Net wor k Wor ki ng Group S. Legg
Request for Comments: 3687 Adacel Technol ogi es
Cat egory: Standards Track February 2004

Li ght wei ght Directory Access Protocol (LDAP)
and X. 500 Component Matching Rul es

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2004). Al Rights Reserved.
Abst r act

The syntaxes of attributes in a Lightweight Directory Access Protoco
(LDAP) or X.500 directory range fromsinple data types, such as text
string, integer, or boolean, to conplex structured data types, such
as the syntaxes of the directory schema operational attributes.

Mat ching rul es defined for the conplex syntaxes usually only provide
the nost i mediately useful matching capability. This docunent
defines generic matching rules that can match any user sel ected
conponent parts in an attribute value of any arbitrarily conpl ex
attribute syntax.

Legg St andards Track [Page 1]

RFC 3687 LDAP and X. 500 Component WMatching Rul es

Tabl e of Contents

1
2.
3

oo A

R © 0~
bo X!

13.
14.

Legg

February 2004

I ntroduction . 3
Convent i ons. . 4
CbnponentAssert|on S 5
3.1. Conponent Reference . . 6
3.1.1. Conponent Type Subst|tut|ons Coe .7
3.1.2. Referencing SET, SEQUENCE and C}K]CE Conponents. 8
3.1.3. Referencing SET OF and SEQUENCE OF Conponents. 9
3.1.4. Referencing Conponents of Paraneterized Types. . 10
3.1.5. Conponent Referencing Exanpl e. G e 10
3.1.6. Referencing Conponents of Qpen Types . 12
3.1.6.1. Open Type Referencing Exanpl e . 12

3.1.7. Referencing Contained Types. . .. 14
3.1.7.1. Contained Type ReferenC|ng Exanple .. 14

3.2. Matching of Conponents 15
3.2.1. Applicability of EX|st|ng thch|ng Rules R
3.2.1.1. String Matchingo 17

3.2.1.2. Tel ephone Nunber Nhtch|ng .o 17

3.2.1.3. Distinguished Name Matching . 18

3.2.2. Additional Useful Matching Rules . 18
3.2.2.1. The rdnMatch Matching Rule. 18

3.2.2.2. The presentMatch Matching Rule. 19

3.2.3. Summary of Useful Nhtch|ng Rul es . .o 20
Conponent Fil ter. . 21
The conponentFllterNhtch Nhtch|ng Rule . 22
Equal ity Matchi ng of Conpl ex Conponents. 24
6.1. The OpenAssertionType Syntax 24
6.2. The all Conponent svatch Mat chi ng Rule . - 25
6.3. Deriving Conponent Equality Matching Rules . 27
6.4. The directoryConponentshatch Nhtch|ng Rul e . 28
Conponent Mat chi ng Exanpl es. . 30
Security Consi derations. 37
Acknowl edgenents . 37
| ANA Consi derations. 37
Ref erences . 38
11.1. Normative References 38
11.2. Informative References. 40
Intell ectual Property Statenent. 40
Aut hor’ s Address . . 41
Ful I Copyri ght Statenent 42
St andards Track [Page 2]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

1

| ntroducti on

The structure or data type of data held in an attribute of a

Li ght wei ght Directory Access Protocol (LDAP) [7] or X 500 [19]
directory is described by the attribute’s syntax. Attribute syntaxes
range fromsinple data types, such as text string, integer, or

bool ean, to conplex data types, for exanple, the syntaxes of the
directory schema operational attributes.

In X. 500, the attribute syntaxes are explicitly described by Abstract
Syntax Notation One (ASN. 1) [13] type definitions. ASN 1 type
notati on has a nunmber of sinple data types (e.g., PrintableString,

| NTEGER, BOOLEAN), and conbining types (i.e., SET, SEQUENCE, SET OF
SEQUENCE OF, and CHO CE) for constructing arbitrarily conplex data
types from sinpler conponent types. |In LDAP, the attribute syntaxes
are usual ly described in Augnented Backus-Naur Form (ABNF) [2],
though there is an inplied association between the LDAP attri bute
syntaxes and the X. 500 ASN. 1 types. To a large extent, the data
types of attribute values in either an LDAP or X. 500 directory are
described by ASN. 1 types. This formal description can be exploited
to identify conmponent parts of an attribute value for a variety of
purposes. This docunent addresses attribute val ue matching.

Wth any conplex attribute syntax there is normally a requirenent to
partially match an attribute value of that syntax by matching only
sel ected components of the value. Typically, matching rules specific
to the attribute syntax are defined to fill this need. These highly
specific matching rules usually only provide the nost i mediately
useful matching capability. Sone conplex attribute syntaxes don't
even have an equality matching rule | et alone any additional matching
rules for partial matching. This docunment defines a generic way of
mat chi ng user sel ected conmponents in an attribute value of any
arbitrarily conplex attribute syntax, where that syntax is described
using ASN. 1 type notation. Al of the type notations defined in

X. 680 [13] are supported.

Section 3 describes the Conponent Assertion, a testable assertion
about the value of a conponent of an attribute value of any conpl ex
synt ax.

Section 4 introduces the ConmponentFilter assertion, which is an
expression of Conponent Assertions. The ConponentFilter enables nore
powerful filter matching of components in an attribute val ue.

Section 5 defines the componentFilterMatch matching rule, which
enabl es a ConponentFilter to be eval uated against attribute val ues.

Legg St andards Track [Page 3]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Section 6 defines matching rules for conponent-w se equality matching
of attribute values of any syntax described by an ASN. 1 type
definition.

Exampl es showi ng the usage of componentFilterMatch are in Section 7.

For a new attribute syntax, the Generic String Encoding Rules [9] and
the specifications in sections 3 to 6 of this docunment nmake it
possible to fully and precisely define the LDAP-specific encoding,
the LDAP and X. 500 binary encodi ng (and possi bly other ASN. 1
encodings in the future), a suitable equality matching rule, and a
conpr ehensi ve coll ecti on of conponent matching capabilities, by
simply witing down an ASN. 1 type definition for the syntax. These
implicit definitions are also automatically extended if the ASN. 1
type is later extended. The algorithnic relationship between the
ASN. 1 type definition, the various encodi ngs and the conponent

mat chi ng behavi our makes directory server inplenentation support for
the conponent matching rules anenable to autonatic code generation
fromASN 1 type definitions.

Schema designers have the choice of storing related itens of data as
a single attribute value of a conplex syntax in sonme entry, or as a
subordinate entry where the related data itens are stored as separate
attribute values of sinpler syntaxes. The inability to search
conponent parts of a conplex syntax has been used as an argunent for
favouring the subordinate entri es approach. The conponent natching
rul es provide the anal ogous matching capability on an attribute val ue
of a conplex syntax that a search filter has on a subordinate entry.

Most LDAP synt axes have corresponding ASN. 1 type definitions, though
they are usually not reproduced or referenced al ongside the fornal
definition of the LDAP syntax. Syntaxes defined with only a
character string encoding, i.e., without an explicit or inplied
correspondi ng ASN. 1 type definition, cannot use the conponent

mat chi ng capabilities described in this docunent unless and until a
semantically equivalent ASN. 1 type definition is defined for them

2. Conventions
Thr oughout this docunment "type" shall be taken to mean an ASN. 1 type
unl ess explicitly qualified as an attribute type, and "val ue" shal

be taken to mean an ASN. 1 val ue unless explicitly qualified as an
attribute val ue.

Legg St andards Track [Page 4]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Note that "ASN. 1 val ue" does not nean a Basic Encodi ng Rul es (BER)
[17] encoded value. The ASN. 1 value is an abstract concept that is
i ndependent of any particular encoding. BER is just one possible
encodi ng of an ASN.1 value. The conponent matching rul es operate at
the abstract |evel w thout regard for the possible encodings of a
val ue.

Attribute type and matching rule definitions in this docunent are
provided in both the X 500 [10] and LDAP [4] description formats.
Note that the LDAP descriptions have been rendered with additiona
white-space and |ine breaks for the sake of readability.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED' and "MAY" in this document are
to be interpreted as described in BCP 14, RFC 2119 [1]. The key word
"OPTIONAL" is exclusively used with its ASN. 1 neani ng.

3. Component Assertion

A Conponent Assertion is an assertion about the presence, or val ues
of , components within an ASN.1 value, i.e., an instance of an ASN. 1
type. The ASN.1 value is typically an attribute value, where the
ASN. 1 type is the syntax of the attribute. However, a

Conponent Assertion may al so be applied to a conponent part of an
attribute value. The assertion evaluates to either TRUE, FALSE or
Undefined for each tested ASN. 1 val ue.

A Component Assertion is described by the followi ng ASN. 1 type
(assumed to be defined with "EXPLICIT TAGS" in force):

Conponent Assertion ::= SEQUENCE {
conponent Conponent Ref erence (S| ZE(1..MAX)) OPTI ONAL
useDef aul t Val ues BOOLEAN DEFAULT TRUE
rule MATCHI NG RULE. & d
val ue MATCHI NG RULE. &Asserti onType }
Conponent Ref erence ::= UTF8String

MATCHI NG RULE. & d equates to the OBJECT | DENTI FI ER of a matching
rule. MATCH NG RULE. &AssertionType is an open type (formerly known
as the ANY type).

The "conmponent" field of a Conponent Assertion identifies which
conponent part of a value of some ASN. 1 type is to be tested, the
"useDef aul t Val ues" field indicates whether DEFAULT val ues are to be
substituted for absent conmponent values, the "rule" field indicates

Legg St andards Track [Page 5]

RFC 3687

how t he conponent

asserted ASN.1 val ue agai nst which the conponent

is to be tested,

LDAP and X. 500 Component WMatching Rul es

and the "val ue"

is tested.

February 2004

field is an
The

ASN. 1 type of the asserted value is determ ned by the chosen rule.

The fields of a Conponent Assertion are described in detai

foll owi ng secti ons.

3. 1.

