Net wor k Wor ki ng Group SNVPv2 Wor ki ng Group

Request for Comments: 1905 J. Case
obsol et es: 1448 SNWP Research, Inc.
Cat egory: Standards Track K. Mcd oghrie
Cisco Systens, Inc.

M Rose

Dover Beach Consulting, Inc.
S. Wl dbusser

I nternati onal Network Services
January 1996

Prot ocol Operations
for Version 2 of the
Si npl e Net wor k Management Protocol (SNVPv2)

Status of this Menp

Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

1. Introduction

A managenent system contains: several (potentially nmany) nodes, each
with a processing entity, terned an agent, which has access to
managenent instrumentation; at |east one managenent station; and, a
managenment protocol, used to convey nanagenent infornation between
the agents and managenent stations. Operations of the protocol are
carried out under an adm nistrative framework which defines

aut henti cation, authorization, access control, and privacy policies.

Managenent stations execute managenent applications which nonitor and
control managed el enents. Managed el ements are devices such as
hosts, routers, terminal servers, etc., which are nonitored and
controll ed via access to their managenment information

Managenent information is viewed as a collection of nanaged objects,
residing in a virtual information store, terned the Managenent
Informati on Base (MB). Collections of related objects are defined
in MB nodul es. These nodules are witten using a subset of OSl’'s
Abstract Syntax Notation One (ASN. 1) [1], terned the Structure of
Management Information (SM) [2].

SNVPv2 Wor ki ng Group St andards Track [Page 1]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

The managenent protocol, version 2 of the Sinple Network Managenent
Protocol, provides for the exchange of nmessages which convey
managemnment i nformati on between the agents and the managenent

stations. The form of these messages is a nessage "w apper" which
encapsul ates a Protocol Data Unit (PDU). The form and meani ng of the
"wrapper" is determ ned by an adm nistrative framework which defines
bot h authenticati on and aut horization policies.

It is the purpose of this document, Protocol Operations for SNWPv2,
to define the operations of the protocol with respect to the sending
and receiving of the PDUs.

1.1. A Note on Ternm nol ogy

For the purpose of exposition, the original Internet-standard Network
Management Framework, as described in RFCs 1155 (STD 16), 1157 (STD
15), and 1212 (STD 16), is termed the SNMP version 1 framework
(SNWPv1l). The current framework is ternmed the SNWMP version 2
framewor k (SNVPv2) .

2. Overview
2.1. Roles of Protocol Entities
A SNMPv2 entity nay operate in a nanager role or an agent role.

A SNMPv2 entity acts in an agent role when it performs SNWPv2
management operations in response to received SNMPv2 protoco
nmessages (other than an informnotification) or when it sends trap
notifications.

A SNWPv2 entity acts in a manager role when it initiates SNWv2
managenment operations by the generation of SNMPv2 protocol messages
or when it perforns SNVPv2 managenent operations in response to
received trap or informnotifications.

A SNMPv2 entity nay support either or both roles, as dictated by its
i mpl ementation and configuration. Further, a SNWPv2 entity can al so
act in the role of a proxy agent, in which it appears to be acting in
an agent role, but satisfies management requests by acting in a
manager role with a renote entity.

2.2. Managenent Information
The term variable, refers to an instance of a non-aggregate object
type defined according to the conventions set forth in the SM [2] or

the textual conventions based on the SM [3]. The term variable
binding, normally refers to the pairing of the nane of a variable and

SNVPv2 Wor ki ng G oup St andards Track [Page 2]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

its associated value. However, if certain kinds of exceptiona
conditions occur during processing of a retrieval request, a variable
binding will pair a nanme and an indication of that exception

A variable-binding list is a sinple list of variable bindings.

The nane of a variable is an OBJECT | DENTI FI ER which is the

concat enati on of the OBJECT | DENTI FI ER of the correspondi ng object-
type together with an OBJECT | DENTI FI ER fragnment identifying the

i nstance. The OBJECT | DENTI FI ER of the correspondi ng object-type is
call ed the OBJECT | DENTIFI ER prefix of the variable.

2.3. Access to Managenent | nfornmation

Three types of access to nmanagement information are provided by the
protocol. One type is a request-response interaction, in which a
SNWPv2 entity, acting in a manager role, sends a request to a SNWPv2
entity, acting in an agent role, and the latter SNVMPv2 entity then
responds to the request. This type is used to retrieve or nodify
managenent information associated with the nanaged devi ce.

A second type is al so a request-response interaction, in which a
SNWPv2 entity, acting in a manager role, sends a request to a SNWPv2
entity, also acting in a nanager role, and the latter SNMPv2 entity
then responds to the request. This type is used to notify a SNWPv2
entity, acting in a nanager role, of managenent information

associ ated with another SNMPv2 entity, also acting in a manager role.

The third type of access is an unconfirmed interaction, in which a
SNVPv2 entity, acting in an agent role, sends a unsolicited nessage,
terned a trap, to a SNMPv2 entity, acting in a nanager role, and no
response is returned. This type is used to notify a SNMPv2 entity,
acting in a nanager role, of an exceptional situation, which has
resulted in changes to managenent information associated with the
managed devi ce.

2.4. Retransm ssion of Requests

For all types of request in this protocol, the receiver is required
under normal circunstances, to generate and transmt a response to
the originator of the request. Wether or not a request should be
retransmtted if no corresponding response is received in an
appropriate tinme interval, is at the discretion of the application
originating the request. This will normally depend on the urgency of
the request. However, such an application needs to act responsibly
in respect to the frequency and duration of re-transm ssions.

SNVPv2 Wor ki ng G oup St andards Track [Page 3]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

2.5. Message Sizes
The maxi num size of a SNMPv2 nessage is limted to the mininmum of:

(1) the maxi mum nessage size which the destination SNVMPv2 entity can
accept; and,

(2) the maxi num nmessage size which the source SNWPv2 entity can
gener ate.

The former may be known on a per-recipient basis; and in the absence
of such know edge, is indicated by transport dommi n used when sendi ng
the nessage. The latter is inposed by inplenentation-specific |oca
constraints.

