Net wor k Wor ki ng Group D. Eastl ake, 3rd

Request for Comments: 4086 Mot or ol a Laboratories
BCP: 106 J. Schiller
Obsol etes: 1750 MT
Cat egory: Best Current Practice S. Crocker

June 2005

Randommess Requirenents for Security
Status of This Meno

Thi s docunent specifies an Internet Best Current Practices for the
Internet Conmunity, and requests discussion and suggestions for
i mprovenents. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2005).
Abst ract

Security systens are built on strong cryptographic al gorithns that
foil pattern analysis attenpts. However, the security of these
systens i s dependent on generating secret quantities for passwords,
cryptographic keys, and simlar quantities. The use of pseudo-random
processes to generate secret quantities can result in pseudo-
security. A sophisticated attacker may find it easier to reproduce
the environnent that produced the secret quantities and to search the
resulting small set of possibilities than to | ocate the quantities in
the whol e of the potential nunber space.

Choosi ng random quantities to foil a resourceful and notivated
adversary is surprisingly difficult. This document points out many
pitfalls in using poor entropy sources or traditional pseudo-random
nunber generation techniques for generating such quantities. It
reconmends the use of truly random hardware techni ques and shows that
the existing hardware on many systens can be used for this purpose.
It provides suggestions to aneliorate the problem when a hardware
solution is not available, and it gives exanples of how | arge such
guantities need to be for sone applications.
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I ntroducti on and Overvi ew

Sof tware cryptography is coming into wider use, although there is a
long way to go until it becones pervasive. Systenms such as SSH

| PSEC, TLS, S/M ME, PGP, DNSSEC, and Kerberos are nmaturing and
becom ng a part of the network | andscape [SSH] [IPSEC] [TLS] [S/'M Mg]
[ MAIL_PGP*] [DNSSEC*]. For conparison, when the previous version of
this docunment [RFC1750] was issued in 1994, the only Internet
cryptographic security specification in the | ETF was the Privacy
Enhanced Mail protocol [MAIL_PEM].

These systens provide substantial protection against snoopi ng and
spoofing. However, there is a potential flaw. At the heart of al
cryptographic systens is the generation of secret, unguessable (i.e.
randon) nunbers.

The lack of generally available facilities for generating such random
nunbers (that is, the lack of general availability of truly
unpr edi ct abl e sources) forns an open wound in the design of
cryptographic software. For the software devel oper who wants to
build a key or password generation procedure that runs on a w de
range of hardware, this is a very real problem

Note that the requirenent is for data that an adversary has a very

| ow probability of guessing or determ ning. This can easily fail if
pseudo-random data is used that neets only traditional statistica
tests for randomess, or that is based on |imted-range sources such
as clocks. Sonetinmes such pseudo-random quantities can be guessed by
an adversary searching through an enbarrassingly small space of
possibilities.

This Best Current Practice docunent describes techniques for
produci ng random quantities that will be resistant to attack. It
recomends that future systens include hardware random nunber
generation or provide access to existing hardware that can be used
for this purpose. 1t suggests methods for use if such hardware is
not available, and it gives sone estimates of the nunber of random
bits required for sanple applications.
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2.

CGeneral Requirenents

Today, a commonly encountered randonmess requirenent is to pick a
user password, usually a sinple character string. Cbviously, a
password that can be guessed does not provide security. For re-
usabl e passwords, it is desirable that users be able to renmenber the
password. This may nmake it advisable to use pronounceabl e character
strings or phrases conposed of ordinary words. But this affects only
the format of the password information, not the requirenent that the
password be very hard to guess.

Many ot her requirenents cone fromthe cryptographic arena.

Crypt ographi c techni ques can be used to provide a variety of
services, including confidentiality and authentication. Such
services are based on quantities, traditionally called "keys", that
are unknown to and unguessabl e by an adversary.

There are even TCP/IP protocol uses for randommess in picking initia
sequence nunbers [ RFC1948].

CGeneral | y speaking, the above exanples also illustrate two different
types of random quantities that nay be wanted. 1In the case of
human-usabl e passwords, the only inportant characteristic is that
they be unguessable. It is not inportant that they may be conposed
of ASCI| characters, so the top bit of every byte is zero, for
exanple. On the other hand, for fixed I ength keys and the |like, one
normal |y wants quantities that appear to be truly random that is,
guantities whose bits will pass statistical randommess tests.

In sonme cases, such as the use of symetric encryption with the one-
time pads or an algorithmlike the US Advanced Encryption Standard
[AES], the parties who wish to communicate confidentially and/or with
aut hentication nust all know the same secret key. In other cases,
where asymretric or "public key" cryptographic techni ques are used,
keys cone in pairs. One key of the pair is private and nust be kept
secret by one party; the other is public and can be published to the
world. It is conputationally infeasible to determ ne the private key
fromthe public key, and know edge of the public key is of no help to
an adversary [ASYMMETRIC]. See general references [ SCHNEI ER
FERGUSQON, KAUFMAN .

