Net wor k Wor ki ng Group D. Korn
Request for Comments: 3284 AT&T Labs
Cat egory: Standards Track J. MacDonal d
UC Ber kel ey

J. Mogul

Hewl et t - Packard Conpany

K. Vo

AT&T Labs

June 2002

The VCDI FF CGeneric Differencing and Conpressi on Data For nat

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the

Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet

O ficial Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this nenmo is unlimted.
Copyri ght Notice

Copyright (C The Internet Society (2002). Al Rights Reserved.
Abst r act

This meno descri bes VCDI FF, a general, efficient and portabl e data

format suitable for encodi ng conpressed and/or differencing data so
that they can be easily transported anbng conputers.

Korn, et. al. St andards Track [Page 1]

RFC 3284 VCDI FF June 2002

Tabl e of Contents

1. EXecutive SUNMMBIY e e e 2
2. CONVENLT ONS ..o 4
3. Delta InStructiOns 5
4. Delta File Organization 6
5. Delta Instruction Encoding 12
6. Decoding a Target WNdOW 20
7. Application-Defined Code Tables 21
8. Performance 22
9. Rurther ISSUBS 24
10, SUNMITBIY . 25
11. Acknow edgemBnt S it e 25
12. Security Considerations 25
13. Source Code Availability 25
14. Intellectual Property Rights 26
15. TANA Considerati OnNS e 26
16. References 26
17. Authors’ AddresSSest 28
18. Full Copyright Statement 29

1. Executive Summary

Conpressi on and differencing techni ques can greatly inprove storage
and transmission of files and file versions. Since files are often
transported across nachines with distinct architectures and
performance characteristics, such data should be encoded in a form
that is portable and can be decoded with little or no know edge of
the encoders. This docunent describes Vcdiff, a conmpact portable
encodi ng format designed for these purposes.

Data differencing is the process of conmputing a conpact and
invertible encoding of a "target file" given a "source file". Data
conpression is simlar, but without the use of source data. The UN X
utilities diff, conpress, and gzip are well-known exanples of data

di fferencing and conpression tools. For data differencing, the
conputed encoding is called a "delta file", and for data conpression

it is called a "conpressed file". Delta and conpressed files are
good for storage and transmi ssion as they are often smaller than the
originals.

Data differencing and data conpression are traditionally treated as
di stinct types of data processing. However, as shown in the Vdelta
techni que by Korn and Vo [1], conpression can be thought of as a
special case of differencing in which the source data is enpty. The
basic idea is to unify the string parsing scheme used in the Lenpel -
Ziv'77 (LZ 77) style conpressors [2] and the bl ock-npove techni que of
Tichy [3]. Loosely speaking, this works as foll ows:

Korn, et. al. St andards Track [Page 2]

RFC 3284 VCDI FF June 2002

a. Concatenate source and target data.

b. Parse the data fromleft to right as in LZ' 77 but nmake sure
that a parsed segment starts the target data.

c. Start to output when reaching target data.

Parsing is based on string matching al gorithns, such as suffix trees
[4] or hashing with different time and space performance
characteristics. Vdelta uses a fast string matching al gorithmthat
requires less nmenory than other techniques [5,6]. However, even with
this algorithm the menmory requirenent can still be prohibitive for
large files. A conmon way to deal with menory limtation is to
partition an input file into chunks called "w ndows" and process them
separately. Here, except for unpublished work by Vo, little has been
done on designing effective wi ndowi ng schenmes. Current techniques,

i ncluding Vdelta, sinply use source and target w ndows with
correspondi ng addresses across source and target files.

String nmatching and wi ndowi ng al gorithns have great influence on the
conpression rate of delta and conpressed files. However, it is
desirable to have a portable encoding format that is independent of
such algorithms. This enables the construction of client-server
applications in which a server may serve clients wth unknown
conputing characteristics. Unfortunately, all current differencing
and conpressing tools, including Vdelta, fall short in this respect.
Their storage fornats are closely intertwined with the inplenented
string matchi ng and/ or wi ndowi ng al gorithns.

The encoding format Vcdi ff proposed here addresses the above issues.
Vcdi ff achi eves the characteristics bel ow

Qut put conpact ness:
The basi c encodi ng fornmat conpactly represents conpressed or
delta files. Applications can further extend the basic
encodi ng format with "secondary encoders" to achi eve nore
conpr essi on.

Data portability:
The basic encoding format is free from machi ne byte order and
word size issues. This allows data to be encoded on one
machi ne and decoded on a different nachine with different
archi tecture.

Al gorithmgenericity:
The decoding algorithmis independent from string matchi ng and
wi ndowi ng algorithms. This allows conpetition anmong
i mpl enent ati ons of the encoder while keeping the same decoder

Korn, et. al. St andards Track [Page 3]

RFC 3284 VCDI FF June 2002

Decodi ng efficiency:
Except for secondary encoder issues, the decoding al gorithm
runs in time proportionate to the size of the target file and
uses space proportionate to the maxi mal w ndow size. Vcdiff
differs frommnore conventional conpressors in that it uses only
byt e-aligned data, thus avoiding bit-level operations, which
i mproves decodi ng speed at the slight cost of conpression
efficiency.

The conbi ned differencing and conpression nethod is called "delta
conpression” [14]. As this way of data processing treats conpression
as a special case of differencing, we shall use the term"delta file"
to indicate the conpressed output for both cases.

2. Conventions

The basic data unit is a byte. For portability, Vcdiff shall linmt a
byte to its lower eight bits even on machines with |arger bytes. The
bits in a byte are ordered fromright to left so that the | east
significant bit (LSB) has value 1, and the nost significant bit

(MBB), has val ue 128.

For purposes of exposition in this docunent, we adopt the convention
that the LSB is nunmbered 0, and the M5B is nunbered 7. Bit nunbers
never appear in the encoded fornmat itself.

Vcdi ff encodes unsigned integer values using a portable, variable-
sized format (originally introduced in the Sfio library [7]). This
encoding treats an integer as a number in base 128. Then, each digit
in this representation is encoded in the |ower seven bits of a byte.
Except for the |least significant byte, other bytes have their nopst
significant bit turned on to indicate that there are still nore
digits in the encoding. The two key properties of this integer
encodi ng that are beneficial to a data conpression format are:

a. The encoding is portable anong systens using 8-bit bytes, and
b. Small val ues are encoded conpactly.

