Net wor k Wor ki ng Group D. Durham Ed.
Request for Comments: 2748 Inte
Cat egory: Standards Track J. Boyle
Level 3

R Cohen

G sco

S. Herzog

| PHi ghway

R Raj an

AT&T

A. Sastry

G sco

January 2000

The COPS (Common Open Policy Service) Protoco

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2000). Al Rights Reserved.
Conventions used in this docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC 2119].

Abst ract

Thi s docunent describes a sinple client/server nodel for supporting
policy control over QoS signaling protocols. The nodel does not make
any assunptions about the nmethods of the policy server, but is based
on the server returning decisions to policy requests. The nodel is
designed to be extensible so that other kinds of policy clients nay
be supported in the future. However, this document makes no cl ai s
that it is the only or the preferred approach for enforcing future
types of policies.

Dur ham et al. St andards Track [ Page 1]



RFC 2748 COoPS January 2000

Table OF Contents

1. IntroduCti On. . ... 3
1.1 Basic Model . ... 4
2. The Protocol . ... 6
2.1 CommoN Header . . . ... 6
2.2 COPS Specific Qhject Formats. ...... ... iy 8
2.2.1 Handle Qhject (Handle). ... ... ... i 9
2.2.2 Context Cbject (Context)...... ... 9
2.2.3 In-Interface Goject (ININt)... ... .. .. 10
2.2.4 Qut-Interface QGoject (QUT-INt). ... ... ... ... 11
2.2.5 Reason oject (Reason) . .......... e 12
2.2.6 Decision Ghject (DeCision)....... ... 12
2.2.7 LPDP Decision Object (LPDPDecision)..............oovuuuivinn.. 14
2.2.8 Error Qoject (Error). ... ... 14
2.2.9 dient Specific Information Qhject (CientSl)............... 15
2.2.10 Keep-Alive Tiner Chject (KATIimer)...... ..., 15
2.2.11 PEP ldentification Qoject (PEPID)............. ... ..., 16
2.2.12 Report-Type Object (Report-Type)...... ..., 16
2.2.13 PDP Redirect Address (PDPRedirAddr)............ ... ... .... 16
2.2.14 Last PDP Address (LastPDPAddr)......... ... ... 17
2.2.15 Accounting Tinmer Cbject (AcctTimer)........ ... ..o .. 17
2.2.16 Message Integrity Object (Integrity)...... ... ... ..., 18
2.3 CommUNI Cati ON. .. . 19
2.4 dient Handl e Usage. .. ...t e e e e 21
2.5 Synchronization Behavior............ . . ... 21
3. Message Content. .. ... ... .. 22
3.1 Request (REQ PEP -> PDP. . ... ... . . . e 22
3.2 Decision (DEC) PDP -> PEP........ ..., 24
3.3 Report State (RPT) PEP -> PDP........ ... ... 25
3.4 Delete Request State (DRQ PEP -> PDP........................ 25
3.5 Synchronize State Request (SSQ PDP -> PEP................... 26
3.6 Cient-0Open (OPN) PEP -> PDP. . ....... ... 26
3.7 dient-Accept (CAT) PDP -> PEP...... ... .. . .. ... 27
3.8 dient-Close (CC) PEP -> PDP, PDP -> PEP..................... 28
3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP....................... 28
3.10 Synchroni ze State Conplete (SSC) PEP -> PDP.................. 29
4. Common Operati ON. . ... 29
4.1 Security and Sequence Nunmber Negotiation...................... 29
4.2 Key Mai Nt ENANCE. . . . ..o 31
4.3 PEP Initialization. . ... e 31
4.4 Qutsourcing Operati ONS. ... ...t e e 32
4.5 Configuration Qperati OnS. . ........ e 32
4.6 Keep-Alive Operati Ons. .. ... e 33
4.7 PEP/PDP Cl 0S€. . . ittt i it e e e e e e e 33
5. Security Considerati ONS. ... ... ... . 33
6. TANA Considerati ONS. . ... 34

Dur ham et al. St andards Track [ Page 2]



RFC 2748 COoPS January 2000

7. Ref erenCes. ... 35
8. Author Information and Acknowl edgments......................... 36
9. Full Copyright Statement............ . . .. . . . . .. 38

1. Introduction

Thi s docunent describes a sinple query and response protocol that can
be used to exchange policy information between a policy server
(Policy Decision Point or PDP) and its clients (Policy Enforcenent
Points or PEPS). One exanple of a policy client is an RSVP router
that nust exercise policy-based adm ssion control over RSVP usage
[RSVP]. W assume that at |east one policy server exists in each
control | ed admini strative domain. The basic nodel of interaction
between a policy server and its clients is conpatible with the
framewor k document for policy based adnission control [WRK].

A chief objective of this policy control protocol is to begin with a
sinpl e but extensible design. The main characteristics of the COPS
prot ocol include:

1. The protocol enploys a client/server nodel where the PEP sends
requests, updates, and deletes to the renote PDP and the PDP
returns deci sions back to the PEP

2. The protocol uses TCP as its transport protocol for reliable
exchange of nessages between policy clients and a server.
Therefore, no additional mechani snms are necessary for reliable
comuni cation between a server and its clients.

3. The protocol is extensible in that it is designed to |everage
of f self-identifying objects and can support diverse client
specific information without requiring nodifications to the
COPS protocol itself. The protocol was created for the genera
adm ni stration, configuration, and enforcement of policies.

4. COPS provides nessage | evel security for authentication, replay
protection, and nessage integrity. COPS can al so reuse existing
protocols for security such as IPSEC [I PSEC] or TLS to
aut henti cate and secure the channel between the PEP and the
PDP.

5. The protocol is stateful in two main aspects: (1)
Request/ Deci sion state is shared between client and server and
(2) State fromvarious events (Request/Decision pairs) may be
i nter-associated. By (1) we nean that requests fromthe client
PEP are installed or renenbered by the renote PDP until they
are explicitly deleted by the PEP. At the sanme tine, Decisions
fromthe renote PDP can be generated asynchronously at any tine

Dur ham et al. St andards Track [ Page 3]



RFC 2748 COoPS January 2000

for a currently installed request state. By (2) we nean that
the server nay respond to new queries differently because of
previously installed Request/Decision state(s) that are
rel at ed.

6. Additionally, the protocol is stateful in that it allows the
server to push configuration information to the client, and
then allows the server to renove such state fromthe client
when it is no | onger applicable.

1.1 Basi ¢ Mbddel

S +

| |

| Network Node | Pol i cy Server
| |

| +- - - - + | COPS +- - - - +
| | PEP | <----- [-------mmmm - - >| PDP

| S e + | S e +
| A |

| | |

| \-->+----- + |

| | LPDP| |

| oot |

| |

- +

Figure 1: A COPS illustration.

Figure 1 Illustrates the layout of various policy conponents in a
typical COPS exanple (taken from[WRK]). Here, COPS is used to
conmuni cate policy information between a Policy Enforcenment Point
(PEP) and a renmpote Policy Decision Point (PDP) within the context of
a particular type of client. The optional Local Policy Decision Point
(LPDP) can be used by the device to nmake | ocal policy decisions in

t he absence of a PDP

It is assumed that each participating policy client is functionally
consistent with a PEP [WRK]. The PEP may conmmuni cate with a policy
server (herein referred to as a renote PDP [WRK]) to obtain policy
deci sions or directives.

The PEP is responsible for initiating a persistent TCP connection to
a PDP. The PEP uses this TCP connection to send requests to and
recei ve decisions fromthe renote PDP. Comuni cation between the PEP
and renmote PDP is mainly in the formof a stateful request/decision
exchange, though the renote PDP may occasionally send unsolicited

Dur ham et al. St andards Track [ Page 4]



RFC 2748 COoPS January 2000

decisions to the PEP to force changes in previously approved request
states. The PEP al so has the capacity to report to the renote PDP
that it has successfully conpleted performng the PDP's deci sion

| ocal ly, useful for accounting and nonitoring purposes. The PEP is
responsi ble for notifying the PDP when a request state has changed on
the PEP. Finally, the PEP is responsible for the deletion of any
state that is no | onger applicable due to events at the client or
deci si ons issued by the server.

VWen the PEP sends a configuration request, it expects the PDP to
conti nuously send naned units of configuration data to the PEP via
deci si on nessages as applicable for the configuration request. Wen a
unit of naned configuration data is successfully installed on the
PEP, the PEP should send a report nessage to the PDP confirmng the
installation. The server may then update or renove the naned
configuration information via a new deci sion nessage. \Wen the PDP
sends a decision to renpve naned configuration data fromthe PEP, the
PEP will delete the specified configuration and send a report nessage
to the PDP as confirmation.

