Net wor k Wor ki ng Group T. Paila
Request for Comments: 3926 Noki a
Cat egory: Experi ment al M Luby
Di gital Fountain

R Leht onen

Tel i aSoner a

V. Roca

I NRI A Rhone- Al pes

R \al sh

Noki a

Oct ober 2004

FLUTE - File Delivery over Unidirectional Transport

Status of this Meno
This meno defines an Experinental Protocol for the Internet
conmunity. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this meno is unlimted.

Copyri ght Notice
Copyright (C) The Internet Society (2004).

Abst r act
Thi s docunent defines FLUTE, a protocol for the unidirectiona
delivery of files over the Internet, which is particularly suited to
mul ticast networks. The specification builds on Asynchronous Layered
Codi ng, the base protocol designed for massively scal able multicast

di stribution.

Tabl e of Contents

1. Introduction . 2
1.1. Appl|cab|l|ty Statenent . 3
1.1.1. The Target Appl|cat|on Space . 3

1.1.2. The Target Scale . .o 4

1.1.3. Intended Environnents 4

1.1.4. Weaknesses . . . 4

2. Conventions used in this Docunent 5
3. File delivery . 5
3.1. File deI|very se55|on 6

3.2 File Delivery Table. . . 8
3.3. Dynamcs of FDT Instances mAth|n f|Ie deI|very seSS|on .9

3.4 Structure of FDT Instance packets. 11

Paila, et al. Experi nment al [Page 1]

RFC 3926 FLUTE Cct ober

3.4.1. Format of FDT Instance Header
3.4.2. Syntax of FDT Instance . . .
3.4.3. Content Encoding of FDT Instance . . .
3.5. Miltiplexing of files within a file delivery session
4. Channel s, congestion control and timng .
5. Delivering FEC Object Transni ssion Infornat|on .o .
5.1. Use of EXT_FTI for deI|very of FEC Ohj ect Transn1SS|on
Information. . . C e e e e
5.1.1. CGeneral EXT FTI fornat . e
5.1.2. FEC Encod|ng I D specific fornats for EXT_FTI
5.2. Use of FDT for delivery of FEC iject Transm ssi on
I nformati on. . . Coe
6. Describing file deI|very seSS|ons
7. Security Considerations
8. | ANA Consi derations
9. Acknow edgenents .
Nor mat i ve Ref erences
Informati ve References .
A. Receiver operation (|nfornat|ve) .
B Exanmpl e of FDT | nstance (|nf0rnat|ve)
Aut hors’ Addresses .
Ful I Copyri ght Statenent
1. Introduction

2004

12
13
16
17
18
19

20
20
21

25
25
26
29
29
29
30
32
33
34
35

Thi s docunent defines FLUTE version 1, a protocol for unidirectiona

delivery of files over the Internet.

The specification builds on

Asynchronous Layered Coding (ALC), version 1 [2], the base protoco
designed for massively scal able multicast distribution. ALC defines
transport of arbitrary binary objects. For file delivery
applications nmere transport of objects is not enough, however.

end systens need to know what the objects actually represent.

docunent specifies a technique called FLUTE - a mechani sm for
signaling and mapping the properties of files to concepts of ALCin a

way that allows receivers to assign those parameters for

obj ects. Consequently, throughout this docunent the term’'file’
relates to an 'object’ as discussed in ALC. Although this

specification frequently nmakes use of nulticast addressing as an
exanpl e, the techniques are simlarly applicable for use with unicast
addr essi ng.

recei ved

The
Thi s

Thi s docunent defines a specific transport application of ALC, adding
the follow ng specifications:

Pai | a,

Definition of a file delivery session built on top of ALC,
i ncluding transport details and tim ng constraints.

I n-band signalling of the transport paranmeters of the ALC session

et al. Experi ment al [Page 2]

RFC 3926 FLUTE Cct ober 2004

1

1

- In-band signalling of the properties of delivered files.

- Details associated with the nultiplexing of nultiple files within
a session.

This specification is structured as follows. Section 3 begins by
defining the concept of the file delivery session. Following that it
i ntroduces the File Delivery Table that forns the core part of this
specification. Further, it discusses nultiplexing issues of
transport objects within a file delivery session. Section 4

descri bes the use of congestion control and channels with FLUTE
Section 5 defines how the Forward Error Correction (FEC) Ohject
Transm ssion Information is to be delivered within a file delivery
session. Section 6 defines the required paraneters for describing
file delivery sessions in a general case. Section 7 outlines
security considerations regarding file delivery with FLUTE. Last,
there are two informative appendices. The first appendi x descri bes
an envi sioned receiver operation for the receiver of the file
delivery session. The second appendi x gives an exanple of File
Del i very Tabl e.

Statenent of Intent

This menp contains part of the definitions necessary to fully
specify a Reliable Milticast Transport protocol in accordance wth
RFC2357. As per RFC2357, the use of any reliable multicast
protocol in the Internet requires an adequate congestion contro
schene.

While waiting for such a schene to be available, or for an

exi sting schenme to be proven adequate, the Reliable Milticast
Transport working group (RMI) publishes this Request for Comrents
in the "Experinmental" category.

It is the intent of RMI to re-submt this specification as an | ETF
Proposed Standard as soon as the above condition is net.

Applicability Statenent
1. The Target Application Space

FLUTE is applicable to the delivery of large and small files to many
hosts, using delivery sessions of several seconds or nore. For

i nstance, FLUTE coul d be used for the delivery of large software
updates to many hosts simultaneously. It could also be used for

conti nuous, but segmented, data such as time-lined text for
subtitling - potentially leveraging its |ayering inheritance fromALC
and LCT to scale the richness of the session to the congestion status

Paila, et al. Experi ment al [Page 3]

RFC 3926 FLUTE Cct ober 2004

of the network. It is also suitable for the basic transport of
net adata, for exanple SDP [12] files which enable user applications
to access multinmedia sessions.

1.1.2. The Target Scale

Massive scalability is a primary design goal for FLUTE. |P nulticast
is inherently massively scal able, but the best effort service that it
provi des does not provide session managenent functionality,
congestion control or reliability. FLUTE provides all of this using
ALC and I P nulticast wi thout sacrificing any of the inherent
scalability of IP multicast.

1.1.3. | nt ended Envi ronnents

Al of the environmental requirenents and considerations that apply
to the ALC building block [2] and to any additional building bl ocks
that FLUTE uses al so apply to FLUTE

FLUTE can be used with both nulticast and unicast delivery, but it’'s
primary application is for unidirectional multicast file delivery.
FLUTE requires connectivity between a sender and receivers but does
not require connectivity fromreceivers to a sender. FLUTE

i nherently works with all types of networks, including LANs, WANs,
Intranets, the Internet, asymetric networks, wreless networks, and
satellite networks.

FLUTE is compatible with both IPv4 or IPv6 as no part of the packet
is IP version specific. FLUTE works with both nulticast nodels:
Any-Source Multicast (ASM [13] and the Source-Specific Milticast
(SsM [15].

FLUTE is applicable for both Internet use, with a suitable congestion
control building block, and provisioned/controlled systens, such as
delivery over wirel ess broadcast radi o systens.

1.1.4. Weaknesses

Sone networks are not anenable to sone congestion control protocols
that could be used with FLUTE. 1In particular, for a satellite or
wirel ess network, there may be no nechanismfor receivers to

ef fectively reduce their reception rate since there may be a fixed
transm ssion rate allocated to the session

Paila, et al. Experi ment al [Page 4]

RFC 3926 FLUTE Cct ober 2004

FLUTE provides reliability using the FEC building block. This wll
reduce the error rate as seen by applications. However, FLUTE does
not provide a nmethod for senders to verify the reception success of
recei vers, and the specification of such a nmethod is outside the
scope of this docunent.

2. Conventions used in this Document

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

The terns "object" and "transport object" are consistent with the
definitions in ALC[2] and LCT [3]. The terns "file" and "source
object" are pseudonyns for "object".

3. File delivery

Asynchronous Layered Coding [2] is a protocol designed for delivery
of arbitrary binary objects. It is especially suitable for massively
scal abl e, unidirectional, nulticast distribution. ALC provides the
basi c transport for FLUTE, and thus FLUTE inherits the requirenents
of ALC.