Each transport mapping for the SNWPv2 indicates the nini mum nessage
size which a SNMPv2 inpl enentation nust be able to produce or
consunme. Al though inplenentations are encouraged to support |arger
val ues whenever possible, a conformant inplenmentation nust never
generate nessages |l arger than allowed by the receiving SNMPv2 entity.

One of the aims of the GetBul kRequest-PDU, specified in this

protocol, is to mnimze the nunber of protocol exchanges required to
retrieve a | arge anbunt of managenent information. As such, this PDU
type allows a SNWMPv2 entity acting in a nmanager role to request that
the response be as large as possible given the constraints on nessage
sizes. These constraints include the limts on the size of messages
which the SNMPv2 entity acting in an agent role can generate, and the
SNWPv2 entity acting in a manager role can receive.

However, it is possible that such naxi mum si zed nessages nay be

| arger than the Path MIU of the path across the network traversed by
the nmessages. |In this situation, such nessages are subject to
fragmentation. Fragnmentation is generally considered to be harnfu
[4], since anpbng other problenms, it |eads to a decrease in the
reliability of the transfer of the nessages. Thus, a SNWPv2 entity
whi ch sends a Get Bul kRequest-PDU nust take care to set its paraneters
accordingly, so as to reduce the risk of fragnmentation. In
particul ar, under conditions of network stress, only small val ues
shoul d be used for nax-repetitions.

2.6. Transport Mappings

It is inmportant to note that the exchange of SNMPv2 nessages requires
only an unreliable datagram service, with every nmessage being
entirely and i ndependently contained in a single transport datagram
Speci fic transport mappi ngs and encoding rules are specified

el sewhere [5]. However, the preferred mapping is the use of the User

SNVPv2 Wor ki ng G oup St andards Track [Page 4]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

Dat agr am Prot ocol [6].
3. Definitions
SNVPv2- PDU DEFI NI TIONS :: = BEG N
| MPORTS
oj ect Nanme, Obj ect Syntax, |nteger32
FROM SNVPv2- SM ;
-- protocol data units
PDUs ::=
CHO CE {
get - r equest

CGet Request - PDU,

get - next - r equest
CGet Next Request - PDU,

get - bul k- request
Get Bul kRequest - PDU,

response
Response- PDU,

set - request
Set Request - PDU,

i nf ormrequest
I nf or mRequest - PDU,

snnpV2-trap
SNWVPv 2- Tr ap- PDU,

report
Report - PDU,

-- PDUs
Cet Request - PDU : : =
[0]
| MPLICI T PDU

Get Next Request - PDU : : =

SNVPv2 Wor ki ng G oup St andards Track [Page 5]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

[1]
| MPLICI T PDU

Response-PDU :: =
[2]
[VPLICI T PDU

Set Request - PDU : : =
[3]
| MPLICI T PDU

-- [4] is obsolete

Cet Bul kRequest-PDU :: =
[5]
| MPLI CI T Bul kPDU

I nf or MRequest-PDU : : =
[6]
IMPLICI T PDU

SNMPv2- Trap-PDU :: =
[7]
[VPLICI T PDU

-- Usage and precise semantics of Report-PDU are not presently
-- defined. Any SNMP adninistrative framework making use of
-- this PDU must define its usage and senmantics.

Report-PDU :: =
[8]
| MPLICI T PDU
max- bi ndi ngs
| NTEGER ::= 2147483647
PDU :: =
SEQUENCE {
request-id
I nt eger 32,
error-status -- sometines ignored
| NTEGER {
noError(0),
tooBig(1),
noSuchNane(2) , -- for proxy conpatibility
badVal ue(3), -- for proxy conpatibility
readOnl y(4), -- for proxy conpatibility
genkErr(5),

SNVPv2 Wor ki ng G oup St andards Track [Page 6]

RFC 1905 Prot ocol Operations for SNWPv2 Janu

noAccess(6),
wrongType(7),

wr ongLengt h(8),

wr ongEncodi ng(9),

wr ongVal ue(10),
noCreation(11),

i nconsi st ent Val ue(12),
resour ceUnavai | abl e(13),
conmi t Fai | ed(14),
undoFai | ed(15),

aut hori zati onError (16),
not Witable(17),

i nconsi st ent Nane(18)

b

error-index -- sometines ignored
| NTEGER (0. . max- bi ndi ngs),

vari abl e- bi ndi ngs -- values are sonetines ignored
Var Bi ndLi st
}
Bul kPDU : : = -- MUST be identical in
SEQUENCE { -- structure to PDU
request-id
I nt eger 32,
non-repeaters
| NTEGER (0. . max- bi ndi ngs),
max-repetitions
| NTEGER (0. . max- bi ndi ngs),
vari abl e- bi ndi ngs -- values are ignored
Var Bi ndLi st
}

-- variabl e binding

VarBind ::=
SEQUENCE {
nanme
oj ect Nane,

CHO CE {
val ue

SNVPv2 Wor ki ng G oup St andards Track

ary 1996

[Page 7]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

oj ect Synt ax,

unSpeci fi ed -- inretrieval requests
NULL,

-- exceptions in responses
noSuchoj ect [0]
| MPLI CI' T NULL,

noSuchl nst ancel 1]
| MPLI CI' T NULL,

endOf M bVi ew 2]
I MPLI CI' T NULL

-- variabl e-binding list

Var Bi ndLi st ::=
SEQUENCE (Sl ZE (0. . max- bi ndi ngs)) OF
Var Bi nd
END

4. Protocol Specification
4.1. Common Constructs

The value of the request-id field in a Response-PDU takes the val ue
of the request-id field in the request PDU to which it is a response.
By use of the request-id value, a SNMPv2 application can distinguish
the (potentially multiple) outstanding requests, and thereby

correl ate incom ng responses with outstanding requests. |n cases
where an unreliabl e datagram service is used, the request-id al so
provi des a sinple neans of identifying nessages duplicated by the
network. Use of the sane request-id on a retransm ssion of a request
allows the response to either the original transm ssion or the
retransm ssion to satisfy the request. However, in order to
calculate the round trip tinme for transm ssion and processing of a
request -response transaction, the SNMPv2 application needs to use a
different request-id value on a retransmtted request. The latter
strategy is recommended for use in the majority of situations.