Conponent Refer

ence

in the

The conponent field in a ConponentAssertion is a UTF-8 character

string [6] whose textua

cont ent

i s a conponent

r ef erence,

identifying a conponent part of sone ASN. 1 type or value. A

conponent

reference conforns to the foll owing ABNF [2],

the notation defined in C ause 14 of X 680 [13]:

Legg

conponent -r ef er
Conponent I d

identifier

al phanuneri c
upper case

| ower case
hyphen

from begi nni ng
count

fromend

cont ent

sel ect

al

posi tive- numnber

decimal -digit
non-zero-digit

ence

ConponentId *(".
identifier /

from begi nning /

count /

fromend /
content /

sel ect /
al

whi ch ext ends

Conponent I d)

; extends C ause 14
; extends C ause 14
; extends C ause 14

| ower case *al phanuneric

*(hyphen 1*al phanuneri c)

%x41- 5A
Mx61- 7A

" Ou

"y n

%% 30- 39
% 31- 39

uppercase /

non-zero-digit

e
"a

n 7w
"z

to
to

posi tive-nunber

-" positive-nunmber
%63. 6F. 6E. 74. 65. 6E. 74 ;
“(" Value *("," Value)

" "
nn

n 9||
n 9||

to
to

St andards Track

| owercase / decinal-digit

‘content"”

.y

*deci mal -di gi t

[Page 6]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

An <identifier> conforms to the definition of an identifier in ASN 1
notation (Clause 11.3 of X. 680 [13]). It begins with a | owercase
letter and is followed by zero or nore letters, digits, and hyphens.
A hyphen is not pernmitted to be the last character and a hyphen is
not permtted to be foll owed by another hyphen

The <Value> rule is described by the Generic String Encodi ng Rul es
(GSER) [9].

A component reference is a sequence of one or nore Conponentlds where
each successive Componentld identifies either an inner conponent at
the next |evel of nesting of an ASN. 1 conbining type, i.e., SET,
SEQUENCE, SET OF, SEQUENCE OF, or CHO CE, or a specific type within
an ASN. 1 open type

A component reference is always considered in the context of a
particul ar conplex ASN. 1 type. Wen applied to the ASN. 1 type the
conponent reference identifies a specific conponent type. Wen
applied to a value of the ASN. 1 type a conponent reference identifies
zero, one or nore conponent values of that conponent type. The
conponent values are potentially in a DEFAULT value if
useDef aul t Val ues is TRUE. The specific conponent type identified by
the conponent reference determ nes what matching rul es are capabl e of
bei ng used to match the conponent val ues.

The conponent field in a Conponent Assertion nmay al so be absent, in
whi ch case the identified component type is the ASN. 1 type to which
the Conponent Assertion is applied, and the identified conponent val ue
is the whole ASN. 1 val ue.

A valid conmponent reference for a particular conplex ASN. 1 type is
constructed by starting with the outernost comnbining type and
repeatedly selecting one of the permissible forns of Conponentlid to
identify successively deeper nested components. A component
reference MAY identify a conponent with a conplex ASN. 1 type, i.e.
it is not required that the conmponent type identified by a conponent
reference be a sinple ASN. 1 type

3.1.1. Conponent Type Substitutions

ASN. 1 type notation has a nunber of constructs for referencing other
defined types, and constructs that are irrelevant for natching
purposes. These constructs are not represented in a conponent
reference in any way and substitutions of the conponent type are
performed to elimnate themfromfurther consideration. These
substitutions automatically occur prior to each Componentld, whether
constructing or interpreting a conponent reference, but do not occur
after the | ast Conponentld, except as allowed by Section 3.2.

Legg St andards Track [Page 7]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

If the ASN.1 type is an ASN. 1 type reference then the conponent type
is taken to be the actual definition on the right hand side of the
type assignnent for the referenced type.

If the ASN.1 type is a tagged type then the conmponent type is taken
to be the type without the tag

If the ASN.1 type is a constrained type (see X 680 [13] and X 682
[15] for the details of ASN. 1 constraint notation) then the conponent
type is taken to be the type wi thout the constraint.

If the ASN. 1 type is an Ohjectd assFi el dType (C ause 14 of X 681
[14]) that denotes a specific ASN.1 type (e.g., MATCH NG RULE. & d
denotes the OBJECT | DENTI FI ER type) then the conponent type is taken
to be the denoted type. Section 3.1.6 describes the case where the
nj ect C assFi el dType denotes an open type.

If the ASN.1 type is a selection type other than one used in the |ist
of conmponents for a SET or SEQUENCE type then the conponent type is
taken to be the selected alternative type fromthe naned CHO CE

If the ASN.1 type is a TypeFrombject (C ause 15 of X 681 [14]) then
the conponent type is taken to be the denoted type.

If the ASN. 1 type is a ValueSetFrontbjects (C ause 15 of X 681 [14])
then the conponent type is taken to be the governing type of the
denot ed val ues.

3.1.2. Referencing SET, SEQUENCE and CHO CE Components

If the ASN. 1 type is a SET or SEQUENCE type then the <identifier>
form of Componentld may be used to identify the conmponent type within
that SET or SEQUENCE having that identifier. |If <identifier>

ref erences an OPTI ONAL comnponent type and that conponent is not
present in a particular value then there are no correspondi ng
conponent values. |[If <identifier> references a DEFAULT conponent
type and useDefaultValues is TRUE (the default setting for
useDef aul t Val ues) and that conponent is not present in a particular
val ue then the component value is taken to be the default value. |If
<identifier> references a DEFAULT conponent type and useDef aul t Val ues
is FALSE and that conponent is not present in a particular value then
there are no correspondi ng conponent val ues.

If the ASN.1 type is a CHO CE type then the <identifier> form of
Conponent|ld nay be used to identify the alternative type within that
CHO CE having that identifier. |If <identifier> references an
alternative other than the one used in a particular value then there
are no correspondi ng conponent val ues.

Legg St andards Track [Page 8]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

The COVPONENTS OF notation in Clause 24 of X 680 [13] augnents the
defined list of conmponents in a SET or SEQUENCE type by including al
the components of another defined SET or SEQUENCE type respectively.
These included conponents are referenced directly by identifier as
though they were defined in-line in the SET or SEQUENCE type
cont ai ni ng the COVPONENTS OF notation

The Sel ectionType (C ause 29 of X. 680 [13]), when used in the |ist of
conponents for a SET or SEQUENCE type, includes a single conponent
froma defined CHO CE type. This included conponent is referenced
directly by identifier as though it was defined in-line in the SET or
SEQUENCE type

The REAL type is treated as though it is the SEQUENCE type defined in
Clause 20.5 of X 680 [13].

The EMBEDDED PDV type is treated as though it is the SEQUENCE type
defined in Cause 33.5 of X 680 [13].

The EXTERNAL type is treated as though it is the SEQUENCE type
defined in Cause 8.18.1 of X 690 [17].

The unrestricted CHARACTER STRING type is treated as though it is the
SEQUENCE type defined in C ause 40.5 of X 680 [13].

The I NSTANCE OF type is treated as though it is the SEQUENCE type
defined in Annex C of X 681 [14].

The <identifier> form MJUST NOT be used on any other ASN. 1 type.
3.1.3. Referencing SET OF and SEQUENCE OF Components

If the ASN.1 type is a SET OF or SEQUENCE OF type then the
<from begi nni ng>, <fromend> <count> and <all> forns of Conponentld
may be used.

The <from begi nning> form of Conponentld may be used to identify one
instance (i.e., value) of the conponent type of the SET COF or
SEQUENCE OF type (e.g., if Foo ::= SET OF Bar, then Bar is the
conponent type), where the instances are nunbered from one upwards.

I f <from begi nning> references a higher nunbered instance than the

| ast instance in a particular value of the SET OF or SEQUENCE OF type
then there is no correspondi ng conponent val ue.

The <from end> form of Conponentld nay be used to identify one

i nstance of the conponent type of the SET OF or SEQUENCE OF type,
where "-1" is the last instance, "-2" is the second | ast instance,

Legg St andards Track [Page 9]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

and so on. |If <fromend> references a | ower nunbered instance than
the first instance in a particular value of the SET OF or SEQUENCE OF
type then there is no correspondi ng component val ue.

The <count> form of Conponentld identifies a notional count of the
nunber of instances of the conponent type in a value of the SET COF or
SEQUENCE OF type. This count is not explicitly represented but for
mat chi ng purposes it has an assuned ASN. 1 type of | NTEGER (0..MAX).

A Conponentld of the <count> form if used, MJST be the | ast
Conponentld in a component reference.

The <all > form of Conponentld nmay be used to sinmultaneously identify
all instances of the conponent type of the SET OF or SEQUENCE OF
type. It is through the <all> formthat a conponent reference can
identify nore than one conmponent value. However, if a particular

val ue of the SET OF or SEQUENCE OF type is an enpty list, then there
are no correspondi ng conponent val ues.

Where nul tiple conponent values are identified, the renmining
Conponentlds in the conponent reference, if any, can identify zero,
one or nore subconponent values for each of the higher |eve
conponent val ues.

The corresponding ASN. 1 type for the <from begi nning>, <from end>,
and <all> forns of Conponentld is the conponent type of the SET OF or
SEQUENCE OF type

The <from begi nni ng>, <count>, <fromend> and <all> fornms MJUST NOT be
used on ASN.1 types other than SET OF or SEQUENCE OF

3.1.4. Referencing Conponents of Paraneterized Types
A component reference cannot be fornmed for a paraneterized type
unl ess the type has been used with actual paraneters, in which case
the type is treated as though the DumyRef erences [16] have been
substituted with the actual paraneters.

3.1.5. Conponent Referencing Exanpl e

Consider the following ASN. 1 type definitions.

