Net wor k Wor ki ng Group W Yeong
Request for Comments: 1487 Perf ormance Systens Internationa
T. Howes

Uni versity of M chigan

S. Kille

| SODE Consortium

July 1993

X. 500 Lightweight Directory Access Protoco
Status of this Meno

This RFC specifies an | AB standards track protocol for the Internet
conmuni ty, and requests discussion and suggestions for inprovenents.
Pl ease refer to the current edition of the "I AB Oficial Protoco

St andards" for the standardi zati on state and status of this protocol
Distribution of this meno is unlinited.

Abstract

The protocol described in this docunent is designed to provide access
to the Directory while not incurring the resource requirenments of the
Directory Access Protocol (DAP). This protocol is specifically
targeted at sinple managenent applications and browser applications
that provide sinple read/wite interactive access to the Directory,
and is intended to be a conplenent to the DAP itself.

Key aspects of LDAP are:

- Protocol elenents are carried directly over TCP or other transport,
bypassi ng nuch of the session/presentation overhead.

- Many protocol data elenments are encoding as ordinary strings (e.g.
Di stingui shed Names).

- A lightweight BER encoding is used to encode all protocol elenents.
1. History

The tremendous interest in X.500 [1,2] technology in the Internet has
lead to efforts to reduce the high "cost of entry" associated with
use of the technol ogy, such as the Directory Assistance Service [3]
and DIXIE [4]. Wile efforts such as these have met with success,
they have been solutions based on particul ar inplenentations and as
such have limted applicability. This docunent continues the efforts
to define Directory protocol alternatives but departs from previous
efforts in that it consciously avoi ds dependence on particul ar

Yeong, Howes & Kille [Page 1]

RFC 1487 X. 500 LDAP July 1993

2.

3.

i mpl enent ati ons.
Pr ot ocol Mbode

The general nodel adopted by this protocol is one of clients
perform ng protocol operations against servers. In this nodel, this
is acconplished by a client transmtting a protocol request

descri bing the operation to be performed to a server, which is then
responsi ble for performing the necessary operations on the Directory.
Upon conpl etion of the necessary operations, the server returns a
response containing any results or errors to the requesting client.
In keeping with the goal of easing the costs associated with use of
the Directory, it is an objective of this protocol to mninize the
conplexity of clients so as to facilitate w despread depl oynent of
applications capable of utilizing the Directory.

Note that, although servers are required to return responses whenever
such responses are defined in the protocol, there is no requirenent
for synchronous behavior on the part of either client or server

i mpl enent ati ons: requests and responses for nultiple operations may
be exchanged by client and servers in any order, as long as clients
eventual |y receive a response for every request that requires one.

Consi stent with the nodel of servers performng protocol operations
on behalf of clients, it is also to be noted that protocol servers
are expected to handle referrals without resorting to the return of
such referrals to the client. This protocol makes no provisions for
the return of referrals to clients, as the nodel is one of servers
ensuring the performance of all necessary operations in the
Directory, with only final results or errors being returned by
servers to clients.

Note that this protocol can be nmapped to a strict subset of the
directory abstract service, so it can be cleanly provided by the DAP

Mappi ng Onto Transport Services

This protocol is designed to run over connection-oriented, reliable
transports, with all 8 bits in an octet being significant in the data
stream Specifications for two underlying services are defined here,
though others are al so possible.

1. Transm ssion Control Protocol (TCP)
The LDAPMessage PDUs are mapped directly onto the TCP bytestream

Server inplenentations running over the TCP should provide a protoco
listener on port 389.

Yeong, Howes & Kille [Page 2]

RFC 1487 X. 500 LDAP

3.2. Connection Oiented Transport Service (COTS)

The connection is established.
i's made.

No speci al

4. Elenments of Protocol

For the purposes of protocol
encapsul ated in a commpn envel ope,
as follows:

exchanges, al

LDAPMessage :: =
SEQUENCE {
messagel D
pr ot ocol Op

Messagel D,

CHO CE {
bi ndRequest
bi ndResponse
unbi ndRequest
sear chRequest
sear chResponse
nodi f yRequest
nodi f yResponse
addRequest
addResponse
del Request
del Response
nodi f yRDNRequest
nodi f yRDNResponse
conpar eDNRequest
conpar eDNResponse
abandonRequest

}

Messagel D :: = I NTEGER (0 .. MaxInt)

speci a
Each LDAPMessage PDU is mapped directly onto T-Data.

