX and CMS structures. For a
more detailed use-case discussion for composite signatures, the
reader is encouraged to look at [I-D.vaira-pquip-pqc-use-cases]
2.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The following terms are used in this document:
ALGORITHM: A standardized cryptographic primitive, as well as any
ASN.1 structures needed for encoding data and metadata needed to use
the algorithm. This document is primarily concerned with algorithms
for producing digital signatures.
BER: Basic Encoding Rules (BER) as defined in [X.690].
CLIENT: Any software that is making use of a cryptographic key. This
includes a signer, verifier, encrypter, decrypter.
COMPONENT ALGORITHM: A single basic algorithm which is contained
within a composite algorithm.
COMPOSITE ALGORITHM: An algorithm which is a sequence of two or more
component algorithms, as defined in Section 3.
DER: Distinguished Encoding Rules as defined in [X.690].
LEGACY: For the purposes of this document, a legacy algorithm is any
cryptographic algorithm currently is use which is not believe to be
resistant to quantum cryptanalysis.
PKI: Public Key Infrastructure, as defined in [RFC5280].
POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is believed
to be resistant to classical and quantum cryptanalysis, such as the
algorithms being considered for standardization by NIST.
Ounsworth, et al. Expires 22 June 2024 [Page 5]
Internet-Draft PQ Composite Sigs December 2023
PUBLIC / PRIVATE KEY: The public and private portion of an asymmetric
cryptographic key, making no assumptions about which algorithm.
SIGNATURE: A digital cryptographic signature, making no assumptions
about which algorithm.
STRIPPING ATTACK: An attack in which the attacker is able to
downgrade the cryptographic object to an attacker-chosen subset of
original set of component algorithms in such a way that it is not
detectable by the receiver. For example, substituting a composite
public key or signature for a version with fewer components.
2.2. Composite Design Philosophy
[I-D.driscoll-pqt-hybrid-terminology] defines composites as:
_Composite Cryptographic Element_: A cryptographic element that
incorporates multiple component cryptographic elements of the same
type in a multi-algorithm scheme.
Composite keys as defined here follow this definition and should be
regarded as a single key that performs a single cryptographic
operation such key generation, signing, verifying, encapsulating, or
decapsulating -- using its internal sequence of component keys as if
they form a single key. This generally means that the complexity of
combining algorithms can and should be handled by the cryptographic
library or cryptographic module, and the single composite public key,
private key, and ciphertext can be carried in existing fields in
protocols such as PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280],
CMS [RFC5652], and the Trust Anchor Format [RFC5914]. In this way,
composites achieve "protocol backwards-compatibility" in that they
will drop cleanly into any protocol that accepts signature algorithms
without requiring any modification of the protocol to handle multiple
keys.
2.3. Composite Signatures
Here we define the signature mechanism in which a signature is a
cryptographic primitive that consists of three algorithms:
* KeyGen() -> (pk, sk): A probabilistic key generation algorithm,
which generates a public key pk and a secret key sk.
* Sign(sk, Message) -> (signature): A signing algorithm which takes
as input a secret key sk and a Message, and outputs a signature
Ounsworth, et al. Expires 22 June 2024 [Page 6]
Internet-Draft PQ Composite Sigs December 2023
* Verify(pk, Message, signature) -> true or false: A verification
algorithm which takes as input a public key, a Message and
signature and outputs true if the signature and public key can be
used to verify the message. Thus it proves the Message was signed
with the secret key associated with the public key and verifies
the integrity of the Message. If the signature and public key
cannot verify the Message, it returns false.
A composite signature allows two or more underlying signature
algorithms to be combined into a single cryptographic signature
operation and can be used for applications that require signatures.
2.3.1. Composite KeyGen
The KeyGen() -> (pk, sk) of a composite signature algorithm will
perform the KeyGen() of the respective component signature algorithms
and it produces a composite public key pk as per Section 3.2 and a
composite secret key sk is per Section 3.3. The component keys MUST
be uniquely generated for each component key of a Composite and MUST
NOT be used in any other keys or as a standalone key.
2.3.2. Composite Sign
Generation of a composite signature involves applying each component
algorithm's signature process to the input message according to its
specification, and then placing each component signature value into
the CompositeSignatureValue structure defined in Section 4.1.
The following process is used to generate composite signature values.
Ounsworth, et al. Expires 22 June 2024 [Page 7]
Internet-Draft PQ Composite Sigs December 2023
Sign (sk, Message) -> (signature)
Input:
K1, K2 Signing private keys for each component. See note below on
composite inputs.
A1, A2 Component signature algorithms. See note below on
composite inputs.
Message The Message to be signed, an octet string
HASH The Message Digest Algorithm used for pre-hashing. See section
on pre-hashing below.
OID The Composite Signature String Algorithm Name converted
from ASCII to bytes. See section on OID concatenation
below.
Output:
signature The composite signature, a CompositeSignatureValue
Signature Generation Process:
1. Compute a Hash of the Message
M' = HASH(Message)
2. Generate the n component signatures independently,
according to their algorithm specifications.
S1 := Sign( K1, A1, DER(OID) || M' )
S2 := Sign( K2, A2, DER(OID) || M' )
3. Encode each component signature S1 and S2 into a BIT STRING
according to its algorithm specification.
signature ::= Sequence { S1, S2 }
4. Output signature
Figure 1: Composite Sign(sk, Message)
Ounsworth, et al. Expires 22 June 2024 [Page 8]
Internet-Draft PQ Composite Sigs December 2023
Note on composite inputs: the method of providing the list of
component keys and algorithms is flexible and beyond the scope of
this pseudo-code. When passed to the Composite Sign(sk, Message) API
the sk is a CompositePrivateKey. It is possible to construct a
CompositePrivateKey from component keys stored in separate software
or hardware keystores. Variations in the process to accommodate
particular private key storage mechanisms are considered to be
conformant to this document so long as it produces the same output as
the process sketched above.
Since recursive composite public keys are disallowed, no component
signature may itself be a composite; ie the signature generation
process MUST fail if one of the private keys K1 or K2 is a composite.
A composite signature MUST produce, and include in the output, a
signature value for every component key in the corresponding
CompositePublicKey, and they MUST be in the same order; ie in the
output, S1 MUST correspond to K1, S2 to K2.
2.3.3. Composite Verify
Verification of a composite signature involves applying each
component algorithm's verification process according to its
specification.
Compliant applications MUST output "Valid signature" (true) if and
only if all component signatures were successfully validated, and
"Invalid signature" (false) otherwise.
The following process is used to perform this verification.
Composite Verify(pk, Message, signature)
Input:
P1, P2 Public verification keys. See note below on
composite inputs.
Message Message whose signature is to be verified,
an octet string
signature CompositeSignatureValue containing the component
signature values (S1 and S2) to be verified.
A1, A2 Component signature algorithms. See note
below on composite inputs.
HASH The Message Digest Algorithm for pre-hashing. See
section on pre-hashing the message below.
Ounsworth, et al. Expires 22 June 2024 [Page 9]
Internet-Draft PQ Composite Sigs December 2023
OID The Composite Signature String Algorithm Name converted
from ASCII to bytes. See section on OID concatenation
below
Output:
Validity (bool) "Valid signature" (true) if the composite
signature is valid, "Invalid signature"
(false) otherwise.
Signature Verification Procedure::
1. Check keys, signatures, and algorithms lists for consistency.
If Error during Desequencing, or the sequences have
different numbers of elements, or any of the public keys
P1 or P2 and the algorithm identifiers A1 or A2 are
composite then output "Invalid signature" and stop.
2. Compute a Hash of the Message
M' = HASH(Message)
3. Check each component signature individually, according to its
algorithm specification.
If any fail, then the entire signature validation fails.
if not verify( P1, DER(OID) || M', S1, A1 ) then
output "Invalid signature"
if not verify( P2, DER(OID) || M', S2, A2 ) then
output "Invalid signature"
if all succeeded, then
output "Valid signature"
Figure 2: Composite Verify(pk, Message, signature)
Note on composite inputs: the method of providing the list of
component keys and algorithms is flexible and beyond the scope of
this pseudo-code. When passed to the Composite Verify(pk, Message,
signature) API the pk is a CompositePublicKey. It is possible to
construct a CompositePublicKey from component keys stored in separate
software or hardware keystores. Variations in the process to
accommodate particular private key storage mechanisms are considered
to be conformant to this document so long as it produces the same
output as the process sketched above.
Since recursive composite public keys are disallowed, no component
signature may itself be a composite; ie the signature generation
process MUST fail if one of the private keys K1 or K2 is a composite.
