Net wor k Wor ki ng Group R Bal dwi n
Request for Comments: 2040 RSA Data Security, Inc.
Cat egory: I nfornmational R Rivest
M T Laboratory for Conputer Science

and RSA Data Security, Inc.

Oct ober 1996

The RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Al gorithmns
Status of this Meno
This meno provides information for the Internet conmunity. This nmeno
does not specify an Internet standard of any kind. Distribution of
this nmeno is unlimnmted.

Acknowl edgnent s

We woul d like to thank Steve Dusse, Victor Chang, Tim Mathews, Brett
Howard, and Burt Kaliski for hel pful suggestions.

Tabl e of Contents

1. Executive Sunmary 1
2. OVerVI BW . . 2
3. Term nol ogy and Notation 3
4. Description of RC5 Keys 4
5. Description of RC5 Key Expansion 6
6. Description of RC5 Block Cipher 10
7. Description of RC5-CBC and RC5-CBC-Pad .. 12
8. Description of RC5-CTS 18
9. Test Program and Vectors 19
10. Security Considerations 26
11. ASN. 1 ldentifiers 28
References 28
Authors’ Addresses 29

1. Executive Summary

Thi s docunent defines four ciphers with enough detail to ensure
interoperability between different inplenentations. The first cipher
is the raw RC5 bl ock cipher. The RC5 cipher takes a fixed size input
bl ock and produces a fixed sized output block using a transformation
that depends on a key. The second ci pher, RC5-CBC, is the G pher

Bl ock Chaining (CBC) node for RC5. It can process nessages whose
length is a multiple of the RC5 block size. The third cipher, RC5-
CBC- Pad, handl es pl ai ntext of any |ength, though the ciphertext wll
be | onger than the plaintext by at nost the size of a single RCS5

Bal dwi n & Ri vest | nf or mati onal [Page 1]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

bl ock. The RC5-CTS cipher is the C pher Text Stealing node of RC5,
whi ch handl es pl ai ntext of any length and the ciphertext |ength
mat ches the pl aintext |ength.

The RC5 ci pher was invented by Professor Ronald L. Rivest of the
Massachusetts Institute of Technology in 1994. It is a very fast and
sinple algorithmthat is paraneterized by the block size, the nunber
of rounds, and key length. These paraneters can be adjusted to neet
di fferent goals for security, performance, and exportability.

RSA Data Security Incorporated has filed a patent application on the
RC5 ci pher and for trademark protection for RC5, RC5-CBC, RC5-CBC
Pad, RC5-CTS and assorted vari ations.

2. Overview

This memp is a restatenent of existing published material. The
description of RC5 follows the notation and order of explanation
found in the original RC5 paper by Professor Rivest [2]. The CBC
node appears in reference works such as the one by Bruce Schnei er
[6]. The CBC-Pad npbde is the same as in the Public Key Cryptography
Standard (PKCS) nunmber five [5]. Sanple C code [8] is included for
clarity only and is equivalent to the English | anguage descriptions.

The ciphers will be explained in a bottomup object-oriented fashion.
First, RC5 keys will be presented along with the key expansion
algorithm Second, the RC5 bl ock cipher is explained, and finally,
the RC5-CBC and RC5- CBC-Pad ci phers are specified. For brevity, only
the encryption process is described. Decryption is achieved by
inverting the steps of encryption

The object-oriented description found here should nake it easier to
i mpl ement i nteroperable systenms, though it is not as terse as the
functional descriptions found in the references. There are two

cl asses of objects, keys and cipher algorithms. Both classes share
operations that create and destroy these objects in a manner that
ensures that secret information is not returned to the nenory
manager .

Keys al so have a "set" operation that copies a secret key into the
object. The "set" operation for the cipher objects defines the
nunmber of rounds, and the initialization vector.

There are four operations for the cipher objects described in this
meno. There is binding a key to a ci pher object, setting a new
initialization vector for a cipher object wthout changing the key,
encrypting part of a message (this would be performed nultiple tines
for | ong nmessages), and processing the last part of a nessage which

Bal dwi n & Ri vest I nf or mati onal [Page 2]

RFC 2040 RC5, RC5- CBC, RC5- CBC-Pad, and RC5-CTS Cct ober 1996
may add paddi ng or check the I ength of the nessage.
I'n summary, the cipher will be explained in terms of these
oper ati ons:
RC5_Key Create - Create a key object.
RC5_Key_Destr oy - Destroy a key object.
RC5_Key_ Set - Bind a user key to a key object.
RC5_CBC Create - Create a cipher object.
RC5_CBC Destroy - Destroy a cipher object.
RC5_CBC Encrypt _Init - Bind a key object to a cipher object.
RC5_CBC Set 1V - Set a new IV without changing the key.
RC5_CBC Encrypt Update - Process part of a nessage.
RC5_CBC _Encrypt _Fi nal - Process the end of a nessage.

3. Terminology and Notation
The term "word" refers to a string of bits of a particular Iength

that can be operated on as either an unsigned integer or as a bit

vector.

ei ght bits.

The foll ow ng
meani ngs:

W This is the

bl ock size

VWN This is the

B This is the

the word size.
64 and Wis 32. 0 < B < 257.

a variabl e

For exanple a "word"
on the desired bl ock size for the RC5 cipher
produce a 64 bit block size.
shoul d match the register size of the CPU

m ght be 32 or 64 bits | ong depending
A 32 bit word will

best performance the RC5 word size
The term "byte" refers to

For

variables will be used throughout this nmeno with these

word size for RC5 measured in bits. It is half the
The word sizes covered by this nmenmo are 32 and 64.

word size for RC5 measured in bytes.

bl ock size for RC5 neasured in bits. It is twce

When RC5 is used as a 64 bit block cipher, Bis

In the sample code, B, is used as
i nstead of a cipher system paraneter, but this usage

shoul d be obvi ous from cont ext.

BB This is the

Bal dwi n & Ri vest

bl ock size for RC5 neasured in bytes. BB = B/ 8.

I nf or mati onal [Page 3]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

b This is the byte length of the secret key. 0 <= b < 256.

K This is the secret key which is treated as a sequence of b
bytes i ndexed by: K/ 0], ..., K b-1].

R This is the nunmber of rounds of the inner RC5 transform
0 <= R < 256.

T This is the nunber of words in the expanded key table. It is
always 2*(R + 1). 1 < T < 513.

S This is the expanded key table which is treated as a sequence
of words indexed by: S§0], ..., S[T-1].

N This is the byte length of the plaintext nessage.

P This is the plaintext message which is treated as a sequence of
N bytes indexed by: P[0], ..., P[N1].

C This is the ciphertext output which is treated as a sequence of
bytes i ndexed by: /0], (1],

I This is the initialization vector for the CBC node which is
treated as a sequence of bytes indexed by: 1[0], ..., I[BB-1].