pr ot oco
t he LDAPMessage,

July 1993

use of T-Connect

operations are
whi ch is defined

Bi ndRequest ,

Bi ndResponse,
Unbi ndRequest
Sear chRequest ,
Sear chResponse
Modi f yRequest ,
Modi f yResponse
AddRequest ,
AddResponse,

Del Request,

Del Response,

Modi f yRDNRequest ,
Modi f yRDNResponse
Conpar eRequest ,
Conpar eResponse,
AbandonRequest

The function of the LDAPMessage is to provide an envel ope containing
conmon fields required in all protocol exchanges. At this tinme the
only conmon field is a nessage ID, which is required to have a val ue
different fromthe values of any other requests outstanding in the
LDAP session of which this nmessage is a part.

The nessage I D val ue must be echoed in all LDAPMessage envel opes
encapsul ting responses corresponding to the request contained in the
LDAPMessage in which the message | D val ue was originally used.

In addition to the LDAPMessage defined above,
definitions are also used in defining protoco

the foll ow ng
operations:

Yeong, Howes & Kille [Page 3]

RFC 1487 X. 500 LDAP July 1993

| A5String ::= OCTET STRI NG
The I A5String is a notational convenience to indicate that, although
strings of I ASString type encode as OCTET STRING types, the |egal
character set in such strings is limted to the I A5 character set.
LDAPDN ::= I A5String
Rel ati veLDAPDN :: = [A5String
An LDAPDN and a Rel ati veLDAPDN are respectively defined to be the
representation of a Distinguished Nane and a Rel ative Distingui shed
Nane after encoding according to the specification in [5], such that
<di sti ngui shed- name> ::= <name>
<rel ative-di stingui shed-name> ::= <name- conponent >

wher e <name> and <nane-conponent> are as defined in [5].

Attri buteVal ueAssertion ::=

SEQUENCE {
attri buteType AttributeType
attri buteVal ue AttributeVal ue
}

The AttributeVal ueAssertion type definition is simlar to the one in
the Directory standards.

AttributeType ::= I A5String
AttributeVal ue ::= OCTET STRI NG

An AttributeType val ue takes on as its value the textual string
associated with that AttributeType in the Directory standards. For
exanpl e, the AttributeType ’organi zationNane’ with object identifier
2.5.4.10 is represented as an AttributeType in this protocol by the
string "organi zati onNane". |In the event that a protocol

i mpl enentati on encounters an Attribute Type with which it cannot
associ ate a textual string, an ASCII string encoding of the object
identifier associated with the Attribute Type may be subsitituted.

For exanple, the organizati onNane AttributeType nmay be represented by
the ASCII string "2.5.4.10" if a protocol inplenentation is unable to
associate the string "organi zati onName" with it.

A field of type AttributeVal ue takes on as its value an octet string

encoding of a Directory AttributeValue type. The definition of these
string encodings for different Directory AttributeValue types may be

Yeong, Howes & Kille [Page 4]

RFC 1487

X. 500 LDAP

July 1993

found in conpanions to this docunent that define the encodings of
various attribute syntaxes such as [6].

LDAPResul t ::=
SEQUENCE {
resul t Code

} 1
mat chedDN

error Message

}
The LDAPResul t

to various requests,

Yeong, Howes & Kille

servers wl |

ENUVMERATED {

success
operati onsError

pr ot ocol Error
timeLi mt Exceeded

si zeLi m t Exceeded

conpar eFal se

conpar eTrue

aut hivet hodNot Support ed

st r ongAut hRequi r ed
noSuchAttri bute

undefi nedAttri but eType

i nappropri at eMat chi ng
constraintViolation

attri but eOr Val ueExi sts

i nval i dAttri but eSynt ax
noSuchoj ect

al i asProbl em

i nval i dDNSynt ax

i sLeaf

al i asDer ef er enci ngPr obl em
i nappropri at eAut henti cati on
i nval i dCredential s

i nsufficientAccessRi ghts
busy

unavai | abl e

unwi | I i ngToPer f orm

| oopDet ect

nam ngVi ol ati on

obj ect C assVi ol ati on

not Al | onedOnNonLeaf

not Al | owedOnRDN

ent ryAl readyExi sts

obj ect Cl assMbdsPr ohi bi t ed
ot her

LDAPDN,
| A5String

is the construct used in this protocol
success or failure indications fromservers to clients.
return responses containing fields

(0),

(1),

(2),

(3),

(4),

(5),

(6),

(7).