SNVPv2 Wor ki ng G oup St andards Track [Page 8]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

A non-zero value of the error-status field in a Response-PDU is used
to indicate that an exception occurred to prevent the processing of
the request. In these cases, a non-zero value of the Response-PDU s
error-index field provides additional information by identifying

whi ch variable binding in the Iist caused the exception. A variable
binding is identified by its index value. The first variable binding
in a variable-binding list is index one, the second is index two,

etc.

SNWPv2 |imts OBJECT | DENTI FI ER val ues to a maxi num of 128 sub-
identifiers, where each sub-identifier has a naxi nrum val ue of 2**32-
1

4.2. PDU Processing

It is mandatory that all SNMPv2 entities acting in an agent role be
able to generate the follow ng PDU types: Response-PDU and SNWPv2-
Trap-PDU; further, all such inplenmentations nust be able to receive
the followi ng PDU types: GetRequest-PDU, GetNextRequest-PDU

Get Bul kRequest - PDU, and Set Request - PDU

It is mandatory that all SNWMPv2 entities acting in a manager role be
able to generate the follow ng PDU types: Get Request-PDU

Get Next Request - PDU, Get Bul kRequest - PDU, Set Request - PDU

I nf or MRequest - PDU, and Response-PDU; further, all such

i mpl enent ati ons nmust be able to receive the followi ng PDU types:
Response- PDU, SNMPv2- Tr ap- PDU

I nf or MRequest - PDU.

In the elements of procedure below, any field of a PDU which is not
referenced by the rel evant procedure is ignored by the receiving
SNWPv2 entity. However, all conponents of a PDU, including those
whose val ues are ignored by the receiving SNMWPv2 entity, must have
valid ASN. 1 syntax and encodi ng. For exanple, sonme PDUs (e.g., the
Get Request -PDU) are concerned only with the nane of a variable and
not its value. 1In this case, the value portion of the variable

bi nding is ignored by the receiving SNMPv2 entity. The unSpecified
val ue is defined for use as the value portion of such bindings.

On generating a managenment communication, the nessage "w apper"” to
encapsul ate the PDU is generated according to the "El enents of
Procedure" of the adm nistrative framework in use is followed. Wile
the definition of "max-bindings" does inpose an upper-bound on the
nunber of variable bindings, in practice, the size of a nessage is
l[imted only by constraints on the maxi num nessage size -- it is not
[imted by the nunber of variable bindings.

SNVPv2 Wor ki ng G oup St andards Track [Page 9]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

4. 2.

(1)

(2)

(3)

On receiving a nanagenent conmuni cation, the "El ements of Procedure"
of the administrative framework in use is followed, and if those
procedures indicate that the operation contained within the nessage
is to be perforned locally, then those procedures also indicate the
M B view which is visible to the operation

1. The Get Request-PDU

A Cet Request-PDU i s generated and transmitted at the request of a
SNWPv2 applicati on.

Upon recei pt of a Get Request-PDU, the receiving SNMPv2 entity
processes each variable binding in the variable-binding list to
produce a Response-PDU. Al fields of the Response-PDU have the sane
val ues as the corresponding fields of the received request except as
i ndi cated bel ow. Each variable binding is processed as foll ows:

If the variable binding’ s nane exactly matches the nane of a
vari abl e accessible by this request, then the variable binding s
value field is set to the value of the nanmed vari abl e.

O herwise, if the variable binding s name does not have an OBJECT

| DENTI FI ER prefix which exactly matches the OBJECT | DENTI FI ER
prefix of any (potential) variable accessible by this request, then
its value field is set to ‘noSuchCbject’

O herwi se, the variable binding’s value field is set to
‘noSuchl nst ance’ .

If the processing of any variable binding fails for a reason other
than |isted above, then the Response-PDU is re-fornatted with the
sane values in its request-id and variabl e-bindings fields as the
recei ved Get Request-PDU, with the value of its error-status field set
to ‘genErr’, and the value of its error-index field is set to the

i ndex of the failed variable binding.

O herwi se, the value of the Response-PDU s error-status field is set
to ‘noError’, and the value of its error-index field is zero.

The generated Response-PDU is then encapsul ated into a nmessage. |If
the size of the resultant nessage is |less than or equal to both a

| ocal constraint and the maxi num nmessage size of the originator, it
is transmtted to the originator of the Get Request-PDU

O herwi se, an alternate Response-PDU is generated. This alternate
Response-PDU is formatted with the same value in its request-id field
as the received GetRequest-PDU, with the value of its error-status
field set to ‘tooBig’, the value of its error-index field set to

SNVPv2 Wor ki ng G oup St andards Track [Page 10]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

4.2.

(1)

(2)

zero, and an enpty variable-bindings field. This alternate
Response-PDU i s then encapsulated into a nessage. |f the size of the
resul tant nessage is less than or equal to both a | ocal constraint
and the maxi mum nessage size of the originator, it is transnmitted to
the originator of the Get Request-PDU. O herw se, the snnmpSil ent Drops
[9] counter is increnented and the resultant nessage is discarded.

2. The GCet Next Request - PDU

A Cet Next Request-PDU is generated and transmitted at the request of a
SNWPv2 application

Upon recei pt of a Get Next Request-PDU, the receiving SNVMPv2 entity
processes each variable binding in the variable-binding list to
produce a Response-PDU. Al fields of the Response-PDU have the sane
val ues as the corresponding fields of the received request except as
i ndi cated bel ow. Each variable binding is processed as foll ows:

The variable is located which is in the |exicographically ordered
list of the nanmes of all variables which are accessible by this
request and whose nane is the first |exicographic successor of the
variabl e binding’ s nane in the incom ng Get Next Request-PDU. The
correspondi ng variable binding s nane and value fields in the
Response-PDU are set to the name and val ue of the | ocated variable.

