Net wor k Wor ki ng Group R Price
Request for Comments: 3320 Si emens/ Roke Manor
Cat egory: Standards Track C. Bormann
TZI/Uni Brenen

J. Christoffersson

H. Hannu
Eri csson
Z. Liu
Noki a

J. Rosenberg
dynam csof t
January 2003

Si gnal i ng Conpressi on (Si gConp)
Status of this Meno

Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
Abst r act

Thi s docunent defines Signaling Conpression (SigConmp), a solution for
conpressi ng nessages generated by application protocols such as the
Session Initiation Protocol (SIP) (RFC 3261) and the Real Tinme
Stream ng Protocol (RTSP) (RFC 2326). The architecture and

prerequi sites of SigConp are outlined, along with the fornmat of the
Si gConp nessage.

Decompression functionality for SigConp is provided by a Universa
Deconpressor Virtual Machine (UDVM optim zed for the task of running
deconpression algorithns. The UDVM can be configured to understand
the out put of many well-known conpressors such as DEFLATE (RFC-1951).

Price, et. al. St andards Track [Page 1]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Tabl e of Contents

1. Introducti On. 2
2. Termnol OgY.o 3
3. SigConp architecture. 5
4. SigConp dispatchers. e 15
5. SigCONMP COMPI BS SOl . ottt ettt e e e e 18
6. SigConp state handler. 20
7. SigConp message format......... 23
8. Overview of the UDVM e 28
9. UDVMinstruction Set.......... ... 37
10. Security Considerations. 56
11. TANA Considerati Ons. e 58
12, AcknOW edgemBnt S. . .. ot 59
13, References. 59
14. Authors’ AddreSSesS. . .. i 60
15. Full Copyright Statement.......... 62
1. Introduction

Many application protocols used for nultimedia comruni cati ons are
text - based and engi neered for bandwidth rich links. As a result the
nmessages have not been optimzed in terns of size. For exanple,
typical SIP nessages range froma few hundred bytes up to two

t housand bytes or nore [RFC3261].

Wth the planned usage of these protocols in wreless handsets as
part of 2.5G and 3G cellul ar networks, the | arge nessage size is
problematic. Wth lowrate IP connectivity the transm ssion del ays
are significant. Taking into account retransm ssions, and the
multiplicity of messages that are required in sone flows, call setup
and feature invocation are adversely affected. SigConp provides a
nmeans to elimnate this problemby offering robust, |ossless
conpressi on of application nmessages.

Thi s docunent outlines the architecture and prerequisites of the

Si gConmp solution, the format of the SigConp nessage and the Universa
Decompressor Virtual Machine (UDVM that provi des deconpression
functionality.

SigComp is offered to applications as a | ayer between the application
and an underlying transport. The service provided is that of the
underlying transport plus conpression. SigConp supports a wi de range
of transports including TCP, UDP and SCTP [RFC- 2960] .

Price, et. al. St andards Track [Page 2]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

2. Term nol ogy
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119
[RFC-2119] .
Appli cation
Entity that invokes SigConmp and performs the follow ng tasks:

1. Supplying application nmessages to the conpressor dispatcher
2. Receiving deconpressed nessages fromthe deconpressor

di spat cher
3. Determining the conpartnent identifier for a deconpressed
message.
Byt ecode

Machi ne code that can be executed by a virtual nachine.
Conpr essor

Entity that encodes application nmessages using a certain

conpressi on al gorithm and keeps track of state that can be used
for conpression. The conpressor is responsible for ensuring that
the nmessages it generates can be deconpressed by the renote UDVM

Conpr essor Di spat cher

Entity that receives application nessages, invokes a conpressor
and forwards the resulting SigConp conpressed nessages to a renote
endpoi nt .

UDVM Cycl es
A nmeasure of the ampbunt of "CPU power" required to execute a UDVM
instruction (the sinplest UDVMinstructions require a single UDVM
cycle). An upper limt is placed on the nunber of UDVM cycl es
that can be used to deconpress each bit in a SigConp nessage.

Deconpr essor Di spat cher

Entity that receives SigConp nmessages, invokes a UDVM and
forwards the resulting deconpressed nessages to the application

Price, et. al. St andards Track [Page 3]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Endpoi nt

One instance of an application, a SigConp |ayer, and a transport
| ayer for sending and/or receiving SigConp messages.

Message- based Transport
A transport that carries data as a set of bounded nessages.

Conpar t ment
An application-specific grouping of nmessages that relate to a peer
endpoi nt. Depending on the signaling protocol, this groupi ng nmay
relate to application concepts such as "session", "dial og",
"connection", or "association". The application allocates state
menory on a per-conpartnent basis, and deterni nes when a
conpartnent should be created or closed.

Conpartnent ldentifier

An identifier (in a locally chosen format) that uniquely
references a conpartnent.

Si gConp

The overall conpression solution, conprising the conpressor, UDVM
di spatchers and state handl er

Si gComp Message
A nmessage sent fromthe conpressor dispatcher to the deconpressor
di spatcher. |In case of a nessage-based transport such as UDP, a
Si gConp message corresponds to exactly one datagram For a
stream based transport such as TCP, the SigConp nessages are
separated by reserved delimters.

Stream based transport

A transport that carries data as a continuous streamw th no
nmessage boundari es.

Transport
Mechani sm for passing data between two endpoints. SigConp is

capabl e of sendi ng messages over a wi de range of transports
i ncluding TCP, UDP and SCTP [RFC-2960].

Price, et. al. St andards Track [Page 4]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Uni versal Deconpressor Virtual Machi ne (UDVM

The machi ne architecture described in this docunent. The UDVMi s
used to deconpress SigConp messages.

State
Data saved for retrieval by later SigConp nessages.
St at e Handl er

Entity responsible for accessing and storing state infornmation
once permission is granted by the application.

State ldentifier
Ref erence used to access a previously created itemof state.
3. SigConp Architecture
In the SigConp architecture, conpression and deconpression is

performed at two communi cati ng endpoints. The |ayout of a single
endpoint is illustrated in Figure 1:

Price, et. al. St andards Track [Page 5]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

| Local application |

o m e m e +
o | ~o
Application nessage & | Decompressed | | Compart nent
conpartnent identifier | nessage | | identifier
| ||
% | v
| o e e e e e e oo oo - + o e e e e e oo + |
| | | |
| +--| Conpr essor | | Deconpr essor | <-+ |
[di spat cher | | di spat cher [
I | | |1
| o e e e e oo - - + o e e o - - +
I n n ||
|| | | |
L v | | |
| | e + Fommm e e aaaaa + | |
N | It + o v |
| | | Compressor 1 |<----- >| State 1| | LT +
L N + | |1
|] Ao + | | Deconpressor | |
| | | | State handler |<-->| |]]
|l A + o 1 (uow]
I | 4 + | | |1
| +->| Compressor 2 |<----- >| State 2| | LT +
N | N + | |
| R LR L L + Si gConp | ayer |
|| | |
T T N L B
| |
| SigConp Si gConp |
| message nmessage |
v |
e o o m eaao o +
| |
| Transport | ayer |
| |
o m m m e o e o e +

Figure 1. H gh-level architectural overview of one SigConp endpoint

Price, et. al. St andards Track [Page 6]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Note that SigConp is offered to applications as a | ayer between the
application and the underlying transport, and so Figure 1 is an
endpoi nt when viewed froma transport |ayer perspective. Fromthe
perspective of nmulti-hop application | ayer protocols however, SigConp
is applied on a per-hop basis.

The SigConp layer is further deconposed into the following entities:

1. Compressor dispatcher - the interface fromthe application. The
application supplies the conpressor dispatcher with an application
nmessage and a conpartnent identifier (see Section 3.1 for further
details). The conpressor dispatcher invokes a particular
conpressor, which returns a Si gConp nessage to be forwarded to the
renot e endpoint.

2. Deconpressor dispatcher - the interface towards the application
The deconpressor dispatcher receives a SigConp nmessage and i nvokes
an instance of the Universal Deconpressor Virtual Machine (UDVM.
It then forwards the resulting deconpressed nessage to the
application, which may return a conpartnment identifier if it
wi shes to allow state to be saved for the nessage.

3. One or nore conpressors - the entities that convert application
nessages into SigConp nessages. Distinct conpressors are invoked
on a per-conpartnment basis, using the conmpartnment identifiers
supplied by the application. A conpressor receives an application
nmessage fromthe conpressor dispatcher, conpresses the nessage,
and returns a SigConp nessage to the conpressor dispatcher. Each
conpressor chooses a certain algorithmto encode the data (e.g.
DEFLATE)

4. UDVM - the entity that deconpresses SigConp nessages. Note that
since SigConp can run over an unsecured transport |ayer, a
separate instance of the UDVMis invoked on a per-nessage basis.
However, during the deconpression process the UDVM may invoke the
state handler to access existing state or create new state.

5. State handler - the entity that can store and retrieve state.
State is information that is stored between SigConp nmessages,
avoi ding the need to upload the data on a per-nessage basis. For
security purposes it is only possible to create new state with the
perm ssion of the application. State creation and retrieval are
further described in Chapter 6.

Price, et. al. St andards Track [Page 7]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

When conpressing a bidirectional application protocol the choice to
use SigConp can be nmmde independently in both directions, and
conpression in one direction does not necessarily inply conpression
in the reverse direction. Moreover, even when two comunicating
endpoi nts send Si gConp nessages in both directions, there is no need
to use the sane conpression algorithmin each direction

Note that a SigConmp endpoi nt can deconpress nessages fromnultiple
renote endpoints at different locations in a network, as the
architecture is designed to prevent SigConp messages from one
endpoint interfering with messages froma different endpoint. A
consequence of this design choice is that it is difficult for a
mal i ci ous user to disrupt SigConp operation by inserting fal se
conpressed nmessages on the transport |ayer.

3.1. Requirements on the Application

From an application perspective the SigConp | ayer appears as a new
transport, with simlar behavior to the original transport used to
carry unconpressed data (for exanpl e SigConp/UDP behaves sinmlarly to
nati ve UDP).

Mechani sns for di scovering whether an endpoi nt supports SigConp are
beyond the scope of this docunent.

Al'l SigConp nmessages contain a prefix (the five nost-significant bits
of the first byte are set to one) that does not occur in UTF-8
encoded text messages [RFC-2279], so for applications which use this
encodi ng (or ASCI|I encoding) it is possible to multiplex unconpressed
applicati on nessages and Si gConp nessages on the sane port.
Applications can still reserve a new port specifically for SigConp
however (e.g., as part of the discovery nmechanism.

If a particular endpoint wishes to be stateful then it needs to
partition its deconpressed messages into "conpartnents” under which
state can be saved. SigConmp relies on the application to provide
this partition. So for stateful endpoints a newinterface is
required to the application in order to | everage the authentication
nmechani sns used by the application itself.

VWhen the application receives a deconpressed nessage it maps the
nessage to a certain conpartnent and supplies the conpartnent
identifier to SigConp. Each conpartnent is allocated a separate
conpressor and a certain amount of nenory to store state infornmation
so the application nust assign distinct conmpartnments to distinct
renote endpoints. However it is possible for a |ocal endpoint to
establish several conpartnents that relate to the same renpte
endpoint (this should be avoided where possible as it nay waste

Price, et. al. St andards Track [Page 8]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

nmenory and reduce the overall conpression ratio, but it does not
cause nmessages to be incorrectly deconpressed). 1In this case,
reliable stateful operation is possible only if the deconpressor does
not |lunmp several messages into one conpartnent when the conpressor
expected themto be assigned different conpartnents.

The exact format of the conmpartnent identifier is uninportant
provided that different identifiers are given to different
conpartnents.

Applications that wish to comunicate using SigConp in a stateful
fashi on shoul d use an authenticati on nechanismto securely nmap
deconpressed nessages to conpartnent identifiers. They should also
agree on any linmts to the lifetine of a conpartnment, to avoid the
case where an endpoi nt accesses state information that has already
been del et ed.

3.2. SigConmp feedback nechani sm

If a signaling protocol sends SigConp messages in both directions and
there is a one-to-one rel ationship between the conpartnments
establ i shed by the applications on both ends ("peer conpartnents"),
the two endpoints can cooperate nore closely. In this case, it is
possi bl e to send feedback information that nmonitors the behavior of
an endpoi nt and helps to inprove the overall conpression ratio.