This specification is designed for the delivery of files. The core
of this specification is to define how the properties of the files
are carried in-band together with the delivered files.

As an example, let us consider a 5200 byte file referred to by
"http://ww. exanpl e. com docs/file.txt". Using the exanple, the

foll owing properties describe the properties that need to be conveyed
by the file delivery protocol

* |dentifier of the file, expressed as a URI. This identifier may
be globally unique. The identifier may al so provide a |ocation
for the file. |In the above exanple: "http://ww. exanpl e. conf docs/
file.txt".

* File nane (usually, this can be concluded fromthe URI). In the

above exanple: "file.txt".

* File type, expressed as MM nedia type (usually, this can also be
concluded fromthe extension of the file nane). |In the above
exanple: "text/plain". |If an explicit value for the MM type is
provi ded separately fromthe file extension and does not natch the
M ME type of the file extension then the explicitly provided val ue
MJST be used as the M ME type.

Paila, et al. Experi ment al [Page 5]

RFC 3926 FLUTE Cct ober 2004

3.

* File size, expressed in bytes. 1In the above exanmple: "5200". |If
the file is content encoded then this is the file size before
content encodi ng.

* Content encoding of the file, within transport. |In the above
exanple, the file could be encoded using ZLIB [10]. |In this case
the size of the transport object carrying the file would probably
differ fromthe file size. The transport object size is delivered
to receivers as part of the FLUTE protocol

* Security properties of the file such as digital signatures,
nessage digests, etc. For exanple, one could use SIMME [18] as
the content encoding type for files with this authentication
wr apper, and one could use XM.-DSIG [19] to digitally sign an FDT
I nst ance.

File delivery session

ALC is a protocol instantiation of Layered Codi ng Transport buil di ng
bl ock (LCT) [3]. Thus ALC inherits the session concept of LCT. In
this docunent we will use the concept ALC/LCT session to collectively
denote the interchangeable terns ALC session and LCT session

An ALC/ LCT session consists of a set of logically grouped ALC LCT
channel s associated with a single sender sending packets with ALC LCT
headers for one or nore objects. An ALCLCT channel is defined by
the combi nation of a sender and an address associated with the
channel by the sender. A receiver joins a channel to start receiving
the data packets sent to the channel by the sender, and a receiver

| eaves a channel to stop receiving data packets fromthe channel

One of the fields carried in the ALCILCT header is the Transport
Session ldentifier (TSI). The TSI is scoped by the source IP
address, and the (source |IP address, TSI) pair uniquely identifies a
session, i.e., the receiver uses this pair carried in each packet to
uniquely identify fromwhich session the packet was received. In
case multiple objects are carried within a session, the Transport
oject ldentifier (TA) field within the ALC LCT header identifies
fromwhich object the data in the packet was generated. Note that
each object is associated with a unique TO wthin the scope of a
sessi on.

If the sender is not assigned a pernmanent | P address accessible to
receivers, but instead, packets that can be received by receivers
containing a tenporary |IP address for packets sent by the sender

then the TSI is scoped by this tenporary |IP address of the sender for
the duration of the session. As an exanple, the sender may be behind
a Network Address Translation (NAT) device that tenporarily assigns

Paila, et al. Experi ment al [Page 6]

RFC 3926 FLUTE Cct ober 2004

an | P address for the sender that is accessible to receivers, and in
this case the TSI is scoped by the tenporary | P address assigned by
the NAT that will appear in packets received by the receiver. As
anot her exanpl e, the sender may send its original packets using | Pv6,
but some portions of the network may not be | Pv6 capable and thus
there may be an I1Pv6 to IPv4 translator that changes the | P address
of the packets to a different IPv4 address. |In this case, receivers
in the IPv4 portion of the network will receive packets containing
the I Pv4 address, and thus the TSI for themis scoped by the |IPv4
address. How the I P address of the sender to be used to scope the
session by receivers is delivered to receivers, whether it is a
permanent | P address or a tenporary |IP address, is outside the scope
of this document.

When FLUTE is used for file delivery over ALC the follow ng rules
apply:

* The ALC/LCT session is called file delivery session

* The ALC LCT concept of 'object’ denotes either a "file' or a 'File
Del i very Tabl e Instance’ (section 3.2)

* The TA field MIST be included in ALC packets sent within a FLUTE
session, with the exception that ALC packets sent in a FLUTE
session with the Close Session (A flag set to 1 (signaling the
end of the session) and that contain no payload (carrying no
information for any file or FDT) SHALL NOT carry the TO. See
Section 5.1 of RFC 3451 [3] for the LCT definition of the C ose
Session flag, and see Section 4.2 of RFC 3450 [2] for an example
of its use within an ALC packet.

* The TO value '0" is reserved for delivery of File Delivery Table
I nstances. Each File Delivery Table Instance is uniquely
identified by an FDT I nstance |D.

* Each file in a file delivery session MIST be associated with a TO
(>0) in the scope of that session

* Information carried in the headers and the payl oad of a packet is
scoped by the source |IP address and the TSI. Information
particular to the object carried in the headers and the payl oad of
a packet is further scoped by the TO for file objects, and is
further scoped by both the TO and the FDT Instance ID for FDT
I nst ance obj ects.

Paila, et al. Experi ment al [Page 7]

RFC 3926 FLUTE Cct ober 2004

3.2. File Delivery Table

The File Delivery Table (FDT) provides a nmeans to describe various
attributes associated with files that are to be delivered within the
file delivery session. The following lists are exanples of such
attributes, and are not intended to be nmutually excl usive nor
exhausti ve.

Attributes related to the delivery of file:
- TA value that represents the file

- FEC bject Transmission Information (including the FEC Encoding ID
and, if relevant, the FEC Instance |D)

- Size of the transport object carrying the file

- Aggregate rate of sending packets to all channels

Attributes related to the file itself:

- Name, ldentification and Location of file (specified by the URI)
- MM nedia type of file

- Size of file

- Encoding of file

- Message digest of file

Some of these attributes MJUST be included in the file description
entry for a file, others are optional, as defined in section 3.4.2.

Logically, the FDT is a set of file description entries for files to
be delivered in the session. Each file description entry MJST
include the TO for the file that it describes and the UR

identifying the file. The TA is included in each ALC/LCT data
packet during the delivery of the file, and thus the TA carried in
the file description entry is how the receiver determ nes which

ALC/ LCT data packets contain information about which file. Each file
description entry may al so contain one or nore descriptors that nap
the above-nmentioned attributes to the file.

Each file delivery session MJST have an FDT that is local to the

gi ven session. The FDT MJST provide a file description entry mapped

to a TO for each file appearing within the session. An object that

is delivered within the ALC session, but not described in the FDT, is

Paila, et al. Experi ment al [Page 8]

RFC 3926 FLUTE Cct ober 2004

not considered a "file' belonging to the file delivery session
Handl i ng of these unmapped TOs (TO s that are not resol ved by the
FDT) is out of scope of this specification.

Wthin the file delivery session the FDT is delivered as FDT

I nstances. An FDT Instance contains one or nore file description
entries of the FDT. Any FDT |Instance can be equal to, a subset of, a
superset of, or conplenent any other FDT Instance. A certain FDT

I nstance may be repeated several times during a session, even after
subsequent FDT Instances (wth higher FDT Instance |ID nunbers) have
been transmtted. Each FDT Instance contains at |least a single file
description entry and at nost the conplete FDT of the file delivery
sessi on.