Ounsworth, et al. Expires 22 June 2024 [Page 10]
Internet-Draft PQ Composite Sigs December 2023
2.4. OID Concatenation
As mentioned above, the OID input value for the Composite Signature
Generation and verification process is the DER encoding of the OID
represented in Hexidecimal bytes. The following table shows the HEX
encoding for each Signature AlgorithmID
Ounsworth, et al. Expires 22 June 2024 [Page 11]
Internet-Draft PQ Composite Sigs December 2023
+=================================+============================+
| Composite Signature AlgorithmID | DER Encoding to be |
| | prepended to each Message |
+=================================+============================+
| id-MLDSA44-RSA2048-PSS-SHA256 | 060B6086480186FA6B50080101 |
+---------------------------------+----------------------------+
| id- | 060B6086480186FA6B50080102 |
| MLDSA44-RSA2048-PKCS15-SHA256 | |
+---------------------------------+----------------------------+
| id-MLDSA44-Ed25519-SHA512 | 060B6086480186FA6B50080103 |
+---------------------------------+----------------------------+
| id-MLDSA44-ECDSA-P256-SHA256 | 060B6086480186FA6B50080104 |
+---------------------------------+----------------------------+
| id-MLDSA44-ECDSA- | 060B6086480186FA6B50080105 |
| brainpoolP256r1-SHA256 | |
+---------------------------------+----------------------------+
| id-MLDSA65-RSA3072-PSS-SHA512 | 060B6086480186FA6B50080106 |
+---------------------------------+----------------------------+
| id- | 060B6086480186FA6B50080107 |
| MLDSA65-RSA3072-PKCS15-SHA512 | |
+---------------------------------+----------------------------+
| id-MLDSA65-ECDSA-P256-SHA512 | 060B6086480186FA6B50080108 |
+---------------------------------+----------------------------+
| id-MLDSA65-ECDSA- | 060B6086480186FA6B50080109 |
| brainpoolP256r1-SHA512 | |
+---------------------------------+----------------------------+
| id-MLDSA65-Ed25519-SHA512 | 060B6086480186FA6B5008010A |
+---------------------------------+----------------------------+
| id-MLDSA87-ECDSA-P384-SHA512 | 060B6086480186FA6B5008010B |
+---------------------------------+----------------------------+
| id-MLDSA87-ECDSA- | 060B6086480186FA6B5008010C |
| brainpoolP384r1-SHA512 | |
+---------------------------------+----------------------------+
| id-MLDSA87-Ed448-SHA512 | 060B6086480186FA6B5008010D |
+---------------------------------+----------------------------+
| id-Falon512-ECDSA-P256-SHA256 | 060B6086480186FA6B5008010E |
+---------------------------------+----------------------------+
| id-Falcon512-ECDSA- | 060B6086480186FA6B5008010F |
| brainpoolP256r1-SHA256 | |
+---------------------------------+----------------------------+
| id-Falcon512-Ed25519-SHA512 | 060B6086480186FA6B50080110 |
+---------------------------------+----------------------------+
Table 1: Composite Signature OID Concatenations
Ounsworth, et al. Expires 22 June 2024 [Page 12]
Internet-Draft PQ Composite Sigs December 2023
2.5. PreHashing the Message
As noted in the composite signature generation process and composite
signature verification process, the Message should be pre-hashed into
M' with the digest algorithm specified in the composite signature
algorithm identifier. The choice of the digest algorithm was chosen
with the following criteria:
1. For composites paired with RSA or ECDSA, the hashing algorithm
SHA256 or SHA512 is used as part of the RSA or ECDSA signature
algorithm and is therefore also used as the composite prehashing
algorithm.
2. For ML-DSA signing a digest of the message is allowed as long as
the hash function provides at least y bits of classical security
strength against both collision and second preimage attacks. For
MLDSA44 y is 128 bits, MLDSA65 y is 192 bits and for MLDSA87 y is
256 bits. Therefore SHA256 is paired with RSA and ECDSA with
MLDSA44 and SHA512 is paired with RSA and ECDSA with MLDSA65 and
MLDSA87 to match the appropriate security strength.
3. Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is
used to pre-hash the message when Ed25519 is a component
algorithm.
4. Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set
of prehashing algorihtms, SHA512 was selected to pre-hash the
message when Ed448 is a component algorithm.
5. TODO: For Falcon signing it is expected prehashing digest
accomodations will be allowed.
2.6. Algorithm Selection Criteria
The composite algorithm combinations defined in this document were
chosen according to the following guidelines:
1. A single RSA combination is provided at a key size of 3072 bits,
matched with NIST PQC Level 3 algorithms.
2. Elliptic curve algorithms are provided with combinations on each
of the NIST [RFC6090], Brainpool [RFC5639], and Edwards [RFC7748]
curves. NIST PQC Levels 1 - 3 algorithms are matched with
256-bit curves, while NIST levels 4 - 5 are matched with 384-bit
elliptic curves. This provides a balance between matching
classical security levels of post-quantum and traditional
algorithms, and also selecting elliptic curves which already have
wide adoption.
Ounsworth, et al. Expires 22 June 2024 [Page 13]
Internet-Draft PQ Composite Sigs December 2023
3. NIST level 1 candidates are provided, matched with 256-bit
elliptic curves, intended for constrained use cases.
If other combinations are needed, a separate specification should be
submitted to the IETF LAMPS working group. To ease implementation,
these specifications are encouraged to follow the construction
pattern of the algorithms specified in this document.
The composite structures defined in this specification allow only for
pairs of algorithms. This also does not preclude future
specification from extending these structures to define combinations
with three or more components.
3. Composite Signature Structures
In order for signatures to be composed of multiple algorithms, we
define encodings consisting of a sequence of signature primitives
(aka "component algorithms") such that these structures can be used
as a drop-in replacement for existing signature fields such as those
found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS
[RFC5652].
3.1. pk-CompositeSignature
The following ASN.1 Information Object Class is a template to be used
in defining all composite Signature public key types.
pk-CompositeSignature {
OBJECT IDENTIFIER:id, FirstPublicKeyType,
SecondPublicKeyType} PUBLIC-KEY ::=
{
IDENTIFIER id
KEY SEQUENCE {
BIT STRING (CONTAINING FirstPublicKeyType)
BIT STRING (CONTAINING SecondPublicKeyType)
}
PARAMS ARE absent
CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
}
As an example, the public key type pk-MLDSA65-ECDSA-P256-SHA256 is
defined as:
pk-MLDSA65-ECDSA-P256-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA256,
OCTET STRING, ECPoint}
Ounsworth, et al. Expires 22 June 2024 [Page 14]
Internet-Draft PQ Composite Sigs December 2023
The full set of key types defined by this specification can be found
in the ASN.1 Module in Section 6.
3.2. CompositeSignaturePublicKey
Composite public key data is represented by the following structure:
CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING
A composite key MUST contain two component public keys. The order of
the component keys is determined by the definition of the
corresponding algorithm identifier as defined in section Section 5.
Some applications may need to reconstruct the SubjectPublicKeyInfo
objects corresponding to each component public key. Table 3 in
Section 5 provides the necessary mapping between composite and their
component algorithms for doing this reconstruction. This also
motivates the design choice of SEQUENCE OF BIT STRING instead of
SEQUENCE OF OCTET STRING; using BIT STRING allows for easier
transcription between CompositeSignaturePublicKey and
SubjectPublicKeyInfo.
When the CompositeSignaturePublicKey must be provided in octet string
or bit string format, the data structure is encoded as specified in
Section 3.4.
Component keys of a CompositeSignaturePublicKey MUST NOT be used in
any other type of key or as a standalone key.
3.3. CompositeSignaturePrivateKey
Usecases that require an interoperable encoding for composite private
keys, such as when private keys are carried in PKCS #12 [RFC7292],
CMP [RFC4210] or CRMF [RFC4211] MUST use the following structure.
CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey
Each element is a OneAsymmetricKey` [RFC5958] object for a component
private key.
The parameters field MUST be absent.
The order of the component keys is the same as the order defined in
Section 3.2 for the components of CompositeSignaturePublicKey.
When a CompositeSignaturePrivateKey is conveyed inside a
OneAsymmetricKey structure (version 1 of which is also known as
PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set
Ounsworth, et al. Expires 22 June 2024 [Page 15]
Internet-Draft PQ Composite Sigs December 2023
to the corresponding composite algorithm identifier defined according
to Section 5, the privateKey field SHALL contain the
CompositeSignaturePrivateKey, and the publicKey field MUST NOT be
present. Associated public key material MAY be present in the
CompositeSignaturePrivateKey.
In some usecases the private keys that comprise a composite key may
not be represented in a single structure or even be contained in a
single cryptographic module; for example if one component is within
the FIPS boundary of a cryptographic module and the other is not; see
{sec-fips} for more discussion. The establishment of correspondence
between public keys in a CompositeSignaturePublicKey and private keys
not represented in a single composite structure is beyond the scope
of this document.
Component keys of a CompositeSignaturePrivateKey MUST NOT be used in
any other type of key or as a standalone key.
3.4. Encoding Rules
Many protocol specifications will require that the composite public
key and composite private key data structures be represented by an
octet string or bit string.
When an octet string is required, the DER encoding of the composite
data structure SHALL be used directly.
CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)
When a bit string is required, the octets of the DER encoded
composite data structure SHALL be used as the bits of the bit string,
with the most significant bit of the first octet becoming the first
bit, and so on, ending with the least significant bit of the last
octet becoming the last bit of the bit string.
CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)
In the interests of simplicity and avoiding compatibility issues,
implementations that parse these structures MAY accept both BER and
DER.
3.5. Key Usage Bits
For protocols such as X.509 [RFC5280] that specify key usage along
with the public key, then the composite public key associated with a
composite signature MUST have a signing-type key usage.
Ounsworth, et al. Expires 22 June 2024 [Page 16]
Internet-Draft PQ Composite Sigs December 2023
If the keyUsage extension is present in a Certification Authority
(CA) certificate that indicates a composite key, then any combination
of the following values MAY be present:
digitalSignature;
nonRepudiation;
keyCertSign; and
cRLSign.
If the keyUsage extension is present in an End Entity (EE)
certificate that indicates a composite key, then any combination of
the following values MAY be present:
digitalSignature; and
nonRepudiation;
4. Composite Signature Structures
4.1. sa-CompositeSignature
The ASN.1 algorithm object for a composite signature is:
sa-CompositeSignature {
OBJECT IDENTIFIER:id,
PUBLIC-KEY:publicKeyType }
SIGNATURE-ALGORITHM ::= {
IDENTIFIER id
VALUE CompositeSignatureValue
PARAMS ARE absent
PUBLIC-KEYS { publicKeyType }
}
The following is an explanation how SIGNATURE-ALGORITHM elements are
used to create Composite Signatures:
Ounsworth, et al. Expires 22 June 2024 [Page 17]
Internet-Draft PQ Composite Sigs December 2023
+=============================+===================================+
| SIGNATURE-ALGORITHM element | Definition |
+=============================+===================================+
| IDENTIFIER | The Object ID used to identify |
| | the composite Signature Algorithm |
+-----------------------------+-----------------------------------+
| VALUE | The Sequence of BIT STRINGS for |
| | each component signature value |
+-----------------------------+-----------------------------------+
| PARAMS | Parameters are absent |
+-----------------------------+-----------------------------------+
| PUBLIC-KEYS | The composite key required to |
| | produce the composite signature |
+-----------------------------+-----------------------------------+
Table 2
4.2. CompositeSignatureValue
The output of the composite signature algorithm is the DER encoding
of the following structure:
CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING
Where each BIT STRING within the SEQUENCE is a signature value
produced by one of the component keys. It MUST contain one signature
value produced by each component algorithm, and in the same order as
specified in the object identifier.
The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for
example a single BIT STRING containing the concatenated signature
values, is to gracefully handle variable-length signature values by
taking advantage of ASN.1's built-in length fields.