4. Description of RC5 Keys

Li ke nost bl ock ciphers, RC5 expands a small user key into a table of
internal keys. The byte length of the user key is one of the
paraneters of the cipher, so the RC5 user key object nust be able to
hol d variabl e I ength keys. A possible structure for this in Cis:

[* Definition of RC5 user key object. */
typedef struct rc5UserKey
{
i nt keyLength; /* In Bytes. */
unsi gned char *keyByt es;
} rchUser Key;

The basic operations on a key are to create, destroy and set. To
avoi d exposing key material to other parts of an application, the
destroy operation zeros the nenory allocated for the key before
releasing it to the nenory nmanager. A general key object may support
ot her operations such as generating a new random key and deriving a
key from key-agreenent information.

Bal dwi n & Ri vest I nf or mati onal [Page 4]

RFC 2040

RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

4.1 Creating an RC5 Key

To create a key, the nmenory for the key object rmust be allocated and

initialized.
"mal | oc" will

The C code bel ow assunes that a function call ed
return a block of uninitialized menmory fromthe heap

or zero indicating an error

/* Allocate and initialize an RC5 user key.

* Return O if
*/

pr obl ens.

rcbUser Key *RC5_Key Create ()

{

rcbUser Key *pKey;

pKey = (rc5UserKey *) malloc (sizeof (*pKey));
if (pKey !'= ((rchUserKey *) 0))

pKey- >keyLength = O0;
pKey- >keyBytes = (unsigned char *) O;

return (pKey);

}

4.2 Destroying an RC5 Key

To destroy a key, the nenory nust be zeroed and rel eased to the
menory manager. The C code bel ow assunes that a function called
"free" will return a block of nenmory to the heap

/* Zero and free an RC5 user key.

*/

voi d RC5_Key Destroy (pKey)

r cS5User Key
{

unsi gned char

i nt

if (pKey ==
return;

* pKey;

*to;
count ;

((rc5UserKey *) 0))

i f (pKey->keyBytes == ((unsigned char *) 0))

return;

to = pKey->keyByt es;

for (count =

*tot++ =

0 ; count < pKey->keylLength ; count++)

(unsi gned char) O0;

free (pKey->keyBytes);
pKey- >keyBytes = (unsigned char *) O;
pKey->keyLengt h = O;

free (pKey);

Bal dwi n & Ri vest

I nf or mati onal [Page 5]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS

}
4.3 Setting an RC5 Key

Cct ober 1996

Setting the key object nmakes a copy of the secret key into a bl ock of

nmenory all ocated fromthe heap

/* Set the value of an RC5 user Kkey.
* Copy the key bytes so the caller can zero and
* free the original
* Return zero if problens
*/
int RC5_Key Set (pKey, keylLength, keyBytes)
rcSUser Key *pKey;,
i nt keyLengt h;
unsi gned char *keyByt es;

unsi gned char *keyByt esCopy;
unsi gned char *from *to;
i nt count ;

keyByt esCopy = (unsigned char *) malloc (keylLength);

if (keyBytesCopy == ((unsigned char *) 0))
return (0);

from = keyByt es;

to = keyByt esCopy;

for (count = 0 ; count < keylLength ; count ++)
*to++ = *from+

pKey->keyLengt h = count;

pKey- >keyByt es = keyByt esCopy;

return (1);

5. Description of RC5 Key Expansion

This section describes the key expansion al gorithm

To be specific,

the sanpl e code assunes that the block size is 64 bits.

progranm ng paraneters depend on the bl ock size.

/* Definitions for RC5 as a 64 bit block cipher. */
/[* The "unsigned int" will be 32 bits on all but */

/* the ol dest conpilers, which will make it 16 bits.

/* On a DEC Al pha "unsigned long" is 64 bits, not 32.

#defi ne RC5_WORD unsi gned i nt

#define W (32)

#def i ne WV (wW/ 8)

#defi ne ROT_MASK (W- 1)

#def i ne BB ((2*WwW / 8) /* Bytes per block
Bal dwi n & Ri vest I nf or mati ona

*/

*/

*/

Sever a

[Page 6]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996
/* Define macros used in multiple procedures. */
/* These mmcros assunmes ">>" is an unsigned operation, */
/* and that x and s are of type RC5_WORD. */
#define SHL(Xx, s) ((RC5_WORD) ((x) <<((s) &ROT_MASK)))
#define SHR(x,s,w) ((RC5_WORD) ((x)>>((w)-((s)&ROT_MASK))))
#define ROTL(X,s,wW) ((RC5_WORD)(SHL((X),(s))|SHR((x),(s),(wW))))
5.1 Definition of initialization constants
Two constants, Pw and Qwn, are defined for any word size Why the
expr essi ons:
Pw = Odd((e-2)*2**W
Qv = Odd((phi-1)*2**W
where e is the base of the natural logarithm (2.71828 ...), and ph

is the golden ratio (1.61803 ...), and 2**Wis 2 raised to the power
of W and Odd(x) is equal to x if x is odd, or equal to x plus one if
X is even. For Wequal to 16, 32, and 64, the Pw and Qv constants
are the foll ow ng hexadeci mal val ues:

#defi ne P16 Oxb7el

#define QL6 0x9e37

#define P32 0Oxb7el5163

#define B2 0x9e3779b9

#defi ne P64 0Oxb7el51628aed2a6bb

#define @4 0x9e3779b97f4a7cl5

#if W== 16

#define Pw P16 /* Select 16 bit word size */

#define Qv QL6

#endi f

#if W== 32

#define Pw P32 /* Select 32 bit word size */

#define Qv @@B2

#endi f

#if W== 64

#define Pw P64 /* Select 64 bit word size */

#define Qv (64

#endi f

Bal dwi n & Ri vest I nf or mati onal [Page 7]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

5.2 Interface definition

The key expansion routine converts the b-byte secret key, K, into an
expanded key, S, which is a sequence of T = 2*(R+1) words. The
expansi on al gorithm uses two constants that are derived fromthe
constants, e, and phi. These are used to initialize S, which is then
nodi fied using K. A C code procedure header for this routine could
be:

/* Expand an RC5 user key.