Si gComp performs feedback on a request/response basis, so a
conpressor makes a feedback request and receives sone feedback data
in return. The procedure for requesting and returning feedback in
SigComp is illustrated in Figure 2:

Price, et. al. St andards Track [Page 9]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

oo e e oo + oo e e oo +
| +---emem - + | | +---emem - +
-->| Conpr essor [-- - m - >| UDVM | <->
| | sending to B | | Si gComp message | | | |2
| +------meeee - - + | requesting feedback | +----------------- +
| A 1,9 | | 3 | |
| | | | v |
| +---emem - + | | +---emem - +
	State				State	
	handl er				handl er	
+ ----------------- +		+ ----------------- +				
A 8		4				
			v			
+---emem - +		+---emem - +				
	UDVM				Conpr essor	
<->	R L	sending to A	<--			
6] +----------------- +	Si gConp nessage	4o +				
7	returning feedback	5				
Endpoi nt A		Endpoint B				
oo + oo +

Figure 2: Steps involved in the transm ssion of feedback data

The di spatchers, the application and the transport |ayer are onmitted
fromthe diagramfor clarity. Note that the deconpressed nessages
pass via the deconpressor dispatcher to the application; noreover the
Si gConp nessages transmitted fromthe conpressor to the renote UDVM
are sent via first the conpressor dispatcher, foll owed by the
transport layer and finally the deconpressor dispatcher

The steps for requesting and returning feedback data are described in
nore detail bel ow

1. The conpressor that sends nmessages to Endpoi nt B pi ggybacks a
f eedback request onto a SigConp nessage.

2. Wien the application receives the deconpressed nessage, it nmay
return the compartnent identifier for the nmessage.

3. The UDVMin Endpoint B forwards the requested feedback data to the
state handler.

4. |f the UDVM can supply a valid conpartnment identifier, then the
state handler forwards the feedback data to the appropriate
conpressor (nanely the conpressor sending to Endpoint A).

5. The conpressor returns the requested feedback data to Endpoint A
pi ggybacked onto a Si gConp nessage.

Price, et. al. St andards Track [Page 10]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

6. Wien the application receives the deconpressed nessage, it nmay
return the compartnment identifier for the nmessage.

7. The UDVM in Endpoint A forwards the returned feedback data to the
state handl er.

8. If the UDVM can supply a valid conpartnent identifier, then the
state handler forwards the feedback data to the appropriate
conpressor (nanely the conpressor sending to Endpoi nt B)

9. The conpressor makes use of the returned feedback data.

The detailed role played by each entity in the transm ssion of
f eedback data is explained in subsequent chapters.

3.3. SigComp Parameters

An advantage of using a virtual nachine for deconpression is that
alnost all of the inplenentation flexibility lies in the SigConp
conpressors. \Wen receiving SigConp nessages an endpoi nt generally
behaves in a predictable manner

Not e however that endpoints inplenmenting SigConp will typically have
a wide range of capabilities, each offering a different anount of
wor ki ng nenory, processing power etc. |In order to support this w de
variation in endpoint capabilities, the follow ng parameters are
provided to nodify SigConp behavior when receiving SigConp nessages:

deconpr essi on_nenory_si ze

state_nenory_size

cycl es_per _bit

Si gConp_ver si on

locally available state (a set containing O or nore state itens)

Each paraneter has a m ni mum val ue that MJST be of fered by al

recei ving SigConp endpoints. Moreover, endpoints MAY offer
additional resources if available; these resources can be advertised
to renpte endpoints using the SigConp feedback nechani sm

Particul ar applications may al so agree a-priori to offer additiona
resources as mandatory (e.g., SigConp for SIP offers a dictionary of
conmon SIP phrases as a nandatory state item.

Each of the SigConmp paraneters is described in greater detail bel ow.

Price, et. al. St andards Track [Page 11]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

3.3.1. Menory Size and UDVM Cycl es

The deconpression_nmenory_size paraneter specifies the amunt of
menory avail able to deconmpress one SigConp nmessage. (Note that the
term "anmount of nenory" is used on a conceptual level in order to
speci fy deconpressor behavior and all ow resource planning on the side
of the conpressor -- an inplenentation could require additional
bounded amounts of actual nenory resources or could even organize its
menory in a conpletely different way as long as this does not cause
deconpression failures where the conceptual nmodel would not.) A
portion of this menory is used to buffer a SigConp nmessage before it

i s deconpressed; the remainder is given to the UDVM Note that the
nenory is allocated on a per-nessage basis and can be recl ai ned after
t he nmessage has been deconpressed. Al endpoints inplenmenting

Si gConmp MUST of fer a deconpression_nenory_size of at |east 2048

byt es.

The state _nenory_size paraneter specifies the nunber of bytes offered
to a particular conpartrment for the creation of state. This
paranmeter is set to O if the endpoint is stateless.

Unli ke the other SigConp paraneters, the state nenory_size is offered
on a per-conpartnment basis and may vary for different conpartnents.
The nenory for a conpartnent is reclaimed when the application
determ nes that the conpartnent is no | onger required.

The cycl es_per_bit paranmeter specifies the nunber of "UDVM cycl es"
avai |l abl e to deconpress each bit in a SigConp nessage. Executing a
UDVM i nstruction requires a certain number of UDVM cycles; a conplete
list of UDVMinstructions and their cost in UDVM cycles can be found
in Chapter 9. An endpoint MJST offer a mininmumof 16 cycles per_bit.

Each of the three paraneter val ues MJST be chosen fromthe linited
set given below, so that the paraneters can be efficiently encoded
for transm ssion using the SigConp feedback nmechani sm

The cycl es_per_bit paraneter is encoded using 2 bits, whilst the
deconpressi on_nenory_size and state nenory_size are both encoded
using 3 bits. The bit encodings and their correspondi ng val ues are
as foll ows:

Price, et. al. St andards Track [Page 12]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Encodi ng: cycles_per _bit: Encodi ng: state _nenory_size (bytes):
00 16 000 0
01 32 001 2048
10 64 010 4096
11 128 011 8192
100 16384
101 32768
110 65536
111 131072

The deconpression_nenory_size is encoded in the same manner as the
state_nenory_size, except that the bit pattern 000 cannot be used (as
an endpoi nt cannot offer a deconpression_nenory_size of 0 bytes).

3.3.2. SigComp Version

The Si gConp_version paraneter specifies whether only the basic
versi on of SigConp is available, or whether an upgraded version is
avai l abl e offering additional instructions etc. Wthin the UDVM it
is available as a 2-byte value, generated by zero-extending the 1-
byte Si gConp_version paranmeter (i.e., the first byte of the 2-byte
val ue is always zero).

The basic version of SigConp is Version 0x01l, which is the version
described in this docunent.

To ensure backwards conpatibility, if a SigConp nessage is
successful ly deconpressed by Version 0x01 of SigConmp then it will be
successful ly deconpressed on upgraded versions. Simlarly, if the
nessage triggers a nanual deconpression failure (see Section 8.7),
then it will also continue to do so.

However, messages that cause an unexpected deconpression failure on
Versi on 0x01 of SigConp may be successfully deconpressed by upgraded
ver si ons.

The sinplest way to upgrade SigConp in a backwards-conpatibl e manner
is to add additional UDVMinstructions, as this will not affect the
deconpressi on of SigConp nessages conpatible with Version 0x01.
Reserved addresses in the UDVM nenory (Useful Values, see Section
7.2) may al so be assigned values in future versions of SigConp.

Price, et. al. St andards Track [Page 13]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

3.3.3. Locally Available State Itens

A SigConp state itemis an itemof data that is retai ned between

Si gConmp messages. State itens can be retrieved and | oaded into the
UDVM nenory as part of the deconpression process, often significantly
i nproving the conpression ratio as the sane information does not have
to be upl oaded on a per-nessage basis.

Each endpoint maintains a set of state itens where every itemis
conposed of the follow ng information:

Nane: Type of data:

state_identifier 20- byt e val ue

state_l ength 2-byte val ue

st at e_address 2-byte val ue

state_instruction 2-byte val ue

m ni mum access_| ength 2-byte value from6 to 20 inclusive
state_val ue String of state_l|length consecutive bytes

State itens are typically created at an endpoi nt upon successfu
deconpressi on of a SigConp nessage. The renote conpressor sending
the message nmakes a state creation request by invoking the
appropriate UDVMinstruction, and the state is saved once perm ssion
is granted by the application

However, an endpoint MAY also wish to offer a set of locally

avail abl e state itens that have not been upl oaded as part of a

Si gConmp message. For exanple it m ght offer well-known deconpression
al gorithns, dictionaries of common phrases used in a specific
signaling protocol, etc.

Since these state itens are established locally w thout input froma
renote endpoint, they are nost useful if publicly documented so that
a wide collection of renpte endpoints can determ ne the data
contained in each state itemand how it may be used. Further

I nternet Docunents and RFCs may be published to describe particul ar
locally available state itens.

Al t hough there are no locally available state itenms that are
mandatory for every SigConp endpoint, certain state itens can be nade
mandatory in a specific environnent (e.g., the dictionary of conmon
phrases for a specific signaling protocol could be made mandatory for
that signaling protocol’s usage of SigConp). Also, renpte endpoints
can indicate their interest in receiving a list of some of the state
items available locally at an endpoint using the SigConp feedback
mechani sm

Price, et. al. St andards Track [Page 14]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

It is a matter of local decision for an endpoint what itens of
locally available state it advertises; this decision has no influence
on interoperability, but nmay increase or decrease the efficiency of
the conpressi on achi evabl e between t he endpoints.

4. SigConp Dispatchers

Thi s chapter defines the behavior of the conpressor and deconpressor
di spatcher. The function of these entities is to provide an
i nterface between SigConp and its environment, mnimzing the effort
needed to integrate SigConp into an existing protocol stack

4.1. Conpressor Dispatcher

The conpressor di spatcher receives nessages fromthe application and
passes the conpressed version of each message to the transport |ayer.

Not e that SigConp invokes conpressors on a per-conpartnent basis, so
when the application provides a nessage to be conpressed it nust al so
provide a conpartrment identifier. The conpressor dispatcher forwards
the application nessage to the correct conpressor based on the
conpartnent identifier (invoking a new conpressor if a new
conpartnent identifier is encountered). The conpressor returns a

Si gConp nessage that can be passed to the transport |ayer.

Additionally, the application should indicate to the conpressor
di spatcher when it wishes to close a particular conpartment, so that
the resources taken by the correspondi ng conpressor can be reclai med.

4.2. Deconpressor Dispatcher

The deconpressor di spatcher receives nessages fromthe transport
| ayer and passes the deconpressed version of each nessage to the
appl i cati on.

To ensure that SigConp can run over an unsecured transport |ayer, the
deconpressor di spatcher invokes a new instance of the UDVM for each
new Si gConp nessage. Resources for the UDVM are rel eased as soon as
the nmessage has been deconpressed.

The di spatcher MJST NOT make nore than one SigConp nessage avail abl e

to a given instance of the UDVM In particular, the di spatcher MJST
NOT concatenate two SigConmp nessages to forma single nessage.

Price, et. al. St andards Track [Page 15]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

4.2.1. Deconpressor Dispatcher Strategies

Once the UDVM has been invoked it is initialized using the SigConp
nmessage of Chapter 7. The nessage is then deconpressed by the UDVM
returned to the deconpressor dispatcher, and passed on to the
receiving application. Note that the UDVM has no awar eness of

whet her the underlying transport is nmessage-based or stream based,
and so it always outputs deconpressed data as a stream It is the
responsibility of the dispatcher to provide the deconpressed nessage
to the application in the expected form(i.e., as a streamor as a
di stinct, bounded message). The dispatcher knows that the end of a
deconpressed nessage has been reached when the UDVM instructi on END-
MESSAGE i s i nvoked (see Section 9.4.9).

For a stream based transport, two strategies are therefore possible
for the deconpressor dispatcher:

1) The dispatcher collects a conplete SigConp nessage and then
i nvokes the UDVM The advantage is that, even in inplenentations
that have multiple incom ng conpressed streans, only one instance
of the UDVMis ever required.

2) The di spatcher collects the SigConp header (see Section 7) and
i nvokes the UDVM the UDVM stays active while the rest of the
nessage arrives. The advantage is that there is no need to buffer
up the rest of the nessage; the nessage can be deconpressed as it
arrives, and any deconpressed output can be relayed to the
application imredi ately.

In general, which of the strategies is used is an inplenentation
choi ce.

However, the conpressor may want to take advantage of strategy 2 by
expecting that sone of the application nessage is passed on to the
application before the SigConp nmessage is termnated, e.g., by
keeping the UDVM active whil e expecting the application to
continuously receive deconpressed output. This approach ("continuous
node") invalidates sone assunptions of the SigConp security nodel and
can only be used if the transport itself can provide the required
protecti on agai nst denial of service attacks. Also, since only
strategy 2 works in this approach, the use of continuous node
requires previous agreenent between the two endpoints.