The policy protocol is designed to comruni cate self-identifying

obj ects which contain the data necessary for identifying request
states, establishing the context for a request, identifying the type
of request, referencing previously installed requests, relaying
policy decisions, reporting errors, providing nmessage integrity, and
transferring client specific/nanespace information

To distinguish between different kinds of clients, the type of client
is identified in each nmessage. Different types of clients may have
different client specific data and may require different kinds of
policy decisions. It is expected that each new client-type will have
a correspondi ng usage draft specifying the specifics of its
interaction with this policy protocol

The context of each request corresponds to the type of event that
triggered it. The COPS Context object identifies the type of request
and nessage (if applicable) that triggered a policy event via its
nessage type and request type fields. COPS identifies three types of
out sourci ng events: (1) the arrival of an incom ng nessage (2)

al l ocation of local resources, and (3) the forwardi ng of an outgoi ng
nmessage. Each of these events may require different decisions to be
made. The content of a COPS request/decision nessage depends on the
context. A fourth type of request is useful for types of clients that
wi sh to receive configuration information fromthe PDP. This allows a
PEP to issue a configuration request for a specific naned device or
nmodul e that requires configuration information to be installed.

Dur ham et al. St andards Track [ Page 5]



RFC 2748 COoPS January 2000

The PEP may al so have the capability to nake a |l ocal policy decision
via its Local Policy Decision Point (LPDP) [WRK], however, the PDP
remai ns the authoritative decision point at all times. This neans
that the relevant |ocal decision information nust be relayed to the
PDP. That is, the PDP nust be granted access to all rel evant
information to nmake a final policy decision. To facilitate this
functionality, the PEP nmust send its local decision information to
the renote PDP via an LPDP deci sion object. The PEP nust then abide
by the PDP's decision as it is absolute.

Finally, fault tolerance is a required capability for this protocol
particularly due to the fact it is associated with the security and
servi ce managenent of distributed network devices. Fault tol erance
can be achi eved by having both the PEP and renote PDP constantly
verify their connection to each other via keep-alive nessages. Wen a
failure is detected, the PEP nust try to reconnect to the renote PDP
or attenpt to connect to a backup/alternative PDP. VWile

di sconnected, the PEP should revert to making | ocal decisions. Once a
connection is reestablished, the PEP is expected to notify the PDP of
any deleted state or new events that passed | ocal adni ssion contro
after the connection was lost. Additionally, the renote PDP may
request that all the PEP's internal state be resynchronized (al
previously installed requests are to be reissued). After failure and
bef ore the new connection is fully functional, disruption of service
can be mnimzed if the PEP caches previously comuni cated deci sions
and continues to use themfor some linited amount of tine. Sections
2.3 and 2.5 detail COPS mechanisnms for achieving reliability.

2. The Protoco

Thi s section describes the nessage formats and obj ects exchanged
bet ween t he PEP and renote PDP

2.1 Common Header

Each COPS nessage consists of the COPS header followed by a nunber of
typed objects.

0 1 2 3
B B B B +
| Ver si on| Fl ags| Op Code | Cient-type
R R R R +
| Message Length |
e e e e +

G obal note: //// inplies field is reserved, set to O.

Dur ham et al. St andards Track [ Page 6]



RFC 2748 COoPS January 2000

The fields in the header are:
Version: 4 bits
COPS version nunber. Current version is 1.

Flags: 4 bits
Defined flag values (all other flags MJST be set to 0):
Ox1 Solicited Message Flag Bit
This flag is set when the nmessage is solicited by
anot her COPS message. This flag is NOT to be set
(val ue=0) unl ess otherw se specified in section 3.

o Code: 8 hits
The COPS operations:

1 = Request (REQ
2 = Deci sion ( DEC)
3 = Report State (RPT)
4 = Del ete Request State (DRQ)
5 = Synchroni ze State Req (SSQ
6 = dient-QOpen (OPN)
7 = dient-Accept ( CAT)
8 = dient-C ose (CO
9 = Keep-Alive (KA)
10= Synchroni ze Conpl ete (SSCO)

Client-type: 16 bits

The Client-type identifies the policy client. Interpretation of
all encapsul ated objects is relative to the client-type. Cient-
types that set the npbst significant bit in the client-type field
are enterprise specific (these are client-types 0x8000 -
OXFFFF). (See the specific client usage docunents for particul ar
client-type IDs). For KA Messages, the client-type in the header
MUST al ways be set to 0 as the KA is used for connection
verification (not per client session verification).

Message Length: 32 hits

Si ze of nessage in octets, which includes the standard COPS
header and all encapsul ated objects. Messages MJUST be aligned on
4 octet intervals.

Dur ham et al. St andards Track [ Page 7]



RFC 2748 COoPS January 2000

2.2 COPS Specific nject Formats

Al the objects follow the sane object format; each object consists
of one or nore 32-bit words with a four-octet header, using the
foll owi ng fornmat

0 1 2 3
Fom e Fom e Fom e Fom e +
| Length (octets) | C- Num | C Type |
Fom e e e e oo - Fom e e e e oo - Fom e e e e oo - Fom e e e e oo - +
| |
/1 (Obj ect contents) /1
| |
Fom e Fom e Fom e Fom e +

The length is a two-octet value that describes the nunber of octets
(including the header) that conpose the object. If the length in
octets does not fall on a 32-bit word boundary, padding MJST be added
to the end of the object so that it is aligned to the next 32-bit
boundary before the object can be sent on the wire. On the receiving
si de, a subsequent object boundary can be found by sinply rounding up
the previous stated object Iength to the next 32-bit boundary.

Typically, CGNumidentifies the class of information contained in the
object, and the C Type identifies the subtype or version of the
i nformati on contained in the object.

C-num 8 bits

1 = Handle

2 = Context

3 =1In Interface

4 = Qut Interface

5 = Reason code

6 = Decision

7 = LPDP Deci si on

8 = Error

9 =(Cient Specific Info
10 = Keep-Alive Timer

11 = PEP ldentification
12 = Report Type

13 = PDP Redirect Address
14 = Last PDP Address

15 = Accounting Tiner

16 = Message Integrity

C-type: 8 bits
Val ues defined per C num

Dur ham et al. St andards Track [ Page 8]



RFC 2748 COoPS January 2000

2.2.1 Handl e nject (Handl e)

The Handl e Obj ect encapsul ates a unique value that identifies an
installed state. This identification is used by nost COPS operations.
A state corresponding to a handl e MJUST be explicitly del eted when it
is no |longer applicable. See Section 2.4 for details.

CNum-=1
C- Type = 1, dient Handle.

Variable-length field, no inplied format other than it is unique from
other client handles fromthe same PEP (a.k.a. COPS TCP connection)
for a particular client-type. It is always initially chosen by the
PEP and then del eted by the PEP when no | onger applicable. The client
handle is used to refer to a request state initiated by a particul ar
PEP and installed at the PDP for a client-type. A PEP will specify a
client handle in its Request nessages, Report nessages and Del ete
nessages sent to the PDP. In all cases, the client handle is used to
uniquely identify a particular PEP's request for a client-type.

The client handle value is set by the PEP and is opaque to the PDP
The PDP sinmply performs a byte-w se conparison on the value in this
object with respect to the handl e object values of other currently
install ed requests.

2.2.2 Context Object (Context)

Specifies the type of event(s) that triggered the query. Required for
request nessages. Admi ssion control, resource allocation, and
forwardi ng requests are all anenable to client-types that outsource
their decision nmaking facility to the PDP. For applicable client-
types a PEP can al so nake a request to receive named configuration
information fromthe PDP. This named configuration data may be in a
formuseful for setting systemattributes on a PEP, or it may be in
the formof policy rules that are to be directly verified by the PEP

Multiple flags can be set for the sane request. This is only allowed,
however, if the set of client specific information in the conbined
request is identical to the client specific information that woul d be
specified if individual requests were nade for each specified flag.

CGnum= 2, CType =1

Dur ham et al. St andards Track [ Page 9]



RFC 2748 COoPS January 2000

0 1 2 3
oo oo oo oo +
| R- Type | M Type
o o o o +

R- Type (Request Type Fl ag)

0x01 = I ncom ng- Message/ Adm ssi on Control request
0x02 = Resource-Allocation request

0x04 = Qut goi ng- Message request

0x08 = Configuration request

M Type (Message Type)
Client Specific 16 bit values of protocol nessage types
2.2.3 In-Interface Cbject (INInNt)

The In-Interface Ohject is used to identify the incomng interface on
which a particular request applies and the address where the received
nessage originated. For flows or nmessages generated fromthe PEP s

| ocal host, the | oop back address and ifindex are used.