*/
void RC5_Key Expand (b, K, R 9)
i nt b; /* Byte length of secret key */
char *K; /* Secret key */
i nt R, /* Nunber of rounds */
RC5_WORD *S; /* Expanded key buffer, 2*(R+1l) words */
{

5.3 Convert secret key from bytes to words

This step converts the b-byte key into a sequence of words stored in
the array L. On a little-endian processor this is acconplished by
zeroing the L array and copying in the b bytes of K The following C
code will achieve this effect on all processors:

int i, j, k, LL, t, T;
RC5_WORD L[256/ WY ; /* Based on max key size */
RC5_WORD A B

/* LL is nunber of elenents used in L. */
LL = (b + W- 1) / WN
for (i =0 ; i <LL; i++) {
L[i] = 0;
for (i =0 ; i <b; i++)
t = (K[i] & OXFF) << (8*(iv)); /* 0, 8, 16, 24*/
L[i/WN = L[i/WN + t;

5.4 Initialize the expanded key table

This step fills in the Stable with a fixed (key independent)
pseudo-random pattern using an arithnetic progression based on Pw and
Qv nodul o 2**W The elenent S[i] equals i*Qwv + Pw nodul o 2**W This
tabl e coul d be preconputed and copi ed as needed or conputed on the
fly. 1In Ccode it can be conmputed by:

Bal dwi n & Ri vest I nf or mati onal [Page 8]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

T = 2*(R+1);

S[0] = Pw

for (i =1 ; i <T,; i++) |
Si] =¢8[i-1] + Qu

}

5.5 Mx in the secret key

This step mixes the secret key, K, into the expanded key, S.

First

the nunber of iterations of the mixing function, k, is set to three

times the maxi mum of the nunber of initialized el enents of L,

call ed

LL, and the nunber of elements in S, called T. Each iteration is
simlar to an interation of the encryption inner loop in that two
variables A and B are updated by the first and second hal ves of the

iteration.

Initially A and B are zero as are the indexes into the S array, i

and the L array, j. In the first half of the iteration, a partia
result is computed by summing S[i], A and B. The new value for Ais
this partial result rotated left three bits. The A value is then
placed into S[i]. The second half of the iteration conputes a second
partial result that is the sumof L[j], A and B. The second partia
result is then rotated |eft by A+B bit positions and set to be the

new value for B. The new B value is then placed into L[j]. At the
end of the iteration, i and j are incremented nodul o the size of
their respective arrays. In C code:
i:j = 0;
A=B=0;
if (LL > T)
k =3 * LL; /* Secret key |len > expanded key. */
el se
k =3* T, /* Secret key len < expanded key. */
for (; k>0; k--) {
A= ROTL(S[i] + A+ B, 3, W;
S[i] = A
B = ROTL(L[j] + A+ B, A+ B W;
L[i1 = B
i =(i +1) %T;
j =0 +1) %L
}
return;

} /* End of RC5_Key Expand */

Bal dwi n & Ri vest | nf or mat i ona

[Page 9]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

6.

Description of RC5 Bl ock Cipher

This section describes the RC5 bl ock cipher by explaining the steps
required to performan encryption of a single input block. The
decryption process is the reverse of these steps so it will not be
expl ai ned. The RC5 cipher is paraneterized by a version nunber, V, a
round count, R and a word size in bits, W This description
corresponds to original version of RC5 (V = 16 decinal) and covers
any positive value for R and the values 16, 32, and 64 for W

The inputs to this process are the expanded key table, S, the nunber
of rounds, R, the input buffer pointer, in, and the output buffer
pointer, out. A possible C code procedure header for this would be:

void RC5_Bl ock_Encrypt (S, R in, out)

{

RC5_WORD *S;

int R
char *in;
char *out ;

6.1 Loading A and B val ues

This step converts input bytes into two unsigned integers called A
and B. Wuen RC5 is used as a 64 bit block cipher A and B are 32 bit
values. The first input byte becones the | east significant byte of
A, the fourth input byte becones the nost significant byte of A the
fifth input byte becones the | east significant byte of B and the | ast
i nput byte becones the nost significant byte of B. This conversion
can be very efficient for little-endian processors such as the Inte

famly. In Ccode this could be expressed as:
int i;

RC5_WORD A B;

A = in[0] & OxFF;

A += (in[1l] & OxFF) << 8;
A += (in[2] & OxFF) << 16;
A += (in[3] & OxFF) << 24;
B = in[4] & OxFF;

B += (in[5] & OxFF) << 8§;
B += (in[6] & OxFF) << 16;
B += (in[7] & OxFF) << 24;

Bal dwi n & Ri vest I nf or mati onal [Page 10]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

6.2 Iterating the round function

This step mixes the expanded key with the input to performthe
fundanmental encryption operation. The first two words of the
expanded key are added to A and B respectively, and then the round
function is repeated R tines.

The first half of the round function conmputes a new val ue for A based
on the values of A B, and the next unused word in the expanded key
table. Specifically, Ais XOR ed with B and then this first partia
result is rotated to the left by an amount specified by Bto formthe
second partial result. The rotation is performed on a Whit boundary
(i.e., 32 bit rotation for the version of RC5 that has a 64 bit bl ock
size). The actual rotation anpbunt only depends on the | east
significant |og base-2 of Whits of B. The next unused word of the
expanded key table is then added to the second partial result and
this becomes the new value for A

The second hal f of the round function is identical except the roles
of A and B are switched. Specifically, Bis exclusive or’ed with A
and then this first partial result is rotated to the left by an
amount specified by Ato formthe second partial result. The next
unused word of the expanded key table is then added to the second
partial result and this becones the new value for B

One way to express this in C code is:

A=A+ 90];
B=B+ 9[1];
for (i =1 ; i <=R; i+t) {
A=A"B;
A = ROTL(A B, W + §[2*i];
B=B"A
B = ROTL(B, A, W + S[(2*%i)+1];
}

6.3 Storing the A and B val ues

The final step is to convert A and B back into a sequence of bytes.
This is the inverse of the | oad operation. An expression of this in
C code coul d be:

out[0] = (A >> 0) & OxFF;
out[1] = (A >> 8) & OxFF;
out[2] = (A >> 16) & OxFF;
out[3] = (A >> 24) & OxFF;
out[4] = (B >> 0) & OxFF;
out[5] = (B >> 8) & OxFF;

Bal dwi n & Ri vest I nf or mati onal [Page 11]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

out[6] = (B >> 16) & OxFF;
out[7] = (B >> 24) & OxFF;
return;

} /* End of RC5_BI ock_Encrypt */
7. Description of RC5-CBC and RC5- CBC Pad

Thi s section describes the CBC and CBC-Pad npdes of the RC5 cipher.
This description is based on the RC5 key objects and RC5 bl ock ci pher
descri bed earlier.

7.1 Creating cipher objects

The ci pher object needs to keep track of the paddi ng node, the nunber
of rounds, the expanded key, the initialization vector, the CBC
chai ni ng bl ock, and an input buffer. A possible structure definition
for this in C code woul d be:

/* Definition of the RC5 CBC al gorithm object.
*/

typedef struct rc5CBCAl g

{

i nt Pad; /* 1 = RC5-CBC-Pad, 0 = RC5-CBC. */

i nt R; /* Nunmber of rounds. */

RC5_WORD *S; /* Expanded key. */

unsi gned char I[BB]; /* Initialization vector. */

unsi gned char chai nBl ock[BB] ;

unsi gned char i nput Bl ock[BB] ;

i nt i nput Bl ockl ndex; /* Next inputBlock byte. */
} rc5CBCAl g;

To create a cipher algorithmobject, the paraneters nmust be checked
and then space allocated for the expanded key table. The expanded
key is initialized using the nmethod described earlier. Finally, the
state variabl es (paddi ng node, number of rounds, and the input
buffer) are set to their initial values. In Cthis could be
acconpl i shed by:

/* Allocate and initialize the RC5 CBC al gorithm object.
* Return O if problens.