If the requested variable binding’ s name does not |exicographically
precede the nanme of any variable accessible by this request, i.e.,
there is no | exicographic successor, then the correspondi ng

vari abl e bi ndi ng produced in the Response-PDU has its value field
set to ‘endOFMbView, and its nanme field set to the variable

bi nding’s name in the request.

If the processing of any variable binding fails for a reason other
than |isted above, then the Response-PDU is re-formatted with the
same values in its request-id and variabl e-bindings fields as the
recei ved Get Next Request-PDU, with the value of its error-status field
set to ‘genkErr’, and the value of its error-index field is set to the
i ndex of the failed variable binding.

O herwi se, the value of the Response-PDU s error-status field is set
to ‘noError’, and the value of its error-index field is zero.

The generated Response-PDU is then encapsul ated into a nessage. |f
the size of the resultant nessage is |less than or equal to both a

[ocal constraint and the maxi mum nmessage size of the originator, it
is transmtted to the originator of the GetNextRequest-PDU

SNVPv2 Wor ki ng G oup St andards Track [Page 11]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

Q herwi se, an alternate Response-PDU is generated. This alternate
Response-PDU is formatted with the same values in its request-id
field as the recei ved Get Next Request-PDU, with the value of its
error-status field set to ‘tooBig’, the value of its error-index
field set to zero, and an enpty vari abl e-bindings field. This

al ternate Response-PDU is then encapsulated into a nessage. |If the
size of the resultant nessage is | ess than or equal to both a | oca
constraint and the nmaxi num nessage size of the originator, it is
transmtted to the originator of the Get Next Request-PDU. O herwi se,
the snnmpSilentDrops [9] counter is increnmented and the resultant
nmessage i s di scarded.

4.2.2.1. Exanple of Table Traversa

An inportant use of the GetNextRequest-PDU is the traversal of
conceptual tables of information within a MB. The senantics of this
type of request, together with the nmethod of identifying individua

i nstances of objects in the MB, provides access to related objects
inthe MB as if they enjoyed a tabul ar organi zati on

In the protocol exchange sketched bel ow, a SNMPv2 application
retrieves the medi a- dependent physical address and the address-
mappi ng type for each entry in the IP net-to-nmedia Address

Transl ation Table [7] of a particular network elenent. It also
retrieves the value of sysUpTinme [9], at which the mappi ngs exi sted.
Suppose that the agent’s IP net-to-nedia table has three entries:

nt er f ace- Nunmber Net wor k- Address Physi cal - Address Type

1 10.0.0.51 00: 00: 10: 01: 23: 45 static
1 9.2.3.4 00: 00: 10: 54: 32: 10 dynam c
2 10.0.0. 15 00: 00: 10: 98: 76: 54 dynami c

The SNWMPv2 entity acting in a nmanager role begins by sending a
Get Next Request - PDU cont ai ni ng the i ndi cated OBJECT | DENTI Fl ER val ues
as the requested vari abl e nanes:

Get Next Request (sysUpTi ne,
i pNet ToMedi aPhysAddr ess,
i pNet ToMedi aType)

The SNMPv2 entity acting in an agent role responds with a Response-
PDU:

Response ((sysUpTinme.0 = "123456"),
(i pNet ToMedi aPhysAddress. 1.9.2.3.4 =
"000010543210"),
(i pNet ToMedi aType. 1.9.2.3.4 = "dynamc"))

SNVPv2 Wor ki ng G oup St andards Track [Page 12]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

The SNMPv2 entity acting in a nanager role continues with:
Get Next Request (sysUpTi e,
i pNet ToMedi aPhysAddress. 1. 9. 2. 3. 4,
i pNet ToMedi aType. 1.9.2.3.4)

The SNMPv2 entity acting in an agent role responds with:

Response ((sysUpTinme.0 = "123461"),
(i pNet ToMedi aPhysAddress. 1. 10.0.0.51 =
"000010012345"),
(i pNet ToMedi aType. 1.10.0.0.51 = "static"))

The SNWMPv2 entity acting in a nanager role continues with:
Get Next Request (sysUpTi e,
i pNet ToMedi aPhysAddr ess. 1. 10. 0. 0. 51
i pNet ToMedi aType. 1.10.0.0.51)

The SNMPv2 entity acting in an agent role responds with:

Response ((sysUpTime.0 = "123466"),
(i pNet ToMedi aPhysAddress. 2. 10.0.0. 15 =
"000010987654"),
(i pNet ToMedi aType. 2.10.0.0.15 = "dynanmic"))

The SNWMPv2 entity acting in a nanager role continues wth:

Get Next Request (sysUpTi e,
i pNet ToMedi aPhysAddr ess. 2. 10. 0. 0. 15,
i pNet ToMedi aType. 2.10.0.0.15)

As there are no further entries in the table, the SNWPv2 entity
acting in an agent role responds with the variables that are next in
the | exi cographical ordering of the accessible object nanmes, for

exanpl e:
Response ((sysUpTinme.0 = "123471"),
(i pNet ToMedi aNet Address. 1.9.2.3.4 =
"9.2.3.4"),
(ipRoutingDiscards.0 = "2"))

This response signals the end of the table to the SNWPv2 entity
acting in a manager role.

SNVPv2 Wor ki ng G oup St andards Track [Page 13]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

4.2.3. The GetBul kRequest - PDU

A Cet Bul kRequest-PDU is generated and transnmitted at the request of a
SNWPv2 application. The purpose of the GetBul kRequest-PDU is to
request the transfer of a potentially |arge anmount of data,

including, but not limted to, the efficient and rapid retrieval of

| arge tables.