A receiver of the file delivery session keeps an FDT dat abase for
received file description entries. The receiver nmaintains the

dat abase, for exanple, upon reception of FDT Instances. Thus, at any
given tinme the contents of the FDT database represent the receiver’'s
current view of the FDT of the file delivery session. Since each
recei ver behaves independently of other receivers, it SHOULD NOT be
assumed that the contents of the FDT database are the same for al

the receivers of a given file delivery session

Si nce FDT database is an abstract concept, the structure and the
mai nt ai ni ng of the FDT database are |eft to individua
i mpl enentati ons and are thus out of scope of this specification

3.3. Dynamics of FDT Instances within file delivery session

The followi ng rules define the dynami cs of the FDT Instances within a
file delivery session:

* For every file delivered within a file delivery session there MJST
be a file description entry included in at |east one FDT I|Instance
sent within the session. A file description entry contains at a
m ni mum t he mappi ng between the TA and the URI

* An FDT | nstance MAY appear in any part of the file delivery
sessi on and packets for an FDT | nstance MAY be interleaved with
packets for other files or other FDT Instances within a session

* The TA value of '0' MJST be reserved for delivery of FDT

I nstances. The use of other TA values for FDT Instances is
out si de the scope of this specification

Paila, et al. Experi ment al [Page 9]

RFC 3926 FLUTE Cct ober 2004

* FDT Instance is identified by the use of a new fixed | ength LCT
Header Extension EXT _FDT (defined later in this section). Each
FDT Instance is uniquely identified within the file delivery
session by its FDT Instance ID. Any ALC/LCT packet carrying FDT
I nstance (indicated by TO = 0) MJST include EXT_FDT.

* |t is RECOMMVENDED that FDT Instance that contains the file
description entry for a file is sent prior to the sending of the
described file within a file delivery session

* Wthin a file delivery session, any TO > 0 MAY be described nore
than once. An exanple: previous FDT Instance 0 describes TO of
value '3'. Now, subsequent FDT Instances can either keep TAO '3
unnodi fied on the table, not include it, or conplenent the
description. However, subsequent FDT Instances MJST NOT change
the paraneters already described for a specific TA.

* An FDT Instance is valid until its expiration tine. The
expiration tinme is expressed within the FDT Instance payload as a
32 bit data field. The value of the data field represents the 32
nost significant bits of a 64 bit Network Tine Protocol (NTP) [5]
time value. These 32 bits provide an unsigned integer
representing the time in seconds relative to 0 hours 1 January
1900. Handling of waparound of the 32 bit tinme is outside the
scope of NTP and FLUTE

* The receiver SHOULD NOT use a received FDT Instance to interpret
packets received beyond the expiration time of the FDT Instance.

* A sender MJST use an expiry time in the future upon creation of an
FDT Instance relative to its Sender Current Tinme (SCT).

* Any FEC Encoding | D MAY be used for the sending of FDT Instances.
The default is to use FEC Encoding 1D O for the sending of FDT
Instances. (Note that since FEC Encoding ID 0 is the default for
FLUTE, this inplies that Source Bl ock Nunber and Encodi ng Synbol
ID I engths both default to 16 bits each.)

Generally, a receiver needs to receive an FDT Instance describing a
file before it is able to recover the file itself. |In this sense FDT
I nstances are of higher priority than files. Thus, it is RECOMVENDED
that FDT Instances describing a file be sent with at | east as much
reliability within a session (nore often or with nore FEC protection)
as the files they describe. |In particular, if FDT Instances are

| onger than one packet payload in length it is RECOMWENDED that an
FEC code that provides protection against |oss be used for delivering
FDT I nstances. How often the description of a file is sent in an FDT

Paila, et al. Experi ment al [Page 10]

RFC 3926 FLUTE Cct ober 2004

I nstance or how nmuch FEC protection is provided for each FDT | nstance
(if the FDT Instance is |longer than one packet payload) is dependent
on the particular application and outside the scope of this docunent.

3.4. Structure of FDT Instance packets

FDT Instances are carried in ALC packets with TO = 0 and with an
addi ti onal REQUI RED LCT Header extension called the FDT |nstance
Header. The FDT | nstance Header (EXT_FDT) contains the FDT |Instance
ID that uniquely identifies FDT Instances within a file delivery
session. The FDT Instance Header is placed in the sane way as any

ot her LCT extension header. There MAY be other LCT extension headers
in use.

The LCT extension headers are followed by the FEC Payl oad I D, and
finally the Encoding Synmbols for the FDT | nstance which contains one
or nore file description entries. A FDT Instance MAY span severa
ALC packets - the nunmber of ALC packets is a function of the file
attributes associated with the FDT Instance. The FDT | nstance Header
is carried in each ALC packet carrying the FDT Instance. The FDT

I nstance Header is identical for all ALC LCT packets for a particul ar
FDT | nst ance.

The overall format of ALC/LCT packets carrying an FDT Instance is
depicted in the Figure 1 below. All integer fields are carried in
"bi g-endi an" or "network order" format, that is, nost significant
byte (octet) first. As defined in [2], all ALC LCT packets are sent
usi ng UDP

Paila, et al. Experi ment al [Page 11]

RFC 3926 FLUTE Cct ober 2004

o bm bm bm bm bm bm bo bm bo bm bo bm bm bm bm bm bm bo bo bo bo b bo b o o o o o o o
| UDP header |

B i I I e S R it sl (T T T S e S R i sl ik ST B IS SR e o
Default LCT header (with TAO = 0)

e i T T
LCT header extensions (EXT_FDT, EXT FTI, etc.)

FEC Payl oad I D

e i T T

|
+
|
|
|
|
|
|

Encodi ng Synbol (s) for FDT | nstance

|

|

+-

|

|

+- -+
|

|

T S S T T ST S e T T S S S S S
|

|

+- -+
|

|

+-

B sl T S S +- .+- B S S i i T S
Figure 1 - Overall FDT Packet
3.4.1. Format of FDT |nstance Header

FDT | nstance Header (EXT_FDT) is a new fixed |l ength, ALC Pl specific
LCT header extension [3]. The Header Extension Type (HET) for the
extension is 192. |Its format is defined bel ow

0 1 2 3
01234567890123456789012345678901
B s i S i I i S S S i i

| HET = 192 | AR FDT Instance ID
e b i T T e T S s S R S e T O i i Tk i RIS S S

Version of FLUTE (V), 4 bits:

Thi s docunent specifies FLUTE version 1. Hence in any ALC packet
that carries FDT Instance and that belongs to the file delivery
session as specified in this specification MUST set this field to
1.

FDT Instance ID, 20 bits:

For each file delivery session the nunbering of FDT Instances starts
from’0 and is increnented by one for each subsequent FDT | nstance.
After reaching the maxi mumvalue (2720-1), the nunbering starts again
from’0 . Wen waparound from2720-1 to O occurs, O is considered
hi gher than 2720-1. A new FDT Instance reusing a previous FDT

I nstance 1D nunber, due to waparound, may not inplicitly expire the
previous FDT Instance with the sane ID. It would be reasonable for

Paila, et al. Experi ment al [Page 12]

RFC 3926 FLUTE Cct ober 2004

FLUTE Senders to only construct and deliver FDT |Instances with
wraparound I Ds after the previous FDT | nstance using the sanme |ID has
expired. However, mandatory receiver behavior for handling FDT

I nstance | D waparound and ot her special situations (for exanple,

m ssing FDT Instance IDs resulting in larger increnents than one) is
out side the scope of this specification and left to individua

i mpl enent ati ons of FLUTE

3.4.2. Syntax of FDT Instance

The FDT Instance contains file description entries that provide the
mappi ng functionality described in 3.2 above.

The FDT Instance is an XM. structure that has a single root elenent
"FDT-1nstance". The "FDT-1nstance" el enment MJST contain "Expires"
attribute, which tells the expiry tinme of the FDT Instance. In
addition, the "FDT-Instance" el erent MAY contain the "Conplete"
attribute (bool ean), which, when TRUE, signals that no new data will
be provided in future FDT Instances within this session (i.e., that
ei ther FDT Instances with higher ID nunbers will not be used or if
they are used, will only provide identical file parameters to those
already given in this and previous FDT Instances). For exanple, this
may be used to provide a conmplete list of files in an entire FLUTE
session (a "conplete FDT").

The "FDT-1nstance" el enent MAY contain attributes that give comon
paranmeters for all files of an FDT Instance. These attributes MAY
al so be provided for individual files in the "File" element. Were
the sanme attribute appears in both the "FDT-Instance” and the "File"
el ements, the value of the attribute provided in the "File" el enent
t akes precedence.

For each file to be declared in the given FDT Instance there is a
single file description entry in the FDT Instance. Each entry is
represented by elenent "File" which is a child element of the FDT
I nstance structure.