*/

rc5CBCAl g *RC5_CBC Create (Pad, R, Version, bb, 1)
i nt Pad; /* 1 = RC5-CBC-Pad, 0 = RC5-CBC. */
i nt R, /* Nunber of rounds. */
i nt Ver si on; /* RC5 version nunber. */
i nt bb; /* Bytes per RC5 block == 1V len. */
char *1; /[* CBC 1V, bb bytes long. */

{

Bal dwi n & Ri vest I nf or mati onal [Page 12]

RFC 2040 RC5, RC5-CBC, RC5-CBC- Pad, and RC5-CTS Cct ober 1996
r c5CBCAl g *pAl g;
i nt i ndex;

if ((Version != RC5_FIRST_VERSION) ||
(bb t=18BB) || (R<0) || (255 <R))
return ((rc5CBCAlg *) 0);

pAlg = (rc5CBCAlg *) nalloc (sizeof (*pAlQg));

if (pAlg

((rc5CBCAIg ™) 0))

return ((rc5CBCAlg *) 0);
pAl g->S = (RC5_WORD *) malloc (BB * (R + 1));
if (pAlg->S == ((RC5_WORD *) 0)) {

free (pAl g);

return ((rc5CBCAlg *) 0);

}
pAl g- >Pad = Pad;

pAl g->R = R,
pAl g- >i nput Bl ockl ndex = 0;
for (index = 0 ; index < BB ; index++)

pAl g->I [index] = I[index];
return (pA g);
}

7.2 Destroying cipher objects

Destroying the cipher object is the inverse of creating it with care
being take to zero nenory before returning it to the nmenory nanager.

In Cthis could be acconplished by:

/* Zero and free an RC5 al gorithm object.
*/
voi d RC5_CBC Destroy (pAl Q)
r c5CBCAl g *pAl g;
{
RC5_WORD *to;
i nt count ;

if (pAlg == ((rc5CBCAlg *) 0))
return;
if (pAlg->S == ((RC5_WORD *) 0))
return;
to = pAl g->§;
for (count = 0 ; count < (1 + pAlg->R) ; count++)

}
free (pAl g->S);
for (count = 0 ; count < BB ; count++)

Bal dwi n & Ri vest | nf or mat i onal

0; [/* Two expanded key words per round. */
0

[Page 13]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

}

pAl g->I[count] = (unsigned char) O;
pAl g- >i nput Bl ock[count] = (unsigned char) O;
pAl g- >chai nBl ock[count] = (unsigned char) O;

pAl g->Pad = O;

pAl g->R = 0;

pAl g- >i nput Bl ockl ndex = 0;
free (pAl Q)

7.3 Setting the IV for cipher objects

{

}

For CBC cipher objects, the state of the algorithm depends on the
expanded key, the CBC chain block, and any internally buffered input.
Oten the sane key is used with many nessages that each have a uni que
initialization vector. To avoid the overhead of creating a new

ci pher object, it makes nore sense to provide an operation that
allows the caller to change the initialization vector for an existing

ci pher object. In Cthis could be acconplished by the follow ng
code:

* Setup a new initialization vector for a CBC operation

* and reset the CBC object.

* This can be called after Final wthout needing to

* call Init or Create again.

* Return zero if problens.

*/

nt RC5_CBC SetlV (pAlg, 1)
r c5CBCAl g *pAl g

char *; /* CBC lInitialization vector, BB bytes. */
i nt i ndex;
pAl g- >i nput Bl ockl ndex = 0;
for (index = 0 ; index < BB ; index++)
pAl g->I [i ndex] = pAl g->chai nBl ock[index] = I[index];
pAl g- >i nput Bl ock[i ndex] = (unsigned char) O;
return (1);

7.4 Binding a key to a cipher object

Bal

The operation that binds a key to a cipher object perforns the key
expansi on. Key expansion could be an operation on keys, but that
woul d not work correctly for ciphers that nodify the expanded key as

dwi n & Rivest I nf or mati onal [Page 14]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

they operate. After expanding the key, this operation nust
initialize the CBC chain block fromthe initialization vector and
prepare the input buffer to receive the first character. 1In Cthis
coul d be done by:

Initialize the encryption object with the given key.

After this routine, the caller frees the key object.

The IV for this CBC object can be changed by calling
the SetlV routine. The only way to change the key is
to destroy the CBC object and create a new one.

* Return zero if problens.

* Ok X X F

*/

int RC5_CBC Encrypt _Init (pAl g, pKey)
r c5CBCAl g *pAl g;
rcSUser Key *pKey;

{
if ((pAlg == ((rc5CBCAIg *) 0)) ||
(pKey == ((rchUserKey *) 0)))
return (0);
RC5_Key Expand (Key->keylLength, pKey->keyBytes,
pAl g->R pAl g->5);
return (RC5_CBC Setl V(pAl g, pAlg->1));
}

7.5 Processing part of a nessage

The encryption process described here uses the |nit-Update-Fina
paradi gm The update operation can be performed on a sequence of
message parts in order to increnentally produce the ciphertext.
After the last part is processed, the Final operation is called to
pi ck up any plaintext bytes or padding that are buffered inside the
ci pher object. An appropriate procedure header for this operation

woul d be:
/* Encrypt a buffer of plaintext.

* The pl ai ntext and ci phertext buffers can be the sane.
* The byte len of the ciphertext is put in *pC pherlLen
* Call this multiple tinmes passing successive

* parts of a |arge nessage.