Exanpl eType ::= SEQUENCE {
partl [0] I NTEGER,
part 2 [1] Exanpl eSet,
part3 [2] SET OF OBJECT | DENTI FI ER
part4 [3] Exanpl eChoi ce }

Legg St andards Track [Page 10]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Exanmpl eSet ::= SET {
option Printabl eString,
setting BOCLEAN }

Exampl eChoi ce ::= CHO CE {

eeny-nmeeny BIT STRI NG
n ney- no OCTET STRI NG }

Fol | owi ng are conponent references constructed with respect to the
type Exanpl eType

The conponent reference "partl" identifies a conponent of a val ue of
Exanpl eType having the ASN. 1 tagged type [0] | NTEGER

The conponent reference "part2" identifies a conponent of a val ue of
Exampl eType having the ASN. 1 type of [1] Exanpl eSet

The conponent reference "part2.option” identifies a conponent of a
val ue of Exanpl eType having the ASN. 1 type of PrintableString. A
Conponent Assertion could also be applied to a value of ASN. 1 type
Exanpl eSet, in which case the conmponent reference "option" would
identify the sane kind of information

The conponent reference "part3" identifies a conponent of a val ue of
Exanpl eType having the ASN. 1 type of [2] SET OF OBJECT | DENTI FI ER

The conponent reference "part3.2" identifies the second instance of
the part3 SET OF. The instance has the ASN. 1 type of OBJECT
| DENTI FI ER

The conponent reference "part3.0" identifies the count of the nunber
of instances in the part3 SET OF. The count has the corresponding
ASN. 1 type of | NTEGER (0..MAX).

The conponent reference "part3.*" identifies all the instances in the
part3 SET OF. Each instance has the ASN. 1 type of OBJECT | DENTI FI ER

The conponent reference "part4" identifies a conponent of a val ue of
Exanpl eType having the ASN. 1 type of [3] Exanpl eChoice.

The conponent reference "part4. mney-np" identifies a conponent of a
val ue of Exanpl eType having the ASN. 1 type of OCTET STRI NG

Legg St andards Track [Page 11]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

3.1.6. Referencing Conponents of Open Types

If a sequence of Conponentlds identifies an ObjectC assFiel dType
denoti ng an open type (e.g., ATTRI BUTE. &Type denotes an open type)
then the ASN. 1 type of the conponent varies. An open type is
typically constrai ned by sonme other conponent(s) in an outer

encl osing type, either formally through the use of a conponent
relation constraint [15], or informally in the acconmpanying text, so
the actual ASN. 1 type of a value of the open type will generally be
known. The constraint will also limt the range of pernissible
types. The <select> form of Conponentld nmay be used to identify one
of these perm ssible types in an open type. Subconmponents of that
type can then be identified with further Conponentlds.

The ot her conponents constraining the open type are terned the

ref erenced conponents [15]. The <select> formcontains a |list of one
or nore val ues which take the place of the value(s) of the referenced
conponent(s) to uniquely identify one of the permi ssible types of the
open type.

VWere the open type is constrai ned by a conponent rel ation
constraint, there is a <Value> in the <select> formfor each of the
ref erenced conponents in the conponent relation constraint, appearing
in the same order. The ASN. 1 type of each of these values is the
sanme as the ASN. 1 type of the corresponding referenced conponent.
The type of a referenced conponent is potentially any ASN. 1 type
however it is typically an OBJECT | DENTI FI ER or | NTEGER, whi ch means
that the <Value> in the <select> formof Conponentld will nearly

al ways be an <CbjectldentifierValue> or <IntegerValue> [9].
Furthernore, conponent relation constraints typically have only one
ref erenced conponent.

Were the open type is not constrained by a component relation
constraint, the specification introducing the syntax containing the
open type should explicitly nom nate the referenced conponents and
their order, so that the <select> form can be used.

If an instance of <select> contains a value other than the val ue of
the referenced conmponent used in a particular value of the outer
encl osing type then there are no correspondi ng conponent val ues for
the open type.

3.1.6.1. Open Type Referencing Exanple

The ASN. 1 type AttributeTypeAndVal ue [10] describes a single
attribute value of a nom nated attribute type.

Legg St andards Track [Page 12]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

AttributeTypeAndVal ue ::= SEQUENCE ({
type ATTRI BUTE. & d ({SupportedAttributes}),
val ue ATTRI BUTE. &Type ({SupportedAttributes}{@ype}) }

ATTRI BUTE. & d denotes an OBJECT | DENTI FI ER and
({SupportedAttri butes}) constrains the OBJECT IDENTIFIER to be a
supported attribute type.

ATTRI BUTE. &Type denotes an open type, in this case an attribute

val ue, and ({SupportedAttributes}{@ype}) is a component relation
constraint that constrains the open type to be of the attribute
syntax for the attribute type. The conponent rel ation constraint
references only the "type" conponent, which has the ASN. 1 type of
OBJECT I DENTIFIER, thus if the <select> form of Conmponentld is used
to identify attribute values of specific attribute types it will
contain a single OBJECT | DENTI FI ER val ue.

The conponent reference "value" on AttributeTypeAndVal ue refers to
the open type.

One of the X. 500 standard attributes is facsiml eTel ephoneNunber
[12], which is identified with the OBJECT IDENTIFIER 2.5.4.23, and is
defined to have the follow ng syntax.

Facsi m | eTel ephoneNunber ::= SEQUENCE {
t el ephoneNunber PrintableString(SlZE(L..ub-tel ephone-nunber)),
par aneters G3Facsi m | eNonBasi cPar anet ers OPTI ONAL }

The conponent reference "value.(2.5.4.23)" on AttributeTypeAndVal ue
specifies an attribute value with the Facsi m | eTel ephoneNunber
synt ax.

The conponent reference "val ue. (2.5.4.23).tel ephoneNurrber” on
AttributeTypeAndVal ue identifies the tel ephoneNunber conponent of a
facsi m | eTel ephoneNunber attribute value. The conmponent reference
"val ue. (facsi m | eTel ephoneNunber)" is equivalent to

"val ue. (2.5.4.23)".

If the AttributeTypeAndVal ue ASN. 1 val ue contains an attribute type
ot her than facsim | eTel ephoneNunber then there are no correspondi ng
conponent val ues for the conponent references "value.(2.5.4.23)" and
"val ue. (2.5. 4. 23).tel ephoneNunber".

Legg St andards Track [Page 13]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

3.1.7. Referencing Contained Types

Sonetinmes the contents of a BIT STRING or OCTET STRI NG val ue are
required to be the encodi ngs of other ASN. 1 val ues of specific ASN. 1
types. For exanple, the extnVal ue conponent of the Extension type
conponent in the Certificate type [11] is an OCTET STRING that is
required to contain a Distinguished Encoding Rules (DER) [17]
encoding of a certificate extension value. It is useful to be able
to refer to the enbedded encoded value and its conponents. An
enbedded encoded value is here referred to as a contai ned val ue and
its associated type as the contained type.

If the ASN.1 type is a BIT STRING or OCTET STRI NG type cont ai ni ng
encodi ngs of other ASN. 1 val ues then the <content> form of
Conponent |l d nay be used to identify the contained type.
Subcomponents of that type can then be identified with further
Conponent | ds.

The contai ned type nmay be (effectively) an open type, constrained by

sone ot her conponent in an outer enclosing type (e.g., in a
certificate Extension, extnValue is constrained by the chosen
extnld). 1In these cases the next Conponentld, if any, MJST be of the

<sel ect> form

For the purpose of building component references, the content of the
ext nVal ue OCTET STRING in the Extension type is assunmed to be an open
type having a notional conmponent relation constraint with the extnld
conponent as the single referenced conponent, i.e.,

EXTENSI ON. &Ext nType ({Ext ensi onSet }{ @xt nl d})

The dat a-val ue conponent of the associated types for the EMBEDDED PDV
and CHARACTER STRING types is an OCTET STRI NG contai ni ng the encoding
of a data value described by the identification component. For the
pur pose of building conponent references, the content of the

dat a-val ue OCTET STRING in these types is assuned to be an open type
havi ng a notional conponent relation constraint with the
identification component as the single referenced conponent.

3.1.7.1. Contained Type Referencing Exanple

The Extension ASN. 1 type [11] describes a single certificate
ext ensi on val ue of a noni nated extension type.

Legg St andards Track [Page 14]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Ext ensi on :: = SEQUENCE {
extnld EXTENSI ON. & d ({Extensi onSet}),
critical BOOLEAN DEFAULT FALSE
ext nvVal ue OCTET STRI NG
-- contains a DER encoding of a value of type &ExtnType
-- for the extension object identified by extnld -- }

EXTENSI ON. & d denotes an OBJECT | DENTI FI ER and ({ExtensionSet})
constrains the OBJECT IDENTIFIER to be the identifier of a supported
certificate extension.

The conponent reference "extnValue" on Extension refers to a
conponent type of OCTET STRING The correspondi ng conmponent val ues
wi Il be OCTET STRI NG val ues. The component reference
"extnVal ue. content” on Extension refers to the type of the contained
type, which in this case is an open type

One of the X. 509 [11] standard extensions is basicConstraints, which
is identified with the OBJECT | DENTIFIER 2.5.29.19 and is defined to
have the fol |l owi ng syntax.

Basi cConstrai nt sSyntax ::= SEQUENCE {
CA BOOLEAN DEFAULT FALSE
pat hLenConstrai nt | NTEGER (0.. MAX) OPTI ONAL }

The conponent reference "extnVal ue.content.(2.5.29.19)" on Extension
speci fies a Basi cConstrai ntsSyntax extensi on val ue and the conponent
ref erence "extnVal ue.content. (2.5.29.19).cA" identifies the cA
conponent of a Basi cConstraintsSyntax extension val ue.

3.2. Matching of Conponents

The rule in a Conponent Assertion specifies howthe zero, one or nore
conponent values identified by the conmponent reference are tested by
the assertion. Attribute matching rules are used to specify the
semantics of the test.

Each matching rule has a notional set of attribute syntaxes
(typically one), defined as ASN. 1 types, to which it may be applied.
VWhen used in a Component Assertion these matching rules apply to the
same ASN. 1 types, only in this context the corresponding ASN. 1 val ues
are not necessarily conplete attribute val ues.