The attributes of "File" element in the XML structure represent the
attributes given to the file that is delivered in the file delivery
session. The value of the XM. attribute nane corresponds to M MeE
field nane and the XML attribute val ue corresponds to the val ue of
the MME field body. Each "File" elenent MUST contain at |east two
attributes "TAO" and "Content-Location". "TO" MJST be assigned a
valid TAO value as described in section 3.3 above. "Content-

Locati on" MJST be assigned a valid URI as defined in [6].

Paila, et al. Experi ment al [Page 13]

RFC 3926 FLUTE Cct ober 2004

In addition to mandatory attributes, the "FDT-1nstance" el enment and
the "File" element MAY contain other attributes of which the
following are specifically pointed out.

* \Were the MMe type is described, the attribute "Content-Type"
MUST be used for the purpose as defined in [6].

* \Were the length is described, the attribute "Content-Length" MJST
be used for the purpose as defined in [6]. The transfer length is
defined to be the Iength of the object transported in bytes. It
is often inportant to convey the transfer length to receivers,
because the source bl ock structure needs to be known for the FEC
decoder to be applied to recover source blocks of the file, and
the transfer length is often needed to properly deternine the
source block structure of the file. There generally will be a
di fference between the Iength of the original file and the
transfer length if content encoding is applied to the file before
transport, and thus the "Content-Encodi ng" attribute is used. |If
the file is not content encoded before transport (and thus the
"Cont ent - Encodi ng" attribute is not used) then the transfer |ength
is the length of the original file, and in this case the
"Content-Length" is also the transfer length. However, if the
file is content encoded before transport (and thus the "Content-
Encodi ng" attribute is used), e.g., if conpression is applied
before transport to reduce the nunber of bytes that need to be
transferred, then the transfer length is generally different than
the length of the original file, and in this case the attribute
"Transfer-Length" MAY be used to carry the transfer length

* \Were the content encoding schene is described, the attribute
"Cont ent - Encodi ng" MJST be used for the purpose as defined in [6].

* \Were the MD5 nessage digest is described, the attribute
"Cont ent - MD5" MJST be used for the purpose as defined in [6].

* The FEC Object Transmission Information attributes as described in
section 5. 2.

The foll owing specifies the XML Scherma [8][9] for FDT Instance:

<?xm version="1. 0" encodi ng="UTF-8""?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: fl="http://ww. exanpl e. com f| ute"
el ement For nDef aul t : xs="qual i fi ed"
t arget Nanespace: xs="http://ww. exanpl e. com fl ute">
<xs: el enent name="FDT- | nst ance">
<xs: conpl exType>
<XS:sequence>

Paila, et al. Experi ment al [Page 14]

RFC 3926

FLUTE Cct ober

<xs: el enent nanme="File" maxCccur s="unbounded" >
<xs: conpl exType>
<xs:attribute nane="Content-Location"

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:

attribute

attribute

attribute

attribute

attribute

attribute

attribute

attribute

attribute

attribute

attribute

type="xs:anyURl "
use="required"/>

name="TOA "

type="xs: positivel nteger"
use="required"/>
nanme="Cont ent - Lengt h"
type="xs: unsi gnedLong"
use="optional "/ >
nanme="Tr ansf er - Lengt h"
type="xs: unsi gnedLong"
use="optional "/ >
name="Cont ent - Type"
type="xs:string"
use="optional "/ >

nanme=" Cont ent - Encodi ng"
type="xs:string"
use="optional "/ >
nanme=" Cont ent - MD5"

type="xs: base64Bi nary"
use="optional "/ >

nanme=" FEC- OT| - FEC- Encodi ng- | D"
type="xs: unsi gnedLong"
use="optional "/ >
name="FEC- OTl - FEC- | nst ance- | D"
type="xs: unsi gnedLong"
use="optional "/ >

nanme=" FEC- OTI| - Maxi num Sour ce- Bl ock- Lengt h"
type="xs: unsi gnedLong"
use="optional "/ >
name="FEC- OTl - Encodi ng- Synbol - Lengt h"
type="xs: unsi gnedLong"
use="optional "/ >

nanme=" FEC- OTI| - Max- Nunber - of - Encodi ng- Synbol s"
type="xs: unsi gnedLong"
use="optional "/ >

<xs:anyAttribute processContents="skip"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>

<xs:attribute name="Expires"
type="xs:string"
use="required"/>
<xs:attribute name="Conpl ete"
type="xs: bool ean”

Pail a, et al

Experi ment al [Page

2004

15]

RFC 3926 FLUTE Cct ober 2004

use="optional "/ >

<xs:attribute name="Content- Type"
type="xs:string"
use="optional "/ >

<xs:attribute name="Content-Encodi ng"
type="xs:string"
use="optional "/ >

<xs:attribute nanme="FEC- OTl - FEC- Encodi ng- | D"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - FEC- | nst ance- | D"
type="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute nanme="FEC- OTl - Maxi mum Sour ce- Bl ock- Lengt h"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - Encodi ng- Synbol - Lengt h"
type="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute nanme="FEC- OTl - Max- Nunber - of - Encodi ng- Synbol s"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:anyAttribute processContents="skip"/>

</ xs: conpl exType>

</ xs: el ement >
</ xs: schema>

Any valid FDT Instance nmust use the above XML Schema. This way FDT
provides extensibility to support private attributes within the file
description entries. Those could be, for exanple, the attributes
related to the delivery of the file (tining, packet transnission
rate, etc.).

In case the basic FDT XM. Schema is extended in terns of new
descriptors, for attributes applying to a single file, those MJST be

placed within the attributes of the elenent "File". For attributes
applying to all files described by the current FDT |Instance, those
MUST be placed within the el enent "FDT-Instance". It is RECOMVENDED

that the new descriptors applied in the FDT are in the format of MM
fields and are either defined in the HITP/ 1.1 specification [6] or
anot her wel | -known specification

3.4.3. Content Encoding of FDT | nstance
The FDT Instance itself MAY be content encoded, for exanple
conpressed. This specification defines FDT Instance Content Encodi ng

Header (EXT_CENC). EXT_CENC is a new fixed |length, ALC Pl specific
LCT header extension [3]. The Header Extension Type (HET) for the

Paila, et al. Experi ment al [Page 16]

RFC 3926 FLUTE Cct ober 2004

extension is 193. |If the FDT Instance is content encoded, the
EXT_CENC MJUST be used to signal the content encoding type. In that
case, EXT_CENC header extension MJST be used in all ALC packets
carrying the sane FDT Instance ID. Consequently, when EXT_CENC
header is used, it MJST be used together with a proper FDT Instance
Header (EXT_FDT). Wthin a file delivery session, FDT Instances that
are not content encoded and FDT | nstances that are content encoded
MAY both appear. |If content encoding is not used for a given FDT

I nst ance, the EXT_CENC MJUST NOT be used in any packet carrying the
FDT Instance. The format of EXT_CENC is defined bel ow

0 1 2 3
012345678901234567890123456789¢01

B ik o T e S S T ks e i S R T I e e S S e el ST S TR S e
| HET = 193 | CENC | Reserved |
B I i o SIS I I Y Y Y S T T T T N i S N S S il o S S I S

Content Encoding Al gorithm (CENC), 8 bhits:

This field signals the content encoding al gorithmused in the FDT

I nstance payl oad. The definition of this field is outside the scope
of this specification. Applicable content encoding al gorithns

i nclude, for example, ZLIB [10], DEFLATE [16] and (ZIP [17].

Reserved, 16 bits:
This field MUST be set to all "0 .
3.5. Miltiplexing of files within a file delivery session

The delivered files are carried as transport objects (identified with
TAs) in the file delivery session. Al these objects, including the
FDT | nstances, MAY be multiplexed in any order and in parallel with
each other within a session, i.e., packets for one file MAY be

interl eaved with packets for other files or other FDT Instances
within a session

Mul tiple FDT Instances MAY be delivered in a single session using TO
= 0. Inthis case, it is RECOWENDED that the sending of a previous
FDT | nstance SHOULD end before the sending of the next FDT Instance
starts. However, due to unexpected network conditions, packets for
the FDT Instances MAY be interleaved. A receiver can determnm ne which
FDT I nstance a packet contains information about since the FDT

I nstances are uniquely identified by their FDT Instance ID carried in
the EXT_FDT headers.