The frequency and vol une of the requirenent for random quantities
differs greatly for different cryptographic systens. Wth pure RSA,
random quantities are required only when a new key pair is generated,
thereafter, any nunber of nessages can be signed without a further
need for randomess. The public key Digital Signature Al gorithm
devised by the US National Institute of Standards and Technol ogy

(NI ST) requires good random nunbers for each signature [DSS]. And
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encrypting with a one-tinme pad (in principle the strongest possible
encryption technique) requires randommess of equal volune to all the
nessages to be processed. See general references [ SCHNElI ER
FERGUSQON, KAUFMAN] .

In nost of these cases, an adversary can try to deternine the
"secret" key by trial and error. This is possible as |ong as the key
i s enough smaller than the nessage that the correct key can be
uniquely identified. The probability of an adversary succeedi ng at
this nmust be nade acceptably | ow, depending on the particul ar
application. The size of the space the adversary nmust search is
related to the anmount of key "information" present, in an

i nformation-theoretic sense [ SHANNON]. This depends on the nunber of
di fferent secret val ues possible and the probability of each val ue,
as follows:

Bits of information = \ -p log ( p )

where i counts from1 to the nunber of possible secret values and p

sub i is the probability of the value nunbered i. (Because p sub
is less than one, the log will be negative, so each termin the sum
wi Il be non-negative.)

If there are 2”n different values of equal probability, then n bits
of information are present and an adversary would have to try, on the
average, half of the values, or 2*(n-1), before guessing the secret

quantity. |If the probability of different values is unequal, then
there is less information present, and fewer guesses will, on
average, be required by an adversary. In particular, any val ues that

an adversary can know to be inpossible or of |ow probability can be
initially ignored by the adversary, who will search through the nore
probabl e val ues first.

For exanpl e, consider a cryptographic systemthat uses 128-bit keys.
If these keys are derived using a fixed pseudo-random numnber
generator that is seeded with an 8-bit seed, then an adversary needs
to search through only 256 keys (by running the pseudo-random nunber
generator with every possible seed), not 27128 keys as may at first
appear to be the case. Only 8 bits of "information" are in these
128-bit keys.
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Wil e the above analysis is correct on average, it can be m sl eadi ng
in sone cases for cryptographic analysis where what is really
important is the work factor for an adversary. For exanple, assune
that there is a pseudo-random nunber generator generating 128-bit
keys, as in the previous paragraph, but that it generates zero half
of the tinme and a random sel ection fromthe renmaining 22128 - 1

val ues the rest of the tinme. The Shannon equati on above says that
there are 64 bits of information in one of these key val ues, but an
adversary, sinply by trying the value zero, can break the security of
hal f of the uses, albeit a random half. Thus, for cryptographic
purposes, it is also useful to | ook at other measures, such as m n-
entropy, defined as

Mn-entropy = - log ( maximum( p ) )
[

where i is as above. Using this equation, we get 1 bit of mn-
entropy for our new hypothetical distribution, as opposed to 64 bits
of cl assi cal Shannon entropy.

A continuous spectrum of entropies, sonmetines called Renyi entropy,
has been defined, specified by the paraneter r. Herer =1is
Shannon entropy and r = infinity is mn-entropy. Wen r = zero, it
is just log (n), where n is the nunber of non-zero probabilities.
Renyi entropy is a non-increasing function of r, so mn-entropy is
al ways the nost conservative neasure of entropy and usually the best
to use for cryptographi c evaluation [LUBY].

Statistically tested randommess in the traditional sense is NOT the
sanme as the unpredictability required for security use.

For exanple, the use of a widely avail able constant sequence, such as
the randomtable fromthe CRC Standard Mathematical Tables, is very
weak agai nst an adversary. An adversary who | earns of or guesses it
can easily break all security, future and past, based on the sequence
[CRC]. As another exanple, using AES with a constant key to encrypt
successive integers such as 1, 2, 3, ... wll produce output that

al so has excellent statistical randommess properties but is
predictable. On the other hand, taking successive rolls of a six-
sided die and encoding the resulting values in ASCI1 woul d produce
statistically poor output with a substantial unpredictable conponent.
So note that passing or failing statistical tests doesn't revea

whet her sonething is unpredictable or predictable.

East | ake, et al. St andards Track [ Page 6]



RFC 4086 Randommess Requirenents for Security June 2005

3.

3.

Ent ropy Sources

Entropy sources tend to be very inplenmentati on dependent. Once one
has gathered sufficient entropy, it can be used as the seed to
produce the required anmount of cryptographically strong pseudo-
randommess, as described in Sections 6 and 7, after being de-skewed
or m xed as necessary, as described in Sections 4 and 5.

Is there any hope for true, strong, portable randommess in the
future? There mght be. Al that’s needed is a physical source of
unpr edi ct abl e nunbers.