This Interface object is also used to identify the incom ng
(receiving) interface via its ifindex. The ifindex may be used to
differenti ate between sub-interfaces and unnunbered interfaces (see
RSVP's LIH for an exanple). Wen SNWP is supported by the PEP, this
i findex integer MJUST correspond to the same integer value for the
interface in the SNMP MB-11 interface index table.

Note: The ifindex specified in the In-Interface is typically relative
to the flow of the underlying protocol nessages. The ifindex is the
i nterface on which the protocol nmessage was received.

C-Num = 3

C- Type = 1, IPv4 Address + Interface

0 1 2 3
B B B B +
| | Pv4 Address fornmat |
R R R R +
| i findex |
e e e e +

For this type of the interface object, the | Pv4 address specifies the
| P address that the incom ng nessage cane from

Dur ham et al. St andards Track [ Page 10]



RFC 2748 COoPS January 2000

C- Type = 2, I Pv6 Address + Interface

0 1 2 3
Fomm oo o - Fomm oo o - Fomm oo o - Fomm oo o - +
| |
+ +
| |
+ | Pv6 Address formt +
| |
+ +
| |
R R R R +
| i findex |
o e ok o e ok o e ok o e ok +

For this type of the interface object, the | Pv6 address specifies the
| P address that the incom ng nessage canme from The ifindex is used
to refer to the MB-11 defined |local incomng interface on the PEP as
descri bed above.

2.2.4 Qut-Interface Qbject (QUT-1nt)

The Qut-Interface is used to identify the outgoing interface to which
a specific request applies and the address for where the forwarded
nessage is to be sent. For flows or nessages destined to the PEP s

| ocal host, the | oop back address and ifindex are used. The Qut-
Interface has the same formats as the In-Interface bject.

This Interface object is also used to identify the outgoing
(forwarding) interface via its ifindex. The ifindex may be used to
differentiate between sub-interfaces and unnunbered interfaces (see
RSVP's LIH for an exanple). Wen SNWP is supported by the PEP, this
i findex integer MJUST correspond to the sanme integer value for the
interface in the SNMP MB-11 interface index table.

Note: The ifindex specified in the Qut-Interface is typically
relative to the flow of the underlying protocol nessages. The ifindex
is the one on which a protocol nessage is about to be forwarded.

CNum = 4

C- Type = 1, IPv4 Address + Interface
Sane C-Type fornat as the In-Interface object. The | Pv4 address
specifies the I P address to which the outgoi ng message i s going. The

ifindex is used to refer to the MB-I11 defined | ocal outgoing
interface on the PEP

Dur ham et al. St andards Track [ Page 11]



RFC 2748 COoPS January 2000

C- Type = 2, I Pv6 Address + Interface

Sane C-Type format as the In-Interface object. For this type of the
interface object, the | Pv6 address specifies the | P address to which
the outgoi ng nessage is going. The ifindex is used to refer to the
M B-11 defined | ocal outgoing interface on the PEP

2.2.5 Reason nject (Reason)

Thi s object specifies the reason why the request state was del et ed.
It appears in the delete request (DRQ nessage. The Reason Sub-code
field is reserved for nore detailed client-specific reason codes
defined in the correspondi ng docunents.

CNum=5 GCType =1

Reason Code

1 Unspeci fi ed
Managenent
Preempt ed (Another request state takes precedence)
Tear (Used to comuni cate a signaled state renoval)
Ti meout (Local state has tined-out)
Rout e Change (Change invalidates request state)
I nsufficient Resources (No | ocal resource avail able)
PDP's Directive (PDP decision caused the del ete)
Unsupported deci sion (PDP decision not supported)

OCO~NOOP_WN

10= Synchroni ze Handl e Unknown

11= Transi ent Handl e (statel ess event)

12= Mal forned Decision (could not recover)
13= Unknown COPS Cbj ect from PDP

Sub-code (octet 2) contains unknown object’s C Num
and (octet 3) contains unknown object’s C Type.

2.2.6 Decision Object (Decision)
Deci sion made by the PDP. Appears in replies. The specific non-

nmandat ory deci sion objects required in a decision to a particul ar
request depend on the type of client.

Dur ham et al. St andards Track [ Page 12]



RFC 2748 COoPS January 2000

C Num =

C- Type = 1, Decision Flags (Mandatory)

0 1 2 3
oo oo oo oo +
| Comrand- Code Fl ags
oo oo oo oo +

Commuands:

0 = NULL Decision (No configuration data avail abl e)

1 =1Install (Admt request/Install configuration)

2 = Renmove (Renpve request/Renove configuration)

Fl ags:
0x01 = Trigger Error (Trigger error message if set)
Note: Trigger Error is applicable to client-types that
are capabl e of sending error notifications for signaled
nessages.

Fl ag val ues not applicable to a given context’'s R Type or
client-type MUST be ignored by the PEP

C- Type = 2, Statel ess Data

This type of decision object carries additional stateless

i nformati on that can be applied by the PEP locally. It is a
variabl e I ength object and its internal format SHOULD be
specified in the rel evant COPS extensi on docunent for the given
client-type. This object is optional in Decision nmessages and is
interpreted relative to a given context.

It is expected that even outsourcing PEPs will be able to make
some sinple stateless policy decisions locally in their LPDP. As
this set is well known and i npl enented ubiquitously, PDPs are
aware of it as well (either universally, through configuration
or using the Cient-Open nessage). The PDP nmay al so include this
information in its decision, and the PEP MUST apply it to the
resource allocation event that generated the request.

C- Type = 3, Replacenent Data

This type of decision object carries replacenent data that is to
repl ace existing data in a signaled nessage. It is a variable

l ength object and its internal fornat SHOULD be specified in the
rel evant COPS extension docunent for the given client-type. It is
optional in Decision nmessages and is interpreted relative to a

gi ven cont ext.

Dur ham et al. St andards Track [ Page 13]



RFC 2748 COoPS January 2000

C- Type = 4, Cient Specific Decision Data

Addi ti onal decision types can be introduced using the dient
Specific Decision Data Object. It is a variable |length object and
its internal format SHOULD be specified in the rel evant COPS

ext ensi on docunent for the given client-type. It is optional in
Deci sion nessages and is interpreted relative to a given context.

C-Type = 5, Naned Decision Data

Nanmed configuration information is encapsulated in this version
of the decision object in response to configuration requests. It
is a variable length object and its internal format SHOULD be
specified in the rel evant COPS extension docunent for the given
client-type. It is optional in Decision nmessages and is
interpreted relative to both a given context and decision flags.

2.2.7 LPDP Decision Object (LPDPDecision)
Deci si on made by the PEP's |ocal policy decision point (LPDP). My

appear in requests. These objects correspond to and are fornmatted the
same as the client specific decision objects defined above.

C-Num=7
C- Type = (sane C Type as for Decision objects)
2.2.8 Error bject (Error)
This object is used to identify a particular COPS protocol error.
The error sub-code field contains additional detailed client specific
error codes. The appropriate Error Sub-codes for a particular

client-type SHOULD be specified in the rel evant COPS extensions
docunent .

0 1 2 3
e e e e +
| Err or - Code Error Sub-code
oo oo oo oo +

Er r or - Code:

1 = Bad handl e

2 = Invalid handl e reference

3 = Bad message format (Ml forned Message)

4 = Unable to process (server gives up on query)

Dur ham et al. St andards Track [ Page 14]



RFC 2748 COoPS January 2000

5 = Mandatory client-specific info m ssing
6 = Unsupported client-type

7 = Mandatory COPS obj ect mi ssing

8 = Cdient Failure

9 = Comuni cation Failure

10= Unspecified

11= Shutting down

12= Redirect to Preferred Server

13= Unknown COPS (bj ect:
Sub-code (octet 2) contains unknown object’s C Num
and (octet 3) contains unknown object’s C Type.

14= Authentication Failure

15= Aut henti cation Required

2.2.9 dient Specific Information Object (CientSl)
The various types of this object are required for requests, and used
in reports and opens when required. It contains client-type specific
i nformation.
C Num = 9,
C-Type = 1, Signaled dientSl.
Variable-length field. Al objects/attributes specific to a client’s
signaling protocol or internal state are encapsul ated w thin one or
nore signaled Cient Specific Information Objects. The format of the
data encapsulated in the CientSl object is determ ned by the
client-type.
C- Type = 2, Naned CientSl.
Variabl e-length field. Contains named configuration information
useful for relaying specific information about the PEP, a request, or
configured state to the PDP server.
2.2.10 Keep-Alive Tiner Object (KATi nmer)

Times are encoded as 2 octet integer values and are in units of
seconds. The tiner value is treated as a delta.