For exanpl e, consider the value 123456789, which can be represented
with four 7-bit digits whose values are 58, 111, 26, 21 in order from
nost to least significant. Belowis the 8-bit byte encoding of these
digits. Note that the MSBs of 58, 111 and 26 are on

| 10111010 | 11101111 | 10011010 | 00010101

VEB+58 MeB+111 VEB+26 0+21

Korn, et. al. St andards Track [Page 4]

RFC 3284 VCDI FF June 2002

Henceforth, the terns "byte" and "integer" will refer to a byte and
an unsigned integer as described.

Algorithns in the C |language are occasionally exhibited to clarify
the descriptions. Such C code is neant for clarification only, and
is not part of the actual specification of the Vcdiff fornmat.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWVMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119 [12].

3. Delta Instructions

A large target file is partitioned into non-overl apping sections
called "target windows". These target w ndows are processed
separately and sequentially based on their order in the target file.

A target window T, of length t, nay be conpared agai nst sone source
data segnent S, of length s. By construction, this source data
segnent S conmes either fromthe source file, if one is used, or from
a part of the target file earlier than T. In this way, during
decoding, S is conpletely known when T i s bei ng decoded.

The choices of T, t, S and s are nade by sone w ndow sel ection
al gorithm which can greatly affect the size of the encoding.
However, as seen |later, these choices are encoded so that no
know edge of the wi ndow sel ection algorithmis needed during
decodi ng.

Assune that S[j] represents the jth byte in S, and T[k] represents
the kth byte in T. Then, for the delta instructions, we treat the
data windows S and T as substrings of a superstring U fornmed by
concatenating themlike this:

S[0]S[1]...S[s-1]T[0] T[1]...T[t-1]

The "address" of a byte in Sor Tis referred to by its location in
U For exanple, the address of T[k] is s+k

The instructions to encode and direct the reconstruction of a target
wi ndow are called delta instructions. There are three types:

ADD: This instruction has two argunents, a size x and a sequence
of x bytes to be copied.

COPY: This instruction has two argunents, a size x and an address
pinthe string U The argunents specify the substring of U
that nust be copied. W shall assert that such a substring
nust be entirely contained in either S or T.

Korn, et. al. St andards Track [Page 5]

RFC 3284 VCDI FF June 2002
RUN: This instruction has two argunents, a size x and a byte b,
that will be repeated x tines.

Bel ow are exanpl e source and target wi ndows and the delta
instructions that encode the target window in terms of the source

wi ndow.
abcdefghij k!l mnop
abcdwxyzefghefghefghefghzzzz
CoPY 4, 0
ADD 4, wxyz
CoPY 4, 4
COoPY 12, 24
RUN 4, z

Thus, the first letter "a in the target wwndow is at |location 16 in
the superstring. Note that the fourth instruction, "COPY 12, 24",
copies data fromT itself since address 24 is position 8 in T. This
instruction also shows that it is fine to overlap the data to be
copied with the data being copied from as long as the latter starts
earlier. This enables efficient encoding of periodic sequences,
i.e., sequences with regularly repeated subsequences. The RUN
instruction is a conpact way to encode a sequence repeating the sane
byte even though such a sequence can be thought of as a periodic
sequence with period 1.

To reconstruct the target w ndow, one sinply processes one delta
instruction at a time and copies the data, either fromthe source

wi ndow or the target wi ndow being reconstructed, based on the type of
the instruction and the associ ated address, if any.

4. Delta File Oganization

A Vcdi ff delta file starts with a Header section followed by a
sequence of Wndow sections. The Header section includes magic bytes
to identify the file type, and information concerning data processing
beyond the basic encoding format. The W ndow sections encode the
target w ndows.

Below is the overall organization of a delta file. The indented
itens refine the ones immedi ately above them An itemin square
brackets may or may not be present in the file depending on the
i nformati on encoded in the Indicator byte above it.

Korn, et. al. St andards Track [Page 6]

RFC 3284 VCDI FF June 2002

Header
Header 1 - byte
Header 2 - byte
Header 3 - byte
Header 4 - byte
Hdr | ndi cat or - byte
[Secondary conpressor | D - byte
[Lengt h of code table data] - integer
[Code tabl e data]
Si ze of near cache - byte
Si ze of sanme cache - byte
Conpressed code table data
W ndowl
W n_I ndi cat or - byte
[Source segment size] - integer
[Source segment position] - integer
The delta encodi ng of the target w ndow
Length of the delta encoding - integer
The delta encoding
Size of the target w ndow - integer
Del t a_I ndi cat or - byte
Length of data for ADDs and RUNs - integer
Length of instructions and sizes - integer
Length of addresses for COPYs - integer
Data section for ADDs and RUNs - array of bytes
Instructions and sizes section - array of bytes
Addr esses section for COPYs - array of bytes
W ndow?2

4.1 The Header Section

Each delta file starts with a header section organi zed as bel ow.
Not e the convention that square-brackets encl ose optional itemns.

Header 1 - byte = 0xD6
Header 2 - byte = 0xC3
Header 3 - byte = OxC4
Header 4 - byte

Hdr _I ndi cat or - byte

[Secondary conpressor | D - byte
[Length of code table data] - integer

[Code tabl e data]

Korn, et. al. St andards Track [Page 7]

RFC 3284 VCDI FF June 2002

The first three Header bytes are the ASCI| characters 'V, 'C and
"D with their nost significant bits turned on (in hexadecimal, the
val ues are 0xD6, 0xC3, and O0xC4). The fourth Header byte is
currently set to zero. |In the future, it mght be used to indicate
the version of Vcdiff.

The Hdr _Indicator byte shows if there is any initialization data
required to aid in the reconstruction of data in the Wndow sections.
This byte MAY have non-zero values for either, both, or neither of
the two bits VCD DECOVPRESS and VCD CODETABLE bel ow:

If bit 0O (VCD_DECOVWPRESS) is non-zero, this indicates that a
secondary conpressor may have been used to further conpress certain
parts of the delta encoding data as described in Sections 4.3 and 6.
In that case, the ID of the secondary conpressor is given next. |If
this bit is zero, the conpressor ID byte is not included.