(8),

(16),
(17),
(18)1
(19),
(20),
(21),
(32),
(33),
(34)1
(35),
(36),
(48),
(49),
(50),
(51)1
(52),
(53),
(54),
(64),
(65),
(66)1
(67),
(68),
(69),
(80)

to return

In response

[Page 5]

RFC 1487 X. 500 LDAP July 1993

of type LDAPResult to indicate the final status of a protoco
operation request. The errorMessage field of this construct may, at
the servers option, be used to return an ASCI| string containing a
textual, human-readabl e error diagnostic. As this error diagnhostic is
not standardi zed, inplenentations should not rely on the val ues
returned. |f the server chooses not to return a textual diagnostic,
the errorMessage field of the LDAPResult type should contain a zero

l ength string.

For resultCodes of noSuchCbject, aliasProblem invalidDNSyntax,

i sLeaf, and aliasDereferenci ngProblem the matchedDN field is set to
the nane of the |owest entry (object or alias) in the DIT that was
mat ched and is a truncated formof the nane provided or, if an alias
has been dereferenced, of the resulting name. The matchedDN field
shoul d be set to NULL DN (a zero length string) in all other cases.

4.1. Bind Operation

The function of the Bind Operation is to initiate a protocol session
between a client and a server, and to allow the authentication of the
client to the server. The Bind Operation nust be the first operation
request received by a server froma client in a protocol session

The Bi nd Request is defined as follows:

Bi ndRequest :: =
[APPLI CATI ON 0] SEQUENCE {
ver sion INTEGER (1 .. 127),

name LDAPDN,

aut henti cation CHO CE {
sinmple [0] OCTET STRI NG
kr bv42LDAP [1] OCTET STRI NG
kr bv42DSA [2] OCTET STRI NG

}

}

Par aneters of the Bind Request are:

- version: A version nunber indicating the version of the protocol to
be used in this protocol session. This docunent describes version

2 of the LDAP protocol. Note that there is no version negotiation
and the client should just set this parameter to the version it
desires.

- nane: The nanme of the Directory object that the client w shes to
bind as. This field may take on a null value (a zero length
string) for the purposes of anonymous binds.

- authentication: information used to authenticate the name, if any,

Yeong, Howes & Kille [Page 6]

RFC 1487 X. 500 LDAP July 1993

provided in the Bind Request. The "sinple" authentication option
provides mininal authentication facilities, with the contents of
the authentication field consisting only of a cleartext password.
This option should al so be used when unaut henti cated or anonynous
bi nds are to be performed, with the field containing a zero length
string in such cases. Kerberos version 4 [7] authentication to the
LDAP server and the DSA is acconplished by using the "krhbv42LDAP"
and "krbv42DSA" aut hentication options, respectively. Note that
though they are referred to as separate entities here, there is no
requi rement these two entities be distinct (i.e., a DSA could speak
LDAP directly). Two separate authentication options are provided
to support all inplenentations. Each octet string should contain
the kerberos ticket (e.g., as returned by krb_nk req()) for the
appropriate service. The suggested service nane for authentication
to the LDAP server is "ldapserver". The suggested service name for
authentication to the DSA is "x500dsa". In both cases, the
suggested i nstance nanme for the service is the name of the host

on which the service is running. O course, the actual service
nanes and instances will depend on what is entered in the |oca

ker beros principle database.

The Bind Operation requires a response, the Bind Response, which is
defined as:

Bi ndResponse ::= [APPLI CATI ON 1] LDAPResult

A Bi nd Response consists sinply of an indication fromthe server of
the status of the client’s request for the initiation of a protoco
sessi on.

Upon recei pt of a Bind Request, a protocol server will authenticate
the requesting client if necessary, and attenpt to set up a protoco
session with that client. The server will then return a Bind Response
to the client indicating the status of the session setup request.

4.2. Unbind Qperation

The function of the Unbind Operation is to ternmnate a protoco
session. The Unbind Operation is defined as foll ows:

Unbi ndRequest ::= [APPLI CATI ON 2] NULL

The Unbi nd Operation has no response defined. Upon transnission of an
Unbi ndRequest, a protocol client may assune that the protocol session
is term nated. Upon receipt of an Unbi ndRequest, a protocol server
may assune that the requesting client has term nated the session and
that all outstanding requests may be di scarded.