5. Algorithm Identifiers
This section defines the algorithm identifiers for explicit
combinations. For simplicity and prototyping purposes, the signature
algorithm object identifiers specified in this document are the same
as the composite key object Identifiers. A proper implementation
should not presume that the object ID of a composite key will be the
same as its composite signature algorithm.
This section is not intended to be exhaustive and other authors may
define others composite signature algorithms so long as they are
compatible with the structures and processes defined in this and
companion public and private key documents.
Ounsworth, et al. Expires 22 June 2024 [Page 18]
Internet-Draft PQ Composite Sigs December 2023
Some use-cases desire the flexibility for clients to use any
combination of supported algorithms, while others desire the rigidity
of explicitly-specified combinations of algorithms.
The following table summarizes the details for each explicit
composite signature algorithms:
The OID referenced are TBD for prototyping only, and the following
prefix is used for each:
replace <CompSig> with the String "2.16.840.1.114027.80.8.1"
Therefore <CompSig>.1 is equal to 2.16.840.1.114027.80.8.1.1
Signature public key types:
Ounsworth, et al. Expires 22 June 2024 [Page 19]
Internet-Draft PQ Composite Sigs December 2023
+=============================+============+=========+=======================+======+
|Composite Signature |OID |First |Second Algorithm |Pre- |
|AlgorithmID | |Algorithm| |Hash |
+=============================+============+=========+=======================+======+
|id-MLDSA44-RSA2048-PSS-SHA256|<CompSig>.1 |MLDSA44 |SHA256WithRSAPSS |SHA256|
+-----------------------------+------------+---------+-----------------------+------+
|id- |<CompSig>.2 |MLDSA44 |SHA256WithRSAEncryption|SHA256|
|MLDSA44-RSA2048-PKCS15-SHA256| | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA44-Ed25519-SHA512 |<CompSig>.3 |MLDSA44 |Ed25519 |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA44-ECDSA-P256-SHA256 |<CompSig>.4 |MLDSA44 |SHA256withECDSA |SHA256|
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA44-ECDSA- |<CompSig>.5 |MLDSA44 |SHA256withECDSA |SHA256|
|brainpoolP256r1-SHA256 | | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA65-RSA3072-PSS-SHA512|<CompSig>.6 |MLDSA65 |SHA512WithRSAPSS |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id- |<CompSig>.7 |MLDSA65 |SHA512WithRSAEncryption|SHA512|
|MLDSA65-RSA3072-PKCS15-SHA512| | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA65-ECDSA-P256-SHA512 |<CompSig>.8 |MLDSA65 |SHA512withECDSA |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA65-ECDSA- |<CompSig>.9 |MLDSA65 |SHA512withECDSA |SHA512|
|brainpoolP256r1-SHA512 | | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA65-Ed25519-SHA512 |<CompSig>.10|MLDSA65 |Ed25519 |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA87-ECDSA-P384-SHA512 |<CompSig>.11|MLDSA87 |SHA512withECDSA |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA87-ECDSA- |<CompSig>.12|MLDSA87 |SHA512withECDSA |SHA512|
|brainpoolP384r1-SHA512 | | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-MLDSA87-Ed448-SHA512 |<CompSig>.13|MLDSA87 |Ed448 |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
|id-Falon512-ECDSA-P256-SHA256|<CompSig>.14|Falcon512|SHA256withECDSA |SHA256|
+-----------------------------+------------+---------+-----------------------+------+
|id-Falcon512-ECDSA- |<CompSig>.15|Falcon512|SHA256withECDSA |SHA256|
|brainpoolP256r1-SHA256 | | | | |
+-----------------------------+------------+---------+-----------------------+------+
|id-Falcon512-Ed25519-SHA512 |<CompSig>.16|Falcon512|Ed25519 |SHA512|
+-----------------------------+------------+---------+-----------------------+------+
Table 3: Composite Signature Algorithms
Ounsworth, et al. Expires 22 June 2024 [Page 20]
Internet-Draft PQ Composite Sigs December 2023
The table above contains everything needed to implement the listed
explicit composite algorithms. See the ASN.1 module in section
Section 6 for the explicit definitions of the above Composite
signature algorithms.
Full specifications for the referenced algorithms can be found as
follows:
* _MLDSA_: [I-D.ietf-lamps-dilithium-certificates] and
[FIPS.204-ipd]
* _ECDSA_: [RFC5480]
* _Ed25519 / Ed448_: [RFC8410]
* _Falcon_: TBD
* _RSAES-PKCS-v1_5_: [RFC8017]
* _RSASSA-PSS_: [RFC8017]
5.1. Notes on id-MLDSA44-RSA2048-PSS-SHA256
Use of RSA-PSS [RFC8017] deserves a special explanation.
The RSA component keys MUST be generated at the 2048-bit security
level in order to match with ML-DSA-44
As with the other composite signature algorithms, when id-
MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the
parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL
instantiate RSA-PSS with the following parameters:
+==========================+=========+
| RSA-PSS Parameter | Value |
+==========================+=========+
| Mask Generation Function | mgf1 |
+--------------------------+---------+
| Mask Generation params | SHA-256 |
+--------------------------+---------+
| Message Digest Algorithm | SHA-256 |
+--------------------------+---------+
Table 4: RSA-PSS 2048 Parameters
where:
* Mask Generation Function (mgf1) is defined in [RFC8017]
Ounsworth, et al. Expires 22 June 2024 [Page 21]
Internet-Draft PQ Composite Sigs December 2023
* SHA-256 is defined in [RFC6234].
5.2. Notes on id-MLDSA65-RSA3072-PSS-SHA512
The RSA component keys MUST be generated at the 3072-bit security
level in order to match with ML-DSA-65.
As with the other composite signature algorithms, when id-
MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the
parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL
instantiate RSA-PSS with the following parameters:
+==========================+=========+
| RSA-PSS Parameter | Value |
+==========================+=========+
| Mask Generation Function | mgf1 |
+--------------------------+---------+
| Mask Generation params | SHA-512 |
+--------------------------+---------+
| Message Digest Algorithm | SHA-512 |
+--------------------------+---------+
Table 5: RSA-PSS 3072 Parameters
where:
* Mask Generation Function (mgf1) is defined in [RFC8017]
* SHA-512 is defined in [RFC6234].
6. ASN.1 Module
<CODE STARTS>
Composite-Signatures-2023
{ joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)
algorithm(80) id-composite-signatures-2023 (TBDMOD) }
DEFINITIONS IMPLICIT TAGS ::= BEGIN
EXPORTS ALL;
IMPORTS
PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{}
FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1]
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
Ounsworth, et al. Expires 22 June 2024 [Page 22]
Internet-Draft PQ Composite Sigs December 2023
id-mod-algorithmInformation-02(58) }
SubjectPublicKeyInfo
FROM PKIX1Explicit-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-explicit-02(51) }
OneAsymmetricKey
FROM AsymmetricKeyPackageModuleV1
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0)
id-mod-asymmetricKeyPkgV1(50) }
RSAPublicKey, ECPoint
FROM PKIXAlgs-2009
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms2008-02(56) }
sa-rsaSSA-PSS
FROM PKIX1-PSS-OAEP-Algorithms-2009
{iso(1) identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)}
;
--
-- Object Identifiers
--
-- Defined in ITU-T X.690
der OBJECT IDENTIFIER ::=
{joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}
--
-- Signature Algorithm
--
--
-- Composite Signature basic structures
--
CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING
Ounsworth, et al. Expires 22 June 2024 [Page 23]
Internet-Draft PQ Composite Sigs December 2023
CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
CompositeSignaturePublicKey ENCODED BY der)
CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
CompositeSignaturePublicKey ENCODED BY der)
CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey
CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING
-- Composite Signature Value is just a sequence of OCTET STRINGS
-- CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::=
-- SEQUENCE {
-- signaturevalue1 FirstSignatureValue,
-- signaturevalue2 SecondSignatureValue }
-- An Explicit Compsite Signature is a set of Signatures which
-- are composed of OCTET STRINGS
-- ExplicitCompositeSignatureValue ::= CompositeSignaturePair {
-- OCTET STRING,OCTET STRING}
--
-- Information Object Classes
--
pk-CompositeSignature {
OBJECT IDENTIFIER:id, FirstPublicKeyType,
SecondPublicKeyType} PUBLIC-KEY ::=
{
IDENTIFIER id
KEY SEQUENCE {
BIT STRING (CONTAINING FirstPublicKeyType)
BIT STRING (CONTAINING SecondPublicKeyType)
}
PARAMS ARE absent
CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
}
sa-CompositeSignature{OBJECT IDENTIFIER:id,
PUBLIC-KEY:publicKeyType }
SIGNATURE-ALGORITHM ::= {
IDENTIFIER id
VALUE CompositeSignatureValue
PARAMS ARE absent
PUBLIC-KEYS {publicKeyType}
Ounsworth, et al. Expires 22 June 2024 [Page 24]
Internet-Draft PQ Composite Sigs December 2023
}
-- TODO: OID to be replaced by IANA
id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 1 }
pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256,
OCTET STRING, RSAPublicKey}
sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA44-RSA2048-PSS-SHA256,
pk-MLDSA44-RSA2048-PSS-SHA256 }
-- TODO: OID to be replaced by IANA
id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 2 }
pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256,
OCTET STRING, RSAPublicKey}
sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA44-RSA2048-PKCS15-SHA256,
pk-MLDSA44-RSA2048-PKCS15-SHA256 }
-- TODO: OID to be replaced by IANA
id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 3 }
pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512,
OCTET STRING, ECPoint}
sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA44-Ed25519-SHA512,
pk-MLDSA44-Ed25519-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
Ounsworth, et al. Expires 22 June 2024 [Page 25]
Internet-Draft PQ Composite Sigs December 2023
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 4 }
pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
OCTET STRING, ECPoint}
sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA44-ECDSA-P256-SHA256,
pk-MLDSA44-ECDSA-P256-SHA256 }
-- TODO: OID to be replaced by IANA
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 5 }
pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
OCTET STRING, ECPoint}
sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 }
-- TODO: OID to be replaced by IANA
id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 6 }
pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512,
OCTET STRING, RSAPublicKey}
sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA65-RSA3072-PSS-SHA512,
pk-MLDSA65-RSA3072-PSS-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 7 }
Ounsworth, et al. Expires 22 June 2024 [Page 26]
Internet-Draft PQ Composite Sigs December 2023
pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512,
OCTET STRING, RSAPublicKey}
sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA65-RSA3072-PKCS15-SHA512,
pk-MLDSA65-RSA3072-PKCS15-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 8 }
pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512,
OCTET STRING, ECPoint}
sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA65-ECDSA-P256-SHA512,
pk-MLDSA65-ECDSA-P256-SHA512 }
-- TODO: OID to be replaced by IANA
id-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 9 }
pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
OCTET STRING, ECPoint}
sa-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 10 }
pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512,
OCTET STRING, ECPoint}
Ounsworth, et al. Expires 22 June 2024 [Page 27]
Internet-Draft PQ Composite Sigs December 2023
sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA65-Ed25519-SHA512,
pk-MLDSA65-Ed25519-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 11 }
pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512,
OCTET STRING, ECPoint}
sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA87-ECDSA-P384-SHA512,
pk-MLDSA87-ECDSA-P384-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 12 }
pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
OCTET STRING, ECPoint}
sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 }
-- TODO: OID to be replaced by IANA
id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 13 }
pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512,
OCTET STRING, ECPoint}
sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-MLDSA87-Ed448-SHA512,
Ounsworth, et al. Expires 22 June 2024 [Page 28]
Internet-Draft PQ Composite Sigs December 2023
pk-MLDSA87-Ed448-SHA512 }
-- TODO: OID to be replaced by IANA
id-Falon512-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 14 }
pk-Falon512-ECDSA-P256-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-Falon512-ECDSA-P256-SHA256,
OCTET STRING, ECPoint}
sa-Falon512-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-Falon512-ECDSA-P256-SHA256,
pk-Falon512-ECDSA-P256-SHA256 }
-- TODO: OID to be replaced by IANA
id-Falcon512-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 15 }
pk-Falcon512-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
pk-CompositeSignature{ id-Falcon512-ECDSA-brainpoolP256r1-SHA256,
OCTET STRING, ECPoint}
sa-Falcon512-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-Falcon512-ECDSA-brainpoolP256r1-SHA256,
pk-Falcon512-ECDSA-brainpoolP256r1-SHA256 }
-- TODO: OID to be replaced by IANA
id-Falcon512-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t(2) country(16) us(840) organization(1)
entrust(114027) algorithm(80) composite(8) signature(1) 16 }
pk-Falcon512-Ed25519-SHA512 PUBLIC-KEY ::=
pk-CompositeSignature{ id-Falcon512-Ed25519-SHA512,
OCTET STRING, ECPoint}
sa-Falcon512-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
sa-CompositeSignature{
id-Falcon512-Ed25519-SHA512,
pk-Falcon512-Ed25519-SHA512 }
END
<CODE ENDS>
Ounsworth, et al. Expires 22 June 2024 [Page 29]
Internet-Draft PQ Composite Sigs December 2023
7. IANA Considerations
IANA is requested to allocate a value from the "SMI Security for PKIX
Module Identifier" registry [RFC7299] for the included ASN.1 module,
and allocate values from "SMI Security for PKIX Algorithms" to
identify the fourteen Algorithms defined within.
7.1. Object Identifier Allocations
EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1
module and in Table 3.
7.1.1. Module Registration - SMI Security for PKIX Module Identifier
* Decimal: IANA Assigned - *Replace TBDMOD*
* Description: Composite-Signatures-2023 - id-mod-composite-
signatures
* References: This Document
7.1.2. Object Identifier Registrations - SMI Security for PKIX
Algorithms
* id-MLDSA44-RSA2048-PSS-SHA256
* Decimal: IANA Assigned
* Description: id-MLDSA44-RSA2048-PSS-SHA256
* References: This Document
* id-MLDSA44-RSA2048-PKCS15-SHA256
* Decimal: IANA Assigned
* Description: id-MLDSA44-RSA2048-PKCS15-SHA256
* References: This Document
* id-MLDSA44-Ed25519-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA44-Ed25519-SHA512
* References: This Document
Ounsworth, et al. Expires 22 June 2024 [Page 30]
Internet-Draft PQ Composite Sigs December 2023
* id-MLDSA44-ECDSA-P256-SHA256
* Decimal: IANA Assigned
* Description: id-MLDSA44-ECDSA-P256-SHA256
* References: This Document
* id-MLDSA44-ECDSA-brainpoolP256r1-SHA256
* Decimal: IANA Assigned
* Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256
* References: This Document
* id-MLDSA65-RSA3072-PSS-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA65-RSA3072-PSS-SHA512
* References: This Document
* id-MLDSA65-RSA3072-PKCS15-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA65-RSA3072-PKCS15-SHA512
* References: This Document
* id-MLDSA65-ECDSA-P256-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA65-ECDSA-P256-SHA512
* References: This Document
* id-MLDSA65-ECDSA-brainpoolP256r1-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512
* References: This Document
Ounsworth, et al. Expires 22 June 2024 [Page 31]
Internet-Draft PQ Composite Sigs December 2023
* id-MLDSA65-Ed25519-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA65-Ed25519-SHA512
* References: This Document
* id-MLDSA87-ECDSA-P384-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA87-ECDSA-P384-SHA512
* References: This Document
* id-MLDSA87-ECDSA-brainpoolP384r1-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512
* References: This Document
* id-MLDSA87-Ed448-SHA512
* Decimal: IANA Assigned
* Description: id-MLDSA87-Ed448-SHA512
* References: This Document
* id-Falon512-ECDSA-P256-SHA256
* Decimal: IANA Assigned
* Description: id-Falon512-ECDSA-P256-SHA256
* References: This Document
* id-Falcon512-ECDSA-brainpoolP256r1-SHA256
* Decimal: IANA Assigned
* Description: id-Falcon512-ECDSA-brainpoolP256r1-SHA256
* References: This Document
Ounsworth, et al. Expires 22 June 2024 [Page 32]
Internet-Draft PQ Composite Sigs December 2023
* id-Falcon512-Ed25519-SHA512
* Decimal: IANA Assigned
* Description: id-Falcon512-Ed25519-SHA512
* References: This Document
8. Security Considerations
8.1. Policy for Deprecated and Acceptable Algorithms
Traditionally, a public key, certificate, or signature contains a
single cryptographic algorithm. If and when an algorithm becomes
deprecated (for example, RSA-512, or SHA1), then clients performing
signatures or verifications should be updated to adhere to
appropriate policies.
In the composite model this is less obvious since implementers may
decide that certain cryptographic algorithms have complementary
security properties and are acceptable in combination even though one
or both algorithms are deprecated for individual use. As such, a
single composite public key or certificate may contain a mixture of
deprecated and non-deprecated algorithms.
Since composite algorithms are registered independently of their
component algorithms, their deprecation can be handled indpendently
from that of their component algorithms. For example a cryptographic
policy might continue to allow id-MLDSA65-ECDSA-P256-SHA256 even
after ECDH-P256 is deprecated.
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
Request Syntax Specification Version 1.7", RFC 2986,
DOI 10.17487/RFC2986, November 2000,
<https://www.rfc-editor.org/info/rfc2986>.
Ounsworth, et al. Expires 22 June 2024 [Page 33]
Internet-Draft PQ Composite Sigs December 2023
[RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen,
"Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP)", RFC 4210,
DOI 10.17487/RFC4210, September 2005,
<https://www.rfc-editor.org/info/rfc4210>.
[RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure
Certificate Request Message Format (CRMF)", RFC 4211,
DOI 10.17487/RFC4211, September 2005,
<https://www.rfc-editor.org/info/rfc4211>.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc-editor.org/info/rfc5280>.
[RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
"Elliptic Curve Cryptography Subject Public Key
Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
<https://www.rfc-editor.org/info/rfc5480>.
[RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
(ECC) Brainpool Standard Curves and Curve Generation",
RFC 5639, DOI 10.17487/RFC5639, March 2010,
<https://www.rfc-editor.org/info/rfc5639>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.
[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
DOI 10.17487/RFC5958, August 2010,
<https://www.rfc-editor.org/info/rfc5958>.
[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
Curve Cryptography Algorithms", RFC 6090,
DOI 10.17487/RFC6090, February 2011,
<https://www.rfc-editor.org/info/rfc6090>.
[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234,
DOI 10.17487/RFC6234, May 2011,
<https://www.rfc-editor.org/info/rfc6234>.
[RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", RFC 7748, DOI 10.17487/RFC7748, January
2016, <https://www.rfc-editor.org/info/rfc7748>.
Ounsworth, et al. Expires 22 June 2024 [Page 34]
Internet-Draft PQ Composite Sigs December 2023
[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,
<https://www.rfc-editor.org/info/rfc8032>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for
Ed25519, Ed448, X25519, and X448 for Use in the Internet
X.509 Public Key Infrastructure", RFC 8410,
DOI 10.17487/RFC8410, August 2018,
<https://www.rfc-editor.org/info/rfc8410>.
[RFC8411] Schaad, J. and R. Andrews, "IANA Registration for the
Cryptographic Algorithm Object Identifier Range",
RFC 8411, DOI 10.17487/RFC8411, August 2018,
<https://www.rfc-editor.org/info/rfc8411>.
[X.690] ITU-T, "Information technology - ASN.1 encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER)", ISO/IEC 8825-1:2015, November 2015.
9.2. Informative References
[Bindel2017]
Bindel, N., Herath, U., McKague, M., and D. Stebila,
"Transitioning to a quantum-resistant public key
infrastructure", 2017, <https://link.springer.com/
chapter/10.1007/978-3-319-59879-6_22>.
[I-D.becker-guthrie-noncomposite-hybrid-auth]
Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite
Hybrid Authentication in PKIX and Applications to Internet
Protocols", Work in Progress, Internet-Draft, draft-
becker-guthrie-noncomposite-hybrid-auth-00, 22 March 2022,
<https://datatracker.ietf.org/doc/html/draft-becker-
guthrie-noncomposite-hybrid-auth-00>.