C Num = 10,

C- Type = 1, Keep-alive tiner value

Dur ham et al. St andards Track [ Page 15]



RFC 2748 COoPS January 2000

Ti mer object used to specify the maxinumtine interval over which a
COPS nmessage MJST be sent or received. The range of finite tinmeouts
is 1 to 65535 seconds represented as an unsigned two-octet integer
The value of zero inplies infinity.

0 1 2 3
o e o e o e o e +
| IRy | KA Ti ner Val ue
o eae oo o e eea oo o eae oo o e eea oo +

2.2.11 PEP ldentification Ooject (PEPID)

The PEP ldentification hject is used to identify the PEP client to
the renote PDP. It is required for Cient-Open nessages.

G Num = 11, CType =1

Variable-length field. It is a NULL term nated ASCI| string that is
al so zero padded to a 32-bit word boundary (so the object length is a
multiple of 4 octets). The PEPID MJUST contain an ASCI| string that

uni quely identifies the PEP within the policy domain in a manner that
is persistent across PEP reboots. For exanple, it may be the PEP s
statically assigned I P address or DNS nane. This identifier may
safely be used by a PDP as a handle for identifying the PEP in its
policy rules.

2.2.12 Report-Type Object (Report-Type)
The Type of Report on the request state associated with a handl e:

CNum = 12, CType =1

0 1 2 3
B B B B +
| Report - Type [HErrrrrrrir
R R R R +

Report - Type:

1 = Success : Decision was successful at the PEP
2 = Failure : Decision could not be conpleted by PEP
3 = Accounting: Accounting update for an installed state

2.2.13 PDP Redirect Address (PDPRedirAddr)
A PDP when closing a PEP session for a particular client-type may

optionally use this object to redirect the PEP to the specified PDP
server address and TCP port nunber:

Dur ham et al. St andards Track [ Page 16]



RFC 2748 COoPS January 2000

C- Num = 13,

C Type = | Pv4 Address + TCP Port

1 2 3
R R R R +
| | Pv4 Address fornat |
S S S S +
| L TCP Port Number |
o e e e e e e eeeeeeeeeeaaaaa o e e e e e e eeeeeeeeeeaaaaa +
C Type = | Pv6 Address + TCP Port
1 2 3

S S S S +
| |
+ +
| |
+ | Pv6 Address fornat +
| |
+ +
| |
e e e e +
| e TCP Port Nunber |
oo e e e e e e e oo - oo e e e e e e e oo - +

2.2.14 Last PDP Address (Last PDPAddr)

When a PEP sends a Cient-Open nessage for a particular client-type
the PEP SHOULD specify the last PDP it has successfully opened

(meaning it

received a Client-Accept) since the PEP | ast rebooted.

If no PDP was used since the |ast reboot, the PEP will sinmply not
include this object in the dient-Open nessage.

C-Num = 14,

C Type

C Type =

| Pv4 Address (Sane format as PDPRedi r Addr)

| Pv6 Address (Sane format as PDPRedir Addr)

2.2.15 Accounting Tiner Object (AcctTiner)

Times are encoded as 2 octet integer values and are in units of
seconds. The timer value is treated as a delta.

C-Num = 15,

C- Type = 1, Accounting tiner value

Dur ham et al.

St andards Track [ Page 17]



RFC 2748 COoPS January 2000

Optional timer value used to determine the mninmuminterval between
periodi ¢ accounting type reports. It is used by the PDP to describe
to the PEP an acceptable interval between unsolicited accounting
updates via Report messages where applicable. It provides a nethod
for the PDP to control the amount of accounting traffic seen by the
network. The range of finite tine values is 1 to 65535 seconds
represented as an unsigned two-octet integer. A value of zero neans
there SHOULD be no unsolicited accounting updates.

0 1 2 3
oo oo oo oo +
| HHrrririrrrrn | ACCT Ti mer Val ue
om e e e e oo om e e e e oo om e e e e oo om e e e e oo +

2.2.16 Message Integrity Object (Integrity)

The integrity object includes a sequence nunber and a message di gest
useful for authenticating and validating the integrity of a COPS
nessage. When used, integrity is provided at the end of a COPS
nessage as the | ast COPS object. The digest is then conmputed over al
of a particular COPS nmessage up to but not including the digest val ue
itself. The sender of a COPS nessage will conpute and fill in the

di gest portion of the Integrity object. The receiver of a COPS
nessage will then conpute a digest over the received nessage and
verify it matches the digest in the received Integrity object.

C Num = 16,
C Type = 1, HWMAC di gest

The HVAC integrity object enploys HVAC (Keyed- Hashing for Message
Aut hentication) [HVAC] to cal culate the nmessage di gest based on a key
shared between the PEP and its PDP

This Integrity object specifies a 32-bit Key ID used to identify a
specific key shared between a particular PEP and its PDP and the
cryptographic algorithmto be used. The Key ID allows for nmultiple

si mul t aneous keys to exist on the PEP with correspondi ng keys on the
PDP for the given PEPID. The key identified by the Key ID was used to
conpute the nessage digest in the Integrity object. A

i mpl enentations, at a mninum MJST support HMAC- MD5-96, which is
HVAC enpl oyi ng the MD5 Message-Di gest Algorithm[MD5] truncated to
96-bits to cal culate the nessage digest.

Thi s object also includes a sequence nunber that is a 32-bit unsigned
i nteger used to avoid replay attacks. The sequence number is
initiated during an initial dient-Open Cient-Accept nessage
exchange and is then increnmented by one each tine a new nessage is

Dur ham et al. St andards Track [ Page 18]



RFC 2748 COoPS January 2000

sent over the TCP connection in the sane direction. |If the sequence
nunber reaches the val ue of OxFFFFFFFF, the next increnent will
sinmply rollover to a value of zero.

The variable length digest is cal culated over a COPS nessage starting
with the COPS Header up to the Integrity Cbject (which MUST be the

| ast object in a COPS nmessage) |INCLUDING the Integrity object’s
header, Key ID, and Sequence Nunber. The Keyed Message Digest field
is not included as part of the digest calculation. In the case of
HVAC- MD5- 96, HVAC-MD5 will produce a 128-bit digest that is then to
be truncated to 96-bits before being stored in or verified against
the Keyed Message Digest field as specified in [ HVAC]. The Keyed
Message Di gest MUST be 96-bits when HMAC- MD5-96 is used.

0 1 2 3
S S S S +
| Key 1D |
T T T T +
| Sequence Number
Fom e Fom e Fom e Fom e +
| |
+ +
| ... Keyed Message Digest... |
+ +
| |
Fom e Fom e Fom e Fom e +

2.3 Comuni cati on

The COPS protocol uses a single persistent TCP connecti on between the
PEP and a renpte PDP. One PDP inplenentation per server MJST |listen
on a well-known TCP port nunber (COPS=3288 [IANA]). The PEP is
responsible for initiating the TCP connection to a PDP. The | ocation
of the renpte PDP can either be configured, or obtained via a service
| ocati on mechani sm [ SRVLOC]. Service discovery is outside the scope
of this protocol, however.

If a single PEP can support multiple client-types, it may send
multiple Cient-QOpen nessages, each specifying a particular client-
type to a PDP over one or nore TCP connections. Likew se, a PDP
residing at a given address and port nunber nay support one or nore
client-types. Gven the client-types it supports, a PDP has the
ability to either accept or reject each client-type independently.
If aclient-type is rejected, the PDP can redirect the PEP to an
alternative PDP address and TCP port for a given client-type via
COPs. Different TCP port nunbers can be used to redirect the PEP to
anot her PDP i nmpl enentati on running on the same server. Additiona
provisions for supporting nultiple client-types (perhaps from

Dur ham et al. St andards Track [ Page 19]



RFC 2748 COoPS January 2000

i ndependent PDP vendors) on a single renote PDP server are not
provi ded by the COPS protocol, but, rather, are left to the software
architecture of the given server platform

It is possible a single PEP may have open connections to nmultiple

PDPs. This is the case when there are physically different PDPs
supporting different client-types as shown in figure 2.

Policy Servers

|

|

| +----- + COPS Client Type 1 +----- +
| R R R >| PDP1
| + PEP + | COPS dient Type 2 +----- +
| | | <----- |--------- Ho- - +
| Fommm - + | \mmme - - | PDP2|
| N | +- - - - +
| | |

| \-->4----- + |

| | LPDP| |

| bt |

| |

S +

Figure 2: Multiple PDPs illustration.

VWhen a TCP connection is torn down or is lost, the PDP is expected to
eventual ly clean up any outstanding request state related to
request/ deci sion exchanges with the PEP. When the PEP detects a | ost
connection due to a tineout condition it SHOULD explicitly send a
Client-C ose nessage for each opened client-type containing an
<Error> object indicating the "Conmunication Failure" Error-Code.