Paila, et al. Experi ment al [Page 17]

RFC 3926 FLUTE Cct ober 2004

4. Channel s, congestion control and timng

ALC/ LCT has a concept of channels and congestion control. There are
four scenarios FLUTE is envisioned to be applied.

(a) Use a single channel and a single-rate congestion contro
pr ot ocol

(b) Use multiple channels and a multiple-rate congestion contro
protocol. In this case the FDT |Instances MAY be delivered on
nore than one channel

(c) Use a single channel wi thout congestion control supplied by ALC,
but only when in a controlled network environment where flow
congestion control is being provided by other neans.

(d) Use multiple channels w thout congestion control supplied by ALC,
but only when in a controlled network environment where fl ow
congestion control is being provided by other neans. In this
case the FDT Instances MAY be delivered on nore than one channel

VWhen using just one channel for a file delivery session, as in (a)
and (c), the notion of 'prior’ and ’after’ are intuitively defined
for the delivery of objects with respect to their delivery tines.

However, if nultiple channels are used, as in (b) and (d), it is not
straightforward to state that an object was delivered 'prior’ to the
other. An object may begin to be delivered on one or nore of those
channel s before the delivery of a second object begins. However, the
use of multiple channels/layers nmay conplete the delivery of the
second object before the first. This is not a problemwhen objects
are delivered sequentially using a single channel. Thus, if the
application of FLUTE has a mandatory or critical requirenent that the
first transport object must conplete 'prior’ to the second one, it is
RECOMVENDED t hat only a single channel is used for the file delivery
sessi on.

Furthernore, if multiple channels are used then a receiver joined to

the session at a low reception rate will only be joined to the | ower

| ayers of the session. Thus, since the reception of FDT Instances is
of higher priority than the reception of files (because the reception
of files depends on the reception of an FDT Instance describing it),

the follow ng i s RECOVWENDED

1. The layers to which packets for FDT Instances are sent SHOULD NOT
be bi ased towards those layers to which |ower rate receivers are
not joined. For exanple, it is ok to put all the packets for an
FDT Instance into the lowest layer (if this layer carries enough

Paila, et al. Experi ment al [Page 18]

RFC 3926 FLUTE Cct ober 2004

packets to deliver the FDT to higher rate receivers in a
reasonabl e anount of tinme), but it is not ok to put all the
packets for an FDT Instance into the higher layers that only high
rate receivers will receive.

2. |If FDT Instances are generally | onger than one Encodi ng Synbol in
| ength and sone packets for FDT |Instances are sent to |ayers that
| ower rate receivers do not receive, an FEC Encodi ng other than
FEC Encoding 1D 0 SHOULD be used to deliver FDT |Instances. This
is because in this case, even when there is no packet loss in the
network, a lower rate receiver will not receive all packets sent
for an FDT | nstance.

5. Delivering FEC Object Transm ssion Information

FLUTE i nherits the use of FEC building block [4] fromALC. Wen
using FLUTE for file delivery over ALC the FEC Object Transm ssion
I nformati on MJUST be delivered in-band within the file delivery
session. |In this section, two nethods are specified for FLUTE for
this purpose: the use of ALC specific LCT extension header EXT_FTI
[2] and the use of FDI.

The receiver of file delivery session MJST support delivery of FEC
bj ect Transm ssion Information using the EXT_FTI for the FDT

I nstances carried using TO value 0. For the TA values other than 0
the receiver MUST support both nethods: the use of EXT _FTI and the
use of FDT.

The FEC Cbj ect Transmi ssion Information that needs to be delivered to
receivers MUST be exactly the sane whether it is delivered using
EXT_FTlI or using FDT (or both). Section 5.1 describes the required
FEC Qbj ect Transmi ssion Information that MJUST be delivered to
receivers for various FEC Encoding IDs. |In addition, it describes
the delivery using EXT_FTlI. Section 5.2 describes the delivery using
FDT.

The FEC Obj ect Transm ssion Information regarding a given TO may be
avail abl e from several sources. |In this case, it is RECOMVENDED t hat
the receiver of the file delivery session prioritizes the sources in
the following way (in the order of decreasing priority).

1. FEC Object Transmission Information that is available in EXT_FTI.

2. FEC bject Transmission Information that is available in the FDT.

Paila, et al. Experi ment al [Page 19]

RFC 3926 FLUTE Cct ober 2004

5.

5.

1.

1.

Use of EXT_FTI for delivery of FEC Object Transnission Infornmation

As specified in [2], the EXT_FTI header extension is intended to
carry the FEC Object Transm ssion Information for an object in-band.
It is left up to individual inplementations to decide how frequently
and in which ALC packets the EXT_FTI header extension is included.

In environments with higher packet |oss rate, the EXT_FTI m ght need
to be included nore frequently in ALC packets than in environnents
with [ow error probability. The EXT_FTI MJST be included in at |east
one sent ALC packet for each FDT I|nstance.

The ALC specification does not define the format or the processing of
the EXT_FTI header extension. The follow ng sections specify EXT _FTI
when used in FLUTE.

In FLUTE, the FEC Encoding ID (8 bits) is carried in the Codepoint
field of the ALC/LCT header.

1. Ceneral EXT_FTI fornat

The general EXT_FTI format specifies the structure and those
attributes of FEC Object Transm ssion Information that are applicable
to any FEC Encoding ID.

1 2 3
1234567890123456789012345678901
R T i T e e i T S L e e e i T St R S S S S s e I S R
| HET = 64 | HEL | |
e Ik T e s i oI N +
| Transfer Length |
+- +
| |
+- +

0
0

R i S S L o i i s sl i S S S S S S S
FEC I nstance ID | FEC Enc. | D Specific Format
e e e e o o i e T S S e e
Header Extension Type (HET), 8 bits:
64 as defined in [2].

Header Extension Length (HEL), 8 bits:

Paila, et al. Experi ment al [Page 20]

RFC 3926 FLUTE Cct ober 2004

The I ength of the whol e Header Extension field, expressed in
mul tiples of 32-bit words. This length includes the FEC Encoding |ID
specific format part.

Transfer Length, 48 bits:

The I ength of the transport object that carries the file in bytes.
(This is the sane as the file length if the file is not content
encoded.)

FEC I nstance ID, optional, 16 bits:

This field is used for FEC Instance ID. It is only present if the
val ue of FEC Encoding IDis in the range of 128-255. Wen the val ue
of FEC Encoding IDis in the range of 0-127, this field is set to O.

FEC Encodi ng I D Specific Format:

Di fferent FEC encodi ng schenes will need different sets of encoding
paranmeters. Thus, the structure and |l ength of this field depends on
FEC Encoding ID. The next sections specify structure of this field
for FEC Encoding |ID nunbers 0, 128, 129, and 130.

5.1.2. FEC Encoding ID specific formats for EXT _FTI
5.1.2.1. FEC Encoding IDs 0, 128, and 130

FEC Encoding ID 0 is ’'Conpact No-Code FEC (Fully-Specified) [7].
FEC Encoding ID 128 is 'Small Bl ock, Large Bl ock and Expandabl e FEC
(Under-Specified) [4]. FEC Encoding ID 130 is 'Conmpact FEC (Under-
Specified) [7]. For these FEC Encoding |IDs, the FEC Encoding ID
specific format of EXT_FTI is defined as follows.

0 1 2 3
01234567890123456789012345678901
O I S e e e ok o HIE R R R
General EXT_FTI format | Encodi ng Synbol Length |
s S S i I S R R e h T Tk e S S S o T S
| Maxi mum Sour ce Bl ock Length
B i aT T ST S O S it T ol STEE S U SR U S e O S S N S S

Encodi ng Synbol Length, 16 bits:
Length of Encodi ng Synbol in bytes.
Al'l Encodi ng Synmbol s of a transport object MJST be equal to this

length, with the optional exception of the |ast source synbol of the
| ast source block (so that redundant padding is not mandatory in this

Paila, et al. Experi ment al [Page 21]

RFC 3926 FLUTE Cct ober 2004

| ast synbol). This last source synbol MJST be |ogically padded out
with zeroes when another Encodi ng Synbol is conputed based on this
source synbol to ensure the sane interpretation of this Encoding
Synbol val ue by the sender and receiver. However, this paddi ng does
not actually need to be sent with the data of the | ast source synbol .