If bit 1 (VCD_CODETABLE) is non-zero, this indicates that an
application-defined code table is to be used for decoding the delta
instructions. This table itself is conpressed. The length of the
data conprising this conpressed code table and the data foll ow next.

Section 7 discusses application-defined code tables. |If this bit is
zero, the code table data length and the code table data are not
i ncl uded.

If both bits are set, then the conpressor ID byte is included before
the code table data length and the code table data.

4.2 The Format of a W ndow Section

Each W ndow section is organi zed as foll ows:

W n_I ndi cat or - byte
[Source segnent | engt h] - integer
[Source segnment position] - integer

The delta encodi ng of the target w ndow

Korn, et. al. St andards Track [Page 8]

RFC 3284 VCDI FF June 2002

Bel ow are the details of the various itens:

W n_I ndi cat or:
This byte is a set of bits, as shown:

-~ VCD_SOURCE
---- VCD_TARGET

If bit O (VCD_SOURCE) is non-zero, this indicates that a
segnment of data fromthe "source" file was used as the
correspondi ng source wi ndow of data to encode the target

wi ndow. The decoder will use this sane source data segnent to
decode the target w ndow.

If bit 1 (VCD_TARGET) is non-zero, this indicates that a
segnment of data fromthe "target"” file was used as the
correspondi ng source wi ndow of data to encode the target

wi ndow. As above, this sane source data segnent is used to
decode the target w ndow.

The Wn_l ndi cator byte MJUST NOT have nore than one of the bits
set (non-zero). It MAY have none of these bits set.

If one of these bits is set, the byte is followed by two
integers to indicate respectively, the Il ength and position of
the source data segnent in the relevant file. [|f the indicator
byte is zero, the target wi ndow was conpressed by itself

wi t hout comnpari ng agai nst anot her data segnent, and these two

i ntegers are not included.

The delta encoding of the target w ndow
This contains the delta encoding of the target w ndow, either
in terms of the source data segnent (i.e., VCD SOURCE or

VCD_TARCGET was set) or by itself if no source wi ndow is
specified. This data format is discussed next.

Korn, et. al. St andards Track [Page 9]

RFC 3284 VCDI FF June 2002

4.3 The Delta Encoding of a Target W ndow
The delta encoding of a target w ndow is organi zed as foll ows:

Length of the delta encoding - integer
The delta encoding

Length of the target w ndow - integer

Del ta_| ndi cat or - byte

Length of data for ADDs and RUNs - integer

Length of instructions section - integer

Length of addresses for COPYs - integer

Data section for ADDs and RUNs - array of bhytes
Instructions and sizes section - array of bytes
Addr esses section for COPYs - array of bytes

Length of the delta encodi ng:
This integer gives the total number of remaining bytes that
conprise the data of the delta encoding for this target
wi ndow.

The delta encodi ng:
This contains the data representing the delta encodi ng which
i s described next.

Length of the target w ndow
This integer indicates the actual size of the target w ndow
after deconpression. A decoder can use this value to
all ocate nenory to store the unconpressed dat a.

Delta_I ndicator:
This byte is a set of bits, as shown:

N N
| |
| +-- VCD_DATACOMP
+---- VCD_I NSTCOWP
PR VCD_ADDRCOVP

VCD_DATACOVP: bit value 1.

VCD_| NSTCOWP: bit val ue 2.
VCD_ADDRCOWVP: bit val ue 4.

Korn, et. al. St andards Track [Page 10]

RFC 3284 VCDI FF June 2002

Kor n,

As di scussed, the delta encoding consists of COPY, ADD and RUN
instructions. The ADD and RUN instructions have acconpanyi ng
unmat ched data (that is, data that does not specifically match
any data in the source window or in sone earlier part of the
target w ndow) and the COPY instructions have addresses of
where the matches occur. OPTIONALLY, these types of data MAY
be further conpressed using a secondary conpressor. Thus,
Vcdi ff separates the encoding of the delta instructions into
three parts:

a. The unnatched data in the ADD and RUN i nstructions,
b. The delta instructions and acconpanyi ng si zes, and
c. The addresses of the COPY instructions.

If the bit VCD DECOWPRESS (Section 4.1) was on, each of these
sections may have been conpressed using the specified secondary
conpressor. The bit positions 0 (VCD _DATACOWP), 1

(VCD_I NSTCOW), and 2 (VCD _ADDRCOWP) respectively indicate, if
non-zero, that the corresponding parts are conpressed. Then
these parts MJST be deconpressed before decoding the delta

i nstructions.

Length of data for ADDs and RUNs:
This is the length (in bytes) of the section of data storing
the unmat ched data acconpanying the ADD and RUN instructions.

Length of instructions section:
This is the Iength (in bytes) of the delta instructions and
acconpanyi ng si zes.

Length of addresses for COPYs:
This is the length (in bytes) of the section storing the
addresses of the COPY instructions.

Data section for ADDs and RUNs:
Thi s sequence of bytes encodes the unmatched data for the ADD
and RUN i nstructions.

I nstructions and sizes section:
Thi s sequence of bytes encodes the instructions and their
si zes.

Addr esses section for COPYs:

Thi s sequence of bytes encodes the addresses of the COPY
i nstructions.

et. al. St andards Track [Page 11]

RFC 3284 VCDI FF June 2002

5. Delta Instruction Encoding

The delta instructions described in Section 3 represent the results
of string matching. For nmany data differencing applications in which
the changes between source and target data are small, any
straightforward representation of these instructions would be
adequate. However, for applications including differencing of binary
files or data conpression, it is inportant to encode these
instructions well to achieve good conpression rates. The keys to
this achievement is to efficiently encode the addresses of COPY
instructions and the sizes of all delta instructions.