Note that the referenced conponent type nmay be a tagged and/ or
constrained version of the expected attribute syntax (e.g.

[0] I NTEGER, whereas integerMatch woul d expect sinply INTEGER), or an
open type. Additional type substitutions of the kind described in

Legg St andards Track [Page 15]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Section 3.1.1 are perfornmed as required to reduce the conponent type
to the sanme type as the attribute syntax expected by the matching
rul e.

If a mtching rule applies to nmore than one attribute syntax (e.g.
obj ectldentifierFirstConponent Match [12]) then the m ni nrum nunber of
substitutions required to conformto any one of those syntaxes is
performed. |f a matching rule can apply to any attribute syntax
(e.g., the all ComponentsMatch rule defined in Section 6.2) then the
ref erenced conponent type is used as is, with no additiona
substitutions.

The value in a ConponentAssertion will be of the assertion syntax
(i.e., ASN. 1 type) required by the chosen matching rule. Note that
the assertion syntax of a matching rule is not necessarily the sane
as the attribute syntax(es) to which the rule nmay be appli ed.

Sone mat ching rules do not have a fixed assertion syntax (e.g.

al | ComponentsMatch). The required assertion syntax is deternmned in
each instance of use by the syntax of the attribute type to which the
matching rule is applied. For these rules the ASN. 1 type of the

ref erenced conponent is used in place of an attribute syntax to

deci de the required assertion syntax.

The Conponent Assertion is Undefined if:

a) the matching rule in the Conponent Assertion is not known to the
eval uati ng procedure,

b) the matching rule is not applicable to the referenced conponent
type, even with the additional type substitutions,

c) the value in the Conponent Asserti on does not conformto the
assertion syntax defined for the matching rule,

d) some part of the conponent reference identifies an open type in
the tested val ue that cannot be decoded, or

e) the inplenentati on does not support the particul ar conbi nation of
conponent reference and mat ching rule.

I f the ConponentAssertion is not Undefined then the

Conponent Assertion evaluates to TRUE if there is at |east one
conponent val ue for which the matching rule applied to that conponent
val ue returns TRUE, and eval uates to FALSE ot herw se (which includes
the case where there are no component val ues).

Legg St andards Track [Page 16]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

3.2.1. Applicability of Existing Matching Rul es
3.2.1.1. String Matching

ASN. 1 has a nunber of built in restricted character string types with
di fferent character sets and/or different character encodings. A
directory user generally has little interest in the particular
character set or encoding used to represent a character string
conponent val ue, and sone directory server inplenmentations nmake no

di stinction between the different string types in their interna
representation of values. So rather than define string matching
rules for each of the restricted character string types, the existing
case ignore and case exact string matching rules are extended to
apply to component values of any of the restricted character string
types and any ChoiceOf Strings type [9], in addition to conponent
values of the DirectoryString type. This extension is only for the
pur poses of component mat chi ng described in this document.

The rel evant string matching rules are: casel gnoreMatch,

casel gnoreOrderi ngMat ch, casel gnoreSubstri ngsiatch, caseExact Mat ch,
caseExact Orderi nghvat ch and caseExact SubstringsMatch. The rel evant
restricted character string types are: NunericString,

Printabl eString, VisibleString, 1A5String, UTF8String, BMPString,
Uni versal String, TeletexString, VideotexString, GaphicString and
CGeneral String. A ChoiceOStrings type is a purely syntactic CHO CE
of these ASN.1 string types. Note that GSER [9] decl ares each and
every use of the DirectoryString{} parameterized type to be a

Choi ceOF Strings type.

The assertion syntax of the string matching rules is stil
DirectoryString regardl ess of the string syntax of the conponent
bei ng mat ched. Thus an inplenmentation will be called upon to conpare
a DirectoryString value to a value of one of the restricted character
string types, or a ChoiceO'Strings type. As is the case when
conparing two DirectoryStrings where the chosen alternatives are of
different string types, the conparison proceeds so |long as the
correspondi ng characters are representable in both character sets.

O herwi se matching returns FALSE

3.2.1.2. Tel ephone Nunmber WMatching

Early editions of X 520 [12] gave the syntax of the tel ephoneNunber
attribute as a constrained PrintableString. The fourth edition of
X. 520 equates the ASN. 1 type nanme Tel ephoneNunber to the constrained
Printabl eString and uses Tel ephoneNunber as the attribute and
assertion syntax. For the purposes of conponent natching,

Legg St andards Track [Page 17]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

t el ephoneNunber Mat ch and t el ephoneNunber Substri ngsMatch are pernitted
to be applied to any PrintableString value, as well as to
Tel ephoneNunber val ues.

3.2.1.3. Distingui shed Name Mat chi ng

The Distingui shedNane type is defined by assignment to be the sane as
the RDNSequence type, however RDNSequence is sonetinmes directly used
in other type definitions. For the purposes of component matching,

di stingui shedNaneMatch is also permitted to be applied to val ues of
the RDNSequence type.

3.2.2. Additional Useful Matching Rules
This section defines additional nmatching rules that may prove usefu
i n Conponent Assertions. These rules may al so be used in
ext ensi bl eMatch search filters [3].

3.2.2.1. The rdnMatch Matching Rule
The di stingui shedNaneMat ch nmatching rul e can nmatch whol e
di stingui shed nanmes but it is sometinmes useful to be able to match
specific Relative Distinguished Names (RDNs) in a Distingui shed Nane
(DN) without regard for the other RDNs in the DN. The rdnMatch
mat ching rul e all ows conponent RDNs of a DN to be tested.
The LDAP-style definitions for rdnMatch and its assertion syntax are:

(1.2.36.79672281.1.13.3 NAME ’'rdniat ch
SYNTAX 1.2.36.79672281.1.5.0)

(1.2.36.79672281.1.5.0 DESC ' RDN)

The LDAP-specific encoding for a value of the RDN syntax is given by
the <Rel ativeDi sti ngui shedNaneVal ue> rule [9].

The X. 500-style definition for rdnMatch is:

rdnivat ch MATCHI NG RULE :: = {
SYNTAX Rel ativeDi stingui shedNane
I D { 12 36 79672281 1 13 3} }

The rdnMatch rul e evaluates to true if the conponent val ue and
assertion value are the same RDN, using the same RDN conpari son
met hod as di sti ngui shedNanmeMat ch.

Legg St andards Track [Page 18]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

When using rdnMatch to match conponents of DNs it is inmportant to
note that the LDAP-specific encoding of a DN [5] reverses the order
of the RDNs. So for the DN represented in LDAP as

"cn=St even Legg, o=Adacel,c=AU"', the RDN "cn=Steven Legg" corresponds
to the component reference "3", or alternatively, "-1".

3.2.2.2. The presentMatch Matching Rul e
At tinmes it would be useful to test not if a specific value of a
particul ar conponent is present, but whether any value of a
particul ar conponent is present. The presentMatch matching rule
all ows the presence of a particular conponent value to be tested.

The LDAP-style definitions for presentMatch and its assertion syntax
are:

(1.2.36.79672281.1.13.5 NAME '’ present Mat ch
SYNTAX 1.2.36.79672281.1.5.1)

(1.2.36.79672281.1.5.1 DESC ' NULL')

The LDAP-specific encoding for a value of the NULL syntax is given by
the <Null Val ue> rule [9].

The X. 500-style definition for presentMatch is:

present Mat ch MATCHI NG RULE :: = {
SYNTAX NULL
ID { 12 36 79672281 1 13 5} }

When used in a extensible match filter item presentMatch behaves

li ke the "present"” case of a regular search filter. 1In a

Conponent Assertion, presentMatch evaluates to TRUE if and only if the
conponent reference identifies one or nore conponent val ues,

regardl ess of the actual component val ue contents. Note that if
useDefaul tValues is TRUE then the identified conponent val ues may be
(part of) a DEFAULT val ue.

The notional count referenced by the <count> form of Conponentld is
taken to be present if the SET OF value is present, and absent
otherwise. Note that in ASN.1 notation an absent SET OF value is
distinctly different froma SET OF value that is present but enpty.

It is up to the specification using the ASN.1 notation to decide

whet her the distinction nmatters. Oten an enpty SET OF conponent and
an absent SET OF conponent are treated as semantically equival ent.

If a SET OF value is present, but enmpty, a presentMatch on the SET OF
conponent SHALL return TRUE and the notional count SHALL be regarded
as present and equal to zero.

Legg St andards Track [Page 19]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

3.2.3. Summary of Useful Matching Rules

The following is a non-exhaustive list of useful matching rules and
the ASN. 1 types to which they can be applied, taking account of all
the extensions described in Section 3.2.1, and the new matching rul es
defined in Section 3.2.2.

| Matching Rule | ASN. 1 Type |
| bitStringMatch | BIT STRI NG |
o e m e e e e e e e e e oo oo o e m e e e e e e e e +
| bool eanMat ch | BOOLEAN |
' e +
casel gnoreiat ch	NunericString
casel gnoreOrderi nghat ch	PrintableString
casel gnoreSubstringshatch	VisibleString (1S0646String)
caseExact Match	1A5String
caseExact OrderinghVatch	UTF8String
caseExact SubstringsMatch	BMPString (UCS-2, UN CODE)
	Universal String (UCS-4)
	TeletexString (T61String)
	VideotexString
	GraphicString
	General String
	any Choicef Strings type
e S +	
casel gnorel ASMat ch	1'A5String
caseExact	AS5Mat ch
o e m e e e e e e e e e oo oo o e m e e e e e e e e +	
distingui shedNaneMat ch	Distingui shedNane
	RDNSequence
e ' +	
generalizedTi meMat ch	CGeneralizedTinme
generalizedTi meOrderi nghat ch	
o e m e e e e e e e e e oo oo o e m e e e e e e e e +	
integerMatch	
integerOderingMatch	
e e +	
numericStringMatch	NumericString
numericStringOrderinghat ch	
numericStringSubstringsiatch	
e S +	
objectldentifierMatch	OBJECT
e e +

| octetStringMatch |
| octetStringOrderingMatch |
| octetStringSubstringsMatch |

OCTET STRI NG

Legg St andards Track [Page 20]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

e e +
| present Match | any ASN. 1 type

Fo oo o +
| rdniMatch | Rel ativeDbDi stingui shedName

o e m e e e e e e e e e o e m e e e e e e e e +
| tel ephoneNunber Mat ch | PrintableString

| tel ephoneNunber Substringsvatch | Tel ephoneNunber
oo e +
| uTCTi meMat ch | UTCTi e

| uTCTi meOrderi nghat ch |

o e m e e e e e e e e e o e m e e e e e e e e +

Note that the all ConponentsMatch matching rule defined in Section 6.2
can be used for equality matching of val ues of the ENUVERATED, NULL
REAL and RELATIVE-O D ASN.1 types, anong ot her things.