[I-D.driscoll-pqt-hybrid-terminology]
D, F., "Terminology for Post-Quantum Traditional Hybrid
Schemes", Work in Progress, Internet-Draft, draft-
driscoll-pqt-hybrid-terminology-01, 20 October 2022,
<https://datatracker.ietf.org/doc/html/draft-driscoll-pqt-
hybrid-terminology-01>.
Ounsworth, et al. Expires 22 June 2024 [Page 35]
Internet-Draft PQ Composite Sigs December 2023
[I-D.guthrie-ipsecme-ikev2-hybrid-auth]
Guthrie, R., "Hybrid Non-Composite Authentication in
IKEv2", Work in Progress, Internet-Draft, draft-guthrie-
ipsecme-ikev2-hybrid-auth-00, 25 March 2022,
<https://datatracker.ietf.org/doc/html/draft-guthrie-
ipsecme-ikev2-hybrid-auth-00>.
[I-D.hale-pquip-hybrid-signature-spectrums]
Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid
signature spectrums", Work in Progress, Internet-Draft,
draft-hale-pquip-hybrid-signature-spectrums-01, 6 November
2023, <https://datatracker.ietf.org/doc/html/draft-hale-
pquip-hybrid-signature-spectrums-01>.
[I-D.ietf-lamps-dilithium-certificates]
Massimo, J., Kampanakis, P., Turner, S., and B.
Westerbaan, "Internet X.509 Public Key Infrastructure:
Algorithm Identifiers for Dilithium", Work in Progress,
Internet-Draft, draft-ietf-lamps-dilithium-certificates-
01, 6 February 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-lamps-
dilithium-certificates-01>.
[I-D.massimo-lamps-pq-sig-certificates]
Massimo, J., Kampanakis, P., Turner, S., and B.
Westerbaan, "Algorithms and Identifiers for Post-Quantum
Algorithms", Work in Progress, Internet-Draft, draft-
massimo-lamps-pq-sig-certificates-00, 8 July 2022,
<https://datatracker.ietf.org/doc/html/draft-massimo-
lamps-pq-sig-certificates-00>.
[I-D.ounsworth-pq-composite-kem]
Ounsworth, M. and J. Gray, "Composite KEM For Use In
Internet PKI", Work in Progress, Internet-Draft, draft-
ounsworth-pq-composite-kem-01, 13 March 2023,
<https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-
composite-kem-01>.
[I-D.pala-klaussner-composite-kofn]
Pala, M. and J. Klaußner, "K-threshold Composite
Signatures for the Internet PKI", Work in Progress,
Internet-Draft, draft-pala-klaussner-composite-kofn-00, 15
November 2022, <https://datatracker.ietf.org/doc/html/
draft-pala-klaussner-composite-kofn-00>.
[I-D.vaira-pquip-pqc-use-cases]
Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M.
Ounsworth, "Post-quantum cryptography use cases", Work in
Ounsworth, et al. Expires 22 June 2024 [Page 36]
Internet-Draft PQ Composite Sigs December 2023
Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases-
00, 23 October 2023,
<https://datatracker.ietf.org/doc/html/draft-vaira-pquip-
pqc-use-cases-00>.
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
2002, <https://www.rfc-editor.org/info/rfc3279>.
[RFC7292] Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
and M. Scott, "PKCS #12: Personal Information Exchange
Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
<https://www.rfc-editor.org/info/rfc7292>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
Kivinen, "Internet Key Exchange Protocol Version 2
(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
2014, <https://www.rfc-editor.org/info/rfc7296>.
[RFC7299] Housley, R., "Object Identifier Registry for the PKIX
Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
<https://www.rfc-editor.org/info/rfc7299>.
[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
Message Specification", RFC 8551, DOI 10.17487/RFC8551,
April 2019, <https://www.rfc-editor.org/info/rfc8551>.
Appendix A. Samples
A.1. Explicit Composite Signature Examples
Ounsworth, et al. Expires 22 June 2024 [Page 37]
Internet-Draft PQ Composite Sigs December 2023
A.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key
-----BEGIN PUBLIC KEY-----
MIIFfzANBgtghkgBhvprUAgBBAOCBWwAMIIFZwSCBSAA9DTYoQys3PVrayi9zTam
kTzpqf6vuNI5+UaMENvnrq3Rps5LmiQ5gSXaQMu0HYjVpCEQVQWl/8nbJavELelk
gCVn528ndGBQUChAnffxhRdxgaFmOb2SEySTnHIh6QO1UFPO2kGiGx9zU6F9xZGK
FZFBm8B076UvRHCbaw+BTvu4o+Kg1irOFRPI3hLN4ku3si2nwWSZNhDoiLaPTfJe
7TRziBznEyrnSV3I2Xn7QdKxIWUFOwPXWBnnk/FGG/A2HdxGpiqIWxZ0gNLNcb+j
Cz6CWZSJhoOLoJWdOD5zyojPPrH5iFIGM96p0PZ4mv5PhmZDPA/RTIg/PcG1rywn
OJYqAsazntGyEhHEFLRe8QYOVEbiBuv20tNzkFaaulQRdW+boStcW8NefSkKG/9D
FgGnyR87W4Z/ieHEyIva4FBamvRm60xrblAyI0Z7II4l7LTStDzL/ghFq06RVria
au+mY5laq8rAGmRbWkUxNeKeGOVHxjGFYB3uaAkHef0o7tSMMkCSSjiDQlNk5ReQ
xgJMkuTRE7YRN1bDXv/0uPPjg7zfa3M0tMCD9wTXFhIk04HDLVV5WAsH0EK6Nytd
gqnsjGCwfZb2+Fw/QytBei50DUBHpIG3da4dBrxcaRTMiQPzPzL8FaDascE0ZIJM
9ilKvxgq02ryEHLGALFN8eZD1r6zq43KFlRzaynWBWqJ27MiUzK2dk8oC+dH5cz6
+xGXAhLJ+MipoO9k9dLg8re3dOAufsKaY5DLuuluo7dO6IF7rG9xblbiIzWpyfu3
7kJvUdwk36QzsQNGsxpELk65LaWYnaebV7wKyIaaniLysuNCG0dIcAicxRNLgpX9
jic5pi+BzlJI1IuPk+DqOG57pNnU7lTg3op08MUslNyeUH5yaag8DNsLG7uZHzvx
jcqffaqcqS+v6FVmbV2tDF07jn8a754Fnn/QNgsNcdfw9Ov4w7Ty+q5nT2wg2Lsg
bAuzN6b6FiWEuHHMw/I5aIL5cLj2GUpjHtlUHL4KEHpxZ2J5jbBgeqpTWEy1TuPQ
R34lryVASmue/kmk2liah6wNK5RXlGa8uidBm7RT8b5SkIMsrosLx9KpC5lKobzn
8ttK1NSy0ZuMDw9wtnePUbROGjEuw5Na/K1VgO68dATj/7rscvz7C+ZuQORrt88X
+OZmoyw+fEDWAocDnhzI6rJIHLPB0p+rSJ8iSKZpFZYeIy+CD0t6E98RJQHll8BJ
lLyJiMT0xAyelOMzrCJayHxD01aLw6LLOddFbiIRMq4lni5Ha4noWmdO2C80xy3A
jskUEK5sbD8KFl910JUHwaGvb/gDCqW+n10mRa9+cB0tRVjo5OZeSiB01Bkagu7a
f+bRv2i8cBa2ZoGVyW3xFFFhIkHzLgHaU+RLaGwJDe0qxKtwKYz5c/YpAsH+lodM
NV2E/PzHtNY+sg0PijblN6IVO+yiLkxJspKIjf0I1+s8hczhz3QkLRed7dU2nvID
puJQfgraKyS6rawlqLyWo66/PDtdd3tngw50wnDNZik0hz/usDc6o7IN5J9ha7XO
0vZQluMb9R5l+W6RLD2nRd4mlKVqm/Yfq0R8PKoIh8f7uLVk1kbN4prkfpsokvqR
rli5h4URG7WCNvp4bg/i1Ix/CEEjH56LRj83dhVB0O6WXorrZMAChQShMhwnEgeS
USaB5au7xRAM+9fWvF9cmju3hXSTT1zv0owyoSgp36OHcy2HzwZXxA7YWtRDbhMX
BEEEkSZvSVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMh
EPbQ/KPspugi6gkrLFhcmy/OiA== -----END PUBLIC KEY-----
A.1.2. MLDSA44-ECDSA-P256 Private Key
-----BEGIN PRIVATE KEY----- MIIPmQIBADANBgtghkgBhvprUAgBBASCD4Mwgg9/
BIIPAAD0NNihDKzc9WtrKL3N NqaRPOmp/
q+40jn5RowQ2+euyt08tCb8n+fyXPTeYUqTRyok4CwyZDOBvRgzjQPo
ViTIHTQcWno6KkNnRaLLCmpapjHbTJvbRoBb09RllNQwzuM4KaISDYuwUNikESKz
ZUGAIGIyMiSHReImUtAkEkTGgcQEBIAGIsQ2ZoiERQpEJVsGKRzDiCEHaYnEjBJA
MeSmKFkIKiAXYUoYaZQkhkEWYSSFLQkkYgoEKiICZhMAIuDEAMu2YJu2aBmXjQCC
ASMEBVAoaFkiAJhEUcySIaAIEQgyISMTbBM4JqLESIMmRWDISQkHTplGahiQTMQY