5.1 Address Encodi ng Modes of COPY Instructions

Addresses of COPY instructions are |ocations of matches and often
occur close by or even exactly equal to one another. This is because

data in local regions are often replicated with m nor changes. In
turn, this neans that coding a newy natched address agai nst sone
recently matched addresses can be beneficial. To take advantage of

thi s phenomenon and encode addresses of COPY instructions nore
efficiently, the Vcdiff data format supports the use of two different
types of address caches. Both the encoder and decoder nmmintain these
caches, so that decoder’s caches remain synchronized with the
encoder’s caches.

a. A "near" cache is an array with "s near" slots, each containing an
address used for encodi ng addresses nearby to previously encoded
addresses (in the positive direction only). The near cache al so
mai ntains a "next_slot" index to the near cache. New entries to
the near cache are always inserted in the next_slot index, which
mai ntains a circular buffer of the s _near nobst recent addresses.

b. A "sanme" cache is an array with "s_sanme", with a nultiple of 256

slots, each containing an address. The same cache maintains a

hash tabl e of recent addresses used for repeated encodi ng of the

exact same address.

By default, the paraneters s _near and s_sanme are respectively set to
4 and 3. An encoder MAY nodify these values, but then it MJST encode
the new values in the encoding itself, as discussed in Section 7, so
that the decoder can properly set up its own caches.

At the start of processing a target w ndow, an inplenmentation
(encoder or decoder) initializes all of the slots in both caches to
zero. The next_slot pointer of the near cache is set to point to
sl ot zero.

Korn, et. al. St andards Track [Page 12]

RFC 3284 VCDI FF

June 2002

Each tinme a COPY instruction is processed by the encoder or decoder,
the inplenmentation’s caches are updated as follows, where "addr" is

the address in the COPY instruction.

a. The slot in the near cache referenced by the next_sl ot

index is

set to addr. The next_slot index is then increnmented nodul o

S_near.

b. The slot in the sane cache whose index is addr%s_sane*256) is set
to addr. [We use the C notations of % for nmodulo and * for

mul tiplication.]

5.2 Exanpl e code for nmintaining caches

To make clear the above description, bel ow are exanples of cache data

structures and algorithms to initialize and update them
typedef struct _cache_s
int* near; /* array of size s _near */

i nt S_near;
i nt next _slot; /* the circular index for near */

int* sane; [* array of size s_sane*256 */
i nt S_sane;
} Cache_t;
cache_init (Cache_t* ka)
- |
i nt i;
ka- >next _sl ot = O;
for(i = 0; i < ka->s_near; ++i)
ka->near[i] = 0;
for(i = 0; i < ka->s_sane*256; ++i)
ka- >sanme[i] = 0;
}

cache_updat e(Cache_t* ka, int addr)
i f(ka->s_near > 0)

{ ka- >near [ka- >next _sl ot] = addr
ka- >next _sl ot = (ka->next_slot + 1) % ka->s_near
}

i f(ka->s_same > 0)
ka- >same[addr % (ka->s_sanme*256)] = addr

Korn, et. al. St andards Track

[Page 13]

RFC 3284 VCDI FF June 2002

5.3 Encodi ng of COPY instruction addresses

The address of a COPY instruction is encoded using different nodes,
dependi ng on the type of cached address used, if any.

Let "addr" be the address of a COPY instruction to be decoded and
"here" be the current location in the target data (i.e., the start of
the data about to be encoded or decoded). Let near[j] be the jth
element in the near cache, and sane[k] be the kth elenment in the sane
cache. Below are the possible address nodes:

VCD _SELF: This node has value 0. The address was encoded by
itself as an integer.

VCD _HERE: This node has value 1. The address was encoded as the
i nteger value "here - addr".

Near npdes: The "near nodes" are in the range [2,s _near+1]. Let m
be the node of the address encoding. The address was encoded
as the integer value "addr - near[m2]".

Sane nodes: The "same nodes" are in the range
[s_near+2,s_near+s_sane+l]. Let mbe the node of the encoding.
The address was encoded as a single byte b such that "addr ==
same[(m - (s_near+2))*256 + b]".

5.4 Exanpl e code for encodi ng and decodi ng of COPY instruction addresses

We show exanpl e al gorithns below to denmponstrate the use of address
nodes nore clearly. The encoder has the freedomto choose address
nodes, the sanple addr_encode() algorithmmerely shows one way of

pi cking the address node. The decodi ng al gorithm addr_decode() wll
uni quel y decode addresses, regardl ess of the encoder’s al gorithm
choi ce.

Note that the address caches are updated imredi ately after an address
is encoded or decoded. In this way, the decoder is always
synchroni zed with the encoder

Korn, et. al. St andards Track [Page 14]

RFC 3284 VCDI FF June 2002

i nt addr_encode(Cache_t* ka, int addr, int here, int* node)

{
int i, d, bestd, bestm
/[* Attenpt to find the address node that yields the
smal | est integer value for "d", the encoded address
val ue, thereby mninzing the encoded size of the
address. */

* ok X F

best d

addr; bestm = VCD SELF; /* VCD_SELF == */

if((d = here-addr) < bestd)
{ bestd = d; bestm= VCD HERE; } /* VCD HERE == */

for(i = 0; i < ka->s_near; ++i)
if((d = addr - ka->near[i]) >= 0 & d < bestd)
{ bestd = d; bestm=i+2; }

i f(ka->s_sanme > 0 && ka->sane[d = addr % ka->s_sanme*256)] == addr)
{ bestd = d¥%256; bestm = ka->s _near + 2 + d/256; }

cache_updat e(ka, addr) ;

nmobde = bestm / this returns the address encodi ng node */
return bestd; /* this returns the encoded address */

}

Note that the addr_encode() al gorithm chooses the best address npbde
using a local optimzation, but that may not |ead to the best
encodi ng efficiency because different nodes |lead to different

i nstruction encodi ngs, as described bel ow.

The functions addrint() and addrbyte() used in addr_decode(), obtain
fromthe "Addresses section for COPYs" (Section 4.3), an integer or a
byte, respectively. These utilities will not be described here. W
sinmply recall that an integer is represented as a conpact vari abl e-
sized string of bytes, as described in Section 2 (i.e., base 128).