Thermal noi se (sonetinmes called Johnson noise in integrated circuits)
or a radioactive decay source and a fast, free-running oscillator
would do the trick directly [@FFORD]. This is a trivial amount of
hardware, and it could easily be included as a standard part of a
conputer system s architecture. Mst audio (or video) input devices
are usable [TURBID|. Furthernore, any systemw th a spinning disk or
ring oscillator and a stable (crystal) tinme source or the like has an
adequat e source of randomess ([DAVIS] and Section 3.3). Al that’'s
needed i s the comon perception anong conputer vendors that this
smal | additional hardware and the software to access it is necessary
and useful .

ANSI X9 is currently devel oping a standard that includes a part
devoted to entropy sources. See Part 2 of [X9.82].

1. Vol unme Required

How much unpredictability is needed? |Is it possible to quantify the
requirenent in terns of, say, nunber of random bits per second?

The answer is that not very much is needed. For AES, the key can be
128 bits, and, as we show in an exanple in Section 8, even the

hi ghest security systemis unlikely to require strong keying materia
of much over 200 bits. |If a series of keys is needed, they can be
generated froma strong random seed (starting value) using a
cryptographically strong sequence, as explained in Section 6.2. A
few hundred random bits generated at start-up or once a day is enough
i f such techniques are used. Even if the randombits are generated
as slowy as one per second and it is not possible to overlap the
generation process, it should be tolerable in nost high-security
applications to wait 200 seconds occasionally.

These nunmbers are trivial to achieve. It could be achieved by a
person repeatedly tossing a coin, and al nost any hardware based
process is likely to be much faster.
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3.2. Existing Hardware Can Be Used For Randommess

As described bel ow, many conputers cone with hardware that can, with
care, be used to generate truly random quantities.

3.2.1. Using Existing Sound/Video |nput

Many conputers are built with inputs that digitize sonme real-world
anal og source, such as sound froma nicrophone or video input froma
canera. The "input" froma sound digitizer with no source plugged in
or froma canera with the lens cap on is essentially thermal noise.

If the system has enough gain to detect anything, such input can
provi de reasonably high quality randombits. This nmethod is
extremel y dependent on the hardware inplenentation

For exanple, on sone UN X-based systemnms, one can read fromthe

/ dev/ audi o device with nothing plugged into the m crophone jack or
with the m crophone receiving only | ow |l evel background noise. Such
data is essentially random noi se, although it should not be trusted
wi t hout some checking, in case of hardware failure, and it will have
to be de-skewed.

Conbi ning this approach with conpression to de-skew (see Section 4),
one can generate a huge anpbunt of nediumquality randomdata with the
UNI X-styl e conmand | i ne:

cat /dev/audio | conmpress - >randombits-file

A detail ed exam nation of this type of randomess source appears in
[ TURBI D] .

3.2.2. Using Existing Disk Drives

Di sk drives have small random fluctuations in their rotational speed
due to chaotic air turbulence [DAVIS, Jakobsson]. The addition of

| ow| evel disk seek-tinme instrunentation produces a series of
neasurenents that contain this randomess. Such data is usually

hi ghly correlated, so significant processing is needed, as described
in Section 5.2 below. Neverthel ess, experinmentation a decade ago
showed that, with such processing, even slow disk drives on the

sl ower conputers of that day could easily produce 100 bits a mnute
or nore of excellent random dat a.

Every increase in processor speed, which increases the resolution
with which disk notion can be tinmed or increases the rate of disk
seeks, increases the rate of randombit generation possible with this
technique. At the tine of this paper and with nodern hardware, a
nore typical rate of randombit production would be in excess of
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10,000 bits a second. This technique is used in random nunber
generators included in nmany operating systemlibraries.

Note: the inclusion of cache nmenories in disk controllers has little
effect on this technique if very short seek tines, which represent
cache hits, are sinply ignored.

3.3. Ring Gscillator Sources

If an integrated circuit is being designed or field-progranmed, an
odd number of gates can be connected in series to produce a free-
running ring oscillator. By sanpling a point inthe ring at a fixed
frequency (for exanple, one determned by a stable crysta
oscillator), sone amount of entropy can be extracted due to

variations in the free-running oscillator timng. It is possible to
increase the rate of entropy by XOR ing sanpled values froma few
ring oscillators with relatively prine lengths. It is sonetines

recommended that an odd nunber of rings be used so that, even if the
ri ngs sonehow becone synchronously | ocked to each other, there wll
still be sanpled bit transitions. Another possible source to sanple
is the output of a noisy diode.

Sanpl ed bits from such sources will have to be heavily de-skewed, as
disk rotation timngs nust be (see Section 4). An engineering study
woul d be needed to deternine the anpbunt of entropy being produced

dependi ng on the particular design. |n any case, these can be good
sources whose cost is a trivial anpunt of hardware by nodern
st andar ds.

As an exanple, |EEE 802.11i suggests the circuit below, wth due
attention in the design to isolation of the rings fromeach other and
fromclocked circuits to avoid undesired synchronization, etc., and
with extensive post processing [| EEE_802. 11i].
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3.4. Problens with C ocks and Serial Nunbers

Conput er clocks and simlar operating systemor hardware val ues,
provide significantly fewer real bits of unpredictability than m ght
appear fromtheir specifications.