Addi tionally, the PEP SHOULD continuously attenpt to contact the
primary PDP or, if unsuccessful, any known backup PDPs. Specifically
the PEP SHOULD keep trying all relevant PDPs with which it has been
configured until it can establish a connection. If a PEPis in
conmuni cation with a backup PDP and the prinmary PDP becones
avai | abl e, the backup PDP is responsible for redirecting the PEP back
to the primary PDP (via a <Client-C ose> nmessage containing a
<PDPRedi r Addr > obj ect identifying the primary PDP to use for each
affected client-type). Section 2.5 details synchroni zati on behavi or
bet ween PEPs and PDPs.

Dur ham et al. St andards Track [ Page 20]



RFC 2748 COoPS January 2000

2.4 dient Handl e Usage

The client handle is used to identify a unique request state for a
single PEP per client-type. Cient handl es are chosen by the PEP and
are opaque to the PDP. The PDP sinply uses the request handle to
uniquely identify the request state for a particular dient-Type over
a particular TCP connection and generically tie its decisions to a
correspondi ng request. Client handles are initiated in request
nmessages and are then used by subsequent request, decision, and
report nmessages to reference the same request state. Wen the PEP is
ready to remove a |local request state, it will issue a delete nessage
to the PDP for the corresponding client handle. A handle MJST be
explicitly deleted by the PEP before it can be used by the PEP to
identify a new request state. Handles referring to different request
states MJST be unique within the context of a particular TCP
connection and client-type.

2.5 Synchroni zati on Behavi or

When di sconnected froma PDP, the PEP SHOULD revert to meking | oca
deci sions. Once a connection is reestablished, the PEP is expected to
notify the PDP of any events that have passed | ocal adm ssion
control. Additionally, the renote PDP may request that all the PEP s
internal state be resynchronized (all previously installed requests
are to be reissued) by sending a Synchronize State nessage.

After a failure and before a new connection is fully functional

di sruption of service can be mninmzed if the PEP caches previously
conmuni cat ed deci sions and continues to use them for some appropriate
length of time. Specific rules for such behavior are to be defined in
the appropriate COPS client-type extension specifications.

A PEP that caches state froma previous exchange with a di sconnected
PDP MUST communicate this fact to any PDP with which it is able to

| ater reconnect. This is acconplished by including the address and
TCP port of the last PDP for which the PEP is still caching state in
the dient-COpen nessage. The <Last PDPAddr> object will only be

i ncluded for the last PDP with which the PEP was conpletely in sync.

If the service interruption was tenporary and the PDP still contains
the conplete state for the PEP, the PDP may choose not to synchronize
all states. It is still the responsibility of the PEP to update the

PDP of all state changes that occurred during the disruption of
service including any states conmunicated to the previ ous PDP that
had been del eted after the connection was |lost. These MJST be
explicitly deleted after a connection is reestablished. If the PDP

i ssues a synchroni ze request the PEP MJST pass all current states to
the PDP foll owed by a Synchronize State Conpl ete nmessage (thus

Dur ham et al. St andards Track [ Page 21]



RFC 2748 COoPS January 2000

conpl eting the synchroni zation process). If the PEP crashes and | oses
all cached state for a client-type, it will sinply not include a
<Last PDPAddr> in its Cient-Qpen nessage.

3. Message Content

Thi s section describes the basic nmessages exchanged between a PEP and
a renote PDP as well as their contents. As a convention, object
ordering is expected as shown in the BNF for each COPS nmessage unl ess
ot herwi se noted. The Integrity object, if included, MJST al ways be
the last object in a nessage. If security is required and a nessage
was received without a valid Integrity object, the receiver MJIST send
a Client-C ose nessage for Cient-Type=0 specifying the appropriate
error code.

3.1 Request (REQ PEP -> PDP

The PEP establishes a request state client handle for which the
renote PDP may nmintain state. The renpte PDP then uses this handle
to refer to the exchanged i nformati on and deci si ons comuni cat ed over
the TCP connection to a particular PEP for a given client-type.

Once a stateful handle is established for a new request, any
subsequent nodifications of the request can be made using the REQ
nessage specifying the previously installed handle. The PEP is
responsi ble for notifying the PDP whenever its |ocal state changes so
the PDP's state will be able to accurately mirror the PEP' s state.

Dur ham et al. St andards Track [ Page 22]



RFC 2748 COoPS January 2000

The format of the Request nessage is as foll ows:

<Request Message> ::= <Common Header >
<dient Handl e>
<Cont ext >
[ <IN-Int>]
[ <QUT-1 nt >]
[<dientsSl(s)>]
[ <LPDPDeci si on(s) >]
[<Integrity>]

<dientSlI(s)> ::=<CientSI>| <CientSl(s)> <dientSl>

<LPDPDeci si on(s)> ::= <LPDPDeci si on>
<LPDPDeci si on(s) > <LPDPDeci si on>

<LPDPDeci si on> :: = [ <Cont ext >]
<LPDPDeci si on: Fl ags>
[ <LPDPDeci si on: Statel ess Dat a>]
[ <LPDPDeci si on: Repl acenent Dat a>]
[ <LPDPDeci sion: CientSl Data>]
[ <LPDPDeci si on: Naned Dat a>]

The context object is used to deternine the context within which al
the other objects are to be interpreted. It also is used to determne
the kind of decision to be returned fromthe policy server. This

deci sion m ght be related to adm ssion control, resource allocation
obj ect forwardi ng and substitution, or configuration

The interface objects are used to determ ne the correspondi ng
interface on which a signaling protocol nessage was received or is
about to be sent. They are typically used if the client is
participating along the path of a signaling protocol or if the client
is requesting configuration data for a particular interface.

ClientSl, the client specific informati on object, holds the client-
type specific data for which a policy decision needs to be nmade. In
the case of configuration, the Named ClientSl may include naned
i nformati on about the nodule, interface, or functionality to be
configured. The ordering of nultiple ClientSls is not inportant.

Final |l y, LPDPDeci sion object holds information regarding the |oca
deci si on made by the LPDP

Mal f or mred Request nessages MJST result in the PDP specifying a
Deci sion nmessage with the appropriate error code.

Dur ham et al. St andards Track [ Page 23]



RFC 2748 COoPS January 2000

3.2 Decision (DEC) PDP -> PEP

The PDP responds to the REQwith a DEC message that includes the
associ ated client handl e and one or nore decision objects grouped
relative to a Context object and Decision Flags object type pair. If
there was a protocol error an error object is returned instead.

It is required that the first decision nessage for a new updated
request will have the solicited nmessage flag set (value = 1) in the
COPS header. This avoids the issue of keeping track of which updated
request (that is, a request reissued for the sane handle) a
particul ar decision corresponds. It is inportant that, for a given
handl e, there be at npbst one outstanding solicited decision per
request. This essentially neans that the PEP SHOULD NOT issue nore
than one REQ (for a given handle) before it receives a correspondi ng
DEC with the solicited nessage flag set. The PDP MJST al ways issue
decisions for requests on a particular handle in the order they
arrive and all requests MJST have a correspondi ng deci sion

To avoi d deadl ock, the PEP can always tineout after issuing a request
that does not receive a decision. It MJST then delete the tined-out
handl e, and may try again using a new handl e.

The format of the Decision nessage is as follows:

<Deci si on Message> ::= <Commopn Header >
<dient Handl e>
<Deci sion(s)> | <Error>
[<Integrity>]

<Deci sion(s)> ::= <Decision> | <Decision(s)> <Decision>

<Deci si on> :: = <Cont ext >
<Deci si on: Fl ags>
[ <Deci si on: Statel ess Dat a>]
[ <Deci si on: Repl acenent Dat a>]
[ <Decision: dientSl Data>]
[ <Deci si on: Nanmed Dat a>]

The Deci si on message may include either an Error object or one or
nore context plus associ ated deci si on objects. COPS protocol problens
are reported in the Error object (e.g. an error with the format of
the original request including malforned request nmessages, unknown
COPS objects in the Request, etc.). The applicable Decision object(s)
depend on the context and the type of client. The only ordering

requi rement for decision objects is that the required Decision Flags
obj ect type MJST precede the other Decision object types per context
bi ndi ng.

Dur ham et al. St andards Track [ Page 24]



RFC 2748 COoPS January 2000

3.3 Report State (RPT) PEP -> PDP

The RPT nessage is used by the PEP to comunicate to the PDP its
success or failure in carrying out the PDP s decision, or to report
an accounting related change in state. The Report-Type specifies the
kind of report and the optional ClientSlI can carry additiona

i nformati on per Cient-Type.