4. ConponentFilter

The Conponent Assertion allows the value(s) of any one conponent type

in a conplex ASN.1 type to be matched, but there is often a desire to
mat ch the val ues of nore than one conponent type. A ConponentFilter

is an assertion about the presence, or values of, multiple conmponents
within an ASN. 1 val ue.

The ConponentFilter assertion, an expression of Component Assertions,
eval uates to either TRUE, FALSE or Undefined for each tested ASN. 1
val ue.

A ComponentFilter is described by the following ASN. 1 type (assumed
to be defined with "EXPLICIT TAGS" in force):

ConponentFilter ::= CHO CE {
item [0O] ConponentAssertion
and [1] SEQUENCE OF ConponentFilter,
or [2] SEQUENCE OF ConponentFilter,
not [3] ConponentFilter }

Not e: despite the use of SEQUENCE OF i nstead of SET OF for the "and"
and "or" alternatives in ConponentFilter, the order of the conponent
filters is not significant.

A ConponentFilter that is a Conponent Assertion evaluates to TRUE if

the Conponent Assertion is TRUE, evaluates to FALSE if the
Conponent Assertion is FALSE, and eval uates to Undefi ned ot herwi se.

Legg St andards Track [Page 21]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

The "and" of a sequence of conponent filters evaluates to TRUE if the
sequence is enmpty or if each conmponent filter evaluates to TRUE
evaluates to FALSE if at |east one conponent filter is FALSE, and
eval uates to Undefined ot herw se.

The "or" of a sequence of conponent filters evaluates to FALSE if the
sequence is enpty or if each conmponent filter evaluates to FALSE
evaluates to TRUE if at |east one conponent filter is TRUE, and

eval uates to Undefined ot herwi se.

The "not" of a conponent filter evaluates to TRUE if the conponent
filter is FALSE, evaluates to FALSE if the conponent filter is TRUE
and eval uates to Undefined otherw se.

5. The conponentFilterMatch Matching Rul e

The conponent FilterMatch matching rule allows a ConponentFilter to be
applied to an attribute value. The result of the matching rule is
the result of applying the ConponentFilter to the attribute val ue.

The LDAP-style definitions for conmponentFilterMatch and its assertion
syntax are:

(1.2.36.79672281.1.13.2 NAME ’'conponent FilterMatch
SYNTAX 1.2.36.79672281.1.5.2)

(1.2.36.79672281.1.5.2 DESC ' ConponentFilter’)

The LDAP-specific encoding for the ConponentFilter assertion syntax
is specified by GSER [9].

As a convenience to inplenmentors, an equival ent ABNF description of
the GSER encodi ng for ConponentFilter is provided here. In the event
that there is a discrepancy between this ABNF and t he encodi ng
determ ned by GSER, GSER is to be taken as definitive. The GSER
encodi ng of a ConponentFilter is described by the follow ng

equi val ent ABNF:

filter-item/
and-filter /
or-filter /
not-filter

Conponent Fil ter

filter-item i tem chosen Conponent Assertion

and-filter = and-chosen SequenceOf ConponentFilter
or-filter = or-chosen Sequenced Conponent Fi |l ter
not-filter = not-chosen ConponentFilter

Legg St andards Track [Page 22]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

i tem chosen = 0%69.74.65.6D.3A ; "item"
and- chosen = 9%61. 6E. 64. 3A ; "and:"
or - chosen = 9%6F. 72. 3A ; "or:"

not - chosen Y 6E. 6F. 74. 3A "not:"
SequenceX ConponentFilter = "{" [sp ConponentFilter

*("," sp ConponentFilter)] sp "}"

Conponent Assertion = "{" [sp conponent ","]
[sp useDefaul tValues ","]

sp rule ",
sp assertion-value sp "}"

conponent = conponent -| abel nsp StringVal ue
useDef aul t Val ues = use-defaul ts-1abel nmsp Bool eanVal ue
rul e = rul e-1abel msp ObjectldentifierVal ue

assertion-val ue val ue- | abel msp Val ue

conponent - | abel = 9%63. 6F. 6D. 70. 6F. 6E. 65. 6E. 74 ; "conponent™

use-defaul ts-1abel = %75.73.65. 44. 65. 66. 61. 75. 6C. 74. 56. 61. 6C. 75
% 65. 73 ; "useDef aul t Val ues"

rul e- | abel = W72.75.6C. 65 ;o "rule"

val ue- | abel = %76.61. 6C. 75. 65 ; "val ue"

sp = *O%20 ; zero, one or nobre space characters

nep = 1*%20 ; one or nore space characters

The ABNF for <Value>, <StringValue> <QObjectldentifierValue> and
<Bool eanVal ue> i s defined by GSER [9].

The ABNF descriptions of LDAP-specific encodings for attribute
syntaxes typically do not clearly or consistently delineate the
conponent parts of an attribute value. A regular and uniform
character string encoding for arbitrary component data types is
needed to encode the assertion value in a Conponent Assertion. The
<Val ue> rul e from GSER provi des a human readabl e text encoding for a
conponent value of any arbitrary ASN. 1 type

The X. 500-style definition [10] for conponentFilterMatch is:

conponent Fi | t er Mat ch MATCHI NG RULE :: = {
SYNTAX Component Fil ter
I D { 12 36 79672281 1 13 2 } }

A Conponent Assertion can potentially use any matching rule, including
conponent Fi | ter Match, so conponentFilterMatch nay be nested. The
conponent references in a nested conponentFilterMatch are relative to

Legg St andards Track [Page 23]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

the conponent corresponding to the contai ning Conponent Assertion. In
Section 7, an exanple search on the seeAlso attribute shows this
usage.

6. FEquality Matching of Conpl ex Components

It is possible to test if an attribute value of a conplex ASN 1
syntax is the sanme as sone purported (i.e., assertion) value by using
a conmplicated ComponentFilter that tests if correspondi ng conmponents
are the sane. However, it would be nore convenient to be able to
present a whole assertion value to a matching rule that could do the
conponent -w se conparison of an attribute value with the assertion
value for any arbitrary attribute syntax. Sinilarly, the ability to
do a straightforward equality conparison of a conmponent value that is
itself of a conplex ASN. 1 type would al so be convenient.

It would be difficult to define a single matching rule that

simul taneously satisfies all notions of what the equality matching
semantics should be. For exanple, in sone instances a case sensitive
conpari son of string conponents may be preferable to a case

i nsensitive conparison. Therefore a basic equality matching rule,

al | Component sMatch, is defined in Section 6.2, and the means to
derive new matching rules fromit with slightly different equality
mat chi ng semantics are described in Section 6. 3.

The directoryConponentsMatch defined in Section 6.4 is a derivation
of all ComponentsMatch that suits typical uses of the directory.

O her specifications are free to derive new rules from

al | Component sMat ch or directoryConponentsiMatch, that suit their usage
of the directory.

The al | ConponentsMatch rul e, the directoryConponentshMatch rule and
any matching rules derived fromthemare collectively called
conponent equal ity matching rules.

6.1. The OpenAssertionType Syntax

The conponent equality matching rules have a variabl e assertion
syntax. In X. 500 this is indicated by onitting the optional SYNTAX
field in the MATCH NG RULE i nformati on object. The assertion syntax
then defaults to the target attribute’ s syntax in actual usage,

unl ess the description of the matching rule says otherw se. The
SYNTAX field in the LDAP-specific encoding of a

Mat chi ngRul eDescription is mandatory, so the OpenAssertionType syntax
is defined to fill the same role. That is, the OQpenAssertionType
syntax is semantically equivalent to an omtted SYNTAX field in an
X. 500 MATCHI NG RULE i nformati on object. OpenAssertionType MJST NOT
be used as the attribute syntax in an attribute type definition

Legg St andards Track [Page 24]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Unl ess explicitly varied by the description of a particular natching
rule, if an OpenAssertionType assertion value appears in a

Conponent Assertion its LDAP-specific encoding is described by the
<Value> rule in GSER [9], otherwise its LDAP-specific encoding is the
encodi ng defined for the syntax of the attribute type to which the
matching rule with the OpenAssertionType assertion syntax is applied.

The LDAP definition for the OpenAssertionType syntax is:
(1.2.36.79672281.1.5.3 DESC ' OpenAssertionType’)
6.2. The all ConponentsMatch Matching Rul e
The LDAP-style definition for all ConmponentsMatch is:

(1.2.36.79672281.1.13.6 NAME 'al |l Conponent sMat ch
SYNTAX 1.2.36.79672281.1.5.3)

The X. 500-style definition for all ConponentsMatch is:

al | Conponent sMat ch MATCHI NG RULE :: = {
ID { 12 36 79672281 1 13 6 } }

When al | Conponent sMatch is used in a Conponent Assertion the assertion
syntax is the sanme as the ASN. 1 type of the identified conponent.

O herwi se, the assertion syntax of all ConmponentshMatch is the sanme as
the attribute syntax of the attribute to which the matching rule is
appl i ed.

Broadl y speaking, this matching rule evaluates to true if and only if
correspondi ng conponents of the assertion value and the attribute or
conponent val ue are the sane.