Tests have been done on cl ocks on numerous systens, and it was found
that their behavior can vary wi dely and i n unexpected ways. One
versi on of an operating systemrunning on one set of hardware may
actual ly provide, say, mcrosecond resolution in a clock, while a

di fferent configuration of the "sane" system may al ways provide the
same lower bits and only count in the upper bits at nmuch | ower
resolution. This nmeans that successive reads of the clock may
produce identical values even if enough tine has passed that the

val ue "shoul d" change based on the nom nal clock resolution. There
are al so cases where frequently reading a clock can produce
artificial sequential values, because of extra code that checks for
the cl ock bei ng unchanged between two reads and increases it by one!
Desi gni ng portabl e application code to generate unpredictable nunbers
based on such systemclocks is particularly challenging because the
system desi gner does not always know the properties of the system

cl ock.

Use of a hardware serial nunber (such as an Ethernet MAC address) may
al so provide fewer bits of uni queness than one woul d guess. Such
gquantities are usually heavily structured, and subfields may have
only a limted range of possible values, or values may be easily
guessabl e based on approxi mate date of manufacture or other data.
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For exanple, it is likely that a conpany that manufactures both

conputers and Et hernet adapters will, at least internally, use its
own adapters, which significantly limts the range of built-in
addr esses.

Probl ens such as those descri bed above nake the production of code to
generate unpredictable quantities difficult if the code is to be
ported across a variety of conputer platforns and systens.

3.5. Timng and Val ue of External Events

It is possible to neasure the tinmng and content of nouse novenent,
key strokes, and simlar user events. This is a reasonable source of
unguessabl e data, with some qualifications. On sonme machines, input
such as key strokes is buffered. Even though the user’'s inter-
keystroke timng may have sufficient variation and unpredictability,
there m ght not be an easy way to access that variation. Another
problemis that no standard nethod exists for sanpling timng
details. This nakes it hard to use this technique to build standard
software intended for distribution to a |arge range of machines.

The anmount of nobuse movenent and the actual key strokes are usually
easier to access than timngs, but they may yield |ess
unpredictability because the user nay provide highly repetitive

i nput .

O her external events, such as network packet arrival tinmes and

| engt hs, can al so be used, but only with great care. In particular
the possibility of manipulation of such network traffic measurenents
by an adversary and the | ack of history at systemstart-up nust be
carefully considered. |If this input is subject to nmanipulation, it
nmust not be trusted as a source of entropy.

In principle, alnpst any external sensor, such as raw radi o reception
or tenmperature sensing in appropriately equi pped conputers, can be
used. But in each case, careful consideration nust be given to how
much this data is subject to adversarial manipulation and to how nuch
entropy it can actually provide.

The above techni ques are quite powerful against attackers that have
no access to the quantities being neasured. For exanple, these

techni ques woul d be powerful against offline attackers who had no
access to one’'s environnent and who were trying to crack one’'s random
seed after the fact. 1In all cases, the nore accurately one can
nmeasure the tining or value of an external sensor, the nore rapidly
one can generate bits.
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3.6. Non-hardware Sources of Randommess

The best source of input entropy would be a hardware-based random
source such as ring oscillators, disk drive tinmng, thernmal noise, or
radi oactive decay. However, if none of these is available, there are
other possibilities. These include systemclocks, systemor

i nput/out put buffers, user/systent hardware/ network serial nunbers or
addresses and timng, and user input. Unfortunately, each of these
sources can produce very limted or predictable val ues under sone

ci rcumst ances.

Sone of the sources |isted above would be quite strong on multi-user
systens, where each user of the systemis in essence a source of
randommess. However, on a snall single-user or enbedded system
especially at start-up, it mght be possible for an adversary to
assenble a simlar configuration. This could give the adversary
inputs to the m xing process that were well-enough correlated to
those used originally to nmake exhaustive search practical

The use of multiple randominputs with a strong mixing function is
reconmended and can overconme weakness in any particular input. The
timng and content of requested "random' user keystrokes can yield
hundreds of random bits, but conservative assunptions need to be
made. For exanpl e, one reasonably conservative assunption woul d be
that an inter-keystroke interval provides at nost a few bits of
randommess, but only when the interval is unique in the sequence of
intervals up to that point. A simlar assunption would be that a key
code provides a few bits of randonmess, but only when the code is

uni que in the sequence. Thus, an interval or key code that
duplicated a previous value woul d be assuned to provide no additiona
randommess. The results of mxing these timngs with typed
characters could be further conbined with clock val ues and ot her

i nput s.

This strategy may make practical portable code for produci ng good
random nunbers for security, even if sone of the inputs are very weak
on sonme of the target systems. However, it may still fail against a
hi gh-grade attack on small, single-user, or enmbedded systens,
especially if the adversary has ever been able to observe the
generation process in the past. A hardware-based random source is
still preferable.