Korn, et. al. St andards Track [Page 15]

RFC 3284 VCDI FF June 2002

i nt addr_decode(Cache_t* ka, int here, int node)
{ int addr, m

i f(mode == VCD_SELF)
addr = addrint();
el se i f(node == VCD_HERE)
addr = here - addrint();
else if((m= node - 2) >= 0 & m < ka->s_near) /* near cache */
addr = ka->near[m + addrint();
el se /* same cache */
{ m = node - (2 + ka->s_near);
addr = ka->sanme[n¥256 + addrbyte()];
}

cache_updat e(ka, addr);

return addr;

}

5.4 Instruction Codes

Mat ches are often short in |lengths and separated by small amounts of
unmat ched data. That is, the lengths of COPY and ADD instructions
are often small. This is particularly true of binary data such as
executable files or structured data, such as HTML or XM.. In such
cases, conpression can be inproved by conbining the encoding of the
sizes and the instruction types, as well as conbining the encodi ng of
adj acent delta instructions with sufficiently small data sizes.

Ef fective choices of when to perform such conbi nati ons depend on nany
factors including the data being processed and the string natching
algorithmin use. For exanmple, if many COPY instructions have the
sanme data sizes, it may be worthwhile to encode these instructions
nore conpactly than others.

The Vcdiff data format is designed so that a decoder does not need to
be aware of the choices made in encoding algorithns. This is
achieved with the notion of an "instruction code table", containing
256 entries. Each entry defines, either a single delta instruction
or a pair of instructions that have been conbined. Note that the
code table itself only exists in main nenory, not in the delta file
(unl ess using an application-defined code table, described in Section
7). The encoded data sinmply includes the index of each instruction
and, since there are only 256 indices, each index can be represented
as a single byte.

Korn, et. al. St andards Track [Page 16]

RFC 3284 VCDI FF June 2002

Each instruction code entry contains six fields, each of which is a
single byte with an unsi gned val ue:

| instl | sizel | nmodel | inst2 | size2 | node2

Each triple (inst,size,node) defines a delta instruction. The
meani ngs of these fields are as foll ows:

inst: An "inst" field can have one of the four values: NOOP (0),
ADD (1), RUN (2) or COPY (3) to indicate the instruction

types. NOOP neans that no instruction is specified. In
this case, both the correspondi ng size and node fields will
be zero.

size: A "size" field is zero or positive. A value zero neans that
the size associated with the instruction is encoded
separately as an integer in the "lInstructions and sizes
section" (Section 6). A positive value for "size" defines
the actual data size. Note that since the size is
restricted to a byte, the maxi mum value for any instruction
with size inplicitly defined in the code table is 255.

node: A "node" field is significant only when the associated delta
instruction is a COPY. It defines the nbde used to encode
t he associ ated addresses. For other instructions, this is
al ways zero.

5.6 The Code Tabl e

Fol | owi ng the di scussi ons on address nmodes and instruction code
tables, we define a "Code Table" to have the data bel ow

s _near: the size of the near cache,
s_sane: the size of the sanme cache,
i _code: the 256-entry instruction code table.

Vedi ff itself defines a "default code table" in which s_near is 4 and
s sane is 3. Thus, there are 9 address nodes for a COPY instruction.
The first two are VCD SELF (0) and VCD HERE (1). Mddes 2, 3, 4 and 5
are for addresses coded agai nst the near cache. And nodes 6, 7 and

8, are for addresses coded agai nst the sane cache.

Korn, et. al. St andards Track [Page 17]

RFC 3284 VCDI FF June 2002

TYPE Sl ZE MODE TYPE Sl ZE MODE | NDEX
1. RWN 0 0 NOoP 0 0 0
2. ADD 0, [1,17] 0 NOOP 0 0 [1, 18]
3. COPY 0, [4,18] 0 NOOP 0 0 [19, 34]
4. COPY 0, [4,18] 1 NOOP 0 0 [35, 50]
5. COPY 0, [4,18] 2 NOOP 0 0 [51, 66]
6. COPY 0, [4,18] 3 NOOP 0 0 [67, 82]
7. COPY 0, [4,18] 4 NOOP 0 0 [83, 98]
8. COPY 0, [4,18] 5 NOOP 0 0 [99, 114]
9. COPY 0, [4,18] 6 NOOP 0 0 [115, 130]
10. COPY 0, [4,18] 7 NOOP 0 0 [131, 146]
11. COPY 0, [4,18] 8 NOOP 0 0 [147,162]
12. ADD [1, 4] 0 COoPY [4, 6] 0 [163,174]
13. ADD [1, 4] 0 coPY [4, 6] 1 [175, 186]
14. ADD [1,4] 0 COoPY [4, 6] 2 [187,198]
15. ADD [1,4] 0 COoPY [4, 6] 3 [199, 210]
16. ADD [1,4] 0 CoPY [4, 6] 4 [211, 222]
17. ADD [1,4] 0 CoPY [4, 6] 5 [223,234]
18. ADD [1, 4] 0 coPY 4 6 [235,238]
19. ADD [1, 4] 0 CoPY 4 7 [239, 242]
20. ADD [1,4] 0 COoPY 4 8 [243,246]
21. COPY 4 [0,8] ADD 1 0 [247, 255]

The default instruction code table is depicted above, in a conpact
representation that we use only for descriptive purposes. See
section 7 for the specification of how an instruction code table is
represented in the Vcdiff encoding format. In the depiction, a zero
val ue for size indicates that the size is separately coded. The node
of non-COPY instructions is represented as 0, even though they are
not used.

In the depiction, each nunbered |ine represents one or nore entries
in the actual instruction code table (recall that an entry in the
instruction code table may represent up to two conbined delta
instructions.) The last colum ("INDEX") shows which index val ue, or
range of index values, of the entries are covered by that line. (The
notation [i,j] neans values fromi through j, inclusively.) The
first 6 colums of a line in the depiction, describe the pairs of
instructions used for the correspondi ng i ndex val ue(s).

If aline in the depiction includes a colum entry using the [i,]]
notation, this neans that the line is instantiated for each value in

the range fromi to j, inclusively. The notation "0, [i,j]" neans
that the line is instantiated for the value 0 and for each value in
the range fromi to j, inclusively.

Korn, et. al. St andards Track [Page 18]

RFC 3284 VCDI FF June 2002

If aline in the depiction includes nore than one entry using the
[i,j] notation, inmplying a "nested | oop" to convert the line to a
range of table entries, the first such [i,j] range specifies the

outer |l oop, and the second specifies the inner |oop

The bel ow exanpl es shoul d make cl ear the above description

Line 1 shows the single RUN instruction with index 0. As the size
field is 0, this RUN instruction always has its actual size encoded
separatel y.