In detail, equality is determned by the foll ow ng cases applied
recursively.

a) Two val ues of a SET or SEQUENCE type are the sanme if and only if,
for each conponent type, the correspondi ng conponent val ues are
ei t her,

1) both absent,

2) both present and the same, or

3) absent or the sane as the DEFAULT val ue for the conponent, if a
DEFAULT val ue is defined.

Legg St andards Track [Page 25]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

b)

c)

d)

f)

9)

h)

k)

Legg

Val ues of an EMBEDDED PDV, EXTERNAL, unrestricted CHARACTER
STRING or | NSTANCE OF type are conpared according to their
respecti ve associ ated SEQUENCE type (see Section 3.1.2).

Two val ues of a SEQUENCE OF type are the sane if and only if, the
val ues have the sane nunber of (possibly duplicated) instances and
correspondi ng i nstances are the sane.

Two values of a SET OF type are the sane if and only if, the

val ues have the sanme nunber of instances and each distinct

i nstance occurs in both values the same nunber of tines, i.e.
bot h val ues have the sane instances, including duplicates, but in
any order.

Two values of a CHO CE type are the same if and only if, both
val ues are of the same chosen alternative and the component val ues
are the sane.

Two BI T STRING values are the sane if and only if the val ues have
the sane nunber of bits and corresponding bits are the sane. |If
the BIT STRING type is defined with a naned bit list then trailing
zero bits in the values are treated as absent for the purposes of
this conpari son.

Two BOOLEAN val ues are the sane if and only if both are TRUE or
both are FALSE

Two values of a string type are the same if and only if the val ues
have t he same nunmber of characters and correspondi ng characters
are the same. Letter case is significant. For the purposes of

al | Component sMat ch, the string types are NunericString,
PrintableString, TeletexString (T61String), VideotexString,

| A5String, GraphicString, VisibleString (1S0646String),

General String, Universal String, BMPString, UTF8String,
General i zedTi me, UTCTi me and bj ect Descri ptor.

Two | NTEGER val ues are the sane if and only if the integers are
equal .

Two ENUMERATED val ues are the sane if and only if the enumeration
itemidentifiers are the same (equivalently, if the integer val ues
associated with the identifiers are equal).

Two NULL val ues are al ways the same, unconditionally.

Two OBJECT | DENTI FI ER val ues are the sane if and only if the

val ues have the sanme nunber of arcs and corresponding arcs are the
sane.

St andards Track [Page 26]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

) Two OCTET STRING values are the sanme if and only if the val ues
have t he same nunber of octets and corresponding octets are the
sane.

m Two REAL values are the same if and only if they are both the sane
special value, or neither is a special value and they have the
sanme base and represent the sane real nunber. The special val ues
for REAL are zero, PLUS-INFIN TY and M NUS-I| NFI NI TY.

n) Two RELATIVE-O D values are the same if and only if the val ues
have the same nunmber of arcs and corresponding arcs are the sane.
The respective starting nodes for the RELATIVE-QO D val ues are
di sregarded in the conparison, i.e., they are assuned to be the
sane.

o) Two val ues of an open type are the same if and only if both are of
the sanme ASN. 1 type and are the sane according to that type. |If
the actual ASN. 1 type of the values is unknown then the
al | Component sMat ch rul e eval uates to Undefi ned.

Tags and constraints, being part of the type definition and not part
of the abstract values, are ignored for matching purposes.

The al | ConponentsMatch rule may be used as the defined equality
matching rule for an attribute.

6.3. Deriving Conponent Equality Matching Rul es

A new conponent equality matching rule with nore refined matching
semantics nmay be derived from al |l Conponentshatch, or any ot her
conponent equality matching rule, using the convention described in
this section.

The mat chi ng behavi our of a derived conponent equality matching rule
is specified by nom nating, for each of one or nore identified
conponents, a comutative equality matching rule that will be used to
mat ch val ues of that conponent. This overrides the natching that
woul d ot herwi se occur for values of that conponent using the base
rule for the derivation. These overrides can be conveniently
represented as rows in a table of the follow ng form

Legg St andards Track [Page 27]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Usual ly, all conponent values of a particular ASN.1 type are to be
mat ched the same way. An ASN. 1 type reference (e.g.

Di stingui shedNanme) or an ASN.1 built-in type nanme (e.g., INTEGER) in
the Conponent columm of the table specifies that the noni nated

equal ity matching rule is to be applied to all values of the naned
type, regardl ess of context.

An ASN. 1 type reference with a conponent reference appended
(separated by a ".") specifies that the nom nated matching rule
applies only to the identified conponents of val ues of the named
type. O her conponent val ues that happen to be of the same ASN. 1
type are not sel ected.

Addi tional type substitutions as described in Section 3.2 are assumned
to be perfornmed to align the conponent type with the matching rule
assertion syntax.

Conceptually, the rows in a table for the base rule are appended to
the rows in the table for a derived rule for the purpose of deciding
the matching semantics of the derived rule. Notionally,

al | Component sMat ch has an enpty table.

A row speci fying val ues of an outer containing type (e.g.

Di stingui shedNane) takes precedence over a row specifying val ues of
an i nner conponent type (e.g., RelativeD stingui shedNane), regardl ess
of their order in the table. Specifying a row for component val ues
of an inner type is only useful if a value of the type can also
appear on its own, or as a component of values of a different outer
type. For example, if there is a row for Distingui shedNane then a
row for Rel ativeDi stingui shedNane can only ever apply to

Rel ati veDi sti ngui shedNane conponent val ues that are not part of a

Di stingui shedNane. A row for values of an outer type in the table
for the base rule takes precedence over a row for values of an inner
type in the table for the derived rule.

Where nore than one row applies to a particul ar conponent val ue the
earlier row takes precedence over the later row Thus rows in the
table for the derived rule take precedence over any rows for the sane
conponent in the table for the base rule.

6.4. The directoryConmponent sivatch Matchi ng Rul e

The directoryConponentsMatch matching rule is derived fromthe
al | Conponent sMat ch mat ching rul e

Legg St andards Track [Page 28]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

The LDAP-style definition for directoryConponentsMatch is:

(1.2.36.79672281. 1. 13. 7 NAME ' directoryConmponent sMat ch
SYNTAX 1.2.36.79672281.1.5.3)

The X. 500-style definition for directoryConponentshatch is:

di rect or yConmponent svat ch MATCHI NG RULE :: = {
I D { 12 36 79672281 1 13 7 } }

The mat ching semantics of directoryConponentsiatch are descri bed by
the followi ng table, using the convention described in Section 6.3.

ASN. 1 Type Mat chi ng Rul e
RDNSequence di sti ngui shedNaneMat ch
Rel ati veDi st i ngui shedNane rdnMat ch

Tel ephoneNunber t el ephoneNunber Mat ch
Facsi nm | eTel ephoneNunber . t el ephoneNunber t el ephoneNunber Mat ch
NunericString nunericStringhat ch
General i zedTi e general i zedTi meMat ch
DirectoryString{} casel gnor eMat ch

BMPSt ri ng casel gnor eMat ch

General String
Graphi cString

| A5String
Printabl eString
Tel etexString
Uni versal String
UTF8Stri ng

Vi deot exStri ng
Vi sibleString

casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch
casel gnor eMat ch

|
+
|
|
|
|
|
UTCTi me | uTCTi meMat ch
|
|
|
|
|
|
|
|
|
|
| casel gnoreMatch

Not es:

1)

2)

3)

Legg

The Distingui shedNane type is defined by assignment to be the sane
as the RDNSequence type. Sone types (e.g., Nane and Local Nane)
directly reference RDNSequence rather than Distingui shedNare.

Speci fyi ng RDNSequence captures all these DN-like types.

A Rel ativeDi stingui shedNane value is only natched by rdnMatch if
it is not part of an RDNSequence val ue.

The tel ephone number component of the Facsim | eTel ephoneNunber
ASN. 1 type [12] is defined as a constrained PrintableString.
Printabl eString conponent values that are part of a

Facsi m | eTel ephoneNunber val ue can be identified separately from

St andards Track [Page 29]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

ot her conponents of PrintableString type by the specifier

Facsi m | eTel ephoneNunber .t el ephoneNunber, so that

t el ephoneNunber Mat ch can be sel ectively applied. The fourth
edition of X 520 defines the tel ephoneNunber component of

Facsi m | eTel ephoneNunber to be of the type Tel ephoneNunber, nmaking
the row for Facsinm | eTel ephoneNunber.t el ephoneNunber conponents
redundant .

The directoryConmponentshMatch rule may be used as the defined equality
mat ching rule for an attribute.

7. Component WMatchi ng Exanpl es

Thi s section contains exanples of search filters using the

conponent FilterMatch matching rule. The filters are described using
the string representati on of LDAP search filters [18]. Note that
this representation requires asterisks to be escaped in assertion

val ues (in these exanples the assertion values are al

<Conponent Asserti on> encodi ngs). The asterisks have not been escaped
in these exanples for the sake of clarity, and to avoid confusing the
protocol representation of LDAP search filter assertion val ues, where
such escapi ng does not apply. Line breaks and indenting have been
added only as an aid to readability.

The exanpl e search filters using conponentFilterMatch are all single
extensi ble match filter itens, though there is no reason why
conponent FilterMatch can’t be used in nore conplicated search
filters.