For every DEC nessage containing a configuration context that is
received by a PEP, the PEP MJST generate a correspondi ng Report State
message with the Solicited Message flag set describing its success or
failure in applying the configuration decision. In addition

out sourci ng decisions fromthe PDP MAY result in a correspondi ng
solicited Report State fromthe PEP depending on the context and the
type of client. RPT nmessages solicited by decisions for a given
Client Handle MJUST set the Solicited Message flag and MJUST be sent in
the sanme order as their correspondi ng Deci si on nessages were

recei ved. There MJST never be nore than one Report State nessage
generated with the Solicited Message flag set per Decision

The Report State may al so be used to provide periodic updates of
client specific information for accounting and state nonitoring

pur poses depending on the type of the client. In such cases the
accounting report type should be specified utilizing the appropriate
client specific information object.

<Report State> ::== <Common Header >
<dient Handl e>
<Report-Type>
[<dientSl>]
[<Integrity>]

3.4 Del ete Request State (DRQ PEP -> PDP

VWhen sent fromthe PEP this message indicates to the renote PDP that
the state identified by the client handle is no | onger

avai l abl e/relevant. This information will then be used by the renote
PDP to initiate the appropri ate housekeepi ng actions. The reason code
object is interpreted with respect to the client-type and signifies
the reason for the renoval

The format of the Del ete Request State nessage is as foll ows:
<Del ete Request> ::= <Commpn Header >
<dient Handl e>

<Reason>
[<Integrity>]

Dur ham et al. St andards Track [ Page 25]



RFC 2748 COoPS January 2000

G ven the stateful nature of COPS, it is inportant that when a
request state is finally renoved fromthe PEP, a DRQ nessage for this
request state is sent to the PDP so the correspondi ng state nay

i kewi se be renmoved on the PDP. Request states not explicitly deleted
by the PEP will be maintained by the PDP until either the client
session is closed or the connection is term nated.

Mal f or med Deci si on nmessages MUST trigger a DRQ specifying the
appropriate erroneous reason code (Bad Message Format) and any

associ ated state on the PEP SHOULD either be rempved or re-requested.
I f a Decision contained an unknown COPS Deci si on Cbject, the PEP MUST
delete its request specifying the Unknown COPS (hject reason code
because the PEP will be unable to conply with the infornmation
contained in the unknown object. In any case, after issuing a DRQ
the PEP nay retry the correspondi ng Request again

3.5 Synchronize State Request (SSQ PDP -> PEP
The format of the Synchronize State Query nessage is as foll ows:

<Synchroni ze State> ::= <Conmpbn Header >
[<dient Handl e>]
[<Integrity>]

Thi s nmessage indicates that the renote PDP w shes the client (which
appears in the common header) to re-send its state. If the optiona
Client Handle is present, only the state associated with this handle
is synchronized. If the PEP does not recognize the requested handl e,
it MUST i mediately send a DRQ nessage to the PDP for the handl e that
was specified in the SSQ nessage. If no handle is specified in the
SSQ nessage, all the active client state MJUST be synchroni zed with
the PDP

The client perforns state synchronization by re-issuing request
queries of the specified client-type for the existing state in the
PEP. When synchroni zation is conplete, the PEP MJUST issue a
synchroni ze state conpl ete nessage to the PDP

3.6 ddient-Open (OPN) PEP -> PDP

The Cient-Open nmessage can be used by the PEP to specify to the PDP
the client-types the PEP can support, the |last PDP to which the PEP
connected for the given client-type, and/or client specific feature
negotiation. A Cient-Qpen nessage can be sent to the PDP at any tine
and multiple Cdient-Cpen nessages for the same client-type are
allowed (in case of global state changes).

Dur ham et al. St andards Track [ Page 26]



RFC 2748 COoPS January 2000

<Cient-Qpen> ::= <Comobpn Header >
<PEPI D>
[<dient Sl >]
[ <Last PDPAddr >]
[<Integrity>]

The PEPID is a synbolic, variable |length nane that uniquely
identifies the specific client to the PDP (see Section 2.2.11).

A named CientSl object can be included for relaying additiona
gl obal information about the PEP to the PDP when required (as
specified in the appropriate extensions docunent for the client-

type).

The PEP may al so provide a Last PDP Address object in its dient-Qpen
nmessage specifying the last PDP (for the given client-type) for which
it is still caching decisions since its |last reboot. A PDP can use
this information to deternmine the appropriate synchroni zation
behavi or (See section 2.5).

If the PDP receives a malformed Cient-COpen nmessage it MJST generate
a Cient-C ose nessage specifying the appropriate error code.

3.7 dient-Accept (CAT) PDP -> PEP

The Cient-Accept nessage is used to positively respond to the
Client-Open nessage. This message will return to the PEP a tiner
object indicating the maxi mumtime interval between keep-alive
messages. Optionally, a tiner specifying the m ninmm allowed interva
bet ween accounting report nessages may be included when applicable.

<Cient-Accept> ::= <Commpn Header >
<KA Ti mer >
[ <ACCT Ti mer >]
[<Integrity>]

If the PDP refuses the client, it will instead issue a dient-C ose
nmessage.

The KA Tiner corresponds to maxi num acceptable intermediate tinme

bet ween t he generati on of nessages by the PDP and PEP. The ti mer
value is determ ned by the PDP and is specified in seconds. A tiner
value of O inplies no secondary connection verification is necessary.

The optional ACCT Tinmer allows the PDP to indicate to the PEP that
peri odi ¢ accounting reports SHOULD NOT exceed the specified tinmer
interval per client handle. This allows the PDP to control the rate
at which accounting reports are sent by the PEP (when applicable).

Dur ham et al. St andards Track [ Page 27]



RFC 2748 COoPS January 2000

In general, accounting type Report nessages are sent to the PDP when
det erm ned appropriate by the PEP. The accounting timer nerely is
used by the PDP to keep the rate of such updates in check (i.e.
Preventing the PEP from bl asting the PDP with accounting reports).
Not including this object inplies there are no PDP restrictions on
the rate at which accounting updates are generated.

If the PEP receives a malfornmed Cient-Accept nessage it MJST
generate a Cient-C ose nmessage specifying the appropriate error
code.

3.8 dient-Close (CC PEP -> PDP, PDP -> PEP

The Cient-C ose nessage can be issued by either the PDP or PEP to
notify the other that a particular type of client is no |onger being
support ed.

<Client-Close> ::= <Cormpbn Header>
<Error>
[ <PDPRedi r Addr >]
[<Integrity>]

The Error object is included to describe the reason for the close
(e.g. the requested client-type is not supported by the renote PDP or
client failure).

A PDP MAY optionally include a PDP Redirect Address object in order
to informthe PEP of the alternate PDP it SHOULD use for the client-
type specified in the conmon header

3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP

The keep-alive nmessage MJST be transmitted by the PEP within the
peri od defined by the mninumof all KA Tiner values specified in al
recei ved CAT nessages for the connection. A KA nessage MJST be
generated randonmy between 1/4 and 3/4 of this mninmmKA tiner
interval. When the PDP receives a keep-alive nessage froma PEP, it
MUST echo a keep-alive back to the PEP. This message provides

val idation for each side that the connection is still functioning
even when there is no other nessaging.

Note: The client-type in the header MUST al ways be set to 0 as the KA
is used for connection verification (not per client session
verification).

<Keep-Alive> ::= <Common Header >
[<Integrity>]

Dur ham et al. St andards Track [ Page 28]



RFC 2748 COoPS January 2000

Both client and server MAY assunme the TCP connection is insufficient
for the client-type with the mninumtinme value (specified in the CAT
nmessage) if no comunication activity is detected for a period
exceeding the timer period. For the PEP, such detection inmplies the
renote PDP or connection is down and the PEP SHOULD now attenpt to
use an alternative/backup PDP

3.10 Synchronize State Conplete (SSC) PEP -> PDP

The Synchronize State Conplete is sent by the PEP to the PDP after
the PDP sends a synchronize state request to the PEP and the PEP has
fini shed synchroni zation. It is useful so that the PDP will know when
all the old client state has been successfully re-requested and,

thus, the PEP and PDP are conpl etely synchronized. The dient Handl e
obj ect only needs to be included if the correspondi ng Synchronize
State Message originally referenced a specific handle.

<Synchroni ze State Conplete> ::= <Comobn Header >
[<dient Handl e>]
[<Integrity>]

4. Common Qperation

This section describes the typical exchanges between renote PDP
servers and PEP clients.

4.1 Security and Sequence Number Negoti ation

COPS message security is negotiated once per connection and covers
all comunication over a particular connection. If COPS | eve
security is required, it MJST be negotiated during the initia
Client-Open/ dient-Accept nessage exchange specifying a Cient-Type
of zero (which is reserved for connection |level security negotiation
and connection verification).