4. De-skew ng
Is there any specific requirenent on the shape of the distribution of
quantities gathered for the entropy to produce the random nunbers?

The good news is that the distribution need not be uniform All that
is needed to bound performance is a conservative estinmate of how
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non-uniformit is. Sinple techniques to de-skew a bit streamare
gi ven bel ow, and stronger cryptographic techni ques are described in
Section 5. 2.

4.1. Using Stream Parity to De- Skew

As a sinple but not particularly practical exanple, consider taking a
sufficiently long string of bits and mapping the string to "zero" or
"one". The mapping will not yield a perfectly uniformdistribution
but it can be as close as desired. One mapping that serves the
purpose is to take the parity of the string. This has the advantages
that it is robust across all degrees of skew up to the estinmated
maxi mum skew and that it is trivial to inplenent in hardware.

The foll owi ng anal ysis gives the nunber of bits that nmust be sanpl ed:

Suppose that the ratio of ones to zeros is ( 0.5 + E) to

( 0.5 - E), where Eis between 0 and 0.5 and is a neasure of the
"eccentricity" of the distribution. Consider the distribution of the
parity function of N bit sanples. The respective probabilities that
the parity will be one or zero will be the sumof the odd or even
terns in the binom al expansion of (p + q)"N, where p = 0.5 + E, the
probability of a one, and q = 0.5 - E, the probability of a zero.

These sums can be conmputed easily as

N N
v2*((p+qg) +(p-9) )

and
N N
v2*((p+qg) -(Cp-9) ).

(Which formula corresponds to the probability that the parity will be
1 depends on whether N is odd or even.)

Since p+q=1andp - g =2E these expressions reduce to

N
/2 * [1 + (2B ]
and
N
/2 * [1 - (2B 1.
Neit her of these will ever be exactly 0.5 unless E is zero, but we
can bring themarbitrarily close to 0.5. If we want the

probabilities to be within some delta d of 0.5, e.g., then
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N
( 0.5+ (0.5* (2 )) < 0.5+ d.

Solving for Nyields N> log(2d)/log(2E). (Note that 2E is |l ess than
1, soits log is negative. Division by a negative nunmber reverses
the sense of an inequality.)

The following table gives the length N of the string that nust be
sanmpl ed for various degrees of skew in order to cone within 0.001 of
a 50/50 distribution.

o mee o . O +
| Prob(1) | E | N
e oo Foee oo e +
| 0.5 | 0.00 | 1]
| 0.6 | 0.10 | 4 |
| 0.7 | 0.20 | 7|
| 0.8 | 0.30 | 13
| 0.9 | 0.40 | 28
| 0.95 | 0.45 | 59
| 0.99 | 0.49 | 308
Femmmmaa Femmmmmaa R +

The last entry shows that even if the distribution is skewed 99%in
favor of ones, the parity of a string of 308 sanples will be within
0.001 of a 50/50 distribution. But, as we shall see in section 5.2,
there are much stronger techniques that extract nore of the avail able
entropy.

4.2. Using Transition Mappings to De- Skew

Anot her technique, originally due to von Neumann [ VON_NEUMANN], is to
examne a bit streamas a sequence of non-overlapping pairs. One
could then discard any 00 or 11 pairs found, interpret 01 as a 0 and
10 as a 1. Assume that the probability of a 1 is 0.5+E and that the
probability of a 0 is 0.5-E, where Eis the eccentricity of the
source as described in the previous section. Then the probability of
each pair is shown in the follow ng table:

[ o m m e e e e e e e e e e e e e e e e e e e e e maamo +
| pair | probability

Ho- - - - oo o e e e e e e e e e oo - oo +
| 00 | (0.5 - E)"2 = 0.25 - E + E*2

| 01 | (0.5- B)*(0.5 +E) = 0.25 - BEr2

| 10 | (0.5 + B)*(0.5 - E) = 0.25 - BEr2

| 11 | (0.5 + "2 = 0.25 + E + E*2

[ S, oo o e e e e e e e e e e e m oo +
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This technique will conpletely elimnate any bias but requires an

i ndeterm nate nunber of input bits for any particul ar desired nunmber
of output bits. The probability of any particular pair being

di scarded is 0.5 + 2E"2, so the expected nunber of input bits to
produce X output bits is X/ (0.25 - E*2).

Thi s techni que assunes that the bits are froma stream where each bit
has the sane probability of being a O or 1 as any other bit in the
stream and that bits are uncorrelated, i.e., that the bits come from
i dentical independent distributions. |If alternate bits are fromtwo
correl ated sources, for exanple, the above anal ysis breaks down.

The above techni que al so provides another illustration of how a
sinple statistical analysis can mslead if one is not always on the

| ookout for patterns that could be exploited by an adversary. |If the
algorithmwere nmisread slightly so that overl appi ng successive bits
pairs were used instead of non-overlapping pairs, the statistica

anal ysis given would be the sane. However, instead of providing an
unbi ased, uncorrel ated series of random1s and Os, it would produce a
totally predictabl e sequence of exactly alternating 1s and Os.