* After the last part has been passed to Update,

*

call Final

* Return zero if problens |ike output buffer too snall
*/

int RC5_CBC Encrypt _Update (pAlg, N, P

pCi pherLen, maxCi pherLen, C)

r c5CBCAl g *pAl g; [* Cipher algorithmobject. */
i nt N; /* Byte length of P. */
char *P; /* Plaintext buffer. */

Bal dwi n & Ri vest I nf or mati onal [Page 15]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

{

i nt *pCi pherlLen;/* Gets byte len of C */
i nt maxCi pherLen; [/* Size of C. */
char *C, [* Ciphertext buffer. */

7.5.1 Qut put buffer size check.

The first step of plaintext processing is to nake sure that the

out put buffer is big enough hold the ciphertext. The ciphertext wll
be produced in nultiples of the block size and depends on the number
of plaintext characters passed to this operation plus any characters

that are in the cipher object’s internal buffer. In Ccode this
woul d be:
i nt pl ai nl ndex, ci pherlndex, j;

/* Check size of the output buffer. */
i f (maxCi pherLen < (((pAl g->i nput Bl ockl ndex+N)/ BB) *BB))

*pCi pherLen = 0;
return (0);
}

7.5.2 Di vide plaintext into bl ocks

Bal

The next step is to add characters to the internal buffer until a
full block has been constructed. Wen that happens, the buffer
pointers are reset and the input buffer is exclusive-or’ed (XORed)
with the CBC chaining block. The byte order of the chaining block is
the sane as the input block. For exanple, the ninth input byte is
XOR ed with the first ciphertext byte. The result is then passed to
the RC5 bl ock cipher which was described earlier. To reduce data
noverent and byte alignnent problens, the output of RC5 can be
directly witten into the CBC chaining block. Finally, this output
is copied to the ciphertext buffer provided by the user. Before
returning, the actual size of the ciphertext is passed back to the
caller. In C this step can be perforned by:

pl ai nl ndex = ci pherlndex = 0;
whil e (plainlndex < N

i f (pAl g->i nput Bl ockl ndex < BB)
pAl g- >i nput Bl ock[pAl g- >i nput Bl ockl ndex]
= P[pl ai nl ndex] ;

pAl g- >i nput Bl ockl ndex++;
pl ai nl ndex++;

dwi n & Rivest I nf or mati onal [Page 16]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

i f (pAl g->input Bl ockl ndex == BB)
{ /* Have a conplete input block, process it. */
pAl g- >i nput Bl ockl ndex = O0;
for (j =0 ; j <BB; j++)
{ /[* XOR in the chain block. */
pAl g- >i nput Bl ock[j] = pAl g->i nput Bl ock][|]
N pAl g->chai nBl ock[]];

}
RC5_BIl ock_Encrypt (pAl g->S, pAl g->R
pAl g- >i nput Bl ock,
pAl g- >chai nBl ock) ;
for (j =0, j <BB; j+4)
{ /* Qutput the ciphertext. */
d ci pherl ndex] = pAl g->chai nBl ock[]];
ci pher | ndex++;

}

}
*pCi pherLen = ci pherl ndex;
return (1);
} /* End of RC5_CBC Encrypt Update */

7.6 Final block processing

This step handles the | ast bl ock of plaintext. For RC5-CBC, this
step just perfornms error checking to ensure that the plaintext |ength
was indeed a nultiple of the block length. For RC5-CBC-Pad, padding
bytes are added to the plaintext. The pad bytes are all the sane and
are set to a byte that represents the nunber of bytes of padding.

For exanple if there are eight bytes of padding, the bytes will al
have the hexadeci mal val ue 0x08. There will be between one and BB
paddi ng bytes, inclusive. |In C code this would be:

/* Produce the final block of ciphertext including any
* paddi ng, and then reset the al gorithm object.
* Return zero if problens.
*/
int RC5_CBC Encrypt Final (pAl g, pC pherLen, maxC pherLen, O
r c5CBCAl g *pAl g;

i nt *pCi pher Len; /* Gets byte len of C. */

i nt maxCi pherLen; /* Len of C buffer. */

char *C, /* Ciphertext buffer. */
{

i nt ci pher I ndex, j;

i nt padLengt h;

/* For non-pad node error if input bytes buffered. */
*pCi pherLen = 0;

Bal dwi n & Ri vest I nf or mati onal [Page 17]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

if ((pAl g->Pad == 0) && (pAl g->i nput Bl ocklndex != 0))

return (0);

if (pAl g->Pad == 0)
return (1);

i f (maxCi pherlLen < BB)
return (0);

padLength = BB - pAl g- >i nput Bl ockl ndex;
for (j =0 ; j < padLength ; j++)

pAl g- >i nput Bl ock[pAl g- >i nput Bl ockl ndex]
= (unsigned char) padLengt h;
pAl g- >i nput Bl ockl ndex++;

for (j =0 ; j <BB; j++)
{ /* XOR the chain block into the plaintext block. */
pAl g- >i nput Bl ock[j] = pAl g->i nput Bl ock][j]
N pAl g->chai nBl ock[]];

}
RC5_BIl ock_Encrypt (pAl g->S, pAl g->R
pAl g- >i nput Bl ock, pAl g- >chai nBl ock);

ci pherlndex = 0;
for (j =0, j <BB; j+4)
{ /* Qutput the ciphertext. */

d ci pherl ndex] = pAl g->chai nBl ock[]];

ci pher | ndex++;

}
*pCi pherLen = ci pherl ndex;

/* Reset the CBC al gorithmobject. */
return (RC5_CBC Setl|V(pAl g, pA g->1));
} /* End of RC5_CBC Encrypt _Final */

8. Description of RC5-CTS

The Cipher Text Stealing (CTS) node for bl ock ciphers is described by
Schnei er on pages 195 and 196 of [6]. This node handl es any | ength
of plaintext and produces ciphertext whose | ength matches the

pl ai ntext length. The CTS node behaves |ike the CBC node for all but
the last two bl ocks of the plaintext. The follow ng steps describe
how to handl e the |ast two portions of the plaintext, called Pn-1 and
Pn, where the length of Pn-1 equals the block size, BB, and the
length of the last block, Pn, is Ln bytes. Notice that Ln ranges
from1l to BB, inclusive, so Pn could in fact be a conplete bl ock

Bal dwi n & Ri vest I nf or mati onal [Page 18]

1. Exclusive-or Pn-1 with the previous ciphertext
bl ock, Cn-2, to create Xn- 1.

2. Encrypt Xn-1 to create En-1.

3. Select the first Ln bytes of En-1 to create Cn.

4. Pad Pn with zeros at the end to create P of |length BB.
5. Exclusive-or En-1 with P to create to create Dn.

6. Encrypt Dn to create Cn-1

7. The last two parts of the ciphertext are Cn-1 and
Cn respectively.

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

To i npl ement CTS encryption, the RC5-CTS object nust hold on to
(buffer) at nobst 2*BB bytes of plaintext and process them specially

when the RC5_CTS Encrypt Final routine is called.

The foll owi ng steps describe howto decrypt Cn-1 and Cn.
1. Decrypt Cn-1 to create Dn.

2. Pad Cn with zeros at the end to create C of |ength BB.
3. Exclusive-or Dn with Cto create Xn.

4. Select the first Ln bytes of Xn to create Pn.

5. Append the tail (BB mnus Ln) bytes of Xn to Cn
to create En.

6. Decrypt En to create Pn-1.

7. The last two parts of the plaintext are Pn-1 and
Pn respectively.

Test Program and Vectors

To help confirmthe correctness of an inplenentation, this section

gives a test programand results froma set of test vectors.