Yeong, Howes & Kille [Page 7]

RFC 1487 X. 500 LDAP July 1993

4.3. Search Qperation

The Search Operation allows a client to request that a search be
performed on its behalf by a server. The Search Request is defined as
fol | ows:

Sear chRequest :: =
[APPLI CATI ON 3] SEQUENCE {

base(bj ect L DAPDN,
scope ENUMERATED {
base(bj ect (0),
si ngl eLevel (1),
whol eSubt r ee (2)
I
deref Al i ases ENUMERATED {
never Der ef Al i ases (0),
der ef I nSear chi ng (1),
der ef Fi ndi ngBasebj (2),
der ef Al ways (3)
},
sizeLimt I NTEGER (O .. Maxint),
timeLimt I NTEGER (0 .. MaxInt),
attrsOnly BOOLEAN,
filter Filter,
attributes SEQUENCE OF Attri buteType
}
Filter ::=
CHO CE {
and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equal i tyMat ch [3] AttributeVal ueAsserti on,
substrings [4] SubstringFilter,
gr eat er Or Equal [5] AttributeVal ueAsserti on,
| essOr Equal [6] AttributeVal ueAsserti on,
pr esent [7] AttributeType,
appr oxMat ch [8] AttributeVal ueAssertion
}
SubstringFilter
SEQUENCE {
type AttributeType,
SEQUENCE OF CHA CE {
initial [0] I ASString,
any [1] I A5String,
final [2] I A5String
}

Yeong, Howes & Kille [Page 8]

RFC 1487 X. 500 LDAP July 1993

}

Parameters of the Search Request are:

- base(bject: An LDAPDN that is the base object entry relative to
which the search is to be perforned.

- scope: An indicator of the scope of the search to be perforned. The
semantics of the possible values of this field are identical to the
semantics of the scope field in the Directory Search Operation

- derefAliases: An indicator as to how alias objects should be handl ed
in searching. The semantics of the possible values of this
field are, in order of increasing val ue:

never Deref Al i ases: do not dereference aliases in searching
or in locating the base object of the search;

der ef | nSear chi ng: dereference aliases in subordi nates of
the base object in searching, but not in locating the
base object of the search;

der ef Fi ndi ngBase(bhj ect: dereference aliases in |ocating
the base object of the search, but not when searching
subordi nat es of the base object;

deref Al ways: dereference aliases both in searching and in
| ocating the base object of the search

- sizelimt: Asizelimt that restricts the maxi mum nunber of entries
to be returned as a result of the search. A value of 0 in this
field indicates that no sizelimt restrictions are in effect for
t he search.

- tinelimt: Atinelimt that restricts the maximumtine (in seconds)
all owed for a search. A value of O in this field indicates that no
timelimt restrictions are in effect for the search

- attrsOnly: An indicator as to whether search results should contain
both attribute types and values, or just attribute types. Setting
this field to TRUE causes only attribute types (no values) to be
returned. Setting this field to FALSE causes both attribute types
and val ues to be returned.

- filter: Afilter that defines the conditions that nmust be fulfilled
in order for the search to match a given entry.

- attributes: Alist of the attributes fromeach entry found as a

Yeong, Howes & Kille [Page 9]

RFC 1487 X. 500 LDAP July 1993

result of the search to be returned. An enpty list signifies that
all attributes fromeach entry found in the search are to be
returned.

The results of the search attenpted by the server upon receipt of a
Search Request are returned in Search Responses, defined as follows:

Search Response ::=

CHO CE {
entry [APPLI CATI ON 4] SEQUENCE {
obj ect Name L DAPDN,
attributes SEQUENCE OF SEQUENCE {
AttributeType,
SET OF Attri buteVal ue
}
resul t Code [APPLICATICN 5] LDAPResul t
}
Upon recei pt of a Search Request, a server will performthe necessary
search of the DT.
The server will return to the client a sequence of responses

conpri sed of:

- Zero or nore Search Responses each consisting of an entry found
during the search; with the response sequence termn nated by

- A single Search Response containing an indication of success, or
detailing any errors that have occurred.

Each entry returned will contain all attributes, conplete with
associ ated values if necessary, as specified in the "attributes’
field of the Search Request.

Note that an X. 500 "list" operation can be enul ated by a one-|eve
LDAP search operation with a filter checking for the existence of the
objectC ass attribute, and that an X 500 "read" operation can be
emul ated by a base object LDAP search operation with the sane filter.