4.2.2. Record Marking
For a stream based transport, the dispatcher delimts nessages by

parsing the conpressed data stream for instances of OxFF and taking
the follow ng actions:

Price, et. al. St andards Track [Page 16]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Occurs in data stream Action

OxFF 00 one OxFF byte in the data stream

OxFF 01 same, but the next byte is quoted (could
be anot her OxFF)

OxFﬁ 7F sanme, but the next 127 bytes are quoted

OxFF 80 to OxFF FE (reserved for future standardization)

OxFF FF end of SigConp nessage

The conbi nati ons OxFFO1 to OxFF7F are useful to limt the worst case
expansi on of the record marking scheme: the 1 (OxFF01l) to 127
(OxFF7F) bytes followi ng the byte conbination are copied literally by
the deconpressor w thout taking any special action on OxFF. (Note
that OxFFOO is just a special case of this, where zero follow ng
bytes are copied literally.)

In UDVM versi on 0x01, any occurrence of the conbinnations OxFF80 to
OXFFFE that are not protected by quoting causes deconpression
failure; the deconpressor SHOULD cl ose the stream based transport in
this case.

4.3. Returning a Compartnent ldentifier

Upon receiving a deconpressed nessage the application may supply the
di spatcher with a conpartnent identifier. Supplying this identifier
grants permnission for the follow ng:

1. Items of state acconpanying the deconpressed nmessage can be saved
using the state nmenory reserved for the specified conpartnent.

2. The feedback data acconpanying the deconpressed nessage can be
trusted sufficiently that it can be used when sending Si gConp
nmessages that relate to the conpressor’s equivalent for the
conpart nent .

The di spat cher passes the conpartnment identifier to the UDVM where
it is used as per the END- MESSAGE instruction (see Section 9.4.9).

The application uses a suitable authentication mechanismto determ ne
whet her the deconpressed nessage belongs to a legitimate conpart nment
or not. |If the application fails to authenticate the nessage with
sufficient confidence to allow state to be saved or feedback data to
be trusted, it supplies a "no valid conpartrment” error to the

di spatcher and the UDVMis term nated without creating any state or
forwardi ng any feedback dat a.

Price, et. al. St andards Track [Page 17]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

5.

Si gConp Conpr essor

An inmportant feature of SigConp is that deconpression functionality
is provided by a Universal Deconpressor Virtual Machine (UDVM. This
nmeans that the conpressor can choose any algorithmto generate
conpressed Si gConp nessages, and then upl oad bytecode for the
correspondi ng deconpression algorithmto the UDVM as part of the

Si gConp nessage.

To help with the inplenentation and testing of a Si gConp endpoint,
further Internet Docunents and RFCs may be published to describe
particul ar conpression al gorithns.

The overall requirenent placed on the conpressor is that of
transparency, i.e., the conpressor MJST NOT send bytecode which
causes the UDVMto incorrectly deconpress a given SigConp message.

The following nore specific requirenents are al so placed on the
conpressor (they can be considered particular instances of the
transparency requirenent):

1. For robustness, it is recommended that the conpressor supply some
formof integrity check (not necessarily of cryptographic
strength) over the application nessage to ensure that successfu
deconpressi on has occurred. A UDVMinstruction is provided for
CRC verification; also, another instruction can be used to compute
a SHA-1 cryptographi c hash.

2. The conpressor MJST ensure that the message can be deconpressed
using the resources avail able at the renote endpoint.

3. If the transport is nessage-based, then the conpressor MJST map
each application nessage to exactly one SigConp nessage.

4. If the transport is stream based but the application defines its
own internal nessage boundaries, then the conmpressor SHOULD nmap
each application nessage to exactly one SigConp nessage.

Message boundaries shoul d be preserved over a stream based transport
so that accidental or malicious damage to one SigConp message does
not affect the deconpression of subsequent nessages.

Additionally, if the state handl er passes sone requested feedback to
the conpressor, then it SHOULD be returned in the next SigConp
nmessage generated by the conpressor (unless the state handl er passes
some newer requested feedback before the ol der feedback has been
sent, in which case the ol der feedback is deleted).

Price, et. al. St andards Track [Page 18]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

If present, the requested feedback item SHOULD be copi ed unnodified
into the returned feedback itemfield provided in the SigConp
nessage. Note that there is no need to transmit any requested

f eedback item nore than once.

The conpressor SHOULD al so upl oad the | ocal SigConp paraneters to the
renote endpoi nt, unless the endpoint has indicated that it does not

Wi sh to receive these paraneters or the conpressor determn nes that
the paraneters have already successfully arrived (see Section 5.1 for
details of how this can be achieved). The SigConp parameters are

upl oaded to the UDVM nenory at the rempte endpoint as described in
Section 9.4.9.

5.1. Ensuring Successful Deconpression

A conpressor MUST be certain that all of the data needed to
deconpress a SigConp nmessage is available at the receiving endpoint.
One way to ensure this is to send all of the needed information in
every SigConmp nessage (including bytecode to deconpress the nessage).
However, the conpression ratio for this nethod will be relatively

| ow.

To obtain the best overall conpression ratio the conpressor needs to
request the creation of new state itens at the renote endpoint. The
infornmati on saved in these state itens can then be accessed by | ater
Si gConmp nessages, avoi ding the need to upload the data on a per-
nmessage basi s.

Bef ore the conpressor can access saved state however, it nust ensure
that the SigConp nessage carrying the state creation request arrived
successfully at the receiving endpoint. For a reliable transport
(e.g., TCP or SCTP) this is guaranteed. For an unreliable transport
however, the conpressor must provide a suitable nmechanismitself (see
[RFC-3321] for further details).

The conpressor nust al so ensure that the state itemit wishes to
access has not been rejected due to a |ack of state nmenory. This can
be acconplished by checking the state nmenory_size paraneter using the
Si gConp feedback nmechani sm (see Section 9.4.9 for further details).

5.2. Conpression Failure
The conpressor SHOULD nake every effort to successfully conpress an
application nessage, but in certain cases this might not be possible

(particularly if resources are scarce at the receiving endpoint). In
this case a "conpression failure" is call ed.

Price, et. al. St andards Track [Page 19]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

If a conpression failure occurs then the compressor infornms the

di spatcher and takes no further action. The dispatcher MJST report
this failure to the application so that it can try other nethods to
deliver the nessage.

6. State Handling and Feedback

Thi s chapter defines the behavior of the SigConp state handler. The
function of the state handler is to retain informati on between

recei ved Si gConp messages; it is the only SigConp entity that is
capabl e of this function, and so it is of particular inportance from
a security perspective.

6.1. Creating and Accessing State

To provide security against the nalicious insertion or nodification
of SigConmp nmessages, a separate instance of the UDVMis invoked to
deconpress each nessage. This ensures that danmaged Si gConp nessages
do not prevent the successful deconpression of subsequent valid
nmessages.

Not e, however, that the overall conpression ratio is often
significantly higher if nessages can be conpressed relative to the

i nformati on contained in previous nessages. For this reason, it is
possible to create state itens for access when a | ater nessage is
bei ng deconpressed. Both the creation and access of state are
designed to be secure against nalicious tanmpering with the conpressed
data. The UDVM can only create a state itemwhen a conpl ete nessage
has been successfully deconpressed and the application has returned a
conpartnent identifier under which the state can be saved.

State access cannot be protected by relying on the application al one,
since the authentication nechanismmay require information fromthe
deconpressed message (which of course is not available until after
the state has been accessed). Instead, SigConp protects state access
by creating a state identifier that is a hash over the itemof state
to be retrieved. This state identifier nust be supplied to retrieve
an itemof state fromthe state handler.

Al so note that state is not deleted when it is accessed. So even if
a malicious sender manages to access some state information
subsequent nessages conpressed relative to this state can still be
successful ly deconpressed.

Each state itemcontains a state_identifier that is used to access
the state. One state identifier can be supplied in the SigConp
nmessage header to initialize the UDVM (see Chapter 7); additiona
state itens can be retrieved using the STATE- ACCESS instruction. The

Price, et. al. St andards Track [Page 20]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

UDVM can al so request the creation of a new state item by using the
STATE- CREATE and END- MESSAGE instructions (see Chapter 9 for further
details).

6.2. Menory Managenent

The state handl er nmanages state nenory on a per-conpartnment basis.
Each conpartnent can store state up to a certain state_menory_si ze
(where the application nmay assign different values for the
state_nenory_size paraneter to different conpartnents).

As well as storing the state itens thenselves, the state handl er
maintains a list of the state itenms created by a particul ar
conpartnent and ensures that no conpartnment exceeds its allocated
state_nenory_size. For the purpose of calculation, each state item
is considered to cost (state length + 64) bytes.

Each i nstance of the UDVM can pass up to four state creation requests
to the state handler, as well as up to four state free requests (the
latter are requests to free the menory taken by a state itemin a
certain conpartnent). Wen the state handler receives a state
creation request fromthe UDVM it takes the follow ng steps:

1. The state handler MIST reject all state creation requests that are
not acconpani ed by a valid conmpartnent identifier, or if the
conpartnent is allocated O bytes of state nmenory. Note that if a
state creation request fails due to |lack of state nmenory then it
does not nean that the corresponding Si gConp nmessage i s damaged;
conpressors will often nake state creation requests in the first
Si gConp nessage of a conpartnent, before they have discovered the
state_nenory_size using the SigConp feedback nechani sm

2. If the state creation request needs nore state menory than the
total state_menory_size for the conpartnent, the state handl er
deletes all but the first (state_nenory_size - 64) bytes fromthe

state value. It sets the state length to (state_nenory_size -
64), and recalculates the state identifier as defined in Section
9.4.9.

3. If the state creation request contains a state_identifier that
al ready exists then the state handl er checks whether the requested
state itemis identical to the established state itemand counts
the state creation request as successful if this is the case. |If
not then the state creation request is unsuccessful (although the
probability that this will occur is vanishingly small).

Price, et. al. St andards Track [Page 21]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

4. |f the state creation request exceeds the state nmenory all ocated
to the compartment, sufficient itens of state created by the sane
conpartnent are freed until enough nenory is available to
acconmmodate the new state. Wen a state itemis freed, it is
renoved fromthe list of states created by the conpartnent and the
menory cost of the state itemno |onger counts towards the tota
cost for the conpartnent. Note, however, that identical state
items may be created by several different conpartnents, so a state
item nust not be physically deleted unless the state handl er
determnes that it is no | onger required by any conpartment.

5. The order in which the existing state itens are freed is
determ ned by the state retention_priority, which is set when the
state itens are created. The state retention_priority of 65535 is
reserved for locally available states; these states nust always be
freed first. Apart fromthis special case, states with the | owest
state_retention_priority are always freed first. |In the event of
atie, then the state itemcreated first in the conpartnent is
also the first to be freed

The state_retention_priority is always stored on a per-conpart nent
basis as part of the list of state itenms created by each conpartment.
In particular, the sane state item m ght have several priority val ues
if it has been created by several different conpartnents.

Note that locally available state itens (as described in Section
3.3.3) need not be mapped to any particul ar conpartnent. However, if
they are created on a per-conpartnment basis, then they nust not
interfere with the state created at the request of the renote
endpoint. The special state retention_priority of 65535 is reserved
for locally available state itens to ensure that this is the case

The UDVM nay al so explicitly request the state handler to free a
specific state itemin a conpartnent. |In this case, the state
handl er deletes the state itemfromthe |list of state itens created
by the conpartnent (as before the state itemitself nust not be
physically del eted unless the state handl er determines that it is not
| onger required by any conpartnent).

The application should indicate to the state handl er when it w shes

to close a particular conpartnent, so that the resources taken by the
correspondi ng state can be recl ai ned.

Price, et. al. St andards Track [Page 22]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

6. 3. Feedback Data

The Si gConp feedback mechani sm all ows feedback data to be received by
a UDVM and forwarded via the state handler to the correct conpressor

Since this feedback data is retained between SigConp nessages, it is
considered to be part of the overall state and can only be forwarded
i f acconpanied by a valid conpartment identifier. |If this is the
case, then the state handl er forwards the feedback data to the
conpressor responsible for sending nessages that pertain to the peer
conpartnent of the specified compartmnent.

7. SigConp Message Format

This chapter describes the fornmat of the SigConp nmessage and how the
message is used to initialize the UDVM nenory.

Note that the SigConp nessage is not copied into the UDVM nenory as
soon as it arrives; instead, the UDVM i ndicates when it requires
conpressed data using a specific instruction. It then pauses and
waits for the information to be supplied before executing the next
instruction. This means that the UDVM can begin to deconpress a

Si gConmp message before the entire nmessage has been received.

A consequence of the above behavior is that when the UDVMis i nvoked,
the size of the UDVM nenory depends on whether the transport used to
provi de the SigConmp nessage is stream based or nessage-based. |If the
transport is nessage-based then sufficient menory nust be avail able
to buffer the entire SigConp nessage before it is passed to the UDVM
So if the message is n bytes long, then the UDVM nenory size is set
to (deconpression _nenory _size - n), up to a maxi mum of 65536 bytes.

If the transport is stream based however, then a fixed-size input
buffer is required to acconmopdate the stream independently of the
size of each SigConp nmessage. So, for sinplicity, the UDVM nenory
size is set to (deconpression_nenory_size /| 2).