Upon recei pt of a GetBul kRequest-PDU, the receiving SNVMPv2 entity
processes each variable binding in the variable-binding list to
produce a Response-PDU with its request-id field having the sane
value as in the request. Processing begins by exam ning the val ues
in the non-repeaters and max-repetitions fields. |If the value in the
non-repeaters field is | ess than zero, then the value of the field is
set to zero. Sinmilarly, if the value in the nax-repetitions field is
| ess than zero, then the value of the field is set to zero.

For the GetBul kRequest-PDU type, the successful processing of each
variable binding in the request generates zero or nore variabl e

bi ndings in the Response-PDU. That is, the one-to-one nmapping

bet ween t he vari abl e bi ndi ngs of the Get Request-PDU, Get NextRequest-
PDU, and Set Request-PDU types and the resultant Response-PDUs does
not apply for the nmapping between the variabl e bindings of a

Get Bul kRequest - PDU and t he resul tant Response- PDU

The val ues of the non-repeaters and nmax-repetitions fields in the
request specify the processing requested. One variable binding in
the Response-PDU is requested for the first N variable bindings in
the request and M variabl e bindings are requested for each of the R
remai ni ng variable bindings in the request. Consequently, the tota
nunber of requested variabl e bindings conmuni cated by the request is
given by N+ (M* R, where Nis the mininumof: a) the value of the
non-repeaters field in the request, and b) the nunber of variable

bi ndings in the request; Mis the value of the nmax-repetitions field
in the request; and Ris the maxi mumof: a) nunber of variable
bindings in the request - N, and b) zero.

The receiving SNWPv2 entity produces a Response-PDU with up to the
total nunber of requested variabl e bindi ngs communi cated by the
request. The request-id shall have the sanme val ue as the received
Get Bul kRequest - PDU

If Nis greater than zero, the first through the (N)-th variable
bi ndi ngs of the Response-PDU are each produced as foll ows:

(1) The variable is located which is in the |exicographically ordered

list of the names of all variables which are accessible by this
request and whose nane is the first |exicographic successor of the

SNVPv2 Wor ki ng G oup St andards Track [Page 14]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

(2)

(1)

(2)

(1)

variabl e binding’s nane in the incom ng GetBul kRequest-PDU. The
correspondi ng variable binding’ s nane and value fields in the
Response-PDU are set to the name and val ue of the | ocated variable.

If the requested variable binding s name does not | exicographically
precede the nane of any variable accessible by this request, i.e.,
there is no | exicographic successor, then the correspondi ng

vari abl e bi nding produced in the Response-PDU has its value field
set to ‘endOFMbView, and its nane field set to the variable

bi nding’s name in the request.

If Mand R are non-zero, the (N + 1)-th and subsequent vari abl e

bi ndi ngs of the Response-PDU are each produced in a simlar nanner.
For each iteration i, such that i is greater than zero and |l ess than
or equal to M and for each repeated variable, r, such that r is
greater than zero and less than or equal to R the (N+ ((i-1) * R)
+ r)-th variable binding of the Response-PDU is produced as foll ows:

The variable which is in the | exicographically ordered list of the
nanes of all variables which are accessible by this request and
whose nane is the (i)-th | exicographic successor of the (N+ r)-th
variabl e binding’ s nane in the incom ng GetBul kRequest-PDU is

| ocated and the variable binding’ s name and value fields are set to
the name and val ue of the | ocated vari abl e.

If there is no (i)-th |exicographic successor, then the
correspondi ng vari abl e bindi ng produced in the Response-PDU has its
value field set to ‘“endOMbView, and its nane field set to either
the | ast |exicographic successor, or if there are no | exicographic
successors, to the (N + r)-th variable binding’s nane in the
request.

Wi | e t he maxi mum nunber of variable bindings in the Response-PDU is
bounded by N+ (M* R), the response may be generated with a | esser
nunber of variabl e bindings (possibly zero) for either of three
reasons.

If the size of the nessage encapsul ating the Response-PDU

contai ning the requested nunber of variable bindings woul d be
greater than either a local constraint or the naxi mum nessage size
of the originator, then the response is generated with a | esser
nunber of variable bindings. This |lesser nunber is the ordered set
of variable bindings with sone of the variabl e bindings at the end
of the set renoved, such that the size of the nessage encapsul ating
the Response-PDU is approximately equal to but no greater than
either a local constraint or the nmaxi mum nessage size of the
originator. Note that the nunber of variable bindings renmoved has
no relationship to the values of Ny M or R

SNVPv2 Wor ki ng G oup St andards Track [Page 15]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

(2)

(3)

The response may al so be generated with a | esser nunber of variable
bi ndings if for some value of iteration i, such that i is greater
than zero and | ess than or equal to M that all of the generated
vari abl e bi ndi ngs have the value field set to the ‘endO M bVi ew

In this case, the variable bindings my be truncated after the (N +
(i * R)-th variabl e binding.

In the event that the processing of a request with many repetitions
requires a significantly greater anount of processing time than a
normal request, then an agent may term nate the request with |ess
than the full nunber of repetitions, providing at |east one
repetition is conpleted.

If the processing of any variable binding fails for a reason other
than |isted above, then the Response-PDU is re-formatted with the
same values in its request-id and variabl e-bindings fields as the
recei ved CGet Bul kRequest-PDU, with the value of its error-status field
set to ‘genErr’, and the value of its error-index field is set to the
i ndex of the variable binding in the original request which
corresponds to the failed variabl e binding.

O herwi se, the value of the Response-PDU s error-status field is set
to ‘noError’, and the value of its error-index field to zero.

The generated Response-PDU (possibly with an enpty vari abl e- bi ndi ngs
field) is then encapsulated into a nessage. |If the size of the
resultant nessage is less than or equal to both a | ocal constraint
and the maxi mum nessage size of the originator, it is transnmitted to
the originator of the GetBul kRequest-PDU. O herw se, the
snnpSi | ent Drops [9] counter is incremented and the resultant nessage
i s discarded.

4.2.3.1. Another Exanple of Table Traversal

Thi s exanpl e denponstrates how t he Get Bul kRequest-PDU can be used as
an alternative to the Get Next Request-PDU. The same traversal of the
P net-to-media table as shown in Section 4.2.2.1 is achieved with

f ewer exchanges.