Line 2 shows the 18 single ADD instructions. The ADD instruction
with size field O (i.e., the actual size is coded separately) has
index 1. ADD instructions with sizes from1 to 17 use code indices 2
to 18 and their sizes are as given (so they will not be separately
encoded.)

Fol l owi ng the single ADD instructions are the single COPY
i nstructions ordered by their address encodi ng nodes. For exanpl e,

line 11 shows the COPY instructions with node 8, i.e., the |ast of
the sane cache. |In this case, the COPY instruction with size field O
has index 147. Again, the actual size of this instruction will be

coded separately.

Lines 12 to 21 show the pairs of instructions that are conbi ned
together. For exanple, line 12 depicts the 12 entries in which an
ADD instruction is conbined with an inmediately foll owi ng COPY
instruction. The entries with indices 163, 164, 165 represent the
pairs in which the ADD instructions all have size 1, while the COPY
i nstructions have nbde 0 (VCD SELF) and sizes 4, 5 and 6
respectively.

The last line, line 21, shows the eight instruction pairs, where the
first instruction is a COPY and the second is an ADD. |In this case,
all COPY instructions have size 4 with nmode ranging fromO to 8 and
all the ADD instructions have size 1. Thus, the entry with the

| argest index 255 conbines a COPY instruction of size 4 and node 8
with an ADD instruction of size 1.

The choice of the mninmnumsize 4 for COPY instructions in the default

code table was nade from experiments that showed that excluding snal
mat ches (less then 4 bytes |ong) inproved the conpression rates.

Korn, et. al. St andards Track [Page 19]

RFC 3284 VCDI FF June 2002

6. Decodi ng a Target W ndow

Section 4.3 discusses that the delta instructions and associ ated data
are encoded in three arrays of bytes:

Data section for ADDs and RUNs,
I nstructions and si zes section, and
Addr esses section for COPYs.

Further, these data sections may have been further conpressed by sone
secondary conpressor. Assum ng that any such conpressed data has
been deconpressed so that we now have three arrays:

inst: bytes coding the instructions and sizes.
data: unmatched data associated with ADDs and RUNs.
addr: bytes coding the addresses of COPYs.

These arrays are organi zed as foll ows:

inst: a sequence of (index, [sizel], [size2]) tuples, where
"index" is an index into the instruction code table, and
sizel and size2 are integers that MAY or MAY NOT be included
in the tuple as follows. The entry with the given "index"
in the instruction code table potentially defines two delta
instructions. |If the first delta instructionis not a
VCD _NOOP and its size is zero, then sizel MJIST be present.
O herw se, sizel MJST be onitted and the size of the
instruction (if it is not VCD NOOP) is as defined in the
table. The presence or absence of size2 is defined
simlarly with respect to the second delta instruction

data: a sequence of data val ues, encoded as bytes.

addr: a sequence of address values. Addresses are normally
encoded as integers as described in Section 2 (i.e., base
128). However, since the sane cache enmits addresses in the
range [0, 255], sanme cache addresses are al ways encoded as a
singl e byte.

To summari ze, each tuple in the "inst" array includes an index to
some entry in the instruction code table that determ nes:

a. Wiether one or two instructions were encoded and their types.

b. If the instructions have their sizes encoded separately, these
sizes will follow, in order, in the tuple.

Korn, et. al. St andards Track [Page 20]

RFC 3284 VCDI FF June 2002

c. If the instructions have acconpanying data, i.e., ADDs or RUNs,
their data will be in the array "data".

d. Simlarly, if the instructions are COPYs, the coded addresses are
found in the array "addr".

The decodi ng procedure sinply processes the arrays by readi ng one
code index at a time, |looking up the corresponding instruction code
entry, then consum ng the respective sizes, data and addresses
following the directions in this entry. |In other words, the decoder
mai ntains an inplicit next-elenment pointer for each array;
"consum ng" an instruction tuple, data, or address value inplies

i ncrenenting the associated pointer.

For exanple, if during the processing of the target w ndow, the next
unconsuned tuple in the inst array has an index value of 19, then the
first instruction is a COPY, whose size is found as the i mediately
following integer in the inst array. Since the node of this COPY
instruction is VCD SELF, the corresponding address is found by
consum ng the next integer in the addr array. The data array is left
intact. As the second instruction for code index 19 is a NOOP, this
tuple is finished.

7. APPLI CATI ON- DEFI NED CCDE TABLES

Al t hough the default code table used in Vcdiff is good for genera
pur pose encoders, there are times when other code tables nmay perform
better. For exanple, to code a file with many identical segnents of
data, it may be advantageous to have a COPY instruction with the
specific size of these data segnents, so that the instruction can be
encoded in a single byte. Such a special code table MJST then be
encoded in the delta file so that the decoder can reconstruct it

bef ore decodi ng the data.

Vcdi ff allows an application-defined code table to be specified in a
delta file with the foll ow ng data:

Si ze of near cache - byte
Si ze of sane cache - byte
Conpressed code table data

The "conpressed code tabl e data" encodes the delta between the
default code table (source) and the new code table (target) in the
sane manner as described in Section 4.3 for encoding a target w ndow
interms of a source window This delta is conputed using the
fol |l owi ng steps:

Korn, et. al. St andards Track [Page 21]

RFC 3284 VCDI FF June 2002

a. Convert the new instruction code table into a string, "code", of
1536 bytes using the bel ow steps in order

i. Add in order the 256 bytes representing the types of the first
instructions in the instruction pairs.
ii. Add in order the 256 bytes representing the types of the
second instructions in the instruction pairs.
iii. Add in order the 256 bytes representing the sizes of the first
instructions in the instruction pairs.
iv. Add in order the 256 bytes representing the sizes of the
second instructions in the instruction pairs.
v. Add in order the 256 bytes representing the nodes of the first
instructions in the instruction pairs.
vi. Add in order the 256 bytes representing the nodes of the
second instructions in the instruction pairs.

b. Simlarly, convert the default code table into a string "dflt".

c. Treat the string "code" as a target w ndow and "dflt" as the
correspondi ng source data and apply an encoding algorithmto
conpute the delta encoding of "code" in ternms of "dfIt". This
conput ati on MUST use the default code table for encoding the delta
i nstructions.