The first exanpl es descri be searches over the objectC asses schema
operational attribute, which has an attribute syntax described by the
ASN. 1 type Objectd assDescription [10], and holds the definitions of
the object classes known to a directory server. The definition of

nj ect C assDescription is as foll ows:

bj ect C assDescription ::= SEQUENCE {
identifier OBJECT- CLASS. &i d
nanme SET OF DirectoryString {ub-schema} OPTI ONAL
description DirectoryString {ub-schema} OPTI ONAL
obsol et e BOOLEAN DEFAULT FALSE
information [0] Objectd assinformtion }
oj ectd asslinformation ::= SEQUENCE {
subcl assOf SET OF OBJECT- CLASS. & d OPTI ONAL
ki nd bj ect A assKi nd DEFAULT structural

mandatori es [3] SET OF ATTRI BUTE. & d OPTI ONAL,
optional s [4] SET OF ATTRIBUTE. & d OPTI ONAL }

Legg St andards Track [Page 30]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

oj ect d assKi nd ::= ENUVERATED ({
abstract (0),
structural (1),

auxiliary (2) }

OBJECT- CLASS. & d and ATTRI BUTE. & d are equivalent to the OBJECT

| DENTI FI ER ASN. 1 type. A value of OBJECT-CLASS. & d is an OBJECT
| DENTI FI ER for an object class. A value of ATTRIBUTE. & d is an

OBJECT | DENTI FIER for an attribute type.

The following search filter finds the object class definition for the
object class identified by the OBJECT | DENTIFIER 2.5. 6. 18:

(obj ect d asses: conponent Fi |l ter Mat ch: =
item{ conponent "identifier",
rul e objectldentifierMatch, value 2.5.6.18 })

A match on the "identifier" conponent of objectC asses values is

equi val ent to the objectldentifierFirstConponent Match matching rule
applied to attribute values of the objectC asses attribute type. The
conponent Fi | ter Mat ch mat chi ng rul e subsunmes the functionality of the
obj ectldentifierFirstConponent Mat ch, integerFirstConponent Match and
di rectoryStringFirst Conponent Mat ch mat chi ng rul es.

The following search filter finds the object class definition for the
obj ect class called foobar:

(obj ect O asses: conponent Fi | t er Mat ch: =
item{ conmponent "nane.*",
rul e casel gnoreMatch, value "foobar" })

An object class definition can have multiple names and the above
filter will match an objectC asses value if any one of the nanmes is
"foobar".

The conponent reference "nane.0" identifies the notional count of the
nunber of names in an object class definition. The follow ng search
filter finds object class definitions with exactly one nane:

(obj ect O asses: conponent Fi | t er Mat ch: =
item{ conponent "nane.0", rule integerMatch, value 1 })

The "description" conponent of an Cbjectd assDescription is defined
to be an OPTIONAL DirectoryString. The following search filter finds
obj ect class definitions that have descriptions, regardl ess of the
contents of the description string:

Legg St andards Track [Page 31]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

(obj ect d asses: conponent Fi |l ter Mat ch: =
item{ conponent "description",
rul e presentMatch, val ue NULL })

The presentMatch returns TRUE if the description conponent is present
and FALSE ot herwi se.

The following search filter finds object class definitions that don’t
have descri ptions:

(obj ect C asses: conponent Fi | t er Mat ch: =
not:item{ conponent "description",
rul e presentMatch, value NULL })

The following search filter finds object class definitions with the
word "bogus" in the description:

(obj ect C asses: conponent Fi |l ter Mat ch: =
item{ conponent "description",
rul e casel gnor eSubstri ngshat ch,
val ue { any:"bogus" } })

The assertion value is of the SubstringAssertion syntax, i.e.
SubstringAssertion ::= SEQUJENCE OF CHO CE {
initial [0] DirectoryString {ub-nmatch},
any [1] DirectoryString {ub-match},
final [2] DirectoryString {ub-match} }

The "obsol ete" conponent of an (bjectC assDescription is defined to
be DEFAULT FALSE. An object class is obsolete if the "obsol ete"
conponent is present and set to TRUE. The follow ng search filter
finds all obsol ete object classes:

(obj ect C asses: conponent Fi | t er Mat ch: =
item{ conmponent "obsolete", rule bool eanMatch, val ue TRUE })

An object class is not obsolete if the "obsol ete" conponent is not
present, in which case it defaults to FALSE, or is present but is
explicitly set to FALSE. The followi ng search filter finds all non-
obsol et e object cl asses:

(obj ect d asses: conponent Fi |l ter Mat ch: =
item{ component "obsolete", rule bool eanMatch, value FALSE })

The useDefaul t Val ues flag in the Conponent Assertion defaults to TRUE

so the conponentFilterMatch rule treats an absent "obsol ete”
conponent as being present and set to FALSE. The follow ng search

Legg St andards Track [Page 32]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

filter finds only object class definitions where the "obsol ete"
conponent has been explicitly set to FALSE, rather than inplicitly
defaulting to FALSE

(obj ect C asses: conponent Fi | t er Mat ch: =
item{ conponent "obsol ete", useDefaultVal ues FALSE
rul e bool eanMat ch, val ue FALSE })

Wth the useDefaultValues flag set to FALSE, if the "obsol ete"
conponent is absent the component reference identifies no component
val ue and the matching rule will return FALSE. The matching rule can
only return TRUE i f the conponent is present and set to FALSE

The "information. kind" conponent of the ObjectC assDescription is an
ENUMERATED type. The al |l Conponentsiatch matching rule can be used to
mat ch val ues of an ENUMERATED type. The follow ng search filter
finds object class definitions for auxiliary object classes:

(obj ect d asses: conponent Fi |l ter Match: =
item{ conmponent "information.kind",
rul e all Conponent sMatch, value auxiliary })

The following search filter finds auxiliary object classes with
conmmonNane (cn or 2.5.4.3) as a mandatory attribute:

(obj ect d asses: conponent Fi | t er Mat ch: =and: {
item{ component "information.kind"
rul e al | Conponent sMatch, value auxiliary },
item{ conmponent "information.mandatories.*",
rul e objectldentifierMatch, value cn } })

The followi ng search filter finds auxiliary object classes with
conmonName as a mandatory or optional attribute:

(obj ect C asses: conponent Fi | t er Mat ch: =and: {
item{ conmponent "information.kind",
rul e al |l Conponentsiatch, value auxiliary },
or: {
item{ component "infornmation.mandatories.*",
rul e objectldentifierMatch, value cn },
item{ conponent "information.optionals.*",
rul e objectldentifierMatch, value cn} } })

Extra care is required when matchi ng opti onal SEQUENCE OF or SET OF
conponents because of the distinction between an absent |ist of

i nstances and a present, but enpty, list of instances. The follow ng
search filter finds object class definitions with | ess than three

Legg St andards Track [Page 33]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

nanes, including object class definitions with a present but enpty
list of nanes, but does not find object class definitions with an
absent |ist of nanes:

(obj ect C asses: conponent Fi | t er Mat ch: =
item{ component "nane.0",
rul e i ntegerOrderinghatch, value 3 })

If the "name" conponent is absent the "nane.0" conponent is also
consi dered to be absent and the Component Assertion evaluates to
FALSE. If the "nane" component is present, but enpty, the "nane.0"
conponent is also present and equal to zero, so the

Conponent Assertion evaluates to TRUE. To also find the object class
definitions with an absent |ist of names the follow ng search filter
woul d be used:

(obj ect C asses: conponent Fi | t er Mat ch: =or : {
not:item{ conponent "nanme", rule presentMtch, value NULL },
item{ component "nane.0",
rul e i ntegerOrderingMatch, value 3} })

Di sti ngui shed nanmes enbedded in other syntaxes can be matched with a
conponent Fi | ter Match. The uni queMenber attribute type has an
attribute syntax described by the ASN. 1 type NanmeAndOpti onal Ul D.

NanmeAndOpt i onal Ul D :: = SEQUENCE {
dn Di sti ngui shedNarne,
ui d Uni quel denti fier OPTI ONAL }

The following search filter finds values of the uni queMenber
attribute containing the author’s DN

(uni queMenber : component Fi | t er Mat ch: =
item{ conmponent "dn",
rul e di stingui shedNanmeMat ch,
val ue "cn=Steven Legg, o=Adacel , c=AU" })

The Di stingui shedNane and Rel ativeDi stingui shedNanme ASN. 1 types are
al so conplex ASN. 1 types so the conmponent matching rules can be
applied to their inner conponents.

Di sti ngui shedNane . = RDNSequence
RDNSequence ::= SEQUENCE OF Rel ati veDi sti ngui shedNane
Rel ati veDi sti ngui shedNane ::= SET SIZE (1..MAX) OF

Attri but eTypeAndVval ue

Legg St andards Track [Page 34]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

AttributeTypeAndVal ue ::= SEQUENCE ({

type AttributeType ({SupportedAttributes}),

val ue AttributeVal ue ({SupportedAttributes}{@ype}) }
AttributeType ::= ATTRIBUTE. & d
AttributeVal ue ::= ATTRI BUTE. &Type

ATTRI BUTE. &Type is an open type. A value of ATTRI BUTE. &Type is
constrained by the type component of AttributeTypeAndVal ue to be of
the attribute syntax of the nom nated attribute type. Note: the
fourth edition of X 500 extends and renanes the AttributeTypeAndVal ue
SEQUENCE t ype.

The seeAlso attribute has the Distingui shedName syntax. The
followi ng search filter finds seeAl so attribute values containing the
RDN, "o=Adacel", anywhere in the DN

(seeAl so: component Fi | ter Mat ch: =
item{ component "*", rule rdnMatch, value "o=Adacel" })

The following search filter finds all seeAlso attribute values with
"cn=St even Legg" as the RDN of the named entry (i.e., the "first” RDN
in an LDAPDN or the "last" RDN in an X. 500 DN):

(seeAl so: conmponent Fi | ter Mat ch: =
item{ conmponent "-1",
rule rdnivatch, val ue "cn=Steven Legg" })

The followi ng search filter finds all seeAlso attribute val ues nam ng
entries in the DIT subtree of "o=Adacel, c=AU":

(seeAl so: conmponent Fi | t er Mat ch: =and: {
item{ component "1", rule rdnhMatch, value "c=AU" },
item{ conmponent "2", rule rdnMatch, val ue "o=Adacel" } })

The following search filter finds all seeAlso attribute val ues
containing the namng attribute types comonNane (cn) and
t el ephoneNunber in the same RDN:

(seeAl so: conmponent Fi | t er Mat ch: =
item{ conmponent "*", rule conponentFilterMatch,
val ue and:{

item{ component "*.type",
rul e objectldentifierMatch, value cn },

item{ component "*.type",
rul e obj ectldentifierMatch,
val ue tel ephoneNunber } } })

Legg St andards Track [Page 35]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

The following search filter would find all seeAlso attribute val ues
containing the attribute types conmonNane and tel ephoneNunber, but
not necessarily in the sane RDN:

(seeAl so: conmponent Fi | t er Mat ch: =and: {
item{ conmponent "*.* type",
rul e objectldentifierMatch, value cn },
item{ conmponent "*.* type",
rul e objectldentifierMatch, val ue tel ephoneNunber } })

The following search filter finds all seeAlso attribute val ues
contai ning the word "Adacel" in any organizational Unit Name (ou)
attribute value in any AttributeTypeAndVal ue of any RDN:

(seeAl so: conmponent Fi | ter Mat ch: =
item{ conmponent "*.*. value.(2.5.4.11)",
rul e casel gnor eSubstri ngshat ch,
val ue { any:"Adacel" } })

The conponent reference "*.*.value" identifies an open type, in this
case an attribute value. In a particular AttributeTypeAndVal ue, if
the attribute type is not organizational UnitName then the

Conponent Assertion evaluates to FALSE. O herw se the substring
assertion is evaluated against the attribute val ue.