JpQ2ZKQGgWMUaNCEkdAmZQHBKdJAShG0TYCikCNCcNLAcYkgQiOhcUHCZYCGROQo
YOEkZiRGkFnGiAsoYEsIYCOxaFQSAYy4EYIYRsQYRNuUSNooaUQGIMg0DdioAAsQ
RYMghgSlUNK4gVLACQgRSAkxDIs0QhEoRoKEQMMoMMSmTWNEDqOkMRw2AWSgUAQR
MaSiYAgmkeFGbtuIhFRAcSQyUWMYZIKEQNo0KkmkgVsiEcMGJJQgMko2JFKGMBmQ
RQzHhBsAASQZbNEQcVCGYZkIjkMYKpJChKEUhQSRgCTEIaEkkYSUQeMmkmSibGK0
Ounsworth, et al. Expires 22 June 2024 [Page 38]
Internet-Draft PQ Composite Sigs December 2023
TBopYAAmgVogBmIkauGADBKHKAoVQRhCYhoXUsCYgOCYJRDFgYsCLAuiEFE0ghEo
UQwSAUK2AUSAKMQobSMmcRQVbEQUDgA0MNwEhEjEaAQTaAKCjAMEcAyBSVgUZkAS
jUIQkWTCCRQVcAA2KllIAAIRQoLELRuzaCIRiZkGbNpIgYBIAQggIuOUTIzCMCI3
BoIIBcuEBYLIgMmEcZmkkEAwMEGSZRKXQKIEkcGERIFCCeEyIouYaQoEhsM2jdBI
JhS5YBAycSEEkOSAiGIYJgiQbVKkYZLIARmXTBvJjRIWYMI0RBGUkdQmZuO0QaOg
gcQGjNI4EFIyBVREAsMkIRoBClRIbgMUgVFIUgNCcVGmhBC3kdtEBBw0EVlEiRsC
YuKYCZumMFwyCMmCaYAoCgAWLBFAIqBELAGxcBoJQlKmYKCWgMKEUYQGZMqiDMqm
JRnHIJEoaAJHgByhBBIpCeQiBNAYSSEQQNKUUaMyMYs2DnQ5Y0NY1PJ+TCmdgiin
NmiycZW2gsYQVPr8uCyDiEcLELhhZoHkFkvKWQP2Y1iviJ+tgiKFSwbMipJmOq/I
hovLcLpcDIwxtiwJPsGtozGSuMwx/Se6MpI3omJT/z9a3fwV8gLxcbNiWw2UjB3N
3/BPb7Jr4F7Fu+9G4nwZI4kK4LRJ4/zgcqb0Jq/2vhLIoEQ5TpHdn2KSqrY4nHH7
Hmh74HaXrY7JHqUgj2xVwZQuW09AnjIpy7NQW8I3oNkRxf2YNqIM6pIgAHDDNbkS
FeJVp+5EhxmUTDgOwGM3kZg4enFT13auoY8iCbt8PhO3STSpo+A2he1wlmodsBvr
h42v9TpKJJW/2w0IB432RGbjCW0jiIJa5FO1jh3eH822vLnVs9VescBszHDjQRu3
+fyxFIAc/0jYYTgIFfrPqEwXZC2FA3UfpqQE7KtjTv2gN64E0/hSuBTrH2NG9Pvt
zlj04xtjMqiI3vULH9nTRcufSF/xO3POtty3zvEdBf/d+v9DKn7q6qaAB4rW6j4r
O9+WwiSowZ2lYv7vQnHT90bVKn0jHGGcHgfAlSNg7ecWBL8k+iL/U7zeAUAl9FNT
44X1eNYZZcy8MqjGiQSTIHFAQd3v93gflbAQVHC/6KDnn1OxbrhOgft2VgjjqggQ
W/jFfO/TDmaLvS3Igxsgud2H3byHOSLh2nd2bHm8yXXVUMJ3otg2/x8KnDS4Du/b
ORJSskflf0zUkfiDILHGm48bwYsvDxXc7rnIvqI7B4rrH2DzcG5Ve/kYUtOikvXu
hx01JbV2xQQfIvGWjpZWoG9GticpP3ZyRzMDSuPudiLBjVhQ0lutNvzuLclqGTVX
LshLtF1oF5nmFQTi/GExi4oUZ4ckD2V5om/fcG9Wdnn/IFVAqO0DM0SzCw1kdKbP
X97j9nOmgrrT9lnI4O5cQckjvfvGrbbM4oRNW7aInwA/SpYaXt+BnvkEt/BXTuQx lg/
g7asWzUSEqKoxM2wC5E8FqiupKMqKrdZP8wRpOrv2KikVMg9d9PM4GrCVcjKI
Xv1fyZW/H3eugnrr8/Po9J8RZkkqBUTVMXPAIju63yuqcMvU1AQRyiMo8BcdFRo4
hufRFe2K7APSGybKE5LgVALUGZ70GUl85bYVjnLslcHeZdySnXo82H+HNTM8UqKc
9BXGAJS+1Zb12fgTemZO/5PBfcgS+axLiRwUCSZDA/Hlev86OgHsjnRt3JjuNfX0
L3bHZ+9DTzRADJnm7Lyj7ylKlUuvoH+7WaPMmBiduXuuQ/k1iLOMq0TZa/T31UtP
izx6M9+1+SirJS0Dzgy5XDSCfc/I0u/lUtf1kynwSmAlLSG7YAbt1Ua/2k+5CW31
UZZdaw2HSVGFnT2PwSlXRnlq+FEdXVbzJA39oS/CNEOM/qdnRL8cU4rU40Xn0sm+
egIjYlKjKml1Dg+hVFuYvk7tY+ZUEk8mOuTFlsB1f125X80L5EnhYOeTHpn+muEt
GyoMCpdBwxV5AoQi/5DhzPqO8IPUwsjXHRKONcP2s6ibUC58HqkCmocTRJApAu9K
GZQnmcXwrSvV09AMhND3oNTIRup+pi1TSfETZGyYqouPJNgf5/3rzICwrxBfBz3c
+CDn0ELMhADS9lBQ2iLENSTYE9jCaoX+RFKQJIkJWd1GMHs6xoyNxSf9udsShyyS
aXPor4zprUON9lhzh4wcTZT9gsgkb1TesKRzkUe4/uzeDcAr2K3QgRq4H5a2F4Vt
ZJ13x+9sSrnAqPF8YMmwHEmky6Ny/m37lGKAbupMfW/vopEyQf4G9F7bqgiTJVPX
MmsvnYL0UF4LcQ5t22Vw4B1DVkrJ0itoQxFJHl4k1KFIv1k4XYVviKgmLHaNWhQo
N3rVN8sRQ+adm39D4ckB+btqNbD10hUxDiuJcouslXcYl8AoLJ82PdfItIbECKdA
zbF8HAKTMHHsexPls0BrDOrgH/Y/tvp2Gmgup56OwQNq2Hpnxnh2yNV64yk1A9Sm
4UhGenN0vIo2Ro3+RKo1pAEf6MJG7ZeLGb4xFiDfSweKQaIEtDuR86rw/AYGXlfu
OXJaNWeMDNmu/WltbjSWflpIpIKYFF8sdhkHfQpTX/XUaVZR93rS4ChtORKha+UL
/56l2DFTItDoOJ4R05PAgq6LEGz5Nr/dCRoAcpsXyj28BS3iD215llxthHMWdB6l
LUBX4IjSn+ZG8EeDCRy3E5ZBAPQ02KEMrNz1a2sovc02ppE86an+r7jSOflGjBDb
566t0abOS5okOYEl2kDLtB2I1aQhEFUFpf/J2yWrxC3pZIAlZ+dvJ3RgUFAoQJ33
8YUXcYGhZjm9khMkk5xyIekDtVBTztpBohsfc1OhfcWRihWRQZvAdO+lL0Rwm2sP
gU77uKPioNYqzhUTyN4SzeJLt7Itp8FkmTYQ6Ii2j03yXu00c4gc5xMq50ldyNl5
+0HSsSFlBTsD11gZ55PxRhvwNh3cRqYqiFsWdIDSzXG/ows+glmUiYaDi6CVnTg+
c8qIzz6x+YhSBjPeqdD2eJr+T4ZmQzwP0UyIPz3Bta8sJziWKgLGs57RshIRxBS0
Ounsworth, et al. Expires 22 June 2024 [Page 39]
Internet-Draft PQ Composite Sigs December 2023
XvEGDlRG4gbr9tLTc5BWmrpUEXVvm6ErXFvDXn0pChv/QxYBp8kfO1uGf4nhxMiL
2uBQWpr0ZutMa25QMiNGeyCOJey00rQ8y/4IRatOkVa4mmrvpmOZWqvKwBpkW1pF
MTXinhjlR8YxhWAd7mgJB3n9KO7UjDJAkko4g0JTZOUXkMYCTJLk0RO2ETdWw17/
9Ljz44O832tzNLTAg/cE1xYSJNOBwy1VeVgLB9BCujcrXYKp7IxgsH2W9vhcP0Mr
QXoudA1AR6SBt3WuHQa8XGkUzIkD8z8y/BWg2rHBNGSCTPYpSr8YKtNq8hByxgCx
TfHmQ9a+s6uNyhZUc2sp1gVqiduzIlMytnZPKAvnR+XM+vsRlwISyfjIqaDvZPXS
4PK3t3TgLn7CmmOQy7rpbqO3TuiBe6xvcW5W4iM1qcn7t+5Cb1HcJN+kM7EDRrMa
RC5OuS2lmJ2nm1e8CsiGmp4i8rLjQhtHSHAInMUTS4KV/Y4nOaYvgc5SSNSLj5Pg
6jhue6TZ1O5U4N6KdPDFLJTcnlB+cmmoPAzbCxu7mR878Y3Kn32qnKkvr+hVZm1d
rQxdO45/Gu+eBZ5/0DYLDXHX8PTr+MO08vquZ09sINi7IGwLszem+hYlhLhxzMPy
OWiC+XC49hlKYx7ZVBy+ChB6cWdieY2wYHqqU1hMtU7j0Ed+Ja8lQEprnv5JpNpY
moesDSuUV5RmvLonQZu0U/G+UpCDLK6LC8fSqQuZSqG85/LbStTUstGbjA8PcLZ3
j1G0ThoxLsOTWvytVYDuvHQE4/+67HL8+wvmbkDka7fPF/jmZqMsPnxA1gKHA54c
yOqySByzwdKfq0ifIkimaRWWHiMvgg9LehPfESUB5ZfASZS8iYjE9MQMnpTjM6wi
Wsh8Q9NWi8OiyznXRW4iETKuJZ4uR2uJ6FpnTtgvNMctwI7JFBCubGw/ChZfddCV
B8Ghr2/4Awqlvp9dJkWvfnAdLUVY6OTmXkogdNQZGoLu2n/m0b9ovHAWtmaBlclt
8RRRYSJB8y4B2lPkS2hsCQ3tKsSrcCmM+XP2KQLB/paHTDVdhPz8x7TWPrIND4o2
5TeiFTvsoi5MSbKSiI39CNfrPIXM4c90JC0Xne3VNp7yA6biUH4K2iskuq2sJai8
lqOuvzw7XXd7Z4MOdMJwzWYpNIc/7rA3OqOyDeSfYWu1ztL2UJbjG/UeZflukSw9
p0XeJpSlapv2H6tEfDyqCIfH+7i1ZNZGzeKa5H6bKJL6ka5YuYeFERu1gjb6eG4P
4tSMfwhBIx+ei0Y/N3YVQdDull6K62TAAoUEoTIcJxIHklEmgeWru8UQDPvX1rxf
XJo7t4V0k09c79KMMqEoKd+jh3Mth88GV8QO2FrUQ24TFwR5MHcCAQEEIOu1IEuD
uM16fyp4k0FSfEP+H1ka3o07lfZmk56nHuiloAoGCCqGSM49AwEHoUQDQgAEkSZv
SVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMhEPbQ/KPs
pugi6gkrLFhcmy/OiA== -----END PRIVATE KEY-----
A.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate
-----BEGIN CERTIFICATE-----
MIIP9zCCBhigAwIBAgIUUFXlmVgQD4nQC6Tzr4OlRKxVYYQwDQYLYIZIAYb6a1AI
AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yMzEyMTkxOTIzNDBaFw0yNDEyMTgx
OTIzNDBaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggV/MA0GC2CGSAGG+mtQCAEEA4IF
bAAwggVnBIIFIAD0NNihDKzc9WtrKL3NNqaRPOmp/q+40jn5RowQ2+eurdGmzkua
JDmBJdpAy7QdiNWkIRBVBaX/ydslq8Qt6WSAJWfnbyd0YFBQKECd9/GFF3GBoWY5
vZITJJOcciHpA7VQU87aQaIbH3NToX3FkYoVkUGbwHTvpS9EcJtrD4FO+7ij4qDW
Ks4VE8jeEs3iS7eyLafBZJk2EOiIto9N8l7tNHOIHOcTKudJXcjZeftB0rEhZQU7
A9dYGeeT8UYb8DYd3EamKohbFnSA0s1xv6MLPoJZlImGg4uglZ04PnPKiM8+sfmI
UgYz3qnQ9nia/k+GZkM8D9FMiD89wbWvLCc4lioCxrOe0bISEcQUtF7xBg5URuIG 6/
bS03OQVpq6VBF1b5uhK1xbw159KQob/0MWAafJHztbhn+J4cTIi9rgUFqa9Gbr
TGtuUDIjRnsgjiXstNK0PMv+CEWrTpFWuJpq76ZjmVqrysAaZFtaRTE14p4Y5UfG