As a separate instance of the UDVMis invoked on a per-nessage basis,
each SigConp message nmust explicitly indicate its chosen
deconpression algorithmas well as any additional information that is
needed to deconpress the nmessage (e.g., one or nore previously

recei ved nessages, a dictionary of common SIP phrases etc.). This

i nformati on can either be uploaded as part of the SigConp nessage or
retrieved froman item of state.

Price, et. al. St andards Track [Page 23]

RFC 3320

7.

Price, et. al.

1

Si gnal i ng Conpressi on (Si gConp)

January 2003

A Si gComp nessage takes one of two forns depending on whether it

accesses a state itemat the receiving endpoint.
a SigConp nessage are given in Figure 3.

The two variants of
(The T-bit controls the

format of the returned feedback itemand is defined in Section 7.1.)

0 1 2 3 4 5 6 7
T T Tl I =
| 1 1 1 1 1| T]| len |
T Tl I g
| |
: returned feedback item :
| |
T T Tl I =
| |
: partial state identifier :
| |
T Tl T e
| |
: remai ni ng Si gConp nessage
| |

g

0 1 2 3 4 5 6 7
T T Tl I =
|1 1 1 1 1| T| 0 |
T Tl I g
| |
: returned feedback item :
| |
T T Tl I =
| code | en |
T Tl I g
| code_| en | destination
B T I S S I R
| |
: upl oaded UDVM byt ecode :
| |
T Tl I g
| |
: remai ni ng Si gConp nessage
| |

S A R S S

Figure 3: Format of a SigConp nessage

Deconpression failure occurs if the SigConp nessage is too short to
contain the expected fields (see Section 8.7 for further details).

The fields except for the "remaining SigConp nessage" are referred to
as the "SigConmp header" (note that this may include the upl oaded UDVM

byt ecode) .
Ret ur ned feedback item

For

both variants of the SigConp nessage,
whenever the SigConp nessage contains a returned feedback item

the T-bit is set to 1

The

format of the returned feedback itemis illustrated in Figure 4.

St andards Track

[Page 24]

RFC 3320

0 1 2 3 4 5 6 7
T T TN I g
| 0] returned_feedback field
L S e e e

Si gnal i ng Conpressi on (Si gConp)

January 2003

0 1 2 3 4 5 6 7
A R S S

| 1| returned_feedback |ength
L S e e e

I

: returned_feedback field :

I I

e R e SR R R
Figure 4: Format of returned feedback item

Note that the returned feedback | ength specifies the size of the

returned feedback field (fromO to 127 bytes). So the total size of
the returned feedback itemlies between 1 and 128 bytes.
The returned feedback itemis not copied to the UDVM nenory; instead,

it is buffered until the UDVM has successfully deconpressed the
Si gConp nessage. It is then forwarded to the state handler with the
rest of the feedback data (see Section 9.4.9 for further details).

7.2. Accessing Stored State

The len field of the SigConp nmessage determ nes which fields follow
the returned feedback item |If the len field is non-zero, then the
Si gConp nessage contains a state identifier to access a state item at
the receiving endpoint. Al state items include a 20-byte state
identifier as per Section 3.3.3, but it is possible to transnit as
few as 6 bytes fromthe identifier if the sender believes that this
is sufficient to match a unique state itemat the receiving endpoint.

The len field encodes the nunber of transmitted bytes as follows:

Encodi ng: Length of partial state identifier

01 6 bytes

10 9 bytes

11 12 bytes

The partial state identifier is passed to the state handl er, which

conpares it with the nmost significant bytes of the state_ identifier
in every currently stored state item Deconpression failure occurs
if no state itemis matched or if nobre than one state itemis

mat ched.

Price, et. al. St andards Track [Page 25]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Decompression failure also occurs if exactly one state itemis

mat ched but the state itemcontains a mnimumaccess | ength greater
than the length of the partial state identifier. This prevents
especially sensitive state itens from bei ng accessed maliciously by
brute force guessing of the state_ identifier

If a state itemis successfully accessed then the state val ue byte
string is copied into the UDVM nenory begi nning at state_address.

The first 32 bytes of UDVM nenory are then initialized to specia

values as illustrated in Figure 5.

0 78 15

R T o T i e ks ik oI ST e TS

| UDVM nenory_si ze | 0-1
B ik T R e R S e i o ik s e

| cycl es_per_bit | 2 - 3
T el I o e S S e el st (I S SR R

| Si gConp_ver si on | 4 -5
R T o T i e ks ik oI ST e TS

| partial _state_ID | ength | 6 -7
B ik T R e R S e i o ik s e

| state_l ength | 8- 9

O I S e e e ok o HIE R R R
I I
: reserved 10 - 31
I I

B S S i i T S
Figure 5: Initializing Useful Values in UDVM nenory

The first five 2-byte words are initialized to contain some val ues
that m ght be useful to the UDVM bytecode (Useful Values). Note that
these values are for information only and can be overwitten when
executing the UDVM byt ecode wi thout any effect on the endpoint. The
MSBs of each 2-byte word are stored preceding the LSBs.

Addresses 0 to 5 indicate the resources available to the receiving
endpoint. The UDVM nenory size is expressed in bytes nodul o 2716, so
in particular, it is set to O if the UDVM nenory size is 65536 bytes.
The cycles_per_bit is expressed as a 2-byte integer taking the value
16, 32, 64 or 128. The SigConp_version is expressed as a 2-byte

val ue as per Section 3.3.2.

Addresses 6 to 9 are initialized to the length of the partial state

identifier, followed by the state |length fromthe retrieved state
item Both are expressed as 2-byte val ues.

Price, et. al. St andards Track [Page 26]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Addresses 10 to 31 are reserved and are initialized to O for Version
0x01 of SigConp. Future versions of SigConp can use these |ocations
for additional Useful Values, so a deconpressor MJST NOT rely on
these val ues being zero.

Any remaini ng addresses in the UDVM nenory that have not yet been
initialized MIUST be set to O.

The UDVM t hen begi ns executing instructions at the nenory address
contained in state_instruction (which is part of the retrieved item
of state). Note that the remaining SigConp nessage is held by the
deconpressor di spatcher until requested by the UDVM

(Note that the Useful Values are only set at UDVM startup; there is
no special significance to this nenory area afterwards. This means
that the UDVM bytecode is free to use these |ocations for any other
purpose a nenory |location mght be used for; it just has to be aware
they are not necessarily initialized to zero.)

7.3. Upl oadi ng UDVM byt ecode

If the len field is set to O then the bytecode needed to deconpress
the SigComp nmessage is supplied as part of the nessage itself. The
12-bit code_len field specifies the size of the upl oaded UDVM

byt ecode (from O to 4095 bytes inclusive); eight nost significant
bits are in the first byte, followed by the four |east significant
bits in the nost significant bits in the second byte. The remaining
bits in the second byte are interpreted as a 4-bit destination field
that specifies the starting menory address to which the bytecode is
copied. The destination field is encoded as foll ows:

Encodi ng: Destination address:
0000 reserved

0001 2 * 64 = 128
0010 3 * 64 = 196
0011 4 * 64 = 256
1111 16 * 64 = 1024

Note that the encoding 0000 is reserved for future SigConp versions,
and causes a deconpression failure in Version 0x0Ll.

Price, et. al. St andards Track [Page 27]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The UDVM nenory is initialized as per Figure 5, except that addresses
6 to 9 inclusive are set to 0 because no state item has been
accessed. The UDVM t hen begi ns executing instructions at the nenory
address specified by the destination field. As above, the remaining
Si gConmp message is held by the deconpressor dispatcher until needed
by the UDVM

8. Overview of the UDVM

Decompression functionality for SigConmp is provided by a Universa

Deconpressor Virtual Machine (UDVM. The UDVMis a virtual machine
much |i ke the Java Virtual Machine but with a key difference: it is
desi gned solely for the purpose of running deconpression algorithns.

The notivation for creating the UDVMis to provide flexibility when
choosi ng how to conmpress a given application message. Rather than

pi cki ng one of a small nunmber of pre-negotiated algorithnms, the
conpressor inplenenter has the freedomto select an al gorithm of
their choice. The conpressed data is then conbined with a set of
UDVM i nstructions that allow the original data to be extracted, and
the result is outputted as a SigConp nessage. Since the UDVMis
optim zed specifically for running deconpression algorithnms, the code
size of a typical algorithmis small (often sub 100 bytes).

Mor eover, the UDVM approach does not add significant extra processing
or nmenory requirenents conpared to running a fixed preprogramred
deconpressi on al gorithm

Figure 6 gives a detailed view of the interfaces between the UDVM and
its environnment.

Price, et. al. St andards Track [Page 28]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

| Request conpressed data |
Provi de conpressed data

|

|

|

| |

Qut put deconpressed data | Deconpressor |
I e R >| di spat cher |
| |

| |

>| |

|

|

UDVM Provi de conpartnent identifier |

State

Figure 6: Interfaces between the UDVM and its environment
Note that once the UDVM has been initialized, additional conpressed
data and state infornation are only provided at the request of a
specific UDVM instruction.

This chapter describes the basic features of the UDVM i ncl uding the
UDVM regi sters and the format of UDVM byt ecode.

8.1. UDVM Regi sters
The UDVM registers are 2-byte words in the UDVM nenory that have
speci al tasks, for exanple specifying the |location of the stack used
by the CALL and RETURN instructions.

The UDVM registers are illustrated in Figure 7.

Price, et. al. St andards Track [Page 29]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

0 78 15
R T o T i e ks ik oI ST e TS
| byte copy_|I eft | 64 - 65
B S S i i T S
| byte_copy_ri ght | 66 - 67
O I S e e e ok o HIE R R R
| i nput _bit_order | 68 - 69
R T o T i e ks ik oI ST e TS
| stack_| ocation | 70 - 71

B S S i i T S
Figure 7: Menory addresses of the UDVM registers

The MSBs of each register are always stored before the LSBs. So, for
exanpl e, the MSBs of byte copy_ left are stored at Address 64 whil st
the LSBs are stored at Address 65.

The use of each UDVMregister is defined in the followi ng sections.

(Note that the UDVM registers start at Address 64, that is 32 bytes
after the area reserved for Useful Values. The intention is that the
gap, i.e., the area between Address 32 and Address 63, will often be
used as scratch-pad nenory that is guaranteed to be zero at UDVM
startup and is efficiently addressable in operand types reference (%)
and multitype (%.)

8.2. Requesting Additional Conpressed Data

The deconpressor dispatcher stores the conpressed data fromthe

Si gConp nessage before it is requested by the UDVM via one of the
I NPUT instructions. Wen the UDVM bytecode is first executed, the
di spatcher contains the remaining Si gConp nessage after the header
has been used to initialize the UDVM as per Chapter 7.

Note that the I NPUT-BITS and | NPUT- HUFFMAN i nstructions retrieve a
stream of individual conpressed bits fromthe dispatcher. To provide
bitwi se conpatibility with various well-known conpression al gorithns,
the input_bit_order register can nodify the order in which individua
bits are passed within a byte.

The input_bit_order register contains the follow ng three fl ags:
0 78 15
R i T S e ol it (R R

| reserved | FfIH P 68 - 69
B S S i i T S

Price, et. al. St andards Track [Page 30]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The P-bit controls the order in which bits are passed fromthe

di spatcher to the INPUT instructions. |If set to O, it indicates that
the bits within an individual byte are passed to the | NPUT
instructions in MSB to LSB order. If it is set to 1, the bits are
passed in LSB to MSB order

Note that the input _bit_order regi ster cannot change the order in
whi ch the bytes thensel ves are passed to the I NPUT instructions
(bytes are always passed in the same order as they occur in the
Si gConmp message) .

The following diagramillustrates the order in which bits are passed
to the INPUT instructions for both cases:

V5B LSB MsB LSB V5B LSB MsB LSB

I T S S T i S i Su N SUp A S S
|01 23456789... | |7 6543210 ... 98
I i S s it N S SR R T S S SRR SRR S

Byte O Byte 1 Byte O Byte 1
P=0 P=1

Note that after one or nore INPUT instructions the dispatcher nmay
hold a fraction of a byte (what used to be the LSBs if P =0, or, the
MsBs, if P =1). |If an INPUT instruction is encountered and the P-
bit has changed since the last INPUT instruction, any fraction of a
byte still held by the dispatcher MJST be discarded (even if the

I NPUT instruction requests zero bits). The first bit passed to the

I NPUT instruction is taken fromthe subsequent byte.

When an I NPUT instruction requests n bits of conpressed data, it
interprets the received bits as an integer between 0 and 2”n - 1

The F-bit and the H-bit specify whether the bits in these integers
are considered to arrive in MSB to LSB order (bit set to 0) or in LSB
to MSB order (bit set to 1).