4.3. Using FFT to De- Skew

When real -worl d data consists of strongly correlated bits, it my
still contain useful anpbunts of entropy. This entropy can be
extracted through various transforns, the nost powerful of which are
described in section 5.2 bel ow.

Using the Fourier transformof the data or its optimzed variant, the
FFT, is interesting primarily for theoretical reasons. It can be
shown that this technique will discard strong correlations. |If
adequate data is processed and if renmaining correlations decay,
spectral |ines that approach statistical independence and nornally

di stributed randomess can be produced [ BRI LLI NGER].

4.4. Using Conpression to De-Skew

Rever si bl e conpressi on techni ques al so provide a crude nethod of de-
skewing a skewed bit stream This follows directly fromthe
definition of reversible conpression and the fornula in Section 2 for
the amobunt of information in a sequence. Since the conpression is
reversi bl e, the sane anount of information nust be present in the
shorter output as was present in the longer input. By the Shannon

i nformati on equation, this is only possible if, on average, the
probabilities of the different shorter sequences are nore uniformy
di stributed than were the probabilities of the | onger sequences.
Therefore, the shorter sequences must be de-skewed relative to the

i nput .
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However, many conpression techni ques add a sonmewhat predictable
preface to their output streamand nmay insert a simlar sequence
periodically in their output or otherw se introduce subtle patterns
of their own. They should be considered only rough techniques
conpared to those described in Section 5.2. At a mninum the

begi nni ng of the conpressed sequence shoul d be skipped and only |ater
bits should used for applications requiring roughly-randombits.

5. Mxing

VWhat is the best overall strategy for obtaining unguessabl e random
nunbers in the absence of a strong, reliable hardware entropy source?
It is to obtain input froma nunber of uncorrelated sources and to
mx themwi th a strong m xing function. Such a function will

preserve the entropy present in any of the sources, even if other
qguantities being conmbi ned happen to be fixed or easily guessable (Ilow
entropy). This approach nmay be advi sable even with a good hardware
source, as hardware can also fail. However, this should be weighed
agai nst a possible increase in the chance of overall failure due to
added software conplexity.

Once one has used good sources, such as some of those listed in
Section 3, and mi xed them as described in this section, one has a
strong seed. This can then be used to produce |large quantities of
cryptographically strong naterial as described in Sections 6 and 7.

A strong m xing function is one that conbines inputs and produces an
out put in which each output bit is a different conpl ex non-linear
function of all the input bits. On average, changing any input bit
wi || change about half the output bits. But because the relationship
is conplex and non-linear, no particular output bit is guaranteed to
change when any particular input bit is changed.

Consi der the problem of converting a streamof bits that is skewed
towards O or 1 or which has a sonewhat predictable pattern to a
shorter streamwhich is nore random as discussed in Section 4. This
is sinply anot her case where a strong mixing function is desired, to
m x the input bits and produce a snaller number of output bits. The
techni que given in Section 4.1, using the parity of a nunber of bits,
is sinply the result of successively XORing them This is exam ned
as a trivial mxing function, imrediately bel ow. Use of stronger

m xi ng functions to extract nore of the randommess in a stream of
skewed bits is examined in Section 5.2. See al so [ NASLUND] .
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5.1. A Trivial Mxing Function

For expository purposes we describe a trivial exanple for single bit
i nputs using the Exclusive Or (XOR) function. This function is

equi valent to addition without carry, as showin the table bel ow.
This is a degenerate case in which the one output bit always changes
for a change in either input bit. But, despite its sinplicity, it

provides a useful illustration

S S Fomm oo - +
| input 1 | input 2 | output
SR SR Fomm e m e +
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
TSR TSR TSR +

If inputs 1 and 2 are uncorrelated and conmbined in this fashion, then
the output will be an even better (|l ess skewed) random bit than the
inputs are. |If we assume an "eccentricity" E as defined in Section
4.1 above, then the output eccentricity relates to the input
eccentricity as follows:

E =2*E * E
out put i nput 1 i nput 2

Since E is never greater than 1/2, the eccentricity is always

i mproved, except in the case in which at |least one input is a totally
skewed constant. This is illustrated in the follow ng table, where
the top and left side values are the two input eccentricities and the
entries are the output eccentricity:

Femmmmm—a Femmmmm—a Femmmmm—a Femmmmm—a Femmmmm—a Femmmmm—a Femmmmm—a +
| E | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50
o me o o me o o me o o me o o me o o me o o me o +
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
| 0.10 | 0.00 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10
| 0.20 | 0.00 | 0.04 | 0.08 | 0.12 | 0.16 | 0.20
| 0.30 | 0.00 | 0.06 | 0.12 | 0.18 | 0.24 | 0.30
| 0.40 | 0.00 | 0.08 | 0.16 | 0.24 | 0.32 | 0.40
| 0.50 | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50
Fome oo Fome oo Fome oo Fome oo Fome oo Fome oo Fome oo +

However, note that the above cal cul ati ons assune that the inputs are
not correlated. |If the inputs were, say, the parity of the nunber of
m nutes from m dnight on two cl ocks accurate to a few seconds, then
each m ght appear randomif sanpled at randomintervals much | onger
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than a minute. Yet if they were both sanpled and conbi ned with XOR
the result would be zero nobst of the tine.