9.1 Test Program

The following test programwitten in C reads test vectors fromits
i nput streamand wites results on its output stream The foll ow ng
subsections give a set of test vectors for inputs and the resulting

Bal dwi n & Ri vest | nf or mat i onal

[Page 19]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

out put s.
#i ncl ude <stdi o. h>

#def i ne BLOCK_LENGTH (8 /'* bytes */)

#define MAX_KEY_LENGTH (64 /* bytes */)

#defi ne MAX PLAI N LENGTH (128 /* bytes */)

#defi ne MAX_Cl PHER_LENGTH(MAX_PLAI N_LENGTH + BLOCK_LENGTH)
#defi ne MAX_ROUNDS (20)

#defi ne MAX_S LENGTH (2 * (MAX_ROUNDS + 1))

typedef struct test_vector

i nt paddi ng_node;

i nt rounds;

char keyt ext [2* MAX_KEY_LENGTH+1];
i nt key_Il engt h;

char key[MAX_KEY_LENGTH] ;

char i vt ext[2*BLOCK LENGTH+1];
int iv_|length;
char i v[BLOCK_LENGTH] ;

char pl ai nt ext [2* MAX_PLAI N_LENGTH+1] ;
int plain_|ength;
char pl ai n[MAX_PLAI N LENGTH] ;
char ci phertext[2* MAX _Cl PHER LENGTH+1] ;
int cipher_Ilength;
char ci pher [MAX_Cl PHER_LENGTH] ;
RC5_WORD S[MAX_S LENGTH] ;

} test_vector;

voi d show banner ()

(void) printf("RC5 CBC Tester.\n");

(void) printf("Each input |ine should contain the follow ng\n");
(void) printf("test paranmeters separated by a single space:\n");
(void) printf("- Padding node flag. Use 1 for RC5_CBC Pad, el se

0.\n");
(void) printf("- Number of rounds for RC5.\n");
(void) printf("- Key bytes in hexadecimal. Two characters per

byte like "01'.\n");

(void) printf("- IV bytes in hexadecimal. Mist be 16 hex
characters.\n");

(void) printf("- Plaintext bytes in hexadecinal.\n");

(void) printf("An end of file or format error termnates the
tester.\n");

(void) printf("\n");

Bal dwi n & Ri vest I nf or mati onal [Page 20]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

/* Convert a buffer fromascii hex to bytes.
* Set pTo_length to the byte length of the result.
* Return 1 if everything went OK

*/
int hex_to_bytes (from to, pTo_length)
char *from *to;
i nt *pTo_| engt h;
{
char *pHex; /* Ptr to next hex character. */
char *pByt e; [* Ptr to next resulting byte. */
int byte_ length = 0;
int val ue;
pByte = to

for (pHex = from; *pHex != 0 ; pHex += 2) {
if (1 !'= sscanf(pHex, "%92x", &val ue))
return (0);
*pByt e++ = ((char) (val ue & OxFF));
byt e | engt h++;

}
*pTo_l ength = byte_| ength;
return (1);

}

/* Convert a buffer frombytes to ascii hex.
* Return 1 if everything went OK

*/
int bytes to _hex (from fromlength, to)
char *from *to;
int fromlength;
{
char *pHex; [/* Ptr to next hex character. */
char *pByt e; [* Ptr to next resulting byte. */
int value;
pHex = to;
for (pByte = from; fromlength >0 ; fromlength--) {
val ue = *pByte++ & OxFF;
(void) sprintf(pHex, "%2x", value);
pHex += 2;
return (1);
}

/* Return 1 if get a valid test vector. */
int get_test_vector(ptv)

test_vector *ptyv;
{

Bal dwi n & Ri vest I nf or mati onal [Page 21]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS

}

if (1 !'= scanf("%l", &ptv->paddi ng_node))
return (0);
if (1 !'= scanf("%l", &ptv->rounds))
return (0);
if ((ptv->rounds < 0) || (MAX_ROUNDS < ptv->rounds))
return (0);
if (1 !'= scanf("%", &ptv->keytext))
return (0);
if (1 !'= hex_to_bytes(ptv->keytext, ptv->key,
&pt v- >key_| engt h))
return (0);
if (1 !'= scanf("%", &ptv->ivtext))
return (0);
if (1 != hex_to_bytes(ptv->ivtext, ptv->iv,
&pt v->i v_| engt h))

return (0);

if (BLOCK LENGTH != ptv->iv_| ength)
return (0);

if (1 !'= scanf("%", &ptv->plaintext))
return (0);

if (1 != hex_to_bytes(ptv->plaintext, ptv->plain,
&pt v- >pl ai n_I| engt h))
return (0);
return (1);

void run_test (ptv)

{

test_vector *ptyv;

rcbUser Key *pKey;
r c5CBCAl g *pAl g;
i nt nunmByt esQut ;

pKey = RC5_Key Create ();
RC5_Key_Set (pKey, ptv->key |ength, ptv->key);

pAl g = RC5_CBC Create (ptv->paddi ng_node,
pt v- >r ounds,
RC5_FI RST_VERSI ON,
BB,
ptv->iv);
(void) RC5_CBC Encrypt _Init (pAl g, pKey);
ptv->ci pher _length = 0;
(void) RC5_CBC Encrypt _Update (pAlg,
ptv->pl ain_| ength, ptv->plain,
&(nunByt esCut) ,
MAX_Cl PHER_LENGTH - ptv->ci pher_| engt h,
&(pt v- >ci pher[ptv->ci pher _length]));

Bal dwi n & Ri vest | nf or mat i onal

Cct ober 1996

[Page 22]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS

ptv->ci pher | ength += nunBytesCut;
(void) RC5_CBC Encrypt Final (pAg
&(nunByt esCut),

MAX_Cl PHER_LENGTH - ptv->ci pher _| engt h,

&(pt v->ci pher[ptv->ci pher _length]));
ptv->ci pher | ength += nunBytesCut;
bytes _to_hex (ptv->cipher, ptv->cipher_Iength,
ptv->ci phertext);
RC5_Key_Destroy (pKey);
RC5_CBC Destroy (pAlg);
}

void show results (ptv)
test_vector *ptv;

i f (ptv->paddi ng_node)
printf ("RC5_CBC Pad ");
el se
printf ("RC5_CBC ");
printf ("R =9%d ", ptv->rounds);
printf ("Key = % ", ptv->keytext);

printf ("IV =% ", ptv->ivtext);
printf ("P = 9% ", ptv->plaintext);
printf ("C = %", ptv->ciphertext);
printf ("\n");

}

int main(argc, argv)
int argc;
char *argv[];

{

test _vector tv;
test_vector *ptv = &tv;

show_banner () ;

while (get _test vector(ptv)) {
run_test(ptv);
show resul ts(ptv);

}
return (0);