If the F-bit is set to 0, the INPUT-BITS instruction interprets the
received bits as arriving MsBs first, and if it is set to 1, it
interprets the bits as arriving LSBs first. The Hbit perfornms the
sane function for the | NPUT-HUFFMAN i nstruction. Note that it is
possible to set these two bits to different values in order to use
different bit orders for the two instructions (certain algorithns
actually require this, e.g., DEFLATE [RFC-1951]). (Note that there
are no special considerations for changing the F- or Hbit between
I NPUT instructions, unlike the discard rule for the P-bit described
above.)

Price, et. al. St andards Track [Page 31]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Deconpression failure occurs if an I NPUT-BI TS or an | NPUT- HUFFMAN
instruction is encountered and the input_bit_order regi ster does not
lie between 0 and 7 inclusive.

8.3. UDWM St ack
Certain UDVM instructi ons make use of a stack of 2-byte words stored

at the nenory address specified by the 2-byte word stack | ocation
The stack contains the foll ow ng words:

Nane: Starting nenory address:
stack fill stack | ocation

st ack[0] stack | ocation + 2

st ack][1] stack_|ocation + 4

st ack][2] stack | ocation + 6

The notation stack |ocation is an abbreviation for the contents of
the stack location register, i.e., the 2-byte word at |ocations 70
and 71. The notation stack_fill is an abbreviation for the 2-byte
word at stack_ | ocation and stack location+l. Simlarly, the notation
stack[n] is an abbreviation for the 2-byte word at

stack | ocation+2*n+2 and stack | ocati on+2*n+3. (As al ways, the
arithmetic is nodul o 27216.)

The stack is used by the CALL, RETURN, PUSH and POP instructions.

"Pushi ng" a value on the stack is an abbreviation for copying the
val ue to stack[stack fill] and then increasing stack fill by 1. CALL
and PUSH push val ues on the stack

"Poppi ng" a value fromthe stack is an abbreviation for decreasing
stack _fill by 1, and then using the value stored in
stack[stack_fill]. Deconpression failure occurs if stack fill is
zero at the comencenent of a popping operation. POP and RETURN pop
val ues fromthe stack.

For both of these abstract operations, the UDVMfirst takes note of
the current value of stack |ocation and uses this value for both
sub-operations (accessing the stack and nani pul ati ng stack_fill),
i.e., overwiting stack | ocation in the course of the operation is
i nconsequential for the operation

Price, et. al. St andards Track [Page 32]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

8.4. Byte copying

A nunber of UDVMinstructions require a string of bytes to be copied
to and fromareas of the UDVM nmenory. This section defines how the
byte copyi ng operation should be perforned.

The string of bytes is copied in ascending order of nmenory address,
respecting the bounds set by byte copy |eft and byte copy right.
More precisely, if a byte is copied fronfto Address mthen the next
byte is copied fronfto Address n where n is cal cul ated as foll ows:

Set k := m+ 1 (nodulo 2716)
If k = byte copy_right then set n := byte copy left, else set n :=k

Deconpression failure occurs if a byte is copied fronito an address
beyond t he UDVM nenory.

Note that the string of bytes is copied one byte at a tine. In
particular, sone of the |ater bytes to be copied nay thensel ves have
been witten into the UDVM nmenory by the byte copying operation
currently being performed.

Equally, it is possible for a byte copying operation to overwite the

instruction that invoked the byte copy. |If this occurs, then the
byte copying operati on MUST be conpleted as if the origina
instruction were still in place in the UDVM nenory (this also applies

if byte copy_left or byte copy_right are overwitten).
Byte copying is used by the following UDVMinstructions:

SHA-1, COPY, COPY-LITERAL, COPY-OFFSET, MEMSET, | NPUT-BYTES, STATE-
ACCESS, QOUTPUT, END- MESSAGE

8.5. Instruction operands and UDVM byt ecode

Each of the UDVMinstructions in a piece of UDVM bytecode is
represented by a single byte, followed by 0 or nore bytes containing
the operands required by the instruction

During instruction execution, conceptually the UDVMfirst fetches the
first byte of the instruction, determ nes the nunber and types of
operands required for this instruction, and then decodes all the
operands in sequence before starting to act on the instruction

(Note that the UDVMinstructions have been designed in such a way
that this sequence renai ns conceptual in those cases where it would
result in an unreasonabl e burden on the inplenentation.)

Price, et. al. St andards Track [Page 33]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

To reduce the size of typical UDVM bytecode, each operand for a UDVM
instruction is conpressed using variable-length encoding. The aimis
to store nore conmon operand val ues using fewer bytes than rarely
occurring val ues.

Four different types of operand are available: the literal, the
reference, the nultitype and the address. Chapter 9 gives a conplete
list of UDVMinstructions and the operand types that foll ow each

i nstruction.

The UDVM byt ecode for each operand type is illustrated in Figure 8 to
Figure 10, together with the integer val ues represented by the
byt ecode.

Note that the MSBs in the bytecode are illustrated as preceding the
LSBs. Also, any string of bits marked with k consecutive "n"s is to
be interpreted as an integer NfromO to 2"k - 1 inclusive (with the
MSBs of n illustrated as preceding the LSBs).

The decoded integer value of the bytecode can be interpreted in two
ways. |In some cases it is taken to be the actual value of the
operand. In other cases it is taken to be a nmenory address at which
the 2-byte operand val ue can be found (MSBs found at the specified
address, LSBs found at the followi ng address). The latter cases are
denoted by menory[X] where X is the address and nenory[X] is the 2-
byte val ue starting at Address X

The sinplest operand type is the literal (#), which encodes a
constant integer fromO to 65535 inclusive. A literal operand may
require between 1 and 3 bytes depending on its val ue.

Byt ecode: Oper and val ue: Range:
Onnnnnnn N 0 - 127
10nnnnnn nnnnnnnn N 0 - 16383
11000000 nnnnnnnn nnnnnnnn N 0 - 65535

Figure 8. Bytecode for a literal (#) operand

The second operand type is the reference ($), which is always used to
access a 2-byte value located el sewhere in the UDVM nmenory. The

byt ecode for a reference operand is decoded to be a constant integer
fromO to 65535 inclusive, which is interpreted as the nenory address
contai ning the actual val ue of the operand.

Price, et. al. St andards Track [Page 34]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Byt ecode: Qper and val ue: Range:

Onnnnnnn menory[2 * N| 0 - 65535
10nnnnnn nnnnnnnn menory[2 * N| 0 - 65535
11000000 nnnnnnnn nnnnnnnn menory[N| 0 - 65535

Figure 9: Bytecode for a reference ($) operand

Note that the range of a reference operand is always 0 - 65535
i ndependently of how many bits are used to encode the reference,
because the operand al ways references a 2-byte value in the nenory.

The third kind of operand is the multitype (%, which can be used to
encode both actual values and nenory addresses. The multitype
operand also offers efficient encoding for small integer values (both
positive and negative) and for powers of 2.

Byt ecode: Oper and val ue: Range:
00nnnnnn N 0 - 63
Olnnnnnn menory[2 * N| 0 - 65535
1000011n 2"~ (N + 6) 64 , 128
10001nnn 2"~ (N+ 8) 256 , ... , 32768
111nnnnn N + 65504 65504 - 65535
1001nnnn nnnnnnnn N + 61440 61440 - 65535
101nnnnn nnnnnnnn N 0 - 8191
110nnnnn nnnnnnnn menory[N| 0 - 65535
10000000 nnnnnnnn nnnnnnnn N 0 - 65535
10000001 nnnnnnnn nnnnnnnn menor y[N| 0 - 65535

Figure 10: Bytecode for a nultitype (% operand

The fourth operand type is the address (@. This operand is decoded
as a multitype operand foll owed by a further step: the menory address
of the UDVMinstruction containing the address operand is added to
obtain the correct operand value. So if the operand val ue from
Figure 10 is D then the actual operand val ue of an address is

cal cul ated as foll ows:

operand_val ue = (nenory_address_of _instruction + D) nmodul o 2716
Addr ess operands are always used in instructions that control program
fl ow, because they ensure that the UDVM bytecode is position-

i ndependent code (i.e., it will run independently of where it is
pl aced in the UDVM nenory).

Price, et. al. St andards Track [Page 35]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

8.6. UDVM Cycl es

Once the UDVM has been invoked it executes the instructions contained
inits nmenory consecutively unless otherw se indicated (for example
when the UDVM encounters a JUWP instruction). |[If the next
instruction to be executed lies outside the avail able nenory then
deconpression failure occurs (see Section 8.7).

To ensure that a SigConp nessage cannot consune excessive processing
resources, SigComp limts the nunmber of "UDVM cycles" allocated to
each message. The nunber of available UDVMcycles is initialized to
1000 plus the nunber of bits in the SigConp header (as described in
Section 7); this sumis then multiplied by cycles per_bit. Each tine
an instruction is executed the nunber of available UDVM cycles is
decreased by the amount specified in Chapter 9. Additionally, if the
UDVM successfully requests n bits of conpressed data using one of the
I NPUT instructions then the nunber of available UDVM cycles is
increased by n * cycles_per_bit once the instruction has been

execut ed.

Thi s means that the maxi num nunber of UDVM cycl es avail able for
processi ng an n-byte SigConp nessage is given by the forml a:

maxi mum UDVM cycles = (8 * n + 1000) * cycles per_bit

The reason that this total is not allocated to the UDVM when it is
i nvoked is that the UDVM can begin to deconpress a nmessage that has
only been partially received. So the total message size may not be
known when the UDVMis initialized.

Note that the nunmber of UDVM cycles MUST NOT be increased if a
request for additional conpressed data fails.

The UDVM st ops executing instructions when it encounters an END-
MESSAGE instruction or if deconpression failure occurs (see Section
8.7 for further details).

8.7. Deconpression Failure
If a conpressed nessage given to the UDVMis corrupted (either

accidentally or maliciously), then the UDVM may term nate with a
deconpression failure.

Price, et. al. St andards Track [Page 36]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Reasons for deconpression failure include the follow ng:
1. A SigConp nessage contains an invalid header as per Chapter 7.
2. A SigConp message is larger than the deconpressi on_nenory_size.

3. An instruction costs nore than the nunber of renmining UDVM
cycl es.

4. The UDVM attenpts to read fromor wite to a nenory address beyond
its menmory size.

5. An unknown instruction is encountered.

6. An unknown operand i s encountered.

7. An instruction is encountered that cannot be processed
successfully by the UDVM (for exanple a RETURN instruction when no
CALL instruction has previously been encountered).

8. A request to access sone state information fails.

9. A manual deconpression failure is triggered using the
DECOVPRESSI ON- FAI LURE i nstructi on

If a deconpression failure occurs when deconpressing a nessage then

the UDVM informs the di spatcher and takes no further action. It is
the responsibility of the dispatcher to decide howto cope with the
deconpression failure. 1In general a dispatcher SHOULD di scard the

conpressed nmessage (or the conpressed streamif the transport is
st ream based) and any deconpressed data that has been outputted but
not yet passed to the application

9. UDVM Instruction Set
The UDVM currently understands 36 instructions, chosen to support the
wi dest possi bl e range of conpression algorithns with the m ni mum
possi bl e over head.
Figure 11 lists the different instructions and the bytecode val ues

used to encode the instructions. The cost of each instruction in
UDVM cycles is al so given:

Price, et. al. St andards Track [Page 37]

RFC 3320

I nstruction:

DECOVPRESSI ON- FAI LURE
AND

R

NOT

LSHI FT

RSHI FT

ADD

SUBTRACT
MULTI PLY

Dl VI DE

REMAI NDER
SORT- ASCENDI NG
SCORT- DESCENDI NG
SHA- 1

LOCAD

MULTI LOAD
PUSH

POP

CoPY
COPY- LI TERAL
COPY- OFFSET
MEMSET

JUWP

COVPARE

CALL

RETURN

SW TCH

CRC

I NPUT- BYTES

| NPUT-BI TS

I NPUT- HUFFMAN
STATE- ACCESS
STATE- CREATE
STATE- FREE
QUTPUT

END- MESSAGE

Byt ecode val ue:

OCO~NOOUITA~WNEO

Cost

PRRPRRRPRRPRPRRPRRRPRPRPRRPRRPRPRPRRRRPRPRRRPRREPRERRRRERRERRRRRERER

Si gnal i ng Conpressi on (Si gConp)

+

+ + + +

January 2003

i n UDVM cycl es:

k * (ceiling(log2(k)) + n)
k * (ceiling(log2(k)) + n)
 ength

n

[engt h
 ength
 ength
| ength

n
| ength
l ength

n
state_l ength
state_l ength

out put I ength
state_l ength

Figure 11: UDVMinstructions and correspondi ng bytecode val ues

Each UDVM instruction costs a mninumof 1 UDVM cycl e.
i nstructions nay cost additiona
the instruction operands.

Note that for the SORT instructions,
cal cul ates the smmall est val ue

Price, et. al.