5.2. Stronger M xi ng Functions

The US Government Advanced Encryption Standard [AES] is an exanpl e of
a strong mxing function for multiple bit quantities. It takes up to
384 bits of input (128 bits of "data" and 256 bits of "key") and
produces 128 bits of output, each of which is dependent on a conpl ex
non-linear function of all input bits. Qher encryption functions
with this characteristic, such as [DES], can al so be used by
considering themto nmix all of their key and data input bits.

Anot her good famly of mxing functions is the "nmessage digest" or
hashi ng functions such as the US Governnment Secure Hash Standards

[ SHA*] and the MD4, MD5 [MD4, MD5] series. These functions all take
a practically unlimted anount of input and produce a relatively
short fixed-length output mxing all the input bits. The M) series
produces 128 bits of output, SHA-1 produces 160 bits, and other SHA
functions produce up to 512 bits.

Al t hough the nessage digest functions are designed for variable
amounts of input, AES and other encryption functions can al so be used
to conbi ne any nunber of inputs. |[If 128 bits of output is adequate,
the inputs can be packed into a 128-bit data quantity and successive
AES "keys", padding with zeros if needed; the quantity is then
successi vely encrypted by the "keys" using AES in El ectronic Codebook
Mode. Alternatively, the input could be packed into one 128-bit key
and nultiple data bl ocks and a CBC- MAC coul d be cal cul ated [ MODES] .

More conpl ex mixing should be used if nmore than 128 bits of output
are needed and one wants to enploy AES (but note that it is

absol utely inpossible to get nore bits of "randommess" out than are
put in). For exanple, suppose that inputs are packed into three
gquantities, A, B, and C. One may use AES to encrypt A with B and
then with C as keys to produce the first part of the output, then
encrypt Bwith C and then A for nore output and, if necessary,
encrypt Cwith A and then B for yet nore output. Still nore output
can be produced by reversing the order of the keys given above. The
same can be done with the hash functions, hashing various subsets of
the input data or different copies of the input data with different
prefixes and/or suffixes to produce nultiple outputs.

For an exanple of using a strong mxing function, reconsider the case
of a string of 308 bits, each of which is biased 99% toward zero.

The parity technique given in Section 4.1 reduces this to one bit,
with only a 1/1000 devi ance from being equally likely a zero or one.
But, applying the equation for information given in Section 2, this
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308-bit skewed sequence contains over 5 bits of information. Thus,
hashing it with SHA-1 and taking the bottom5 bits of the result
woul d yield 5 unbiased random bits and not the single bit given by
calculating the parity of the string. Alternatively, for some
applications, you could use the entire hash output to retain al nost
all of the 5+ bits of entropy in a 160-bit quantity.

5.3. Using S-Boxes for M xing

Many nodern bl ock encryption functions, including DES and AES,

i ncorporate nodul es known as S-Boxes (substitution boxes). These
produce a smaller nunber of outputs froma |arger nunber of inputs
through a conpl ex non-linear m xing function that has the effect of
concentrating limted entropy fromthe inputs into the output.

S- Boxes sonetimes incorporate bent Bool ean functions (functions of an
even nunber of bits producing one output bit w th maxi num non-
linearity). Looking at the output for all input pairs differing in
any particular bit position, exactly half the outputs are different.
An S-Box in which each output bit is produced by a bent function such
that any linear combination of these functions is also a bent
function is called a "perfect S Box".

S-boxes and various repeated applications or cascades of such boxes
can be used for mxing [ SBOX1, SBOX2?].

5.4. Diffie-Hellman as a M xi ng Function

Diffie-Hell man exponenti al key exchange is a technique that yields a
shared secret between two parties. It can be conputationally
infeasible for a third party to determne this secret even if they
can observe all the messages between the two conmunicating parties.
This shared secret is a mxture of initial quantities generated by
each of the parties [D-H].

If these initial quantities are random and uncorrel ated, then the
shared secret conbines their entropy but, of course, can not produce
nore randomess than the size of the shared secret generated.

Al though this is true if the Diffie-Hellmn computation is performed
privately, an adversary who can observe either of the public keys and
knows the nodul us bei ng used need only search through the space of
the other secret key in order to be able to calculate the shared
secret [D-H . So, conservatively, it would be best to consider
public Diffie-Hellman to produce a quantity whose guessability
corresponds to the worse of the two inputs. Because of this and the
fact that Diffie-Hellman is conmputationally intensive, its use as a
m xi ng function is not recommended.
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5.5. Using a Mxing Function to Stretch RandomBits

Al though it is not necessary for a mxing function to produce the
same or fewer output bits than its inputs, mxing bits cannot
"stretch" the anmbunt of random unpredictability present in the

i nputs. Thus, four inputs of 32 bits each, in which there are 12
bits worth of unpredictability (such as 4,096 equally probable

val ues) in each input, cannot produce nore than 48 bits worth of
unpredi ctabl e output. The output can be expanded to hundreds or
thousands of bits by, for exanple, mxing with successive integers,
but the clever adversary’'s search space is still 2748 possibilities.
Furthernore, nmixing to fewer bits than are input will tend to
strengt hen the randommess of the output.