The decoder can then reverse the above steps to decode the conpressed
tabl e data using the nethod of Section 6, enploying the default code
table, to generate the new code table. Note that the decoder does
not need to know about the details of the encoding algorithmused in
step (c). It is able to decode the new code table because the Vcdiff
format is independent fromthe choice of encoding algorithm and
because the encoder in step (c) uses the known, default code table.

8. Perfornance

The encoding format is compact. For conpression only, using the LZ-
77 string parsing strategy and w t hout any secondary conpressors, the
typical conpression rate is better than Unix conpress and close to
gzip. For differencing, the data format is better than all known
nmethods in terns of its stated goal, which is primarily decodi ng
speed and encodi ng efficiency.

We conpare the performance of conpress, gzip and Vcdi ff using the
archives of three versions of the Ghu C conpiler, gcc-2.95.1.tar,
gcc-2.95. 2. tar and gcc-2.95.3.tar. &ip was used at its default
conpression level. The Vcdiff data were obtained using the
Vcodex/ Vcdi ff software (Section 13).

Korn, et. al. St andards Track [Page 22]

RFC 3284 VCDI FF June 2002

Bel ow are the different Vcdiff runs:

Vediff: vediff is used as a conpressor only.

Vedi ff-d: vediff is used as a differencer only. That is, it only
conpares target data against source data. Since the files
i nvol ved are large, they are broken into windows. |In this
case, each target wi ndow, starting at sone file offset in the

target file, is conpared agai nst a source wi ndow with the sane
file offset (in the source file). The source window is also
slightly larger than the target wi ndow to increase matching
opportuniti es.

Vediff-dc: This is simlar to Vediff-d, but vcdiff can al so
conpare target data against target data as applicable. Thus,
vedi ff both computes differences and conpresses data. The
wi ndowi ng algorithmis the sane as above. However, the above
hint is recinded in this case.

Vediff-dew This is simlar to Vediff-dc but the w ndow ng
al gorithm uses a content-based heuristic to select a source
wi ndow that is nore likely to match with a given target w ndow.

Thus, the source data segment selected for a target w ndow
often will not be aligned with the file offsets of this target
wi ndow.
gcc-2.95.1 gcc-2.95.2 gcc-2.95.3

1. raw size 55, 746, 560 55, 797, 760 55, 787, 520

2. conpress - 19, 939, 390 19, 939, 453

3. gzip - 12, 973, 443 12, 998, 097

4. Vcdiff - 15, 358, 786 15, 371, 737

5. Vediff-d - 100, 971 26, 383, 849

6. Vcdiff-dc - 97, 246 14, 461, 203

7. Vcdiff-dcw - 256, 445 1, 248, 543

The above table shows the raw sizes of the tar files and the sizes of
the conpressed results. The differencing results in the gcc-2.95.2
col um were obtai ned by conmpressing gcc-2.95.2, given gcc-2.95.1.

The sane results for the colum gcc-2.95.3 were obtai ned by
conpressi ng gcc-2.95.3, given gcc-2.95. 2.

Rows 2, 3 and 4 show that, for conpression only, the conpression rate
fromvediff is worse than gzip and better than conpress.

Korn, et. al. St andards Track [Page 23]

RFC 3284 VCDI FF June 2002

The last three rows in the colum gcc-2.95.2 show that when two file
versions are very simlar, differencing can give dramatically good
conpression rates. Vcdiff-d and Vcdiff-dc use the sanme sinple w ndow
sel ection method of aligning by file offsets, but Vcdiff-dc al so does
conpression so its output is slightly smaller. Vcdiff-dcw uses a
content-based algorithmto search for source data that likely wll
match a given target window. Although it does a good job, the

al gorithm does not always find the best matches, which in this case,
are given by the sinple algorithmof Vcdiff-d. As a result, the

out put size for Vcdiff-dcwis slightly |arger

The situation is reversed in the gcc-2.95.3 colum. Here, the files
and their contents were sufficiently rearranged or changed between
the making of the gcc-2.95.3.tar archive and the gcc-2.95.2 archive
so that the sinple nethod of aligning windows by file offsets no

| onger works. As a result, Vcdiff-d and Vcdiff-dc do not perform
well. By allow ng conpression, along with differencing, Vcdiff-dc
nmanages to beat Vcdiff-c, which does conpression only. The content-
based wi ndow natching algorithmin Vcdiff-dcwis effective in

mat ching the right source and target wi ndows so that Vcdiff-dcwis
the overall w nner.

9. Further |ssues
Thi s docunent does not address a few i ssues:
Secondary conpressors:

As discussed in Section 4.3, certain sections in the delta
encodi ng of a wi ndow may be further conpressed by a secondary

conpressor. |In our experience, the basic Vcdiff format is
adequate for npbst purposes so that secondary conpressors are
sel dom needed. In particular, for normal use of data

di fferencing, where the files to be conpared have | ong stretches
of matches, much of the gain in conpression rate is already

achi eved by normal string matching. Thus, the use of secondary
conpressors is seldomneeded in this case. However, for
applications beyond differencing of such nearly identical files,
secondary conpressors nay be needed to achi eve maxi nal conpressed
results.

Therefore, we recommend | eaving the Vcdiff data format defined as
in this docurment so that the use of secondary conpressors can be

i mpl enent ed when they becone needed in the future. The formats of
the conpressed data via such conpressors or any conpressors that
may be defined in the future are left open to their

i mpl enent ati ons. These coul d include Huffman encodi ng, arithmetic
encodi ng, and splay tree encoding [8,9].

Korn, et. al. St andards Track [Page 24]

RFC 3284 VCDI FF June 2002

10.

11.

12.

13.

Large file systemvs. snmall file system
As discussed in Section 4, a target windowin a large file may be
conpar ed agai nst some source wi ndow in another file or in the sane
file (fromsone earlier part). 1In that case, the file offset of
the source window is specified as a variable-sized integer in the
delta encoding. There is a possibility that the encodi ng was
conputed on a system supporting much larger files than in a system
where the data may be decoded (e.g., 64-bit file systems vs. 32-
bit file systens). |In that case, sone target data may not be
recoverable. This problemcould afflict any conpression fornat,
and ought to be resolved with a generic negotiation nmechanismin
the appropriate protocol (s).