If a PEP is not configured to use COPS security with a PDP it wll
sinmply send the PDP Client-Open nessages for the supported Cient-
Types as specified in section 4.3 and will not include the Integrity
object in any COPS nessages.

O herwi se, security can be initiated by the PEP if it sends the PDP a
Client-Open nessage with Cient-Type=0 before opening any ot her
Client-Type. If the PDP receives a Cient-Open with a Cient-Type=0
after another dient-Type has al ready been opened successfully it
MUST return a Cient-C ose nessage (for dient-Type=0) to that PEP
This first dient-COpen message MJST specify a Cient-Type of zero and
MJST provide the PEPID and a COPS Integrity object. This Integrity
object will contain the initial sequence nunber the PEP requires the

Dur ham et al. St andards Track [ Page 29]



RFC 2748 COoPS January 2000

PDP to increment during subsequent commrunication after the initia
Client-Open/dient-Accept exchange and the Key ID identifying the
al gorithm and key used to conpute the digest.

Simlarly, if the PDP accepts the PEP' s security key and al gorithm by
val idating the nmessage digest using the identified key, the PDP MJST
send a Client-Accept nmessage with a Client-Type of zero to the PEP
carrying an Integrity object. This Integrity object will contain the
initial sequence number the PDP requires the PEP to increnent during
al |l subsequent conmunication with the PDP and the Key ID identifying
the key and al gorithmused to conpute the digest.

If the PEP, fromthe perspective of a PDP that requires security,
fails or never perforns the security negotiation by not sending an
initial Cient-Open nessage with a Cient-Type=0 including a valid
Integrity object, the PDP MJST send to the PEP a Cient-C ose nessage
with a Cient-Type=0 specifying the appropriate error code.

Simlarly, if the PDP, fromthe perspective of a PEP that requires
security, fails the security negotiation by not sending back a
Client-Accept nessage with a Cient-Type=0 including a valid
Integrity object, the PEP MIST send to the PDP a Cient-C ose nessage
with a dient-Type=0 specifying the appropriate error code. Such a
Client-Cl ose message need not carry an integrity object (as the
security negotiation did not yet conplete).

The security initialization can fail for one of several reasons: 1
The side receiving the nmessage requires COPS | evel security but an
Integrity object was not provided (Authenticati on Required error
code). 2. ACOPS Integrity object was provided, but with an

unknown/ unaccept abl e C- Type (Unknown COPS (nbject error code

speci fying the unsupported C-Num and C- Type). 3. The nessage di gest
or Key IDin the provided Integrity object was incorrect and
therefore the message could not be authenticated using the identified
key (Authentication Failure error code).

Once the initial security negotiation is conplete, the PEP will know
what sequence nunbers the PDP expects and the PDP will know what
sequence nunbers the PEP expects. ALL COPS nessages must then include
the negotiated Integrity object specifying the correct sequence
nunber with the appropriate nessage digest (including the dient-
Open/ d i ent - Accept nmessages for specific Cient-Types). ALL
subsequent nessages fromthe PDP to the PEP MJUST result in an

i ncrenent of the sequence nunber provided by the PEP in the Integrity
object of the initial Cient-Open nmessage. Likew se, ALL subsequent
nmessages fromthe PEP to the PDP MUST result in an increment of the
sequence nunber provided by the PDP in the Integrity object of the
initial Cient-Accept nmessage. Sequence nunbers are increnented by
one starting with the corresponding initial sequence nunber. For

Dur ham et al. St andards Track [ Page 30]



RFC 2748 COoPS January 2000

exanple, if the sequence nunber specified to the PEP by the PDP in
the initial dient-Accept was 10, the next nmessage the PEP sends to
the PDP will provide an Integrity object with a sequence nunber of
11... Then the next nessage the PEP sends to the PDP will have a
sequence nunber of 12 and so on. If any subsequent received nessage
contai ns the wong sequence nunber, an unknown Key ID, an invalid
nessage digest, or is mssing an Integrity object after integrity was
negotiated, then a Cient-C ose nmessage MJST be generated for the
Client-Type zero containing a valid Integrity object and specifying
the appropriate error code. The connection should then be dropped.

4.2 Key Mai ntenance

Key mai ntenance is outside the scope of this document, but COPS

i mpl ement ati ons MUST at |east provide the ability to manually
configure keys and their paranmeters locally. The key used to produce
the Integrity object’s nmessage digest is identified by the Key ID
field. Thus, a Key ID paraneter is used to identify one of
potentially multiple sinmultaneous keys shared by the PEP and PDP. A
Key IDis relative to a particular PEPID on the PDP or to a
particul ar PDP on the PEP. Each key nust al so be configured with
lifetime paraneters for the time period within which it is valid as
wel | as an associ ated cryptographic al gorithm paraneter specifying
the algorithmto be used with the key. At a minimum all COPS

i mpl enent ati ons MJST support the HVAC- MD5-96 [ HVAC] [ MD5]
cryptographic algorithmfor conputing a nessage digest for inclusion
in the Keyed Message Digest of the Integrity object which is appended
to the nessage.

It is good practice to regularly change keys. Keys MJST be
configurable such that their lifetinmes overlap allowi ng snooth
transitions between keys. At the midpoint of the lifetine overlap

bet ween two keys, senders should transition fromusing the current
key to the next/longer-lived key. Meanwhile, receivers sinply accept
any identified key received within its configured lifetinme and reject
those that are not.

4.3 PEP Initialization

Sonetime after a connection is established between the PEP and a
renote PDP and after security is negotiated (if required), the PEP
will send one or nore Client-COpen nessages to the renote PDP, one for
each client-type supported by the PEP. The dient-CQpen nessage MJST
contain the address of the last PDP with which the PEP is stil
caching a conplete set of decisions. |If no decisions are being cached
fromthe previous PDP the Last PDPAddr object MJST NOT be included in
the dient-Open nessage (see Section 2.5). Each Cient-Open nessage
MUST at |east contain the comobn header noting one client-type

Dur ham et al. St andards Track [ Page 31]



RFC 2748 COoPS January 2000

supported by the PEP. The renote PDP will then respond with separate
Client-Accept nessages for each of the client-types requested by the
PEP that the PDP can al so support.

If a specific client-type is not supported by the PDP, the PDP will
instead respond with a Cient-C ose specifying the client-type is not
supported and will possibly suggest an alternate PDP address and
port. Otherwise, the PDP will send a Cient-Accept specifying the
timer interval between keep-alive messages and the PEP may begin

i ssuing requests to the PDP

4.4 Qutsourcing Operations

In the outsourcing scenario, when the PEP receives an event that
requires a new policy decision it sends a request nessage to the
renote PDP. What specifically qualifies as an event for a particul ar
client-type SHOULD be specified in the specific document for that
client-type. The renpte PDP t hen nakes a decision and sends a
deci si on nessage back to the PEP. Since the request is stateful, the
request will be renenbered, or installed, on the renote PDP. The

uni que handl e (uni que per TCP connection and client-type), specified
in both the request and its correspondi ng decision identifies this
request state. The PEP is responsible for deleting this request state
once the request is no | onger applicable.

The PEP can update a previously installed request state by reissuing
a request for the previously installed handle. The renote PDP is then
expected to nake new deci sions and send a decisi on nessage back to
the PEP. Likew se, the server MAY change a previously issued decision
on any currently installed request state at any tinme by issuing an
unsol icited decision nessage. At all tines the PEP nodul e is expected
to abide by the PDP's decisions and notify the PDP of any state
changes.

4.5 Configuration Operations

In the configuration scenario, as in the outsourcing scenario, the

PEP wi Il make a configuration request to the PDP for a particul ar
interface, nmodule, or functionality that may be specified in the
nanmed client specific information object. The PDP will then send

potentially several decisions containing named units of configuration
data to the PEP. The PEP is expected to install and use the
configuration locally. A particular naned configurati on can be
updated by sinply sending additional decision nessages for the sane
named configuration. When the PDP no | onger wi shes the PEP to use a
pi ece of configuration information, it will send a decision nessage
speci fying the nanmed configuration and a decision flags object with

Dur ham et al. St andards Track [ Page 32]



RFC 2748 COoPS January 2000

the renove configuration command. The PEP SHOULD t hen proceed to
renove the correspondi ng configuration and send a report nessage to
the PDP that specifies it has been del eted.

In all cases, the PEP MAY notify the renote PDP of the |ocal status
of an installed state using the report nmessage where appropriate.
The report nessage is to be used to signify when billing can begin
what actions were taken, or to produce periodic updates for

noni tori ng and accounti ng purposes depending on the client. This
nmessage can carry client specific information when needed.