MYVgHe5oCQd5/Sju1IwyQJJKOINCU2TlF5DGAkyS5NETthE3VsNe//S48+ODvN9r
czS0wIP3BNcWEiTTgcMtVXlYCwfQQro3K12CqeyMYLB9lvb4XD9DK0F6LnQNQEek
gbd1rh0GvFxpFMyJA/M/MvwVoNqxwTRkgkz2KUq/GCrTavIQcsYAsU3x5kPWvrOr
jcoWVHNrKdYFaonbsyJTMrZ2TygL50flzPr7EZcCEsn4yKmg72T10uDyt7d04C5+
wppjkMu66W6jt07ogXusb3FuVuIjNanJ+7fuQm9R3CTfpDOxA0azGkQuTrktpZid
p5tXvArIhpqeIvKy40IbR0hwCJzFE0uClf2OJzmmL4HOUkjUi4+T4Oo4bnuk2dTu
VODeinTwxSyU3J5QfnJpqDwM2wsbu5kfO/GNyp99qpypL6/oVWZtXa0MXTuOfxrv
ngWef9A2Cw1x1/D06/jDtPL6rmdPbCDYuyBsC7M3pvoWJYS4cczD8jlogvlwuPYZ
Ounsworth, et al. Expires 22 June 2024 [Page 40]
Internet-Draft PQ Composite Sigs December 2023
SmMe2VQcvgoQenFnYnmNsGB6qlNYTLVO49BHfiWvJUBKa57+SaTaWJqHrA0rlFeU
Zry6J0GbtFPxvlKQgyyuiwvH0qkLmUqhvOfy20rU1LLRm4wPD3C2d49RtE4aMS7D
k1r8rVWA7rx0BOP/uuxy/PsL5m5A5Gu3zxf45majLD58QNYChwOeHMjqskgcs8HS
n6tInyJIpmkVlh4jL4IPS3oT3xElAeWXwEmUvImIxPTEDJ6U4zOsIlrIfEPTVovD
oss510VuIhEyriWeLkdriehaZ07YLzTHLcCOyRQQrmxsPwoWX3XQlQfBoa9v+AMK
pb6fXSZFr35wHS1FWOjk5l5KIHTUGRqC7tp/5tG/aLxwFrZmgZXJbfEUUWEiQfMu
AdpT5EtobAkN7SrEq3ApjPlz9ikCwf6Wh0w1XYT8/Me01j6yDQ+KNuU3ohU77KIu
TEmykoiN/QjX6zyFzOHPdCQtF53t1Tae8gOm4lB+CtorJLqtrCWovJajrr88O113
e2eDDnTCcM1mKTSHP+6wNzqjsg3kn2Frtc7S9lCW4xv1HmX5bpEsPadF3iaUpWqb
9h+rRHw8qgiHx/u4tWTWRs3imuR+myiS+pGuWLmHhREbtYI2+nhuD+LUjH8IQSMf
notGPzd2FUHQ7pZeiutkwAKFBKEyHCcSB5JRJoHlq7vFEAz719a8X1yaO7eFdJNP XO/
SjDKhKCnfo4dzLYfPBlfEDtha1ENuExcEQQSRJm9JUOFmUFeECRpMHGWtG3rb
hRGkeUNWt3SeOc+JH3Zc2z41OOO8AiYRMyEQ9tD8o+ym6CLqCSssWFybL86IoyEw
HzAdBgNVHQ4EFgQUhcS/LyOtUFUrF+FJxoSERDrtcXQwDQYLYIZIAYb6a1AIAQQD
ggnIADCCCcMDggl1AMX5C7IKC8y1AX2ANKQWQWycGovPVFkiv+qctjfWt0jaErT1
XnR80WfR3XX1rIIZ6jG1ulkLdUGx2tFcu8Qeb0umxvYWYC6htzvGw+bjxcRm0DES
d+bkwWIBzdK23b9WqBNLqvzNccgAPXvP6PwrLxCz+sEnWcCDDqgeHphbYf3vzedR
uMvIsRYqGO09qt/tWu3JG5nwGiX+6t/YFgE5knii3sXdlHWZQ+nSAnekc2sgtCV4
cA0Lg01kBi+AZGelNuVK3EtgKJ0VTP5DQn5D1dLn/RGbqlMngsNs4xUlIFyvnJ8l
UZp6+VtfE2fWRDW4yQ4ob4Ed2KEWMtWa1GaFtIfUjDGyqYLwMOJUjE5fmhLxioqS pk/
cST+AaK5iNZzlDRC220hGOIOsiyf7UQKw+bFTENVqyXrYgTmns9zg+mc5KeZj
hE6IMFMtkQyJnRVWUL1eRviu1JL90Tcmvw1gvKdGFPDe4A7FWx0tDyAVY1wVd/sd
Lylt5QvBaIqgrtc4rDeS5pHGNdgy3zsi1YYpet5pyfQwZCtmqRggBDTCmH7nTfrV
rXDbsUm0euCK+YMwbi6DbpDV5mQrUqDX1MGk0RFDzlKRtTWrvxhhCVLgV/l/ZVgi
bEuFQg6POuCn0IA2jFJyza2TK8p82RAZbcvtM8XdJVhM0okKIRyi/8lw2kbX/p5L
l7vMmD0xPOezi2FQMxev9460Seb6FtOlvFptsLoTw4grUTQHl9brftzPAhVmUBBY
wGffj4rl70m5fHZzL3YXpxkr4jlqG8tKJc9370Emh9xXV4KMuo2Us+vnRUN+9QeX
tvDaG70jX3+760hTl4qDqMWfXY1nXhCeHWGCCmn2Yq8ULdYtIjZIMcHCXAvy68jv
7vkM5xQzDdgRMXop1Pj3aZLRI0boQ4OuR16sxmmpPUIGanfmDbvrdBBNucNcDYDy
BU5QpuCEZ8yHs94TSWLO9KP9i+IlL35TGG2zIbwbhI15HKOWzZU9ncoC2BOF6zhw
u60tdBvy5O8pinjMBQKVDPMbrIKjfCUK4f0YQ1/Bk4ssPogQNk3sRYJqWZ0MvElk
q3674KpN0OVB/kJFdAB1Uqpk4ARnZ7SsO8B/6u7rRNdthHSRsu4Fhe31EE0VUoUh
x3GQM/7gTk9El2jDBlZxwEpPEtTqARgp0ad6EJnMcIW0PEKr56HUFqfxKVjJWagV
fhtKzskghDS5lRpDY3vPq1Cq8qSl1ojcij5zm0BxI/cJIjh41RnW5D3kjt3r3Fzo
an4pPZkXzZm9/iGAoFAy7BThfg4PXVq2BMCNZPdASQjIiPEWklylW9iX+g/12iCV
Gy7F/JOG0SOH5/2d12gRDDiwn6k1KDwKPDa9htaPBGaNNXLIpr/Wb68GtTkNs1TG
e7Sf9aigE9BtTGgeniJ1Gn/aV9LGQFqRRQsnqB98bMKABZi0RjZ9yebLj6lwSFXU
pTdq/YNnBGwAmOm/HXzksOHJOjh20iDPhLjfMB6Fi+XkWVZ0TWzV2ZwOtM56tY+a
QoauIHR30QYtGZMI38HpVeLSj+iNUEKbE6kY5c69Bjalwa1pCqb9aP5VnKOkMA+3
qQ6c2ggxgudchBSXK/BZw4n4l7IvHu9wEMvsVh9mt/SAGkK53k28RDkNtX7+jfJR 5/
q7Qp626ts6Sc8rG6BmZoJIJnUXjeOcqlAoDXYRGuxCw6Jm91DL9j4t3m0bQhub
hUt9diovZ/hw2hOng+xT/oSVvauPHFpxSUu3NVcncjIljD+0U3y6cn9VnE7oFNSU
G3HadJlVTZncMrWYo954Wt3cwNA1Opcq+5Tlu76laOWJ/4eRcvOwmxrKZHUW8Tmu
qPPsAOTagFmMxOBkLzIaq39SZxHkw61SdJxXlKAtmZYnNvwT2NGpauF6P6G0FHAO
Ucfu/DDpAdKZ/GGpVxC2ttfDCzO3iya139M5fbg32RpI0q18swYFhUAqszdAPihc
4lpCGw9JdrO8i1JhB+IORJegJRPs08DYUNv7nzSbOi03iYY/QHtGw7ka5AGLfkY8
ajiLzlXwI2xMB6XBqUsAH2VxTRPJ3N/kGTzFvhiGBOYx8+jO/FqEa5E8+cafU+kW m9/
RCpumizdVzrH5MiFh0NI9iUegdHs+hDW6GDpA3VpGi5MmmeE6Ck8UyOzDNnY9
Ounsworth, et al. Expires 22 June 2024 [Page 41]
Internet-Draft PQ Composite Sigs December 2023
t53b9QxuwiYgDdw9z0KpYtGt7tRGd0qDARky8uRQZ6HFS4sNXlUFiAG9ko62CFTD
WCALXmhtqvPcjfiDDL6qMRLevi31YnhAua/Kb0Mhja+KDM/UwRIVaB3WHhulzn7U
pFQG0vVnwb0+VWhKsrWVJaJw1Eg9tmy5HJBsnmne+A2qG1ehBFCWJtV2MvyK8H9G
BxaJbq7PpPlte9ID53apvkhyvag843Ar/pOiTc8J6xncJa6w+mVViUi47/ZkZCkU
lipgCv1ZqZhQG/CERDxACulTa+0S8nO+g5CBpW6cuQVa052nRV/qhVUkQ9yzm0Pw
vUOftuX9b/W5QXas/ysUwPAeGd2XPBmK5lByyYaW14d6GBJGmyNYv7vjrbL1xeJr
smjnaRPipOvwEh6IE1OdsrlqfjG27+aXgfZWbCW28DAeTK7ilLB3ubyvPcoTrmX3
DxM7OKF+MT6PAtqSM92l76PfECvyUfv/Rf+cSF/CleTIM7xfe7IOwgxPPdMEw2rH
uS/CeJMsdBW8DwQyRcgK5h17zyaRqztATSAQK3MQ/B2f7MoXf3Z9oLpgqyBT7aiL
/XdYk8UipIyuRK4Y9Cj2UNc3DgYhzFPQY9SO3gO483uC8Tqc2IyoKaGsNS1rWY/W
rleqqraEmlMN9NToAa4ftZvqdWQLqH7sJcCQ1EzfbrkyrTKgjRmvRyA4n3t9Yjry
k+ZI3xkgrUj90xfETb+Vx/JrbegfbfZ70w7yTRnSDB01cbQP4rjI2uGZVRCxXJal
XRtaOUey+c0ZeIRp2aPrYP2DesL0Fmlc/ooSRgC8f+QHJU/7Js+WYuK8MVK/vil9
J9FgwoCJImfRzkA9KXYaix/f4XgvFLopb6kAszAff5Zmpcq72gwWv+nEE/3M78PO
zs9k5+wt65W3h4zelAIUM5hfgmJj4vvq53AeZP42AhcSV+bgsPg2xGM0Im7WAQ0P
IScqN1pepq7T9/0eMEhRdXiKj5ufub/Nztfc+Ao8RVVidXt8oMnv9vf8FxgfLkpj
dn6Mjq7Y5OXz9AAAAAAAAAAAAAAAAAAAAAAAAAAOHy09A0gAMEUCIQDD13F6CblJ
Ll2dp7GZtR5tyKObPtvUc1s16fP3g7xhvgIga8IVcv0k6DUIApPztCsP/UByrm8k
1nbSe/5A4mF87n0= -----END CERTIFICATE-----
Appendix B. Implementation Considerations
B.1. FIPS certification
One of the primary design goals of this specification is for the
overall composite algorithm to be able to be considered FIPS-approved
even when one of the component algorithms is not.
Implementors seeking FIPS certification of a composite Signature
algorithm where only one of the component algorithms has been FIPS-
validated or FIPS-approved should credit the FIPS-validated component
algorithm with full security strength, the non-FIPS-validated
component algorith with zero security, and the overall composite
should be considered full strength and thus FIPS-approved.
The authors wish to note that this gives composite algorithms great
future utility both for future cryptographic migrations as well as
bridging across jurisdictions; for example defining composite
algorithms which combine FIPS cryptography with cryptography from a
different national standards body.
B.2. Backwards Compatibility
The term "backwards compatibility" is used here to mean something