The SNWMPv2 entity acting in a nmanager role begins by sending a

Get Bul kRequest - PDU wi th t he npodest nmax-repetitions value of 2, and
contai ning the indicated OBJECT | DENTI FI ER val ues as the requested
vari abl e nanes:

Get Bul kRequest [non-repeaters = 1, nmax-repetitions = 2]
(sysUpTi e,
i pNet ToMedi aPhysAddr ess,
i pNet ToMedi aType)

SNVPv2 Wor ki ng G oup St andards Track [Page 16]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

The SNMPv2 entity acting in an agent role responds with a Response- PDU

Response ((sysUpTinme.0 = "123456"),
(i pNet ToMedi aPhysAddress. 1.9.2.3.4 =
"000010543210")

(i pNet ToMedi aType. 1.9.2.3.4 = "dynamc"),

(i pNet ToMedi aPhysAddress. 1. 10.0.0.51 =
"000010012345"),

(i pNet ToMedi aType. 1.10.0.0.51 = "static"))

The SNVPv2 entity acting in a manager role continues wth:

Get Bul kRequest [non-repeaters = 1, nax-repetitions = 2]
(sysUpTi ne,
i pNet ToMedi aPhysAddress. 1.10. 0. 0. 51
i pNet ToMedi aType. 1.10.0.0.51)

The SNMPv2 entity acting in an agent role responds with:

Response ((sysUpTinme.0 = "123466"),
(i pNet ToMedi aPhysAddr ess. 2.10.0.0. 15 =
"000010987654"),
(i pNet ToMedi aType. 2.10.0.0.15 =

"dynam c"),
(i pNet ToMedi aNet Address. 1.9.2.3.4 =
"9.2.3.4"),

(ipRoutingDiscards.0 = "2"))

This response signals the end of the table to the SNMPv2 entity
acting in a nmanager role.

4.2.4. The Response-PDU

The Response-PDU is generated by a SNMPv2 entity only upon receipt of
a Get Request - PDU, Get Next Request - PDU, GCet Bul kRequest - PDU

Set Request - PDU, or | nfornRequest-PDU, as described el sewhere in this
docunent .

If the error-status field of the Response-PDU is non-zero, the val ue
fields of the variable bindings in the variable binding list are
i gnor ed.

If both the error-status field and the error-index field of the
Response- PDU are non-zero, then the value of the error-index field is
the index of the variable binding (in the variable-binding list of
the correspondi ng request) for which the request failed. The first
variable binding in a request’s variable-binding list is index one,
the second is index two, etc.

SNVPv2 Wor ki ng G oup St andards Track [Page 17]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

A conpliant SNMPv2 entity acting in a nmanager role nust be able to
properly receive and handl e a Response-PDU with an error-status field
equal to ‘noSuchName’, ‘badValue', or ‘readOnly’. (See Section 3.1.2
of [8].)

Upon recei pt of a Response-PDU, the receiving SNMPv2 entity presents
its contents to the SNMPv2 application which generated the request
with the sane request-id val ue

4.2.5. The Set Request-PDU

A Set Request-PDU is generated and transmitted at the request of a
SNVPv2 application

Upon recei pt of a Set Request-PDU, the receiving SNMPv2 entity

determ nes the size of a nessage encapsul ati ng a Response-PDU havi ng
the sanme values in its request-id and vari abl e-bindings fields as the
recei ved Set Request-PDU, and the | argest possible sizes of the
error-status and error-index fields. |If the determ ned nessage size
is greater than either a |l ocal constraint or the maxi mum nmessage size
of the originator, then an alternate Response-PDU is generated,
transmtted to the originator of the Set Request-PDU, and processing
of the SetRequest-PDU term nates i medi ately thereafter. This
alternate Response-PDU is formatted with the same values in its
request-id field as the received Set Request-PDU, with the val ue of
its error-status field set to ‘“tooBig’, the value of its error-index
field set to zero, and an enpty vari abl e-bindings field. This

al ternate Response-PDU is then encapsulated into a nessage. |If the
size of the resultant nessage is |l ess than or equal to both a | oca
constraint and the maxi mum nessage size of the originator, it is
transmtted to the originator of the Set Request-PDU. Oherw se, the
snnpSi l entDrops [9] counter is incremented and the resultant message
is discarded. Regardless, processing of the SetRequest-PDU

term nates.

O herwi se, the receiving SNWPv2 entity processes each variable
binding in the variable-binding list to produce a Response-PDU. Al
fields of the Response-PDU have the sanme val ues as the correspondi ng
fields of the received request except as indicated bel ow

The vari abl e bindi ngs are conceptually processed as a two phase
operation. In the first phase, each variable binding is validated;
if all validations are successful, then each variable is altered in
the second phase. O course, inplenmentors are at liberty to

i mpl ement either the first, or second, or both, of these conceptua
phases as nultiple inplementation phases. |ndeed, such multiple

i mpl enent ati on phases may be necessary in sone cases to ensure
consi st ency.

SNVPv2 Wor ki ng G oup St andards Track [Page 18]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

The followi ng validations are perfornmed in the first phase on each
variable binding until they are all successful, or until one fails:

(1) If the variable binding s nane specifies an existing or non-
exi stent variable to which this request is/wuld be denied access
because it is/would not be in the appropriate MB view, then the
val ue of the Response-PDU s error-status field is set to
‘noAccess’, and the value of its error-index field is set to the
i ndex of the failed variable binding.

(2) Oherwise, if there are no variables which share the same OBJECT
| DENTI FI ER prefix as the variable binding s nanme, and which are
able to be created or nodified no matter what new value is
specified, then the value of the Response-PDU s error-status field
is set to ‘notWitable', and the value of its error-index field is
set to the index of the failed variabl e binding.