Certain

cycl es dependi ng on the val ues of

Named vari ables in the cost expressions
refer to the values of the instruction operands with these names.

the formula ceiling(log2(k))

St andards Track

such that k <= 27i.

[Page 38]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The UDVM instruction set offers a mix of |owlevel and high-Ieve
instructions. The high-level instructions can all be enul ated using
conbi nati ons of |owlevel instructions, but given a choice it is
generally preferable to use a single instruction rather than a | arge
nunber of general - purpose instructions. The resulting bytecode wll
be nore conpact (leading to a higher overall conpression ratio) and
deconpression will typically be faster because the inplenentation of
the high-1level instructions can be nore easily optim zed.

Al instructions are encoded as a single byte to indicate the
instruction type, followed by O or nore bytes containing the operands
required by the instruction. The instruction specifies which of the
four operand types of Section 8.5 is used in each case. For exanple
the ADD instruction is followed by two operands:

ADD ($operand_1, %operand_2)

When converted into bytecode the nunber of bytes required by the ADD
i nstruction depends on the val ue of each operand, and whether the

mul titype operand contains the operand value itself or a nmenory
address where the actual value of the operand can be found.

Each instruction is explained in nore detail bel ow

Whenever the description of an instruction uses the expression "and
then", the intended semantics is that the effect explained before
"and then" is conpl eted before work on the effect explained after the
"and then" is comenced.

9.1. Mathematical Instructions

The followi ng instructions provide a nunber of mathematica
operations including bit manipulation, arithmetic and sorting.

9.1.1. Bit Mnipulation

The AND, OR, NOT, LSHI FT and RSHI FT instructions provide sinple bit
mani pul ati on on 2-byte words.

AND ($operand_1, %operand_2)
OR ($operand_1, %operand_2)

NOT ($operand_1)

LSH FT ($operand_1, %operand_2)
RSHI FT ($operand_1, %operand_2)

Price, et. al. St andards Track [Page 39]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

After the operation is conplete, the value of the first operand is
overwitten with the result. (Note that since this operand is a
reference, it is the 2-byte word at the menory address specified by
the operand that is overwitten.)

The precise definitions of LSH FT and RSH FT are given bel ow. Note
that mand n are the 2-byte val ues encoded by the operands, and that
floor(x) calculates the |argest integer not greater than x:

LSH FT (m n)
RSH FT (m n)

m * 2°n (nmodul o 2716)
floor(m/ 27n)

9.1.2. Arithnetic

The ADD, SUBTRACT, MJULTIPLY, DI VIDE and REMAI NDER i nstructions
performarithnetic on 2-byte words.

ADD ($operand_1, %operand_2)
SUBTRACT ($operand_1, %operand_2)
MULTI PLY ($operand_1, %operand_2)
Dl VI DE ($operand_1, %operand_2)
REMAI NDER ($operand_1, %operand_2)

After the operation is conplete, the value of the first operand is
overwitten with the result.

The precise definition of each instruction is given bel ow

ADD (m n)
SUBTRACT (m n)
MJULTI PLY (m n)
DIVIDE (m n)
REMAI NDER (m n)

m + n (nodul o 2"16)
m - n (nodul o 2"16)
m* n (nodul o 2"16)
floor(m/ n)

m- n* floor(m/ n)

Deconpression failure occurs if a DI VIDE or REMAI NDER instruction
encounters an operand 2 that is zero.

9.1.3. Sorting

The SORT- ASCENDI NG and SORT- DESCENDI NG i nstructions sort lists of 2-
byt e words.

SORT- ASCENDI NG (%start, 9%, %)
SORT- DESCENDI NG (%start, %, %)

The start operand specifies the starting menory address of the bl ock
of data to be sorted.

Price, et. al. St andards Track [Page 40]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The bl ock of data itself is divided into n |ists each containing k
2-byte words. The SORT- ASCENDI NG i nstruction applies a certain
permutation to the lists, such that the first list is sorted into
ascendi ng order (treating each 2-byte word as an unsigned integer).
The sane permutation is applied to all n lists, so lists other than
the first will not necessarily be sorted into order

In the case that two words have the same value, the original ordering
of the list is preserved.

For exanple, the first list mght contain a set of integers to be
sorted whilst the second Iist nmight be used to keep track of where
the integers appear in the sorted |ist:

Bef ore sorting After sorting
List 1 List 2 List 1 List 2
8 1 1 2
1 2 1 3
1 3 3 4
3 4 8 1

The SORT- DESCENDI NG i nstructi on behaves as above, except that the
first list is sorted into descendi ng order

9.1.4. SHA-1

The SHA-1 instruction cal cul ates a 20-byte SHA-1 hash [RFC-3174] over
the specified area of UDVM nenory.

SHA-1 (Y%position, %ength, %lestination)

The position and | ength operands specify the starting nmenory address
and the length of the byte string over which the SHA-1 hash is

cal cul ated. Byte copying rules are enforced as per Section 8.4.

The destination operand gives the starting address to which the
resulting 20-byte hash will be copied. Byte copying rules are
enforced as above.

9.2. Menory Managenent |nstructions

The following instructions are used to set up the UDVM nenory, and to
copy byte strings fromone nmenory | ocation to another

Price, et. al. St andards Track [Page 41]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

9.2.1. LOCAD

The LOAD instruction sets a 2-byte word to a certain specified val ue.
The format of a LOAD instruction is as foll ows:

LOAD (%address, %al ue)

The first operand specifies the starting address of a 2-byte word,
whi | st the second operand specifies the value to be |oaded into this
word. As usual, MSBs are stored before LSBs in the UDVM nenory.

9.2.2. MILTILOCAD

The MULTILOAD instruction sets a contiguous block of 2-byte words in
the UDVM nmenory to specified val ues.

MULTI LOAD (%address, #n, %alue_O, ..., %alue_n-1)

The first operand specifies the starting address of the contiguous
2-byte words, whilst the operands value 0O through to value n-1
specify the values to load into these words (in the sane order as
they appear in the instruction).

Deconpression failure occurs if the set of 2-byte words set by the

i nstruction would overlap the nenory | ocations held by the
instruction (including its operands) itself, i.e., if the instruction
woul d be self-modifying. (This restriction makes it sinpler to

i mpl enment MULTI LOAD st ep-by-step instead of having to decode al
operands before being able to copy data, as is inplied by the
conceptual nodel of instruction execution.)

9.2.3. PUSH and POP

The PUSH and POP instructions read fromand wite to the UDVM st ack
(as defined in Section 8.3).

PUSH (%val ue)
POP (%addr ess)

The PUSH instruction pushes the value specified by its operand on the
st ack.

The POP instruction pops a value fromthe stack and then copies the
value to the specified nmenory address. (Note that the expression
"and then" inplies that the copying of the value is inconsequentia
for the stack operation itself, which happens beforehand.)

See Section 8.3 for possible error conditions.

Price, et. al. St andards Track [Page 42]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

9.2.4. COPY

The COPY instruction is used to copy a string of bytes fromone part
of the UDVM nenory to anot her

COPY (Y%position, %ength, %lestination)
The position operand specifies the nenory address of the first byte

in the string to be copied, and the | ength operand specifies the
nunber of bytes to be copied.

The destination operand gives the address to which the first byte in
the string will be copi ed.

Byte copying is performed as per the rules of Section 8.4.
9.2.5. COPY-LI TERAL

A nodi fied version of the COPY instruction is given bel ow.

COPY- LI TERAL (%position, % ength, $destination)

The COPY-LI TERAL instruction behaves as a COPY instruction except
that after copying is conpleted, the value of the destination operand
is replaced by the address to which the next byte of data would be
copied. Mdre precisely it is replaced by the value n, derived as per
Section 8.4 with mset to the destination address of the | ast byte to
be copied, if any (i.e., if the value of the I ength operand is zero,
the value of the destination operand is not changed).

9.2.6. COPY- OFFSET
A further version of the COPY-LITERAL instruction is given bel ow
COPY- OFFSET (%of fset, % ength, $destination)

The COPY- OFFSET instruction behaves as a COPY-LI TERAL instruction
except that an offset operand is given instead of a position operand.

To derive the value of the position operand, starting at the nenory
address specified by destination, the UDVM counts backwards a tota
of offset menory addresses.

If the menory address specified in byte copy left is reached, the
next nenory address is taken to be (byte_copy_right - 1) nodul o 2"16.

Price, et. al. St andards Track [Page 43]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The COPY- OFFSET instruction then behaves as a COPY-LI TERAL
instruction, taking the value of the position operand to be the |ast
menory address reached in the above step.

9.2.7. MEMSET

The MEMBET instruction initializes an area of UDVM nenory to a
speci fied sequence of values. The format of a MEMSET instruction is
as follows:

MEMSET (%address, % ength, %tart_val ue, %offset)

The sequence of val ues used by the MEMBET instruction is specified by
the follow ng fornul a:

Seq[n] := (start_value + n * offset) nodul o 256

The val ues Seq[0] to Seq[length - 1] inclusive are each interpreted
as a single byte, and then concatenated to forma byte string where
the first byte has value Seq[0], the second byte has val ue Seq[1] and
so on up to the last byte which has value Seq[length - 1].

The string is then byte copied into the UDVM nenory begi nning at the
nmenory address specified as an operand to the MEMSET instruction
obeying the rules of Section 8.4. (Note that the byte string nmay
overwite the MEMSET instruction or its operands; as explained in
Section 8.5, the MEMSET instruction must be executed as if the
original operands were still in place in the UDVM nmenory.)

9.3. Program Flow I nstructions
The following instructions alter the flow of UDVM code. Each
instruction junps to one of a nunber of nenory addresses based on a

certain specified criterion.

Note that certain I/Oinstructions (see Section 9.4) can also alter
program fl ow.

9.3.1. JUM

The JUMP instruction noves program execution to the specified menory
addr ess.

JUMP (@ddress)

Deconpression failure occurs if the value of the address operand lies
beyond the overall UDVM menory si ze.

Price, et. al. St andards Track [Page 44]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

9.3.2. COWARE

The COVPARE instruction conpares two operands and then junps to one
of three specified menory addresses depending on the result.

COWPARE (%val ue_1, %value 2, @ddress_ 1, @ddress_2, @ddress_3)

If value_1 < value_2 then the UDVM continues instruction execution at
the menory address specified by address 1. If value_1 = value_2 then
it junps to the address specified by address_2. If value_1 > value_2
then it junps to the address specified by address_3.

9.3.3. CALL and RETURN

The CALL and RETURN instructions provide support for conpression
algorithms with a nested structure.

CALL (@ddress)
RETURN

Both instructions use the UDVM stack of Section 8.3. When the UDVM
reaches a CALL instruction, it finds the nenory address of the
instruction inmedi ately follow ng the CALL instruction and pushes
this 2-byte value on the stack, ready for later retrieval. It then
continues instruction execution at the nenory address specified by
the address operand.

VWen the UDVM reaches a RETURN instruction it pops a value fromthe
stack and then continues instruction execution at the menory address
j ust popped.

See Section 8.3 for error conditions.

9.3.4. SWTCH

The SWTCH instruction perforns a conditional junp based on the val ue
of one of its operands.

SWTCH (#n, %, @ddress_0, @ddress_1, ... , @ddress_n-1)

VWen a SWTCH instruction is encountered the UDVM reads the val ue of
j. It then continues instruction execution at the address specified
by address j.

Deconpression failure occurs if j specifies a value of n or nore, or
if the address lies beyond the overall UDVM nenory size.

Price, et. al. St andards Track [Page 45]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

9.3.5. CRC
The CRC instruction verifies a string of bytes using a 2-byte CRC
CRC (%val ue, Y%osition, % ength, @ddress)

The actual CRC calculation is perforned using the generator
pol ynom al x"16 + x"12 + x5 + 1, which coincides with the 2-byte
Frame Check Sequence (FCS) of PPP [RFC- 1662].

The position and | ength operands define the string of bytes over
which the CRC is evaluated. Byte copying rules are enforced as per
Section 8. 4.

The CRC value is conputed exactly as defined for the 16-bit FCS
calculation in [RFC 1662].

The val ue operand contai ns the expected integer value of the 2-byte
CRC. If the calculated CRC natches the expected val ue then the UDVM
continues instruction execution at the follow ng instruction.

QO herwi se the UDVM junps to the menory address specified by the

addr ess operand.

9.4. 1/0Oinstructions
The following instructions allowthe UDVMto interface with its
environnent. Note that in the overall SigConp architecture all of
these interfaces pass to the deconpressor dispatcher or to the state
handl er.

9.4.1. DECOWPRESSI ON- FAI LURE
The DECOVPRESSI ON- FAI LURE instruction triggers a manual deconpression
failure. This is useful if the UDVM bytecode discovers that it
cannot successfully deconpress the nessage (e.g., by using the CRC
i nstruction).
This instruction has no operands.