Bal dwi n & Ri vest | nf or mat i ona

Cct ober 1996

[Page 23]

RFC 2040

9.2 Test vectors

The
t he

00
00
00
00
00
01
02
02
08
08
12
16
08
12
16
12
08
12
16
08

eNeololoNoloNololololololoNololoNoloNeNe]

o

12

o

16

12
08
08
08

R OOO

08
08

[eNe]

1 08

fol |l owi ng text

RC5, RC5-CBC, RC5- CBC- Pad,

previ ous subsection. The output is
00 0000000000000000
00 0000000000000000
00 0000000000000001
00 0000000000000000
00 0102030405060708
11 0000000000000000
00 0000000000000000
00000000 0000000000000000
00 0000000000000000
00 0102030405060708
00 0102030405060708
00 0102030405060708
01020304 0000000000000000
01020304 0000000000000000
01020304 0000000000000000
0102030405060708 0000000000000000
0102030405060708 0102030405060708
0102030405060708 0102030405060708
0102030405060708 0102030405060708
01020304050607081020304050607080
0102030405060708
01020304050607081020304050607080
0102030405060708
01020304050607081020304050607080
0102030405060708
0102030405 0000000000000000
0102030405 0000000000000000
0102030405 7875dbf 6738c6478
0102030405 0000000000000000
0102030405 0000000000000000
0102030405 7cb3f 1df 34f 94811
0102030405 0000000000000000

and RC5-CTS

Cct ober 1996

is an input file to the test programpresented in

given in the next subsection.

0000000000000000
FEFfFffffffffoaefef

0000000000000000
0000000000000001
1020304050607080
0000000000000000
0000000000000000
0000000000000000
0000000000000000
1020304050607080
1020304050607080
1020304050607080
FEFffffffffffefofef

FEFfFffffffffoaefef

FRfffffffffffffe

fIfffffffffffffes

1020304050607080
1020304050607080
1020304050607080

1020304050607080
1020304050607080
1020304050607080
FRfffffffffffffe
fIfffffffffffffes
0808080808080808
FIfffffffffffffef

0000000000000000
1122334455667701

fIffffffffffffff7875dbf6738c647811223344556677

Bal dwi n & Ri vest

| nf or mat i ona

[Page 24]

RFC 2040 RC5,

9.3 Test results

The foll ow ng text

RC5- CBC, RC5- CBC- Pad, and RC5-CTS Oct ober 1996

is the output produced by the test programrun on

the inputs given in the previous subsection.

RC5 CBC Tester.

Each input |ine should contain the follow ng

test paranmeters separated by a single space:

- Padding node flag. Use 1 for RC5_CBC Pad, else O.
- Nurmber of rounds for RC5.

- Key bytes in hexadecimal. Two characters per byte
li ke '01’
- 1V bytes in hexadecimal. Mist be 16 hex characters.

Pl ai ntext bytes in hexadeci nal.
An end of file or fornat error termnates the tester.

RC5_CBC R= 0 Key = 00 IV = 0000000000000000

P = 0000000000000000 C = 7a7bba4d79111dle

RC5_CBC R= 0 Key = 00 IV = 0000000000000000
P=ffffffffffffffff C = 797bbadd78111dle

RC5_CBC R= 0 Key = 00 IV = 0000000000000001

P = 0000000000000000 C = 7a7bba4d79111d1f

RC5_CBC R= 0 Key = 00 IV = 0000000000000000

P = 0000000000000001 C = 7a7bba4d79111d1f

RC5_CBC R= 0 Key = 00 IV = 0102030405060708

P = 1020304050607080 C = 8b9ded9lce7794a6

RC5_CBC R= 1 Key = 11 IV = 0000000000000000

P = 0000000000000000 C = 2f 759f e7ad86a378

RC5_CBC R= 2 Key = 00 IV = 0000000000000000

P = 0000000000000000 C = dca2694bf 40e0788

RC5_CBC R = 2 Key = 00000000 IV = 0000000000000000
P = 0000000000000000 C = dca2694bf 40e0788

RC5_CBC R= 8 Key = 00 IV = 0000000000000000

P = 0000000000000000 C = dcfe098577ecab5f f

RC5_CBC R= 8 Key = 00 IV = 0102030405060708

P = 1020304050607080 C = 9646f b77638f 9ca8

RC5_CBC R =12 Key = 00 1V = 0102030405060708

P = 1020304050607080 C = b2b3209db6594da4

RC5_CBC R =16 Key = 00 IV = 0102030405060708

P = 1020304050607080 C = 545f 7f 32a5f c3836

RC5_CBC R = 8 Key = 01020304 |V = 0000000000000000
P=ffffffffffffffff C = 8285e7clb5hc7402

RC5_CBC R = 12 Key = 01020304 |V = 0000000000000000
P=ffffffffffffffff C = fc586f92f 7080934

RC5_CBC R = 16 Key = 01020304 |V = 0000000000000000
P=ffffffffffffffff C = cf270ef9717ff 7c4

RC5_CBC R = 12 Key = 0102030405060708 |V = 0000000000000000
P=ffffffffffffffff C = e493f 1clbb4d6e8c

Bal dwi n & Ri vest I nf or mati onal [Page 25]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

RC5_CBC R = 8 Key = 0102030405060708 |1V = 0102030405060708
P = 1020304050607080 C = 5c4c041e0f 217ac3

RC5_CBC R = 12 Key = 0102030405060708 |V = 0102030405060708
P = 1020304050607080 C = 921f 12485373b4f 7

RC5_CBC R = 16 Key = 0102030405060708 |V = 0102030405060708
P = 1020304050607080 C = 5baOca6bbe7f 5f ad

RC5_CBC R = 8 Key = 01020304050607081020304050607080

'V = 0102030405060708

P = 1020304050607080 C = ¢533771cd0110e63
RC5_CBC R = 12 Key = 01020304050607081020304050607080
IV = 0102030405060708

P = 1020304050607080 C = 294ddb46b3278d60
RC5_CBC R = 16 Key = 01020304050607081020304050607080
'V = 0102030405060708

P = 1020304050607080 C = dad6bda9df e8f 7e8
RC5_CBC R = 12 Key = 0102030405 IV = 0000000000000000
P=ffffffffffffffff C = 97e0787837ed317f
RC5_CBC R = 8 Key = 0102030405 1V = 0000000000000000
P=ffffffffffffffff C = 7875dbf 6738c6478
RC5_CBC R = 8 Key = 0102030405 IV = 7875dbf6738c6478
P = 0808080808080808 C = 8f34c3c681c99695
RC5_CBC Pad R = 8 Key = 0102030405 IV = 0000000000000000
P=ffffffffffffffff C = 7875dbf6738c64788f 34c3c681c99695

RC5_CBC R = 8 Key = 0102030405 1V = 0000000000000000
P = 0000000000000000 C = 7ch3f 1df 34f 94811
RC5_CBC R = 8 Key = 0102030405 |V = 7cb3f 1df 34f 94811

P = 1122334455667701 C = 7fdla023a5bba217

RC5_CBC Pad R = 8 Key = 0102030405 IV = 0000000000000000
P=ffffffffffffffff7875dbf6738c647811223344556677

C = 7875dbf 6738c64787cb3f 1df 34f 948117f d1a023a5bba217

10. Security Considerations

The RC5 cipher is relatively new so critical reviews are still being
performed. However, the cipher’'s sinple structure makes it easy to
anal yze and hopefully easier to assess its strength. Reviews so far
are very prom sing.