Absent conponent references in Conponent Assertions can be exploited
to avoid false positive matches on nulti-valued attributes. For
exanpl e, suppose there is a nulti-valued attribute named

pr oduct Codes, defined to have the Integer syntax

(1.3.6.1.4.1.1466. 115.121.1.27). Consider the follow ng search
filter:

(&(! (product Codes: i nt eger Or deri nghat ch: =3))
(product Codes: i nt eger Or deri nghat ch: =8))

An entry whose product Codes attribute contains only the values 1 and
10 will match the above filter. The first subfilter is satisfied by
the value 10 (10 is not less than 3), and the second subfilter is
satisfied by the value 1 (1 is less than 8). The follow ng search
filter can be used instead to only match entries that have a

product Codes value in the range 3 to 7, because the ConponentFilter

i s eval uated agai nst each product Codes value in isolation

(product Codes: conmponent Fi | t er Mat ch: = and: {

not:item{ rule integerOderingWatch, value 3 },
item{ rule integerOderingMatch, value 8 } })

Legg St andards Track [Page 36]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

An entry whose product Codes attribute contains only the values 1 and
10 will not match the above filter.

8. Security Considerations

The conponent nmatching rul es described in this docunment allow for a
conpact specification of nmatching capabilities that could ot herw se
have been defined by a plethora of specific matching rules, i.e.
despite their expressiveness and flexibility the conponent natching
rul es do not behave in a way uncharacteristic of other matching
rules, so the security issues for conponent matching rules are no
different than for any other matching rule. However, because the
conponent matching rules are applicable to any attribute syntax,
support for themin a directory server nmay all ow searching of
attributes that were previously unsearchable by virtue of there not
being a suitable matching rule. Such attribute types ought to be
properly protected with appropriate access controls. A generic,

i nt eroperabl e access control mechani sm has not yet been devel oped,
however, and inpl enentors should be aware of the interaction of that
lack with the increased risk of exposure described above.

9. Acknow edgenent s

The author would like to thank Tom G ndin for private enmi
di scussions that clarified and refined the ideas presented in this
document .

10. | ANA Consi der ati ons

The I nternet Assigned Nunbers Authority (1ANA) has updated the LDAP
descriptors registry [8] as indicated by the follow ng tenpl ates:

Subj ect: Request for LDAP Descriptor Registration

Descriptor (short nane): conponentFilterMtch

Obj ect ldentifier: 1.2.36.79672281.1.13.2

Person & ermil address to contact for further information:
Steven Legg <steven. | egg@dacel . com au>

Usage: other (matching rule)

Speci fication: RFC 3687

Aut hor/ Change Control ler: |ESG

Legg St andards Track [Page 37]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

Subj ect: Request for LDAP Descriptor Registration

Descriptor (short nane): rdnMatch

Object ldentifier: 1.2.36.79672281.1.13.3

Person & emnil address to contact for further information:
Steven Legg <steven.| egg@dacel . com au>

Usage: other (matching rule)

Speci fication: RFC 3687

Aut hor/ Change Controller: |ESG

Subj ect: Request for LDAP Descriptor Registration

Descriptor (short nane): presentMatch

Obj ect ldentifier: 1.2.36.79672281.1.13.5

Person & emmil address to contact for further information:
Steven Legg <steven. | egg@dacel . com au>

Usage: other (matching rule)

Speci fication: RFC 3687

Aut hor/ Change Control ler: |ESG

Subj ect: Request for LDAP Descriptor Registration

Descriptor (short nane): all ConponentshMatch

bject ldentifier: 1.2.36.79672281.1.13.6

Person & emai|l address to contact for further informtion:
Steven Legg <steven.| egg@dacel . com au>

Usage: other (matching rule)

Speci fication: RFC 3687

Aut hor/ Change Controller: |ESG

Subj ect: Request for LDAP Descriptor Registration

Descriptor (short nane): directoryConponentsiatch

Obj ect ldentifier: 1.2.36.79672281.1.13.7

Person & email address to contact for further information:
Steven Legg <steven. | egg@dacel . com au>

Usage: other (matching rule)

Speci fication: RFC 3687

Aut hor/ Change Control ler: |ESG

The object identifiers have been assigned for use in this
speci fication by Adacel Technol ogi es, under an arc assigned to Adace
by Standards Australi a.

11. References

11.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

Legg St andards Track [Page 38]

RFC 3687

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Legg

LDAP and X. 500 Component WMatching Rul es February 2004

Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

Wahl, M, Howes, T. and S. Kille, "Lightweight Directory Access
Protocol (v3)", RFC 2251, Decenber 1997.

Wahl, M, Coul beck, A, Howes, T. and S. Kille, "Lightweight
Directory Access Protocol (v3): Attribute Syntax Definitions",
RFC 2252, Decenber 1997.

Wahl, M, Kille S. and T. Howes. "Lightweight Directory Access
Protocol (v3): UTF-8 String Representation of Distinguished
Names", RFC 2253, Decenber 1997.

Yergeau, F., "UTF-8, a transformation format of |SO 10646", STD
63, RFC 3629, Novenber 2003.

Hodges, J. and R Morgan, "Lightweight Directory Access
Protocol (v3): Technical Specification", RFC 3377, Septenber
2002.

Zeilenga, K., "Internet Assigned Nunbers Authority (1 ANA)
Consi derations for the Lightweight Directory Access Protocol
(LDAP)", BCP 64, RFC 3383, Septenber 2002.

Legg, S., "Ceneric String Encoding Rules (GSER) for ASN. 1
Types", RFC 3641, Cctober 2003.

| TU-T Recommendation X. 501 (1993) | 1SQO | EC 9594-2: 1994,
I nformati on Technol ogy - Open Systens | nterconnection - The
Directory: Models

| TU-T Reconmendation X 509 (1997) | 1SQO | EC 9594-8: 1998,
I nformati on Technol ogy - Open Systens |nterconnection - The
Directory: Authentication Framework

| TUT Recommendati on X. 520 (1993) | 1SQ | EC 9594-6: 1994,
I nformati on technol ogy - Open Systens |nterconnection - The
Directory: Selected attribute types

| TU-T Reconmendati on X. 680 (07/02) | 1SQ | EC 8824-1:2002,
Information technol ogy - Abstract Syntax Notation One (ASN. 1):
Speci fication of basic notation

| TUUT Recormendati on X. 681 (07/02) | 1SO | EC 8824-2: 2002,

I nformation technol ogy - Abstract Syntax Notation One (ASN. 1):
I nformati on object specification

St andards Track [Page 39]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

12.

12.

[15] I TU- T Recomrendation X.682 (07/02) | 1SQ |EC 8824-3: 2002,
Information technol ogy - Abstract Syntax Notation One (ASN. 1):
Constraint specification

[16] |ITU-T Recomnmendation X. 683 (07/02) | 1SQ | EC 8824-4:2002,
Information technol ogy - Abstract Syntax Notation One (ASN. 1):
Par anmet eri zati on of ASN. 1 specifications

[17] |ITU T Reconmendation X. 690 (07/02) | 1SQOIEC 8825-1
Informati on technol ogy - ASN. 1 encoding rul es: Specification of
Basi ¢ Encodi ng Rul es (BER), Canonical Encoding Rules (CER) and
Di stingui shed Encodi ng Rul es (DER)

2. Infornmtive References

[18] Howes, T., "The String Representation of LDAP Search Filters",
RFC 2254, Decenber 1997.

[19] I TU T Recomrendation X. 500 (1993) | |1SO | EC 9594- 1: 1994,
I nformati on Technol ogy - Open Systens | nterconnection - The
Directory: Overview of concepts, nodels and services

Intell ectual Property Statenent

The | ETF takes no position regarding the validity or scope of any
intellectual property or other rights that mght be clainmed to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
| ETF's procedures with respect to rights in standards-track and

st andards-rel ated docunentati on can be found in BCP-11. Copies of
clains of rights nade avail able for publication and any assurances of
licenses to be nade avail able, or the result of an attenpt nmade to
obtain a general license or permission for the use of such
proprietary rights by inplenentors or users of this specification can
be obtained fromthe | ETF Secretari at.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technol ogy that may be required to practice
this standard. Please address the information to the | ETF Executive
Director.

Legg St andards Track [Page 40]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

13. Author’s Address

St even Legg

Adacel Technol ogi es Ltd.
250 Bay Street

Brighton, Victoria 3186
AUSTRALI A

Phone: +61 3 8530 7710

Fax: +61 3 8530 7888
EMai | : steven.| egg@dacel .com au

Legg St andards Track [Page 41]

RFC 3687 LDAP and X. 500 Component WMatching Rul es February 2004

14. Full Copyright Statenent
Copyright (C The Internet Society (2004). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Legg St andards Track [Page 42]