9.4.2. | NPUT-BYTES

The | NPUT-BYTES instruction requests a certain nunber of bytes of
conpressed data fromthe deconpressor dispatcher.

| NPUT- BYTES (% ength, %lestination, @ddress)

Price, et. al. St andards Track [Page 46]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The | ength operand indicates the requested nunber of bytes of
conpressed data, and the destination operand specifies the starting
menory address to which they shoul d be copied. Byte copying is
performed as per the rules of Section 8.4.

If the instruction requests data that lies beyond the end of the
Si gConp nessage, ho data is returned. |Instead the UDVM noves program
execution to the address specified by the address operand.

If the I NPUT-BYTES is encountered after an I NPUT-BITS or an | NPUT-
HUFFMAN i nstructi on has been used, and the dispatcher currently holds
a fraction of a byte, then the fraction MJST be discarded before any
data is passed to the UDVM The first byte to be passed is the byte
i mredi ately followi ng the discarded data.

9.4.3. |INPUT-BITS

The INPUT-BITS instruction requests a certain nunber of bits of
conpressed data fromthe deconpressor di spatcher

I NPUT-BI TS (% ength, %lestinati on, @ddress)

The | ength operand indicates the requested nunber of bits.
Deconpression failure occurs if this operand does not |ie between 0O
and 16 incl usive.

The destination operand specifies the nenory address to which the
conpressed data should be copied. Note that the requested bits are
interpreted as a 2-byte integer ranging fromO to 2"l ength - 1, as
expl ained in Section 8.2.

If the instruction requests data that lies beyond the end of the
Si gConp message, ho data is returned. Instead the UDVM noves program
execution to the address specified by the address operand.

9.4.4. | NPUT- HUFFMAN

The | NPUT- HUFFMAN i nstruction requests a vari able nunber of bits of
conpressed data fromthe deconpressor dispatcher. The instruction
initially requests a small nunber of bits and conpares the result
against a certain criterion; if the criterion is not met, then
additional bits are requested until the criterion is achieved.

The | NPUT- HUFFMAN i nstruction is foll owed by three nandatory operands

plus n additional sets of operands. Every additional set contains
four operands as shown bel ow

Price, et. al. St andards Track [Page 47]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

| NPUT- HUFFMAN (%dest i nation, @ddress, #n, %its_1, % ower_bound 1,
%upper _bound_1, %nconpressed_ 1, ... , %its_n, % ower_ bound_n,
%upper _bound_n, %unconpressed_n)

Note that if n = 0 then the I NPUT-HUFFMAN instruction is ignored and
program execution resunes at the follow ng instruction
Deconpression failure occurs if (bits 1 + ... + bits_n) > 16.

In all other cases, the behavior of the | NPUT- HUFFMAN i nstruction is
defi ned bel ow

1. Set j := 1 and set H:= 0.
2. Request bits_j compressed bits. Interpret the returned bits as an
integer k fromO to 2”bits_j - 1, as explained in Section 8.2.

3. Set H:= H* 2*bits_j + k.

4. |f data is requested that |lies beyond the end of the SigConp
nmessage, term nate the | NPUT-HUFFMAN instruction and nove program
execution to the nenory address specified by the address operand.

5. If (H< lower_bound_j) or (H > upper_bound_j) then set j :=j + 1
Then go back to Step 2, unless j > n in which case deconpression
failure occurs.

6. Copy (H + unconpressed_j - |ower_bound_j) nodulo 27216 to the
menory address specified by the destination operand.

9.4.5. STATE- ACCESS

The STATE- ACCESS instruction retrieves sonme previously stored state
i nformati on.

STATE- ACCESS (%partial _identifier_start, Yartial _identifier_|ength,
%state begin, Y%tate length, %state_address, ¥state_instruction)

The partial _identifier_start and partial _identifier_|length operands
specify the location of the partial state identifier used to retrieve
the state information. This identifier has the sane function as the
partial state identifier transmtted in the SigConp nessage as per
Section 7.2.

Deconpression failure occurs if partial_identifier_|length does not

lie between 6 and 20 inclusive. Deconpression failure also occurs if
no state itemmatching the partial state identifier can be found, if

Price, et. al. St andards Track [Page 48]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

nore than one state item matches the partial identifier, or if
partial _identifier length is I ess than the mni numaccess_| ength of
the matched state item Qherwise, a state itemis returned fromthe
state handl er.

If any of the operands state address, state_ instruction or
state length is set to O then its value is taken fromthe returned
itemof state instead.

Not e t hat when cal cul ati ng the nunber of UDVM cycl es the STATE- ACCESS
instruction costs (1 + state_length) cycles. The value of
state | ength MJUST be taken fromthe returned itemof state in the
case that the state | ength operand is set to O.

The state_begin and state_l|l ength operands define the starting byte
and nunmber of bytes to copy fromthe state_value contained in the
returned itemof state. Deconpression failure occurs if bytes are
copi ed from beyond the end of the state value. Note that
deconpression failure will always occur if the state | ength operand
is set to O but the state begin operand is non-zero.

The state_address operand contains a UDVM nenory address. The
requested portion of the state value is byte copied to this nenory
address using the rules of Section 8.4.

Program execution then resunes at the nenory address specified by
state_instruction, unless this address is O in which case program
execution resumes at the next instruction follow ng the STATE- ACCESS
instruction. Note that the latter case only occurs if both the
state_instruction operand and the state_instruction value fromthe
requested state are set to O.

9.4.6. STATE- CREATE

The STATE- CREATE instruction requests the creation of a state item at
the receiving endpoint.

STATE- CREATE (%state | ength, %tate address, %tate_ instruction,
% ni mum access_length, U%state_retention_priority)

Note that the new state item cannot be created until a valid
conpartnent identifier has been returned by the application
Consequently, when a STATE- CREATE instruction is encountered the UDVM
sinmply buffers the five supplied operands until the END MESSAGE
instruction is reached. The steps taken at this point are described
in Section 9.4.9.

Price, et. al. St andards Track [Page 49]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Deconpression failure MJST occur if nore than four state creation
requests are nade before the END MESSACE instruction is encountered.
Decompression failure also occurs if the mni mumaccess_| ength does
not lie between 6 and 20 inclusive, or if the
state_retention_priority is 65535.

9.4.7. STATE-FREE

The STATE-FREE instruction inforns the receiving endpoint that the
sender no |longer wi shes to use a particular state item

STATE- FREE (%partial _identifier_start, Y%artial _identifier_|ength)

Note that the STATE-FREE instruction does not automatically delete a
state item but instead reclains the nenmory taken by the state item
within a certain conpartnent, which is generally not known before the
END- MESSACGE instruction is reached. So just as for the STATE- CREATE
instruction, when a STATE-FREE instruction is encountered the UDVM
sinmply buffers the two supplied operands until the END MESSAGE
instruction is reached. The steps taken at this point are described
in Section 9.4.9.

Deconpression failure MJST occur if nore than four state free
requests are nade before the END- MESSACE instruction is encountered.
Decompression failure also occurs if partial _identifier_|length does
not |ie between 6 and 20 i ncl usive.

9.4.8. CQUTPUT

The QUTPUT instruction provides successfully deconpressed data to the
di spat cher.

QUTPUT (%out put _start, %out put _I| ength)

The operands define the starting menory address and |length of the
byte string to be provided to the dispatcher. Note that the OUTPUT
instruction can be used to output a partially deconpressed nessage;
each tine the instruction is encountered it provides a new byte
string that the dispatcher appends to the end of any bytes previously
passed to the dispatcher via the OUTPUT instruction

The string of data is byte copied fromthe UDVM nenory obeying the
rules of Section 8.4.

Deconpression failure occurs if the cumul ati ve nunber of bytes
provided to the di spatcher exceeds 65536 bytes.

Price, et. al. St andards Track [Page 50]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Since there is technically a difference between outputting a O-byte
deconpressed nmessage, and not outputting a deconpressed nessage at
all, the OQUTPUT instruction needs to distinguish between the two
cases. Thus, if the UDVMterm nates before encountering an OUTPUT
instruction it is considered not to have outputted a deconpressed
nessage. |If it encounters one or nore QUTPUT instructions, each of
whi ch provides 0 bytes of data to the dispatcher, then it is

consi dered to have outputted a 0-byte deconpressed nessage.

9.4.9. END MESSAGE

The END- MESSACE instruction successfully term nates the UDVM and
forwards the state creation and state free requests to the state
handl er together with any supplied feedback data.

END- MESSACGE (% equest ed_f eedback_| ocati on

% et ur ned_paraneters_|l ocation, %tate | ength, %tate_address,
U%state_instruction, % ni mumaccess_| ength,

U%state retention_priority)

When the END- MESSAGE instruction is encountered, the deconpressor

di spatcher indicates to the application that a conpl ete nessage has
been deconpressed. The application may return a comnpart nment
identifier, which the UDVM forwards to the state handl er together
with the state creation and state free requests and any supplied

f eedback dat a.

The actual decompressed nessage is outputted separately using the
QUTPUT instruction; this conserves nenory at the UDVM because there
is no need to buffer an entire deconpressed nessage before it can be
passed to the dispatcher

The END- MESSACE instruction may pass up to four state creation
requests and up to four state free requests to the state handl er
The requests are passed to the state handler in the sane order as
they are made; in particular it is possible for the state creation
requests and the state free requests to be interleaved.

The state creation requests are nade by the STATE- CREATE instruction
Not e however that the END- MESSAGE can make one state creation request
itself using the supplied operands. If the specified

m ni mum access_| ength does not |ie between 6 and 20 inclusive, or if
the state retention priority is 65535 then the END MESSAGE
instruction fails to nake a state creation request of its own
(however deconpression failure does not occur and the state creation
requests made by the STATE- CREATE instruction are still valid).

Price, et. al. St andards Track [Page 51]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Note that there is a maximumlimt of four state creation requests
per instance of the UDVM Therefore, deconpression failure occurs if
the END- MESSAGE instruction makes a state creation request and four

i nstances of the STATE- CREATE instruction have already been
encount er ed.

When creating a state itemit is necessary to give the state | ength,
state address, state_instruction and m ni num access_|length; these are
supplied as operands in the STATE- CREATE instruction (or the END
MESSAGE instruction). A conplete itemof state also requires a
state_value and a state_identifier, which are derived as foll ows:

The UDVM byte copies a string of state |length bytes fromthe UDVM
menory begi nning at state address (obeying the rules of Section 8.4).
This is the state_val ue.

The UDVM t hen cal cul ates a 20-byte SHA-1 hash [RFC-3174] over the
byte string forned by concatenating the state | ength, state_ address,
state_instruction, mninmmaccess _|length and state value (in the
order given). This is the state identifier

The state_retention_priority is not part of the state itemitself,
but instead determnes the order in which state will be del eted when
the conpartnent exceeds its allocated state nmenory. The

state retention priority is supplied as an operand in the STATE-
CREATE or END- MESSACE instruction and is passed to the state handl er
as part of each state creation request.

The state free requests are made by the STATE-FREE instruction. Each
STATE- FREE instruction supplies the values partial _identifier_start
and partial _identifier_|ength; upon reaching the END MESSAGE
instruction these values are used to byte copy a partial state
identifier fromthe UDVM nmenory. |If no state item matching the
partial state identifier can be found or if nore than one state item
in the conpartment matches the partial state identifier, then the
state free request is ignored (this does not cause deconpression
failure to occur). Oherw se, the state handler frees the natched
state itemas specified in Section 6.2.

As well as forwarding the state creation and state free requests, the
END- MESSACGE i nstruction may al so pass feedback data to the state
handl er. Feedback data is used to informthe receiving endpoint
about the capabilities of the sending endpoint, which can help to

i mprove the overall conpression ratio and to reduce the working
menory requirements of the endpoints.

Price, et. al. St andards Track [Page 52]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

Two types of feedback data are avail abl e: requested feedback and
returned feedback. The format of the requested feedback data is
given in Figure 12. As outlined in Section 3.2, the requested

f eedback data can be used to influence the contents of the returned
f eedback data in the reverse direction

The returned feedback data is itself subdivided into a returned
feedback itemand a list of returned SigConp paraneters. The
returned feedback itemis of sufficient inportance to warrant its own
field in the SigConp header as described in Section 7.1. The
returned SigConmp paraneters are illustrated in Figure 13.

Note that the formats of Figure 12 and Figure 13 are only for |oca
presentation of the feedback data on the interface between the UDVM
and state handler. The formats do not mandate any bits on the wre;
the conpressor can transnit the data in any formprovided that it is
| oaded into the UDVM nenory at the correct addresses.

Moreover, the responsibility for ensuring that feedback data arrives
successfully over an unreliable transport lies with the sender. The
recei vi ng endpoi nt al ways uses the |last received value for each field
in the feedback data, even if the values are out of date due to
packet |oss or m sordering.