Maxi mum Sour ce Bl ock Length, 32 bits:
The maxi mum nunber of source synbols per source bl ock

This EXT_FTI specification requires that an algorithmis known to
both sender and receivers for determning the size of all source

bl ocks of the transport object that carries the file identified by
the TO (or within the FDT Instance identified by the TO and the FDT
Instance I1D). The algorithm SHOULD be the sane for all files using
the sane FEC Encoding ID within a session.

Section 5.1.2.3 describes an algorithmthat is RECOVWWENDED for this
use.

For the FEC Encoding IDs 0, 128 and 130, this algorithmis the only
wel | known way the receiver can deternm ne the |length of each source
bl ock. Thus, the algorithmdoes two things: (a) it tells the
receiver the length of each particular source block as it is

recei ving packets for that source block - this is essential to all of
these FEC schenes; and, (b) it provides the source block structure

i medi ately to the receiver so that the receiver can deternine where
to save recovered source bl ocks at the beginning of the reception of
dat a packets for the file - this is an optim zation which is
essential for sone inplenentations.

5.1.2.2. FEC Encoding ID 129

Smal | Bl ock Systematic FEC (Under-Specified). The FEC Encoding ID
specific format of EXT_FTI is defined as follows.

0 1 2 3
01234567890123456789012345678901
bk ok ok o R S R
General EXT_FTI format | Encodi ng Symbol Length |
B s i S i I i S S S i i
| Maxi mum Source Bl ock Length | Max. Num of Encoding Synbol s
e i S i e e e e ok S i R

Encodi ng Synbol Length, 16 bits:

Lengt h of Encodi ng Synbol in bytes.

Paila, et al. Experi ment al [Page 22]

RFC 3926 FLUTE Cct ober 2004

Al'l Encodi ng Synmbol s of a transport object MJST be equal to this
length, with the optional exception of the |ast source synmbol of the
| ast source block (so that redundant padding is not nmandatory in this
| ast synbol). This last source synbol MJST be | ogically padded out

wi th zeroes when another Encodi ng Synbol is conmputed based on this
source synbol to ensure the sane interpretation of this Encoding
Synbol val ue by the sender and receiver. However, this paddi ng need
not be actually sent with the data of the |last source synbol

Maxi mum Sour ce Bl ock Length, 16 bits:
The maxi mum nunber of source synbols per source bl ock
Maxi mum Nunber of Encoding Synbols, 16 bits:

Maxi mum nunber of Encodi ng Synbol s that can be generated for a source
bl ock.

This EXT_FTI specification requires that an algorithmis known to
both sender and receivers for determining the size of all source

bl ocks of the transport object that carries the file identified by
the TO (or within the FDT Instance identified by the TO and the FDT
Instance I1D). The algorithm SHOULD be the sane for all files using
the same FEC Encoding ID within a session

Section 5.1.2.3 describes an algorithmthat is RECOVWENDED for this
use. For FEC Encoding ID 129 the FEC Payload I D in each data packet
al ready contains the source block Iength for the source bl ock
correspondi ng to the Encoding Synbol carried in the data packet.

Thus, the algorithmfor computing source bl ocks for FEC Encoding ID
129 could be to just use the source block Iengths carried in data
packets within the FEC Payload ID. However, the al gorithm described
in Section 5.1.2.3 is useful for the receiver to conpute the source
bl ock structure at the begi nning of the reception of data packets for
the file. |If the algorithmdescribed in Section 5.1.2.3 is used then
it MIUST be the case that the source bl ock | engths that appear in data
packets agree with the source block | engths cal cul ated by the

al gorithm

5.1.2.3. Agorithmfor Computing Source Block Structure

This al gorithm conputes a source block structure so that all source
bl ocks are as close to being equal |length as possible. A first
nunber of source bl ocks are of the same larger length, and the
remai ni ng second nunber of source bl ocks are sent of the same smaller
l ength. The total nunber of source blocks (N), the first nunber of

Paila, et al. Experi ment al [Page 23]

RFC 3926

FLUTE Cct ober 2004

source blocks (1), the second nunber of source blocks (N-1), the

larger length (A large) and the smaller length (A small) are
cal cul ated t hus,
I nput :
B -- Maxi mum Source Bl ock Length, i.e., the nmaxi num nunber of

Qut

source synbol s per source bl ock
L -- Transfer Length in bytes
E -- Encoding Synbol Length in bytes

put :
N -- The nunber of source blocks into which the transport
object is partitioned.

The nunber and | engths of source synbols in each of the N
sour ce bl ocks.

Al gorithm

(a) The nunber of source synbols in the transport object is
conputed as T = L/E rounded up to the nearest integer.

(b) The transport object is partitioned into N source bl ocks,
where N = T/B rounded up to the nearest integer

(c) The average length of a source block, A= T/N
(this may be non-integer)

(d) Alarge = A rounded up to the nearest integer
(it will always be the case that the value of A large is at
nost B)

(e) Asmall = A rounded down to the nearest integer
(if Ais an integer A small = A |large,
and otherwise A small = Alarge - 1)

(f) The fractional part of A A fraction = A - A snmall

(g) I = Afraction * N
(I is an integer between 0 and N-1)

(h) Each of the first | source blocks consists of A large source
synmbol s, each source synbol is E bytes in length. Each of the
remai ning NI source bl ocks consist of A small source synbols,
each source synbol is E bytes in | ength except that the | ast
source synbol of the last source block is L-(((L-1)/E) rounded
down to the nearest integer)*E bytes in |ength.

Note, this algorithmdoes not inply inplenmentation by floating point

arithmetic and integer arithnetic may be used to avoid potentia

floati

Pail a, et

ng point rounding errors.

al . Experi ment al [Page 24]

RFC 3926 FLUTE Cct ober 2004

5.2. Use of FDT for delivery of FEC Object Transnission Infornmation

The FDT delivers FEC bject Transmi ssion Information for each file
using an appropriate attribute within the "FDT-1nstance" or the
"File" element of the FDT structure. For future FEC Encoding IDs, if
the attributes listed below do not fulfill the needs of describing
the FEC Obj ect Transmi ssion Information then additional new
attributes MAY be used.

* "Transfer-Length" is semantically equivalent with the field
"Transfer Length" of EXT_FTI.

* "FEGC- Ol - FEC-Encodi ng-1 D" is semantically equivalent with the
field "FEC Encoding ID' as carried in the Codepoint field of the
ALC/ LCT header.

* "FEC-OTl - FEC-I nstance-1D" is semantically equivalent with the
field "FEC I nstance | D' of EXT_FTI.

* "FEC- OTl - Maxi mum Sour ce- Bl ock-Length" is semantically equival ent
with the field "Maxi mum Source Bl ock Length" of EXT_FTI for FEC
Encoding IDs 0, 128 and 130, and semantically equivalent with the
field "Maxi num Source Bl ock Length" of EXT_FTI for FEC Encoding |ID
129.

* "FEC- OTl - Encodi ng- Synbol -Length" is semantically equivalent with
the field "Encoding Synmbol Length" of EXT_FTI for FEC Encodi ng | Ds
0, 128, 129 and 130.

* "FEGC- OTl - Max- Nunber - of - Encodi ng- Synbol s" is semantically
equi valent with the field "Maxi mum Nunber of Encodi ng Synbol s" of
EXT_FTI for FEC Encoding ID 129.