Sunmmary

We have described Vcdiff, a general and portable encoding format for
conpression and differencing. The format is good in that it allows
i npl enenting a decoder without knowl edge of the encoders. Further

i gnoring the use of secondary conpressors not defined within the
format, the decoding algorithns run in linear tinme and requires
wor ki ng space proportional to w ndow si ze.

Acknowl edgenent s

Thanks are due to Bal achander Krishnanurthy, Jeff Mgul and Arthur
Van Hoff who provi ded much encouragenment to publicize Vediff. In
particular, Jeff helped in clarifying the description of the data
format presented here.

Security Considerations

Vedi ff only provides a format to encode conmpressed and differenced
data. It does not address any issues concerni ng how such data are,
in fact, stored in a given file systemor the run-tine nenory of a
conputer system Therefore, we do not anticipate any security issues
with respect to Vcdiff.

Source Code Availability

Vediff is inplemented as a data transform ng nethod i n Phong Vo’'s
Vcodex library. AT&T Corp. has made the source code for Vcodex
avai l abl e for anyone to use to transnit data via HITP/1.1 Delta
Encoding [10, 11]. The source code and according license is
accessi bl e at the bel ow URL:

http://ww. research. att.conf swtools

Korn, et. al. St andards Track [Page 25]

RFC 3284 VCDI FF June 2002

14. Intellectual Property Rights

The | ETF has been notified of intellectual property rights clainmed in
regard to some or all of the specification contained in this
docunent. For nore information consult the online list of clainmed
rights, at <http://www.ietf.org/ipr.htm >,

The | ETF takes no position regarding the validity or scope of any
intell ectual property or other rights that might be clainmed to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
| ETF's procedures with respect to rights in standards-track and

st andards-rel at ed docunentati on can be found in BCP 11. Copies of
clains of rights nade avail able for publication and any assurances of
licenses to be nade avail able, or the result of an attenpt made to
obtain a general license or perm ssion for the use of such
proprietary rights by inplenmentors or users of this specification can
be obtained fromthe | ETF Secretari at.

15. | ANA Consi der ati ons

The Internet Assigned Nunbers Authority (1 ANA) adm nisters the nunber
space for Secondary Conpressor |D values. Values and their neaning
must be docunented in an RFC or other peer-revi ewed, pernanent, and
readily available reference, in sufficient detail so that
interoperability between independent inplenentations is possible.
Subj ect to these constraints, name assignnents are First Cone, First
Served - see RFC 2434 [13]. Legal ID values are in the range 1..255.

Thi s docunent does not define any values in this nunber space.
16. References

[1] D.G Korn and K.P. Vo, Vdelta: Differencing and Conpression
Practical Reusable Unix Software, Editor B. Krishnamurthy, John
Wley & Sons, Inc., 1995.

[2] J. Ziv and A Lenpel, A Universal Algorithmfor Sequential Data
Conpression, |EEE Trans. on Information Theory, 23(3):337-343,
1977.

[3] W Tichy, The String-to-String Correction Problemw th Bl ock

Moves, ACM Transactions on Computer Systemnms, 2(4):309-321
Noverber 1984.

Korn, et. al. St andards Track [Page 26]

RFC 3284 VCDI FF June 2002

[4] E M MCreight, A Space-Econom cal Suffix Tree Construction
Al gorithm Journal of the ACM 23:262-272, 1976.

[5] J.J. Hunt, K P. Vo, W Tichy, An Enpirical Study of Delta
Al gorithns, | EEE Software Configuration and Mi ntenance
Wor kshop, 1996.

[6] J.J. Hunt, K P. Vo, W Tichy, Delta Algorithns: An Enpirica
Anal ysi s, ACM Trans. on Software Engi neering and Met hodol ogy,
7:192-214, 1998.

[7] D.G Korn, K P. Vo, Sfio: A buffered I/O Library, Proc. of the
Sunmer ' 91 Useni x Conference, 1991

[8 D. W Jones, Application of Splay Trees to Data Conpression
CACM 31(8):996:1007.

[99 M Nelson, J. Gailly, The Data Conpression Book, |SBN 1-55851-
434-1, M&T Books, New York, Ny, 1995

[10] J.C. Mogul, F. Douglis, A Feldmann, and B. Krishnamnurthy,
Potential benefits of delta encoding and data conpression for
HTTP, SI GCOMM '’ 97, Cannes, France, 1997.

[11] Mogul, J., Krishnanmurthy, B., Douglis, F., Feldnmann, A, ol and,
Y. and A. Van Hoff, "Delta Encoding in HTTP", RFC 3229, January
2002.

[12] Bradner, S., "Key words for use in RFCs to I ndicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[13] Narten, T. and H Alvestrand, "Guidelines for Witing an | ANA
Consi derations Section in RFCs", BCP 26, RFC 2434, Cctober 1998.

[14] D.G Korn and K. P. Vo, Engineering a Differencing and
Conpressi on Data Format, Subnmitted to Useni x’ 2002, 2001.

Korn, et. al. St andards Track [Page 27]

RFC 3284 VCDI FF June 2002

17. Authors’ Addresses

Ki em Phong Vo (main contact)
AT&T Labs, Room D223

180 Par k Avenue

Fl or ham Park, NJ 07932

Phone: 1 973 360 8630
EMai | : kpv@esearch. att.com

David G Korn

AT&T Labs, Room D237
180 Par k Avenue

Fl or ham Park, NJ 07932

Phone: 1 973 360 8602
EMai | : dgk@ esearch. att.com

Jeffrey C. Mogul

West ern Research Laboratory

Hewl ett - Packard Conpany

1501 Page MII| Road, Ms 1251

Palo Alto, California, 94304, U. S A

Phone: 1 650 857 2206 (emmil preferred)
EMai | : Jef f Mogul @cm org

Joshua P. MacDonal d

Conput er Sci ence Division
University of California, Berkeley
345 Soda Hal |

Ber kel ey, CA 94720

EMai | : j macd@s. berkel ey. edu

Korn, et. al. St andards Track [Page 28]

RFC 3284 VCDI FF June 2002

18. Full Copyright Statenent
Copyright (C The Internet Society (2002). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Korn, et. al. St andards Track [Page 29]