4.4. Modify Operation
The Modify Operation allows a client to request that a nodification

of the DIB be perforned on its behalf by a server. The Mdify
Request is defined as follows:

Yeong, Howes & Kille [Page 10]

RFC 1487 X. 500 LDAP July 1993

Modi f yRequest :: =
[APPLI CATI ON 6] SEQUENCE {

obj ect L DAPDN,
nodi fication SEQUENCE OF SEQUENCE {
operation ENUMERATED {

add (0),
del ete (1),
repl ace (2)
I
nmodi fication SEQUENCE {
type AttributeType
val ues SET OF
Attri buteVal ue

}

Parameters of the Mdify Request are:

- object: The object to be nodified. The value of this field should
nane the object to be nodified after all aliases have been
dereferenced. The server will not performany alias dereferencing in
determ ning the object to be nodified.

- Alist of nodifications to be perforned on the entry to be nodified.
The entire list of entry nodifications should be perfornmed
in the order they are listed, as a single atonmic operation. Wile
i ndi vidual nodifications may violate the Directory schema, the
resulting entry after the entire list of nodifications is performed
nmust conformto the requirenents of the Directory schema. The
val ues that nmay be taken on by the ’'operation’ field in each
nodi fi cati on construct have the followi ng senantics respectively:

add: add values listed to the given attribute, creating
the attribute if necessary;

del ete: delete values listed fromthe given attribute,
renoving the entire attribute if no values are listed, or
if all current values of the attribute are listed for

del eti on;

repl ace: replace existing values of the given attribute
with the new values listed, creating the attribute if
necessary.

The result of the nodify attenpted by the server upon receipt of a
Modi fy Request is returned in a Mudify Response, defined as foll ows:

Yeong, Howes & Kille [Page 11]

RFC 1487 X. 500 LDAP July 1993

Modi f yResponse ::= [APPLI CATI ON 7] LDAPResult

Upon recei pt of a Mddify Request, a server will performthe necessary
nodi fications to the DI B.

The server will return to the client a single Mdify Response

i ndicating either the successful conpletion of the DIB nodification
or the reason that the nodification failed. Note that due to the
requi rement for atomicity in applying the list of nodifications in
the Modify Request, the client may expect that no nodifications of
the DI B have been perforned if the Mddify Response received indicates
any sort of error, and that all requested nodifications have been
perfornmed if the Mdify Response indicates successful conpletion of
the Modify Operation

4.5. Add Qperation

The Add Operation allows a client to request the addition of an entry
into the Directory. The Add Request is defined as foll ows:

AddRequest :: =
[APPLI CATI ON 8] SEQUENCE ({
entry LDAPDN,
attrs SEQUENCE OF SEQUENCE {
type AttributeType
val ues SET OF AttributeVal ue
}
}

Par aneters of the Add Request are:

- entry: the Distinguished Name of the entry to be added. Note that
al |l components of the name except for the |last RDN conponent nust
exi st for the add to succeed.

- attrs: the list of attributes that make up the content of the entry
bei ng added.

The result of the add attenpted by the server upon receipt of a Add
Request is returned in the Add Response, defined as foll ows:

AddResponse ::= [APPLI CATI ON 9] LDAPResul t
Upon recei pt of an Add Request, a server will attenpt to performthe

add requested. The result of the add attenpt will be returned to the
client in the Add Response.

Yeong, Howes & Kille [Page 12]

RFC 1487 X. 500 LDAP July 1993

4.6. Delete Qperation

The Del ete Operation allows a client to request the renmoval of an
entry fromthe Directory. The Del ete Request is defined as foll ows:

Del Request ::= [APPLI CATI ON 10] LDAPDN

The Del ete Request consists only of the Distinguished Nane of the
entry to be deleted. The result of the delete attenpted by the
server upon receipt of a Delete Request is returned in the Delete
Response, defined as foll ows:

Del Response ::= [APPLI CATI ON 11] LDAPResul t

Upon recei pt of a Delete Request, a server will attenpt to perform
the entry renoval requested. The result of the delete attenpt will be
returned to the client in the Delete Response. Note that only | eaf
objects may be deleted with this operation.