more specific; that existing systems as they are deployed today can
interoperate with the upgraded systems of the future. This draft
explicitly does not provide backwards compatibility, only upgraded
systems will understand the OIDs defined in this document.
Ounsworth, et al. Expires 22 June 2024 [Page 42]
Internet-Draft PQ Composite Sigs December 2023
If backwards compatibility is required, then additional mechanisms
will be needed. Migration and interoperability concerns need to be
thought about in the context of various types of protocols that make
use of X.509 and PKIX with relation to digital signature objects,
from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2
[RFC7296], to non-negotiated asynchronous protocols such as S/MIME
signed email [RFC8551], document signing such as in the context of
the European eIDAS regulations [eIDAS2014], and publicly trusted code
signing [codeSigningBRsv2.8], as well as myriad other standardized
and proprietary protocols and applications that leverage CMS
[RFC5652] signed structures. Composite simplifies the protocol
design work because it can be implemented as a signature algorithm
that fits into existing systems.
B.2.1. Parallel PKIs
We present the term "Parallel PKI" to refer to the setup where a PKI
end entity possesses two or more distinct public keys or certificates
for the same identity (name), but containing keys for different
cryptographic algorithms. One could imagine a set of parallel PKIs
where an existing PKI using legacy algorithms (RSA, ECC) is left
operational during the post-quantum migration but is shadowed by one
or more parallel PKIs using pure post quantum algorithms or composite
algorithms (legacy and post-quantum).
Equipped with a set of parallel public keys in this way, a client
would have the flexibility to choose which public key(s) or
certificate(s) to use in a given signature operation.
For negotiated protocols, the client could choose which public key(s)
or certificate(s) to use based on the negotiated algorithms, or could
combine two of the public keys for example in a non-composite hybrid
method such as [I-D.becker-guthrie-noncomposite-hybrid-auth] or
[I-D.guthrie-ipsecme-ikev2-hybrid-auth]. Note that it is possible to
use the signature algorithms defined in Section 5 as a way to carry
the multiple signature values generated by one of the non-composite
public mechanism in protocols where it is easier to support the
composite signature algorithms than to implement such a mechanism in
the protocol itself. There is also nothing precluding a composite
public key from being one of the components used within a non-
composite authentication operation; this may lead to greater
convenience in setting up parallel PKI hierarchies that need to
service a range of clients implementing different styles of post-
quantum migration strategies.
For non-negotiated protocols, the details for obtaining backwards
compatibility will vary by protocol, but for example in CMS
[RFC5652], the inclusion of multiple SignerInfo objects is often
Ounsworth, et al. Expires 22 June 2024 [Page 43]
Internet-Draft PQ Composite Sigs December 2023
already treated as an OR relationship, so including one for each of
the signer's parallel PKI public keys would, in many cases, have the
desired effect of allowing the receiver to choose one they are
compatible with and ignore the others, thus achieving full backwards
compatibility.
B.2.2. Hybrid Extensions (Keys and Signatures)
The use of Composite Crypto provides the possibility to process
multiple algorithms without changing the logic of applications, but
updating the cryptographic libraries: one-time change across the
whole system. However, when it is not possible to upgrade the crypto
engines/libraries, it is possible to leverage X.509 extensions to
encode the additional keys and signatures. When the custom
extensions are not marked critical, although this approach provides
the most backward-compatible approach where clients can simply ignore
the post-quantum (or extra) keys and signatures, it also requires all
applications to be updated for correctly processing multiple
algorithms together.
Appendix C. Intellectual Property Considerations
The following IPR Disclosure relates to this draft:
https://datatracker.ietf.org/ipr/3588/
Appendix D. Contributors and Acknowledgements
This document incorporates contributions and comments from a large
group of experts. The Editors would especially like to acknowledge
the expertise and tireless dedication of the following people, who
attended many long meetings and generated millions of bytes of
electronic mail and VOIP traffic over the past year in pursuit of
this document:
Scott Fluhrer (Cisco Systems), Daniel Van Geest (ISARA), Britta Hale,
Tim Hollebeek (Digicert), Panos Kampanakis (Cisco Systems), Richard
Kisley (IBM), Serge Mister (Entrust), Francois Rousseau, Falko
Strenzke and Felipe Ventura (Entrust)
We are grateful to all, including any contributors who may have been
inadvertently omitted from this list.
This document borrows text from similar documents, including those
referenced below. Thanks go to the authors of those documents.
"Copying always makes things easier and less error prone" -
[RFC8411].
Ounsworth, et al. Expires 22 June 2024 [Page 44]
Internet-Draft PQ Composite Sigs December 2023
D.1. Making contributions
Additional contributions to this draft are welcome. Please see the
working copy of this draft at, as well as open issues at:
https://github.com/EntrustCorporation/draft-ounsworth-composite-sigs
Authors' Addresses
Mike Ounsworth
Entrust Limited
2500 Solandt Road -- Suite 100
Ottawa, Ontario K2K 3G5
Canada
Email: mike.ounsworth@entrust.com
John Gray
Entrust Limited
2500 Solandt Road -- Suite 100
Ottawa, Ontario K2K 3G5
Canada
Email: john.gray@entrust.com
Massimiliano Pala
CableLabs
858 Coal Creek Circle
Louisville, Colorado, 80027
United States of America
Email: director@openca.org
Jan Klaussner
D-Trust GmbH
Kommandantenstr. 15
10969 Berlin
Germany
Email: jan.klaussner@d-trust.net
Ounsworth, et al. Expires 22 June 2024 [Page 45]