(3) Oherwise, if the variable binding’s value field specifies,
according to the ASN. 1 | anguage, a type which is inconsistent with
that required for all variables which share the sane OBJECT
| DENTI FI ER prefix as the variable binding’ s name, then the val ue of
the Response-PDU s error-status field is set to ‘wongType’, and
the value of its error-index field is set to the index of the
failed variabl e binding.

(4) Oherwise, if the variable binding s value field specifies,
according to the ASN. 1 | anguage, a length which is inconsistent
with that required for all variables which share the sane OBJECT
| DENTI FI ER prefix as the variable binding s name, then the val ue of
the Response-PDU s error-status field is set to ‘wonglLength’, and
the value of its error-index field is set to the index of the
failed variabl e binding.

(5) Oherwise, if the variable binding’s value field contains an ASN. 1
encodi ng which is inconsistent with that field s ASN.1 tag, then
the value of the Response-PDU s error-status field is set to
‘wrongEncoding’, and the value of its error-index fieldis set to
the index of the failed variable binding. (Note that not al
i mpl enentation strategies will generate this error.)

(6) Oherwise, if the variable binding’s value field specifies a value
whi ch coul d under no circunstances be assigned to the variabl e,
then the value of the Response-PDU s error-status field is set to
‘wrongValue’, and the value of its error-index field is set to the
i ndex of the failed variable binding.

(7) Oherwise, if the variable binding s name specifies a variable
whi ch does not exist and could not ever be created (even though

SNVPv2 Wor ki ng G oup St andards Track [Page 19]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

(8)

(9)

sone vari abl es sharing the same OBJECT | DENTI FI ER prefix m ght
under sone circunstances be able to be created), then the val ue of
the Response-PDU s error-status field is set to ‘noCreation’, and
the value of its error-index field is set to the index of the
failed variabl e binding.

QO herwise, if the variable binding' s name specifies a variable
whi ch does not exist but can not be created under the present

ci rcunst ances (even though it could be created under other

ci rcunmst ances), then the value of the Response-PDU s error-status
field is set to ‘inconsistentNane’, and the value of its error-
index field is set to the index of the failed variable binding.

QO herwise, if the variable binding' s name specifies a variable

whi ch exists but can not be nodified no matter what new value is
specified, then the value of the Response-PDU s error-status field
is set to ‘notWitable’, and the value of its error-index field is
set to the index of the failed variabl e binding.

(10) Ot herwise, if the variable binding’ s value field specifies a value

that could under other circunmstances be held by the variable, but
is presently inconsistent or otherw se unable to be assigned to the
vari able, then the value of the Response-PDU s error-status field
is set to ‘inconsistentValue', and the value of its error-index
field is set to the index of the failed variabl e binding.

(11) When, during the above steps, the assignnment of the value specified

by the variable binding’s value field to the specified variable
requires the allocation of a resource which is presently
unavail abl e, then the value of the Response-PDU s error-status
field is set to ‘resourceUnavail able’, and the value of its error-
index field is set to the index of the failed variable binding.

(12) If the processing of the variable binding fails for a reason ot her

than |isted above, then the value of the Response-PDU s error-
status field is set to ‘genErr’, and the value of its error-index
field is set to the index of the failed variabl e binding.

(13) O herwi se, the validation of the variable binding succeeds.

At the end of the first phase, if the validation of all variable

bi ndi ngs succeeded, then the value of the Response-PDU s error-status
field is set to ‘noError’ and the value of its error-index field is
zero, and processing continues as foll ows.

For each variable binding in the request, the named variable is
created if necessary, and the specified value is assigned to it.
Each of these variable assignments occurs as if simultaneously wth

SNVPv2 Wor ki ng G oup St andards Track [Page 20]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

respect to all other assignnents specified in the sane request.
However, if the sanme variable is naned nore than once in a single
request, with different associated val ues, then the actual assignment
made to that variable is inplenmentation-specific.

If any of these assignnments fail (even after all the previous
validations), then all other assignnments are undone, and the
Response-PDU is nodified to have the value of its error-status field
set to ‘commtFailed , and the value of its error-index field set to
the index of the failed variabl e binding.

If and only if it is not possible to undo all the assignnments, then
the Response-PDU is nodified to have the value of its error-status
field set to ‘undoFailed, and the value of its error-index field is
set to zero. Note that inplenmentations are strongly encouraged to
take all possible neasures to avoid use of either ‘commtFailed or
‘undoFail ed” - these two error-status codes are not to be taken as
license to take the easy way out in an inplenentation

Finally, the generated Response-PDU is encapsul ated into a nessage,
and transnitted to the originator of the SetRequest-PDU

4.2.6. The SNWVPv2-Trap- PDU

A SNMPv2-Trap-PDU is generated and transmtted by a SNMPv2 entity
acting in an agent role when an exceptional situation occurs.

The destination(s) to which a SNMPv2-Trap-PDU is sent is determ ned
in an inplementation-dependent fashion by the SNMPv2 entity. The
first two variable bindings in the variable binding list of an
SNVPv2- Trap- PDU are sysUpTine.0 [9] and snnpTrapQ D.0 [9]
respectively. If the OBJECTS clause is present in the invocation of
the correspondi ng NOTI FI CATI ON- TYPE nacro, then each correspondi ng
variable, as instantiated by this notification, is copied, in order
to the variable-bindings field. |If any additional variables are
being included (at the option of the generating SNMPv2 entity), then
each is copied to the variabl e-bindings field.

4.2.7. The InfornRequest-PDU

An I nfornRequest-PDU is generated and transmtted at the request of
an application in a SNWPv2 entity acting in a nmanager role, that

wi shes to notify another application (in a SNMPv2 entity al so acting
in a manager role) of information in a MB view which is renote to
the receiving application

The destination(s) to which an I nfornmRequest-PDU is sent is specified
by the requesting application. The first two variable bindings in

SNVPv2 Wor ki ng G oup St andards Track [Page 21]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

(1)
(2)

(3)

5.

the variable binding list of an InfornRequest-PDU are sysUpTine.0 [9]
and snnmpTrapO D.0 [9] respectively. |f the OBJECTS clause is present
in the invocation of the correspondi ng NOTI FI CATI ON- TYPE nacro, then
each corresponding variable, as instantiated by this notification, is
copied, in order, to the variabl e-bindings field.