4.7. Mdify RDN Operation

The Modify RDN Qperation allows a client to change the | ast component
of the nane of an entry in the Directory. The Mdify RDN Request is
defined as foll ows:

Modi f yRDNRequest :: =
[APPLI CATI ON 12] SEQUENCE {
entry LDAPDN,
new dn Rel at i veLDAPDN

}

Paranmeters of the Mddify RDN Request are:
- entry: the nane of the entry to be changed.
- newdn: the RDNthat will formthe |ast conponent of the new nane.
The result of the name change attenpted by the server upon receipt of
a Modify RDN Request is returned in the Mdify RDN Response, defined
as follows:

Modi f yRDNResponse ::= [APPLI CATI ON 13] LDAPResul t
Upon receipt of a Modify RDN Request, a server will attenpt to
performthe name change. The result of the name change attenpt will

be returned to the client in the Mdify RDN Response. The attributes
that make up the old RDN are deleted fromthe entry.

Yeong, Howes & Kille [Page 13]

RFC 1487 X. 500 LDAP July 1993

4.8. Conpare QOperation

The Conpare Operation allows a client to conpare an assertion
provided with an entry in the Directory. The Conpare Request is
defined as follows:

Conpar eRequest :: =
[APPLI CATI ON 14] SEQUENCE ({
entry LDAPDN,
ava Attri but eVal ueAssertion
}

Par amet ers of the Conpare Request are:
- entry: the nane of the entry to be conmpared with.
- ava: the assertion with which the entry is to be conpared.

The result of the conpare attenpted by the server upon receipt of a
Conpare Request is returned in the Conpare Response, defined as
fol | ows:

Conpar eResponse ::= [APPLI CATI ON 15] LDAPResult

Upon recei pt of a Conpare Request, a server will attenpt to perform
the requested conparison. The result of the conparison will be
returned to the client in the Conpare Response. Note that errors and
the result of conparison are all returned in the same construct.

4.9. Abandon Operation

The function of the Abandon Qperation is to allow a client to request
that the server abandon an outstandi ng operation. The Abandon
Request is defined as follows:

AbandonRequest ::= [APPLI CATI ON 16] Messagel D

There is no response defined in the Abandon Operation. Upon

transm ssion of an Abandon Operation, a client may expect that the
operation identified by the Message ID in the Abandon Request has
been abandoned. In the event that a server receives an Abandon
Request on a Search QOperation in the mdst of transmtting responses
to that search, that server should cease transmitting responses to

t he abandoned search imedi ately.

Yeong, Howes & Kille [Page 14]

RFC 1487 X. 500 LDAP July 1993

5.

Prot ocol El ement Encodi ngs

The protocol elenments of LDAP are encoded for exchange using the

Basi ¢ Encoding Rules (BER) [11] of ASN.1 [10]. However, due to the

hi gh overhead involved in using certain elenments of the BER the
following additional restrictions are placed on BER-encodi ngs of LDAP
prot ocol el enments:

(1) Only the definite formof length encoding will be used.

(2) Bitstrings and octet strings will be encoded in the primtive form
only.

Security Considerations

This version of the protocol provides facilities only for sinple

aut hentication using a cleartext password, and for kerberos version 4
aut hentication. Future versions of LDAP will |ikely include support
for other authentication nethods.

Bi bl i ogr aphy

[1] The Directory: Overview of Concepts, Mdels and Service. CCTT
Recomrendat i on X. 500, 1988.

[2] Information Processing Systenms -- Open Systens |nterconnection --
The Directory: Overview of Concepts, Mdels and Service. 1SQO|EC
JTC 1/ SC21; International Standard 9594-1, 1988.

[3] Rose, M, "Directory Assistance Service", RFC 1202, Perfornmance
Systens International, Inc., February 1991.

[4] Howes, R, Smith, M, and B. Beecher, "D XIE Protocol
Speci fication", RFC 1249, University of M chigan, August 1991.

[5] Kille, S., "A String Representation of Distinguished Names", RFC
1485, | SODE Consortium July 1993.

[6] Howes, T., Kille, S., Yeong, W, and C. Robbins, "The String
Representati on of Standard Attribute Syntaxes", RFC 1488,
Uni versity of M chigan, |SODE Consortium Performance Systens
International, NeXor Ltd., July 1993.

[7] Kerberos Authentication and Authorization System S.P. Mller,
B.C. Neuman, J.I. Schiller, J.H Saltzer; MT Project Athena
Docurent ati on Section E. 2.1, Decenber 1987.