6. Describing file delivery sessions

To start receiving a file delivery session, the receiver needs to
know transport paraneters associated with the session.
Interpreting these paraneters and starting the reception therefore
represents the entry point fromwhich thereafter the receiver
operation falls into the scope of this specification. According
to [2], the transport paraneters of an ALC/LCT session that the
receiver needs to know are:

* The source | P address;

* The nunber of channels in the session;

Paila, et al. Experi ment al [Page 25]

RFC 3926 FLUTE Cct ober 2004

* The destination | P address and port nunber for each channel in the
sessi on;

* The Transport Session ldentifier (TSI) of the session

* An indication that the session is a FLUTE session. The need to
denul ti pl ex objects upon receptionis inplicit in any use of
FLUTE, and this fulfills the ALC requirenment of an indication of
whet her or not a session carries packets for nore than one object
(all FLUTE sessions carry packets for nore than one object).

Optionally, the follow ng paraneters MAY be associated with the
session (Note, the list is not exhaustive):

* The start tinme and end time of the session

* FEC Encoding ID and FEC Instance I D when the default FEC Encodi ng
IDO is not used for the delivery of FDT;

* Content Encoding format if optional content encoding of FDT
I nstance is used, e.g., conpression

* Some information that tells receiver, in the first place, that the
session contains files that are of interest.

It is envisioned that these paraneters woul d be described according
to sone session description syntax (such as SDP [12] or XM based)
and held in a file which would be acquired by the receiver before the
FLUTE session begins by means of sonme transport protocol (such as
Sessi on Announcenent Protocol [11], emmil, HITP [6], SIP [22], nmanua
pre-configuration, etc.) However, the way in which the receiver

di scovers the above-nentioned paraneters is out of scope of this
document, as it is for LCT and ALC. In particular, this

speci fication does not mandate or exclude any nechani sm

7. Security Considerations

The security considerations that apply to, and are described in, ALC
[2], LCT [3] and FEC [4] also apply to FLUTE. In addition, any
security considerations that apply to any congestion control building
bl ock used in conjunction with FLUTE al so apply to FLUTE

Because of the use of FEC, FLUTE is especially vulnerable to denial-
of -service attacks by attackers that try to send forged packets to
the session which would prevent successful reconstruction or cause

i naccurate reconstruction of |arge portions of the FDT or file by
receivers. Like ALC, FLUTE is particularly affected by such an

Paila, et al. Experi ment al [Page 26]

RFC 3926 FLUTE Cct ober 2004

attack because nany receivers may receive the same forged packet. A
mal i ci ous attacker may spoof file packets and cause incorrect
recovery of a file.

Even nore damagi ng, a nalicious forger may spoof FDT | nstance
packets, for exanple sending packets with erroneous FDT-Instance
fields. Many attacks can follow this approach. For instance a
mal i ci ous attacker may alter the Content-Location field of TO 'n’,
to nake it point to a systemfile or a user configuration file.

Then, TO 'n’ can carry a Trojan Horse or some other type of virus.
It is thus STRONGLY RECOVMMENDED t hat the FLUTE delivery service at
the receiver does not have wite access to the systemfiles or
directories, or any other critical areas. As described for MM
[20][21], special consideration should be paid to the security

i mplications of any M ME types that can cause the renote execution of
any actions in the recipient’s environnent. Note, RFC 1521 [21]
descri bes inportant security issues for this environment, even though
its protocol is obsoleted by RFC 2048 [20].

Anot her exanple is generating a bad Content-M5 sum | eading
receivers to reject the associated file that will be declared
corrupted. The Content-Encoding can al so be nodified, which also
prevents the receivers to correctly handl e the associated file.

These exanpl es show that the FDT information is critical to the FLUTE
delivery service

At the application level, it is RECOWENDED that an integrity check
on the entire received object be done once the object is
reconstructed to ensure it is the sane as the sent object, especially
for objects that are FDT |Instances. Mreover, in order to obtain
strong cryptographic integrity protection a digital signature
verifiable by the recei ver SHOULD be used to provide this application
level integrity check. However, if even one corrupted or forged
packet is used to reconstruct the object, it is likely that the

recei ved object will be reconstructed incorrectly. This wll
appropriately cause the integrity check to fail and, in this case,
the inaccurately reconstructed object SHOULD be di scarded. Thus, the
acceptance of a single forged packet can be an effective denial of
service attack for distributing objects, but an object integrity
check at |east prevents inadvertent use of inaccurately reconstructed
objects. The specification of an application |evel integrity check
of the received object is outside the scope of this docunent.

At the packet level, it is RECOMWENDED that a packet |eve

aut hentication be used to ensure that each received packet is an

aut hentic and uncorrupted packet containing FEC data for the object
arriving fromthe specified sender. Packet |evel authentication has
the advantage that corrupt or forged packets can be discarded

Paila, et al. Experi ment al [Page 27]

RFC 3926 FLUTE Cct ober 2004

i ndividually and the recei ved authenticated packets can be used to
accurately reconstruct the object. Thus, the effect of a denial of
service attack that injects forged packets is proportional only to
the nunber of forged packets, and not to the object size. Although
there is currently no | ETF standard that specifies how to do

nmul ticast packet |evel authentication, TESLA [14] is a known

nmul ticast packet authentication schene that would work.

In addition to providing protection agai nst reconstruction of

i naccur at e objects, packet |evel authentication can also provide sone
protecti on agai nst denial of service attacks on the nultiple rate
congestion control. Attackers can try to inject forged packets with
i ncorrect congestion control infornmation into the nulticast stream
thereby potentially adversely affecting network el enments and
receivers downstream of the attack, and nuch less significantly the
rest of the network and other receivers. Thus, it is also
RECOMMVENDED t hat packet |evel authentication be used to protect

agai nst such attacks. TESLA [14] can al so be used to sone extent to
limt the damage caused by such attacks. However, with TESLA a
receiver can only determne if a packet is authentic several seconds
after it is received, and thus an attack agai nst the congestion
control protocol can be effective for several seconds before the
recei ver can react to sl ow down the session reception rate.

Reverse Path Forwardi ng checks SHOULD be enabled in all network
routers and switches along the path fromthe sender to receivers to
l[imt the possibility of a bad agent injecting forged packets into
the multicast tree data path.

A receiver with an incorrect or corrupted inplenentation of the
nmultiple rate congestion control building block may affect health of
the network in the path between the sender and the receiver, and may
al so affect the reception rates of other receivers joined to the
session. It is therefore RECOWENDED that receivers be required to
identify thenmselves as legitimte before they receive the Session
Description needed to join the session. How receivers identify
thenselves as legitimate is outside the scope of this docunent.

Anot her vul nerability of FLUTE is the potential of receivers
obt ai ni ng an incorrect Session Description for the session. The
consequences of this could be that legitinmate receivers with the
wrong Session Description are unable to correctly receive the session
content, or that receivers inadvertently try to receive at a much

hi gher rate than they are capable of, thereby disrupting traffic in
portions of the network. To avoid these problens, it is RECOMVENDED
that neasures be taken to prevent receivers fromaccepting incorrect
Session Descriptions, e.g., by using source authentication to ensure

Paila, et al. Experi ment al [Page 28]

RFC 3926 FLUTE Cct ober 2004

that receivers only accept |legitimte Session Descriptions from
aut hori zed senders. How this is done is outside the scope of this
document .

8. | ANA Consi der ati ons

No information in this specification is directly subject to | ANA
regi stration. However, building blocks conmponents used by ALC may
i ntroduce additional |ANA considerations. |In particular, the FEC
bui | di ng bl ock used by FLUTE does require | ANA registration of the
FEC codec used.

9. Acknow edgenents

The foll owi ng persons have contributed to this specification: Brian
Adanson, Mark Handl ey, Esa Jal onen, Roger Kernode, Juha-Pekka Luona
Jani Peltotal o, Sam Peltotal o, Topi Pohjol ai nen, and Lorenzo
Vicisano. The authors would like to thank all the contributors for
their valuable work in review ng and providi ng feedback regardi ng
this specification.

Nor mat i ve Ref erences

[1] Bradner, S., "Key words for use in RFCs to I ndicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[2] Luby, M, Gemell, J., Vicisano, L., Rizzo, L., and J.
Crowcroft, "Asynchronous Layered Coding (ALC) Protoco
Instantiation", RFC 3450, Decenber 2002.

[3] Luby, M, Gemell, J., Vicisano, L., R zzo, L., Handley, M,
and J. Crowcroft, "Layered Coding Transport (LCT) Building
Bl ock", RFC 3451, Decenber 2002.