4.6 Keep-Alive Qperations

The Keep-Alive message is used to validate the connection between the
client and server is still functioning even when there is no other
messaging fromthe PEP to PDP. The PEP MJST generate a COPS KA
message randomly within one-fourth to three-fourths the m ni num KA
Timer interval specified by the PDP in the Cient-Accept nessage. On
receiving a Keep-Alive nessage fromthe PEP, the PDP MJST then
respond to this Keep-Alive nessage by echoing a Keep-Alive nessage
back to the PEP. If either side does not receive a Keep-Alive or any
ot her COPS message within the m nimum KA Tiner interval fromthe

ot her, the connection SHOULD be consi dered | ost.

4.7 PEP/ PDP d ose

Finally, Cdient-C ose nessages are used to negate the effects of the
correspondi ng dient-Cpen nmessages, notifying the other side that the
specified client-type is no | onger supported/active. Wen the PEP
detects a | ost connection due to a keep-alive tineout condition it
SHOULD explicitly send a Cient-C ose nessage for each opened
client-type specifying a conmunications failure error code. Then the
PEP NMAY proceed to ternminate the connection to the PDP and attenpt to
reconnect again or try a backup/alternative PDP. Wen the PDP is
shutting down, it SHOULD also explicitly send a Client-C ose to al
connected PEPs for each client-type, perhaps specifying an
alternative PDP to use instead

5. Security Considerations

The COPS protocol provides an Integrity object that can achi eve

aut hentication, nessage integrity, and replay prevention. Al COPS

i npl enent ati ons MJUST support the COPS Integrity object and its
mechani sns as described in this docunent. To ensure the client (PEP)
is comunicating with the correct policy server (PDP) requires

aut hentication of the PEP and PDP using a shared secret, and

consi stent proof that the connection remains valid. The shared secret
mnimally requires manual configuration of keys (identified by a Key

Dur ham et al. St andards Track [ Page 33]



RFC 2748 COoPS January 2000

I D) shared between the PEP and its PDP. The key is used in
conjunction with the contents of a COPS nmessage to calculate a
nessage digest that is part of the Integrity object. The Integrity
object is then used to validate all COPS nessages sent over the TCP
connection between a PEP and PDP

Key mai ntenance is outside the scope of this docunent beyond the
specific requirenments discussed in section 4.2. In general, it is
good practice to regularly change keys to maintain security.
Furthernore, it is good practice to use |localized keys specific to a
particul ar PEP such that a stolen PEP will not conprom se the
security of an entire adm nistrative domain.

The COPS Integrity object al so provides sequence nunbers to avoid
replay attacks. The PDP chooses the initial sequence nunber for the
PEP and the PEP chooses the initial sequence nunber for the PDP
These initial nunbers are then incremented with each successive
nessage sent over the connection in the corresponding direction. The
initial sequence nunbers SHOULD be chosen such that they are
nonotoni cal ly i ncreasing and never repeat for a particular key.

Security between the client (PEP) and server (PDP) MAY be provided by
| P Security [IPSEC]. In this case, the | PSEC Authenticati on Header
(AH) SHOULD be used for the validation of the connection

additionally | PSEC Encapsul ati on Security Payload (ESP) MAY be used
to provide both validation and secrecy.

Transport Layer Security [TLS] MAY be used for both connection-I|eve
val i dation and privacy.

6. | ANA Consi derations

The Client-type identifies the policy client application to which a
nmessage refers. Client-type values within the range 0x0001- Ox3FFF are
reserved Specification Required status as defined in [|ANA-

CONSI DERATI ONS] . These val ues MUST be registered with I ANA and their
behavi or and applicability MJST be described in a COPS extension
document .

Client-type values in the range 0x4000 - Ox7FFF are reserved for
Private Use as defined in [| ANA- CONSI DERATI ONS] . These Client-types
are not tracked by I ANA and are not to be used in standards or
general -rel ease products, as their uni queness cannot be assured.

Client-type values in the range 0x8000 - OxFFFF are First Come First
Served as defined in [|I ANA- CONSI DERATI ONS]. These Cient-types are
tracked by | ANA but do not require published docunments descri bing
their use. 1 ANA nerely assures their uni queness.

Dur ham et al. St andards Track [ Page 34]



RFC 2748 COoPS January 2000

ohjects in the COPS Protocol are identified by their CNum and C Type
val ues. | ETF Consensus as identified in [| ANA- CONSI DERATIONS] is
required to introduce new val ues for these nunbers and, therefore,
new obj ects into the base COPS protocol .

Addi ti onal Context Ohject R-Types, Reason-Codes, Report-Types,

Deci si on bj ect Conmand- Codes/ Fl ags, and Error-Codes MAY be defi ned
for use with future dient-types, but such additions require |IETF
Consensus as defined in [l ANA- CONSI DERATI ONS] .

Cont ext (hject M Types, Reason Sub-Codes, and Error Sub-codes MAY be
defined relative to a particular Cient-type follow ng the sanme | ANA
considerations as their respective dient-type.

7. References

[ RSVP] Braden, R, Zhang, L., Berson, S., Herzog, S.
and S. Janin, "Resource ReSerVation Protocol
(RSVP) Version 1 - Functional Specification",
RFC 2205, Septenber 1997.

[ VRK] Yavat kar, R, Pendarakis, D. and R Cuerin, "A
Framewor k for Policy-Based Adm ssion Control ",
RFC 2753, January 2000.

[ SRVLOC] GQuttman, E., Perkins, C., Veizades, J. and M
Day, "Service Location Protocol , Version 2",
RFC 2608, June 1999.

[ 1 NSCH Shenker, S. and J. Wocl awski, "General
Characterization Paraneters for |ntegrated
Service Network El enments", RFC 2215, Septenber
1997.

[ 1 PSEC] At ki nson, R, "Security Architecture for the
Internet Protocol"”, RFC 2401, August 1995.

[ HVAC] Krawczyk, H., Bellare, M and R Canetti,
"HMAC:. Keyed-Hashing for Message
Aut henti cation", RFC 2104, February 1997.

[ MD5] Rivest, R, "The MD5 Message-Di gest Al gorithni,
RFC 1321, April 1992.

[ RSVPPR] Braden, R and L. Zhang, "Resource ReSerVation

Protocol (RSVP) - Version 1 Message Processing
Rul es", RFC 2209, Septenber 1997.

Dur ham et al. St andards Track [ Page 35]



RFC 2748 COoPS January 2000

[ TLS] Dierks T. and C. Allen, "The TLS Protoco
Version 1.0", RFC 2246, January 1999.

[ 1 ANA] http://wwv i si.edu/in-
not es/ i ana/ assi gnnment s/ port - nunber s

[ I ANA- CONSI DERATI ONS] Al vestrand, H. and T. Narten, "CQuidelines for
Witing an | ANA Consi derations Section in
RFCs", BCP 26, RFC 2434, Cctober 1998.

8. Author Information and Acknow edgnents

Speci al thanks to Andrew Smith and Tinothy O Malley our WG Chairs,
Raj Yavatkar, Russell Fenger, Fred Baker, Laura Cunni ngham Roch
Guerin, Ping Pan, and Dimitrios Pendarakis for their val uable
contributions.

Ji m Boyl e

Level 3 Communi cations
1025 El dor ado Boul evard
Broonfield, CO 80021

Phone: 720.888.1192
EMai | : j boyl e@evel 3. net

Ron Cohen

Cl SCO Syst ens

4 Maskit St

Her zel i ya Pituach 46766 |srae

Phone: +972.9. 9700064
EMai |l : ronc@i sco. com

Davi d Dur ham

Inte

2111 NE 25t h Avenue
Hi |l sboro, OR 97124

Phone: 503. 264. 6232
EMui | : Davi d. Dur ham@ nt el . com

Dur ham et al. St andards Track [ Page 36]



RFC 2748 COoPS January 2000

Raj u Raj an

AT&T Shannon Laboratory

180 Park Avenue

P. O Box 971

Fl orham Park, NJ 07932-0971

EMai | : rajan@esearch. att.com

Shai Herzog

| PHi ghway, Inc.

55 New York Avenue
Fram ngham NMA 01701

Phone: 508. 620. 1141
EMai | : herzog@ phi ghway. com

Arun Sastry

Cisco Systemns

4 The Square

St ockl ey Park

Uxbri dge, M ddl esex UB11l 1BN
UK

Phone: +44-208-756- 8693
EMai | : asastry@i sco.com

Dur ham et al. St andards Track [ Page 37]



RFC 2748 COoPS January 2000

9. Full Copyright Statenent
Copyright (C The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Dur ham et al. St andards Track [ Page 38]