Yeong, Howes & Kille [Page 15]

RFC 1487 X. 500 LDAP July 1993

[8] The Directory: Mdels. CCTT Recomendati on X. 501 |ISQIEC JTC

1/SC21; International Standard 9594-2, 1988.

[9] The Directory: Abstract Service Definition. CC TT Recomendati on
X. 511, 1SOI1EC JTC 1/SC21; International Standard 9594-3, 1988.

[10] Specification of Abstract Syntax Notation One (ASN.1). CCTT

Recomendati on X. 208, 1988.

[11] Specification of Basic Encoding Rules for Abstract Syntax
Notati on One (ASN.1). CCITT Recommendati on X. 209, 1988.

9. Security Considerations
Security issues are not discussed in this meno.
9. Authors’ Addresses

Wengyi k Yeong

PSI, Inc.

510 Huntmar Park Drive
Her ndon, VA 22070

USA

Phone: +1 703-450-8001
EMai | : yeongw@si | i nk. com

Ti m Howes

Uni versity of M chigan

| TD Research Systens

535 WWIliam St.

Ann Arbor, M 48103-4943
USA

Phone: +1 313 747-4454
EMai | : tim@um ch. edu

Steve Kille

| SODE Consortium
PO Box 505
London

SWL1 1DX

UK

Phone: +44-71-223-4062
EMail: S. Kille@sode.com

Yeong, Howes & Kille [Page 16]

RFC 1487 X. 500 LDAP July 1993

Appendi x A
Conpl ete ASN. 1 Definition

Li ght wei ght - Di rect ory- Access-Protocol DEFINITIONS :: =

| MPLICI T TAGS

BEG N

LDAPMessage :: =

SEQUENCE {
messagel D Messagel D,
unique id in request,
-- to be echoed in response(s)
pr ot ocol Op CHO CE {
sear chRequest Sear chRequest ,
sear chResponse Sear chResponse
nodi f yRequest Modi f yRequest ,
nodi f yResponse Modi f yResponse
addRequest AddRequest ,
addResponse AddResponse,
del Request Del Request ,
del Response Del Response,
nodi f yDNRequest Modi f yDNRequest ,
nodi f yDNResponse Modi f yDNResponse,
conpar eDNRequest Conpar eRequest ,
conpar eDNResponse Conpar eResponse,
bi ndRequest Bi ndRequest ,
bi ndResponse Bi ndResponse,
abandonRequest AbandonRequest ,
unbi ndRequest Unbi ndRequest
}

Bi ndRequest :: =

[APPLI CATI ON 0] SEQUENCE ({
version INTEGER (1 .. 127),
-- current version is 2
name LDAPDN,
-- null nanme inplies an anonynmous bind
aut henti cati on CHO CE {
sinmpl e [0] OCTET STRI NG
-- a zero length octet string
-- inplies an unaut henticated
-- bind.
[1] OCTET STRI NG
[2] OCTET STRI NG

kr bv42LDAP
kr bv42DSA

Yeong, Howes & Kille [Page 17]

RFC 1487 X. 500 LDAP July 1993

-- values as returned by

-- krb_nk_req()

-- OGther values in later

-- versions of this protocol.

}
}
Bi ndResponse ::= [APPLI CATI ON 1] LDAPResult
Unbi ndRequest ::= [APPLI CATI ON 2] NULL

Sear chRequest :: =
[APPLI CATI ON 3] SEQUENCE {

basebj ect L DAPDN,
scope ENUMERATED {
base(bj ect (0),
si ngl eLevel (1),
whol eSubt r ee (2)
I
deref Al i ases ENUMERATED {
never Der ef Al i ases (0),
der ef I nSear chi ng (1),
der ef Fi ndi ngBasebj (2),
al waysDer ef Al i ases (3)
I
sizeLimt I NTEGER (O .. MaxlInt),
-- value of O inplies no sizelinit
tinmelimt | NTEGER (O .. MaxInt),
-- value of O inplies no tinmelimt
attrsOnly BOOLEAN,

-- TRUE, if only attributes (w thout val ues)
-- to be returned.

filter Filter,
attri butes SEQUENCE OF Attri buteType
}
Sear chResponse :: =
CHO CE {
entry [APPLI CATI ON 4] SEQUENCE {
obj ect Name L DAPDN,
attributes SEQUENCE OF SEQUENCE {
AttributeType,
SET OF
Attri buteVal ue
}
resul t Code [APPLI CATI ON 5] LDAPResul t
}