[4] Luby, M, Vicisano, L., Gemmell, J., R zzo, L., Handley, M,
and J. Crowcroft, "Forward Error Correction (FEC) Building
Bl ock", RFC 3452, Decenber 2002.

[5] MIlls, D, "Network Time Protocol (Version 3) Specification
| mpl ement ati on", RFC 1305, March 1992.

[6] Fielding, R, Gettys, J., Mgul, J., Frystyk, H , Msinter,
L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protoco
-- HTTP/1.1", RFC 2616, June 1999.

[7] Luby, M and L. Vicisano, "Conpact Forward Error Correction
(FEC) Schemes", RFC 3695, February 2004.

Paila, et al. Experi ment al [Page 29]

RFC 3926 FLUTE Cct ober 2004

[8] Thonpson, H., Beech, D., Maloney, M and N. Mendel sohn, " XM
Schema Part 1: Structures", WBC Recommrendation, May 2001.

[9] Biron, P. and A. Mal hotra, "XM. Schema Part 2: Datatypes", WBC
Recomendat i on, May 2001.

I nformati ve References

[10] Deutsch, P. and J-L. Gailly, "ZLIB Conpressed Data Format
Speci fication version 3.3", RFC 1950, May 1996.

[11] Handley, M, Perkins, C., and E. Welan, "Session Announcenent
Protocol ", RFC 2974, Cctober 2000.

[12] Handley, M and V. Jacobson, "SDP: Session Description
Protocol ", RFC 2327, April 1998.

[13] Deering, S., "Host extensions for IP multicasting", STD 5, RFC
1112, August 1989.

[14] Perrig, A, Canetti, R, Song, D., and J. Tygar, "Efficient and
Secure Source Authentication for Milticast, Network and
Di stributed System Security Synposium NDSS 2001, pp. 35-46.",
February 2001

[15] Hol brook, H., "A Channel Mdel for Milticast, Ph.D
Di ssertation, Stanford University, Departnent of Computer
Sci ence, Stanford, California", August 2001.

[16] Deutsch, P., "DEFLATE Conpressed Data Format Specification
version 1.3", RFC 1951, May 1996.

[17] Deutsch, P., "GZIP file format specification version 4.3", RFC
1952, May 1996.

[18] Ransdell, B., "Secure/Miltipurpose Internet Miil Extensions
(SIM ME) Version 3.1 Message Specification", RFC 3851, July
2004.

[19] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
Language) XM.-Si gnature Syntax and Processing"”, RFC 3275, March
2002.

[20] Freed, N, Klensin, J., and J. Postel, "Miltipurpose |nternet

Mai|l Extensions (M M) Part Four: Registration Procedures", RFC
2048, Novenber 1996.

Paila, et al. Experi ment al [Page 30]

RFC 3926 FLUTE Cct ober 2004

[21] Moore, K, "MME (Miltipurpose Internet Miil Extensions) Part
Three: Message Header Extensions for Non-ASCI I Text", RFC 1521,
Noverber 1996.

[22] Rosenberg, J., Schul zrinne, H, Camarillo, G, Johnston, A,

Peterson, J., Sparks, R, Handley, M, and E. Schooler, "SIP:
session initiation protocol", RFC 3261, June 2002.

Paila, et al. Experi ment al [Page 31]

RFC 3926 FLUTE Cct ober 2004

Appendi x A. Receiver operation (informative)

Thi

s section gives an exanple how the receiver of the file delivery

session may operate. Instead of a detailed state-by-state
specification the follow ng should be interpreted as a rough sequence

of

1

Pai | a,

an envisioned file delivery receiver.

The recei ver obtains the description of the file delivery session
identified by the pair: (source |IP address, Transport Session
Identifier). The receiver also obtains the destination IP
addresses and respective ports associated with the file delivery
sessi on.

The receiver joins the channels in order to receive packets
associated with the file delivery session. The receiver may
schedul e this join operation utilizing the timng informtion
contained in a possible description of the file delivery session

The receiver receives ALC LCT packets associated with the file
delivery session. The receiver checks that the packets match the
decl ared Transport Session ldentifier. |If not, packets are
silently discarded.

Wil e receiving, the receiver denultiplexes packets based on their
TO and stores the relevant packet information in an appropriate
area for recovery of the corresponding file. Miltiple files can
be reconstructed concurrently.

Recei ver recovers an object. An object can be recovered when an
appropriate set of packets containing Encoding Synbols for the
transport object have been received. An appropriate set of
packets is dependent on the properties of the FEC Encoding ID and
FEC Instance I D, and on other information contained in the FEC
nj ect Transm ssion I nformation.

If the recovered object was an FDT Instance with FDT Instance ID
"N, the receiver parses the payl oad of the instance 'N of FDT
and updates its FDT database accordingly. The receiver identifies
FDT Instances within a file delivery session by the EXT_FDT header
extension. Any object that is delivered using EXT_FDT header
extension is an FDT Instance, uniquely identified by the FDT
Instance ID. Note that TO "0 is exclusively reserved for FDT
del i very.

If the object recovered is not an FDT Instance but a file, the

recei ver looks up its FDT database to get the properties described
in the database, and assigns file with the given properties. The
recei ver al so checks that received content length matches with the

et al. Experi ment al [Page 32]

RFC 3926 FLUTE Cct ober 2004

description in the database. Optionally, if MD5 checksum has been
used, the receiver checks that cal cul ated MD5 matches with the
description in the FDT database.

8. The actions the receiver takes with inperfectly received files
(m ssing data, msmatching digestive, etc.) is outside the scope
of this specification. Wen a file is recovered before the
associated file description entry is available, a possible
behavior is to wait until an FDT Instance is received that
i ncl udes the nissing properties.

9. If the file delivery session end tine has not been reached go back
to 3. Oherwi se end.

Appendi x B. Exanple of FDT Instance (informative)

<?xm version="1. 0" encodi ng="UTF-8""?>

<FDT- I nstance xnm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: fl="http://ww. exanpl e. com f| ute"

Xsi : schemaLocati on="htt p://ww. exanpl e. cont fl ute-fdt.xsd"

Expi res="2890842807" >

<File
Cont ent - Locati on="htt p: // ww. exanpl e. conf nenu/tracklist.htm"
TA ="1"
Content - Type="text/htm "/ >

<File
Content - Locati on="http://ww. exanpl e. conl tracks/trackl. np3"
T =" 2"

Cont ent - Lengt h="6100"

Cont ent - Type="audi o/ np3"

Cont ent - Encodi ng="gzi p"

Cont ent - MD5="+VP5I r Wl oFkZW 11i LDdA=="

Sone- Pri vat e- Ext ensi on- Tag="abc123"/ >
</ FDT- | nst ance>

Paila, et al. Experi ment al [Page 33]

RFC 3926 FLUTE Cct ober 2004

Aut hors’ Addr esses

Toni Pail a

Noki a

| tamerenkatu 11-13
Hel si nki FI N-00180
Fi nl and

EMai | : toni.pail a@okia.com
M chael Luby

Di gital Fountain
39141 Civic Center Dr.

Suite 300

Fremont, CA 94538

USA

EMai | : | uby@li gital fountain.com

Ram Leht onen

Tel i aSoner a

Hat anpaan valtatie 18
Tanpere FIN-33100

Fi nl and

EMail: ram .| ehtonen@el i asonera. com

Vi ncent Roca

I NRI A Rhone- Al pes

655, av. de |’ Europe
Mont bonnot

St Ismer cedex 38334
France

EMai | : vincent.roca@nrial pes.fr
Rod Wal sh

Noki a

Vi si okatu 1

Tanpere FIN- 33720

Fi nl and

EMai | : rod. wal sh@oki a. com

Paila, et al. Experi ment al [Page 34]

RFC 3926 FLUTE Cct ober 2004

Ful | Copyright Statenent
Copyright (C The Internet Society (2004).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATION HE/ S HE
REPRESENTS OR |'S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE
| NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS COR

| MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI' N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the |ETF' s procedures with respect to rights in | ETF Docunents can
be found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Paila, et al. Experi ment al [Page 35]