Early results [1] suggest that for RC5 with a 64 bit block size (32
bit word size), 12 rounds will suffice to resist |inear and
differential cyptanalysis. The 128 bit bl ock version has not been
studied as nuch as the 64 bit version, but it appears that 16 rounds
woul d be an appropriate mnimum Bl ock sizes less than 64 bits are
acadenmically interesting but should not be used for cryptographic
security. Geater security can be achieved by increasing the nunber
of rounds at the cost of decreasing the throughput of the cipher

Bal dwi n & Ri vest I nf or mati onal [Page 26]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

The I ength of the secret key hel ps determ ne the cipher’s resistance
to brute force key searching attacks. A key length of 128 bits
shoul d gi ve adequate protection against brute force key searchi ng by
a well funded opponent for a couple decades [7]. For RC5 with 12
rounds, the key setup time and data encryption tine are the sane for
all key lengths less than 832 bits, so there is no performance reason
for choosing short keys. For |larger keys, the key expansi on step
will run slower because the user key table, L, will be |onger than
the expanded key table, S. However, the encryption time will be
unchanged since it is only a function of the nunber of rounds.

To conply with export regulations it may be necessary to choose keys
that only have 40 unknown bits. A poor way to do this would be to
choose a sinmple 5 byte key. This should be avoi ded because it would
be easy for an opponent to pre-conmpute key searching information.
Anot her common mechanismis to pick a 128 bit key and publish the
first 88 bits. This nethod reveals a |l arge nunber of the entries in
the user key table, L, and the question of whether RC5 key expansion
provi des adequate security in this situation has not been studied,
though it may be fine. A conservative way to conformto a 40 bit
[imtation is to pick a seed value of 128 bits, publish 88 bits of
this seed, run the entire seed through a hash function |like M5 [4],
and use the 128 bit output of the hash function as the RC5 key.

In the case of 40 unknown key bits with 88 known key bits (i.e., 88
salt bits) there should still be 12 or nore rounds for the 64 bit

bl ock version of RC5, otherw se the value of adding salt bits to the
key is likely to be |ost.

The lifetinme of the key also influences security. For high security
applications, the key to any 64 bit bl ock cipher should be changed
after encrypting 2**32 bl ocks (2**64 bl ocks for a 128 bit bl ock

ci pher). This helps to guard against |linear and differentia
cryptanalysis. For the case of 64 bit blocks, this rule would
recommend changing the key after 2**40 (i.e. 10**12) bytes are
encrypted. See Schneier [6] page 183 for further discussion

Bal dwi n & Ri vest I nf or mati onal [Page 27]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

11. ASN. 1 Identifiers

For applications that use ASN. 1 descriptions, it is necessary to
define the algorithmidentifier for these ciphers along with their
paranmeter bl ock formats. The ASN. 1 definition of an algorithm
identifier already exists and is |listed bel ow for reference.

Al gorithm dentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER,
par amet er s ANY DEFI NED BY al gorithm OPTI ONAL

}

The values for the algorithmfield are:

RC5_CBC OBJECT IDENTIFIER :: =
{ iso (1) menber-body (2) US (840) rsadsi (113549)
encryptionAl gorithm (3) RC5CBC (8) }

RC5_CBC_Pad OBJECT | DENTIFIER :: =
{ iso (1) nmenber-body (2) US (840) rsadsi (113549)
encryptionAl gorithm (3) RC5CBCPAD (9) }

The structure of the parameters field for these algorithnms is given
below. NOTE: if the iv field is not included, then the
initialization vector defaults to a bl ock of zeros whose size depends
on the bl ockSi zelnBits field.

RC5_CBC Paraneters ::= SEQUENCE {
version | NTEGER (v1_0(16)),
rounds | NTEGER (8. .127),
bl ockSi zel nBits | NTEGER (64, 128),
iv OCTET STRI NG OPTI ONAL
}

Ref er ences

[1] Kaliski, Burton S., and Yinqun Lisa Yin, "On Differential and
Li near Cryptanal ysis of the RC5 Encryption Al gorithnf, In Advances
in Cryptology - Crypto '95, pages 171-184, Springer-Verlag, New
York, 1995.

[2] Rivest, Ronald L., "The RC5 Encryption Al gorithni, In
Proceedi ngs of the Second International Wrkshop on Fast Software
Encrypti on, pages 86-96, Leuven Bel gium Decenber 1994.

[3] Rivest, Ronald L., "RC5 Encryption Algorithm', In Dr. Dobbs
Journal , nunber 226, pages 146-148, January 1995.

Bal dwi n & Ri vest I nf or mati onal [Page 28]

RFC 2040 RC5, RC5-CBC, RC5- CBC-Pad, and RC5-CTS Oct ober 1996

[4] Rivest, Ronald L., "The MD5 Message-Digest Al gorithni, RFC
1321.

[5] RSA Laboratories, "Public Key Cryptography Standards (PKCS)",
RSA Data Security Inc. See ftp.rsa.com

[6] Schneier, Bruce, "Applied Cryptography", Second Edition, John
Wl ey and Sons, New York, 1996. FErrata: on page 195, line 13, the
reference nunber shoul d be [402].

[7] Business Software Alliance, Matt Bl aze et al., "M ni mum Key
Length for Symmetric Ciphers to Provide Adequate Comerci al
Security", http://ww.bsa.org/bsal/cryptol ogi sts. htn .

[8] RSA Data Security Inc., "RC5 Reference Code in C', See the web
site: ww. rsa.com for availability. Not available with the first
draft of this document.

Aut hors’ Addr esses

Robert W Bal dwin
RSA Data Security, Inc.
100 Marine Par kway
Redwood City, CA 94065

Phone: (415) 595-8782
Fax: (415) 595-1873
EMai | : bal dwi n@sa.com or baldw n@cs. mt. edu

Ronald L. Rivest

Massachusetts Institute of Technol ogy
Laboratory for Conputer Science

NE43- 324

545 Technol ogy Square

Canbridge, MA 02139-1986

Phone: (617) 253-5880
EMail: rivest@heory.lcs.mt.edu

Bal dwi n & Ri vest I nf or mati onal [Page 29]