If the requested _feedback | ocation operand is set to 0, then no
f eedback request is nmade; otherwise, it points to the starting nenory
address of the requested feedback data as shown in Figure 12.

0 1 2 3 4 5 6 7
B T S T g
| reserved | Q] S| I | requested feedback |ocation
T T TN I g

I I
: requested feedback item o if Q=1
I I

B T S T g
Figure 12: Format of requested feedback data

The reserved bits may be used in future versions of SigConmp, and are
set to O in Version O0x01l. Non-zero values should be ignored by the
recei vi ng endpoint.

The @ bit indicates whether a requested feedback itemis present or
not. The conpressor can set the requested feedback itemto an
arbitrary value, which will then be transmtted unnodified in the
reverse direction as a returned feedback item See Chapter 5 for
further details of how the requested feedback itemis returned.

Price, et. al. St andards Track [Page 53]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

The format of the requested feedback itemis identical to the format
of the returned feedback itemillustrated in Figure 4.

The conpressor sets the S-bit to 1 if it does not wish (or no | onger
wi shes) to save state information at the receiving endpoint and al so
does not wish to access state information that it has previously
saved. Consequently, if the S-bit is set to 1 then the receiving
endpoint can reclaimthe state nenory allocated to the renote
conpressor and set the state_menory_size for the conpartment to O.

The conpressor may change its mnd and switch the S-bit back to 0 in
a later nessage. However, the receiving endpoint is under no
obligation to use the original state nmenory_size for the conpartnent;
it may choose to allocate | ess nenory to the conpartnent or possibly
none at all.

Simlarly the conpressor sets the I-bit to 1 if it does not wi sh (or
no | onger wi shes) to access any of the locally available state itens
of fered by the receiving endpoint. This can help to conserve
bandwi dt h because the list of locally available state itens no | onger
needs to be returned in the reverse direction. It nay al so conserve
menory at the receiving endpoint, as the state handl er can del ete any
locally available state itens that it determ nes are no | onger
required by any renpte endpoint. Note that the conpressor can set
the I-bit back to 0 in a later nessage, but it cannot access any
locally available state itens that were previously offered by the
recei vi ng endpoi nt unl ess they are subsequently re-announced.

If the returned_paraneters_|l ocation operand is set to O, then no

Si gConp paraneters are returned; otherwise, it points to the starting
nmenory address of the returned paraneters as shown in Figure 13.

Price, et. al. St andards Track [Page 54]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

0 1 2 3 4 5 6 7
i S e e E
| cpb | drrs | sns | returned_paraneters_location
L S e e e
| Si gConp_ver si on |
B T S T g
| length of partial _state ID 1
i e
| |
: partial _state_ identifier_1
| |
B T S T g
T T
| length_of partial _state ID n
L S e e e
| |
. partial _state identifier_n
| |
i S e e E

Figure 13: Format of returned SigConp paraneters

The first byte encodes the SigConp paraneters cycles per_bit,
deconpressi on_nenory_size and state _nenory_size as per Section 3.3.1.
The byte can be set to 0 if the three paraneters are not included in
the feedback data. (This may be useful to save bits in the
conpressed nmessage if the renpote endpoint is already satisfied al
necessary information has reached the endpoint receiving the
nessage.)

The second byte encodes the SigConp_version as per Section 3.3.2.
Simlar to the first byte, the second byte can be set to 0 if the
paranmeter is not included in the feedback data.

The remai ni ng bytes encode a list of partial state identifiers for
the locally available state itens offered by the sendi ng endpoint.
Each state itemis encoded as a 1-byte length field, followed by a
partial state identifier containing as nany bytes as indicated in the
length field. The sender can choose to send as few as 6 bytes if it
believes that this is sufficient for the receiver to determ ne which
state itemis being offered.

The list of state identifiers is termnated by a byte in the position
where the next length field woul d be expected that is set to a value
bel ow 6 or above 20. Note that upgraded Si gConmp versions may append
additional itenms of data after the final length field.

Price, et. al. St andards Track [Page 55]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

10.

10.

10.

10.

Security Considerations
1. Security Goals

The overall security goal of the SigConp architecture is to not
create risks that are in addition to those already present in the
application protocols. There is no intention for SigConp to enhance
the security of the application, as it always can be circunvented by
not using conpression. More specifically, the high-level security
goal s can be described as:

1. Do not worsen security of existing application protoco
2. Do not create any new security issues

3. Do not hinder deploynent of application security.

2. Security R sks and Mtigation

This section identifies the potential security risks associated with
Si gConp, and expl ains how each risk is mnimzed by the schene.

2.1. Confidentiality Risks
- Attacking SigConp by snooping into state of other users:

State is accessed by supplying a state identifier, which is a
cryptographi c hash of the state being referenced. This inplies that
the referenci ng nessage al ready needs know edge about the state. To
enforce this, a state item cannot be accessed wi thout supplying a

m ni mum of 48 bits fromthe hash. This also mininzes the
probability of an accidental state collision. A conpressor can
using the m ni mum access_| ength operand of the STATE- CREATE and END-
MESSAGE i nstructions, increase the nunber of bits that need to be
supplied to access the state, increasing the protection against
attacks.

CGeneral ly, ways to obtain know edge about the state identifier (e.g.
passive attacks) will also easily provide know edge about the
referenced state, so no new vulnerability results.

An endpoint needs to handle state identifiers with the same care it
woul d handl e the state itself.

Price, et. al. St andards Track [Page 56]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

10.

10.

2.2. Integrity R sks

The Si gConp approach assunes that there is appropriate integrity
protecti on bel ow and/ or above the SigConp |ayer. The state creation
mechani sm provi des sone additional potential to conprom se the
integrity of the messages; however, this would nost |ikely be
detectabl e at the application |ayer.

- Attacking SigConp by faking state or nmaki ng unauthorized changes to
st at e:

State cannot be destroyed by a malicious sender unless it can send
nessages that the application identifies as belonging to the sane
conpartnent the state was created under; this adds additiona
security risks only when the application allows the installation of
Si gConmp state froma message where it would not have installed state
itself.

Faki ng or changing state is only possible if the hash allows
i ntentional collision.

2.3. Availability Risks (Avoiding DoS Vul nerabilities)
- Use of SigConp as a tool in a DoS attack to another target:

Si gConp cannot easily be used as an anplifier in a reflection attack
as it only generates one deconpressed nessage per incom ng conpressed
nmessage. This nessage is then handed to the application; the utility
as a reflection anplifier is therefore limted by the utility of the
application for this purpose.

However, it nmust be noted that SigConp can be used to generate |arger
nmessages as input to the application than have to be sent fromthe
mal i ci ous sender; this therefore can send smaller messages (at a

| ower bandwi dth) than are delivered to the application. Depending on
the reflection characteristics of the application, this can be
considered a mld formof anplification. The application MJST limt
the nunber of packets reflected to a potential target - even if
SigConmp is used to generate a | arge amount of information froma
smal | incom ng attack packet.

Price, et. al. St andards Track [Page 57]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

11.

- Attacking SigConp as the DoS target by filling it with state:

Excessive state can only be installed by a malicious sender (or a set
of malicious senders) with the consent of the application. The
system consi sting of SigConp and application is thus approximtely as
vul nerable as the application itself, unless it allows the
installation of SigConp state froma nessage where it would not have
installed application state itself.

If this is desirable to increase the conpression ratio, the effect
can be mtigated by naking use of feedback at the application |eve
that indicates whether the state requested was actually installed -
this allows a systemunder attack to gracefully degrade by no | onger
installing conpressor state that is not matched by application state.

oviously, if a streambased transport is used, the streans
thensel ves constitute state that has to be handled in the sane way
that the application itself would handl e a stream based transport; if
an application is not equipped for stream based transport, it should
not all ow Si gConp connections on a stream based transport. For the
alternative SigConp usage described as "continuous node" in Section
4.2.1, an attacker could create any nunber of active UDVMs unl ess
there is sone DoS protection at a |lower level (e.g., by using TLS in
appropriate configurations).

- Attacking the UDVM by faking state or making unaut horized changes
to state:

This is covered in Section 10. 2. 2.
- Attacking the UDVM by sending it | ooping code:

The application sets an upper limt to the nunber of "UDVM cycl es"
that can be used per conpressed nessage and per input bit in the
conpressed nessage. The damage inflicted by sending packets with

| ooping code is therefore limted, although this may still be
substantial if a |arge nunber of UDVM cycles are offered by the UDVM
However, this would be true for any deconpressor that can receive
packets over an unsecured transport.

| ANA Consi der ati ons

Si gConp requires a 1-byte nane space, the SigConp_version, which has
been created by the | ANA. Upgraded versions of SigConp nust be
backwar ds- conpati bl e with Version 0x01, described in this docunent.
Addi ng additional UDVMinstructions and assigning values to the
reserved UDVM nenory addresses are two possi bl e upgrades for which
this is the case

Price, et. al. St andards Track [Page 58]

RFC 3320 Si gnal i ng Conpressi on (Si gConp)

January 2003

Foll owi ng the policies outlined in [RFC-2434], the | ANA policy for
assigning a new value for the SigConp version shall require a
St andards Action. Values are thus assigned only for Standards Track

RFCs approved by the | ESG
12. Acknow edgenents
Thanks to

Abi gail Surtees
Mark A West

Law ence Conr oy
Christian Schmi dt
Max Ri ege
Lars-Eri k Jonsson
St ef an For sgren
Krister Svanbro
M guel Garcia
Chri st opher C anton
Khi em Le

Ka Cheong Leung
Robert Sugar

for valuable input and review.
13. References

13.1. Normative References

[RFC-1662] Sinmpson, W, "PPP in HDLC-|like Fram ng", STD 51, RFC

1662, July 1994.

[RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC-3174] Eastlake, 3rd, D. and P. Jones, "US Secure Hash Al gorithm

1 (SHA1)", RFC 3174, Septenber 2001.
13.2. Informative References

[RFC-1951] Deutsch, P., "DEFLATE Conpressed Data Format

Specification version 1.3", RFC 1951, May 1996.

[RFC-2026] Bradner, S., "The Internet Standards Process - Revision

3", BCP 9, RFC 2026, Cctober 1996.

[RFC-2279] Yergeau, F., "UTF-8, a transformation format
10646", RFC 2279, January 1998.

Price, et. al. St andards Track

of 1SO

[Page 59]

RFC 3320

14.

Price, et. al.

[RFC- 2326]

[RFC- 2434]

[RFC- 2960]

[RFC- 3261]

[RFC- 3321]

Aut hor s’

Si gnal i ng Conpressi on (Si gConp) January 2003

Schul zrinne, H, Rao, A and R Lanphier, "Real Tine
Stream ng Protocol (RTSP)", RFC 2326, April 1998.

Alvestrand, H and T. Narten, "Cuidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 2434,
Cct ober 1998.

Stewart, R, Xie, Q, Mrneault, K, Sharp, C

Schwart zbauer, H., Taylor, T., Rytina, |I., Kalla, M,
Zhang, L. and V. Paxson, "Stream Control Transni ssion
Protocol ", RFC 2960, October 2000.

Rosenberg, J., Schul zrinne, H, Canmarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M and E

School er, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.

Hannu, H., Christoffersson, J., Forsgren, S., Leung,
K.-C, Liu, Z and R Price, "Signaling Conpression
(Si gComp) - Extended Qperations", RFC 3321, January
2003.

Addr esses

Ri chard Price

Roke Manor

Research Ltd

Ronmsey, Hants, SCb1 0ZN
United Ki ngdom

Phone: +44 1794 833681
EMai |l : richard. pri ce@ oke. co. uk

Car st en Bor mann
Uni versi taet Bremen TZI
Post f ach 330440
D- 28334 Brenen, Cernany

Phone: +49 421 218 7024
EMai |l : cabo@zi.org

St andards Track [Page 60]

RFC 3320

Si gnal i ng Conpressi on (Si gConp)

Jan Christoffersson

Box 920

Eri csson AB

SE-971 28 Lul ea, Sweden

Phone: +46 920 20 28 40

EMai | : jan.christoffersson@pl.ericsson.se
Hans Hannu

Box 920

Eri csson AB

SE-971 28 Lul ea, Sweden

Phone: +46 920 20 21 84

EMai | : hans. hannu@pl . eri csson. se
Zhi gang Liu

Noki a Research Center

6000 Co
[rving,

Phone:
EMi | :

Jonat ha
dynam c
72 Eagl

nnection Drive
TX 75039

+1 972 894-5935
zhi gang. c. | i u@oki a. com

n Rosenberg
sof t
e Rock Avenue

Fi rst Fl oor

East Ha
EMai | :
Price, et.

nover, NJ 07936

j drosen@ynam csoft.com

al . St andards Track

January 2003

[Page 61]

RFC 3320 Si gnal i ng Conpressi on (Si gConp) January 2003

15. Full Copyright Statenent
Copyright (C The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Price, et. al. St andards Track [Page 62]