Upon recei pt of an | nfornRequest-PDU, the receiving SNMPv2 entity
determ nes the size of a nessage encapsul ating a Response-PDU with
the sane values in its request-id, error-status, error-index and

vari abl e-bindings fields as the received |InfornRequest-PDU. If the
det erm ned nmessage size is greater than either a | ocal constraint or
the nmaxi mum nessage size of the originator, then an alternate
Response-PDU is generated, transmitted to the originator of the

I nf or MRequest - PDU, and processi ng of the |InfornmRequest-PDU term nates
i medi ately thereafter. This alternate Response-PDU is formatted
with the sane values in its request-id field as the received

I nf ormMRequest-PDU, with the value of its error-status field set to
‘tooBig’, the value of its error-index field set to zero, and an
enpty variable-bindings field. This alternate Response-PDU is then
encapsul ated into a nessage. |If the size of the resultant nessage is
l ess than or equal to both a |ocal constraint and the maxi mum message
size of the originator, it is transmtted to the originator of the

I nf or MRequest - PDU. O herwi se, the snnpSilentDrops [9] counter is
increnented and the resultant nessage is discarded. Regardless,
processi ng of the InfornRequest-PDU terninates.

O herwi se, the receiving SNVPv2 entity:
presents its contents to the appropriate SNVMPv2 application
generates a Response-PDU with the sanme values in its request-id and
vari abl e-bi ndings fields as the received |InfornRequest-PDU, with
the value of its error-status field is set to ‘noError’ and the

value of its error-index field is zero; and

transmts the generated Response-PDU to the originator of the
I nf or mRequest - PDU

Security Consi derations

Security issues are not discussed in this nmeno.

SNVPv2 Wor ki ng G oup St andards Track [Page 22]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

6. Editor’s Address

Keith McC oghrie

Ci sco Systens, Inc.

170 West Tasman Drive
San Jose, CA 95134-1706
us

Phone: +1 408 526 5260
EMai | : kzm@i sco. com

7. Acknow edgenents

This docunent is the result of significant work by the four major
contributors:

Jeffrey D. Case (SNWP Research, case@nnp.com

Keith McCl oghrie (Cisco Systens, kzmai sco.com

Marshall T. Rose (Dover Beach Consulting, nrose@lbc. ntview ca. us)

St even Wal dbusser (International Network Services, stevew@ni.ins.com

In addition, the contributions of the SNWMPv2 Working Group are
acknow edged. In particular, a special thanks is extended for the
contributions of:

Al exander |. Alten (Novell)

Dave Arneson (Cabl etron)

Ui Blunmenthal (1BM

Doug Book (Chi pcom

Kim Curran (Bell-Northern Research)
Jim@Galvin (Trusted Informati on Systens)
Maria Greene (Ascom Ti mepl ex)

lai n Hanson (Digital)

Dave Harrington (Cabletron)
Nguyen Hien (1BM

Jeff Johnson (Cisco Systens)

M chael Kornegay (Object Quest)
Deirdre Kostick (AT&T Bell Labs)
Davi d Levi (SNWMP Research)

Dani el Mahoney (Cabl etron)

Bob Nat al e (ACE* COVM

Brian O Keefe (Hew ett Packard)
Andr ew Pear son (SNVP Resear ch)
Dave Perkins (Peer Networks)
Randy Presuhn (Peer Networks)

Al eksey Romanov (Quality Quorum
Shawn Rout hi er (Epil ogue)

Jon Saperia (BGS Systens)

SNVPv2 Wor ki ng G oup St andards Track [Page 23]

RFC 1905 Prot ocol Operations for SNWPv2 January 1996

Bob Stewart (Cisco Systens, bstewart @i sco.com, chair
Kaj Tesink (Bellcore)

G enn Waters (Bell-Northern Research)

Bert Wjnen (I1BM

8. References

[1] Information processing systems - Open Systens |nterconnection -
Speci fication of Abstract Syntax Notation One (ASN. 1),
I nternational Organization for Standardization. |International
St andard 8824, (Decenber, 1987).

[2] SNwPv2 Working G oup, Case, J., McCOoghrie, K, Rose, M, and
S. Wl dbusser, "Structure of Managenent Information for Version 2
of the Sinple Network Management Protocol (SNWv2)", RFC 1902,
January 1996.

[3] SNwWPv2 Working Goup, Case, J., McCOoghrie, K, Rose, M, and
S. Wl dbusser, "Textual Conventions for Version 2 of the Sinple
Net wor k Managenent Protocol (SNWPv2)", RFC 1903, January 1996.

[4] Kent, C., and J. Mogul, Fragnmentation Considered Harnful,
Proceedi ngs, ACM SI GCOW ' 87, Stowe, VT, (August 1987).

[5] SNwPv2 Working G oup, Case, J., McCOoghrie, K, Rose, M, and
S. Wl dbusser, "Transport Mappings for Version 2 of the Sinple
Net wor k Management Protocol (SNWPv2)", RFC 1906, January 1996.

[6] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
USC/ I nformation Sciences Institute, August 1980.

[7] Mdoghrie, K, and M Rose, Editors, "Managenent |nfornmation
Base for Network Managenent of TCP/ | P-based internets:
MB-11", STD 17, RFC 1213, March 1991.

[8] SNWPv2 Working G oup, Case, J., McCOoghrie, K, Rose, M, and
S. Wl dbusser, "Coexistence between Version 1 and Version 2
of the Internet-standard Network Managenment Framework", RFC 1908,
January 1996.

[9] SNwPv2 Working Goup, Case, J., McCoghrie, K, Rose, M, and
S. Wl dbusser, "Managenent Information Base for Version 2 of the
Si npl e Networ k Managenent Protocol (SNWPv2)", RFC 1907,
January 1996.

SNVPv2 Wor ki ng G oup St andards Track [Page 24]