Yeong, Howes & Kille [Page 18]

RFC 1487 X. 500 LDAP July 1993

Modi f yRequest :: =
[APPLI CATI ON 6] SEQUENCE {

obj ect L DAPDN,
nodi fications SEQUENCE OF SEQUENCE {
operation ENUMERATED {
add (0),
del ete (1),
replace (2)
}1
nodi fication SEQUENCE {
type AttributeType,
val ues SET OF
AttributeVal ue
}
}
}
Modi f yResponse ::= [APPLI CATI ON 7] LDAPResult
AddRequest :: =
[APPLI CATI ON 8] SEQUENCE ({
entry LDAPDN,
attrs SEQUENCE OF SEQUENCE {
type AttributeType,
val ues SET OF AttributeVal ue
}
}
AddResponse ::= [APPLI CATI ON 9] LDAPResul t
Del Request ::= [APPLI CATI ON 10] LDAPDN
Del Response ::= [APPLI CATI ON 11] LDAPResul t
Modi f yRDNRequest :: =
[APPLI CATI ON 12] SEQUENCE {
entry L DAPDN,
new dn Rel ati veLDAPDN -- ol d RDN al ways del et ed
}
Modi f yRDNResponse ::= [APPLI CATI ON 13] LDAPResul t
Conpar eRequest :: =
[APPLI CATI ON 14] SEQUENCE {
entry LDAPDN,
ava AttributeVal ueAssertion
}

Yeong, Howes & Kille [Page 19]

RFC 1487 X. 500 LDAP

Conpar eResponse ::= [APPLI CATI ON 15] LDAPResult
AbandonRequest ::= [APPLI CATI ON 16] Messagel D
Messagel D :: = I NTEGER (0 .. WMaxlInt)
LDAPDN ::= | A5String
Rel ati veLDAPDN :: = [A5String
Filter ::=
CHO CE {
and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equal ityMatch [3] AttributeVal ueAssertion
substrings [4] SubstringFilter,
greaterOrEqual [5] AttributeVal ueAssertion
| essOr Equal [6] AttributeVal ueAssertion
pr esent [7] AttributeType,
appr oxMat ch [8] AttributeVal ueAssertion
}
LDAPResult ::=
SEQUENCE {
resul t Code ENUMERATED {
success

operati onsError

pr ot ocol Error

ti meLi m t Exceeded

si zeLi m t Exceeded
conpar eFal se

conpar eTrue

aut hivet hodNot Support ed
st r ongAut hRequi r ed
noSuchAttri bute

undefi nedAttri but eType
i nappropri at eMat chi ng
constraintViol ation
attribut eOrVal ueEkxi sts
i nval i dAttri but eSynt ax
noSuchhj ect

al i asProbl em

i nval i dDNSynt ax

i sLeaf

al i asDer ef er enci ngPr obl em
i nappropri at eAut henti cati on
i nval i dCredential s

Yeong, Howes & Kille

(0),
(1),
(2),
(3),
(4),
(5),
(6),
(7).
(8),
(16) 1
(17) 1
(18),
(19),
(20),
(21),
(32) 1
(33),
(34),
(35),
(36),
(48),
(49)1

July 1993

[Page 20]

RFC 1487 X. 500 LDAP

i nsufficientAccessRights (50),
busy (51),
unavai | abl e (52),
unwi | I i ngToPer f or m (53),
| oopDet ect (54),
nam ngVi ol ati on (64),
obj ect C assVi ol ati on (65),
not Al | ownedOnNonLeaf (66),
not Al | owedOnRDN (67),
ent ryAl readyExi sts (68),
obj ect Cl assMbdsPr ohi bi t ed (69),
ot her (80)
H
mat chedDN LDAPDN,
error Message | A5String
}
AttributeType ::= I A5String
-- text nane of the attribute, or dotted
-- ODrepresentation
AttributeVal ue ::= OCTET STRI NG
AttributeVal ueAssertion ::=
SEQUENCE {
attributeType AttributeType,
attri buteVval ue AttributeVal ue
}
SubstringFilter
SEQUENCE {
type AttributeType
SEQUENCE OF CHA CE {
initial [0] I A5String,
any [1] I A5String,
final [2] IA5String
}
}
| A5String ::= OCTET STRI NG
Maxl nt ::= 65535

END

Yeong, Howes & Kille

July 1993

[Page 21]