The last table in Section 5.1 shows that mixing a randombit with a

constant bit with Exclusive O will produce a randombit. Wile this
is true, it does not provide a way to "stretch” one randombit into
nore than one. |If, for exanple, a randombit is mxed with a 0 and

then with a 1, this produces a two bit sequence but it will always be
either 01 or 10. Since there are only two possible values, there is
still only the one bit of original randommess.

5.6. Oher Factors in Choosing a M xing Function

For local use, AES has the advantages that it has been w dely tested
for flaws, is reasonably efficient in software, and is w dely
document ed and i npl emented wi th hardware and software inpl enentations
avail abl e all over the world including open source code. The SHA*
famly have had a little less study and tend to require nmore CPU
cycles than AES but there is no reason to believe they are flawed.
Both SHA* and MD5 were derived fromthe earlier M) algorithm They
all have source code avail able [ SHA*, MY, MX5]. Sonme signs of
weakness have been found in MM and MD5. In particular, MD4 has only
three rounds and there are several independent breaks of the first
two or last two rounds. And sone collisions have been found in M5
out put .

AES was sel ected by a robust, public, and international process. It
and SHA* have been vouched for by the US National Security Agency
(NSA) on the basis of criteria that nobstly remain secret, as was DES.
VWil e this has been the cause of much specul ati on and doubt,

i nvestigation of DES over the years has indicated that NSA

i nvol venent in nodifications to its design, which originated with
IBM was primarily to strengthen it. There has been no announcenent
of a conceal ed or special weakness being found in DES. It is likely
that the NSA nodifications to MM to produce the SHA al gorithns
simlarly strengthened these al gorithns, possibly against threats not
yet known in the public cryptographic conmunity.
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Were input |engths are unpredictable, hash algorithnms are nore
convenient to use than block encryption algorithms since they are
general |y designed to accept variable length inputs. Bl ock
encryption algorithms generally require an additional padding
algorithmto acconodate inputs that are not an even multiple of the
bl ock size

As of the time of this docunment, the authors know of no patent clains
to the basic AES, DES, SHA*, MM, and MD5 al gorithms other than
patents for which an irrevocable royalty free |license has been
granted to the world. There may, of course, be essential patents of
which the authors are unaware or patents on inplenentations or uses
or other relevant patents issued or to be issued.

6. Pseudo-random Nunmber Generators

VWen a seed has sufficient entropy, frominput as described in
Section 3 and possibly de-skewed and m xed as described in Sections 4
and 5, one can algorithmcally extend that seed to produce a |arge
nunber of cryptographically-strong random quantities. Such
algorithms are platformindependent and can operate in the sane
fashi on on any computer. For the algorithns to be secure, their

i nput and internal workings nmust be protected from adversaria
observati on.

The desi gn of such pseudo-random nunber generation algorithns, |ike
the design of symretric encryption algorithnms, is not a task for
amateurs. Section 6.1 below lists a nunber of bad ideas that failed
al gorithms have used. To |earn what works, skip Section 6.1 and just
read the remmi nder of this section and Section 7, which describes and
ref erences sone standard pseudo random nunber generation al gorithns.
See Section 7 and Part 3 of [X9.82].

6.1. Sone Bad | deas

The subsections bel ow describe a nunber of ideas that m ght seem
reasonabl e but that lead to insecure pseudo-random nunber generation

6.1.1. The Fallacy of Conplex Manipul ation

One approach that may give a m sl eadi ng appearance of
unpredictability is to take a very conplex algorithm (or an excell ent
traditional pseudo-random nunmber generator with good statistica
properties) and to calculate a cryptographic key by starting with
l[imted data such as the computer system clock value as the seed.
Adver saries who knew roughly when the generator was started woul d
have a relatively small nunber of seed values to test, as they would
know | i kely values of the systemclock. Large nunbers of pseudo-
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random bits could be generated, but the search space that an
adversary woul d need to check could be quite snall

Thus, very strong or conplex manipul ation of data will not help if
the adversary can | earn what the manipulation is and if there is not
enough entropy in the starting seed value. They can usually use the
limted nunber of results stemming froma |linited nunber of seed

val ues to defeat security.

Anot her serious strategic error is to assune that a very conpl ex
pseudo-random nunber generation algorithmw || produce strong random
nunbers, when there has been no theory behind or analysis of the
algorithm There is a excellent exanple of this fallacy near the
begi nni ng of Chapter 3 in [KNUTH], where the author describes a
conpl ex algorithm It was intended that the machi ne | anguage program
corresponding to the algorithmwould be so conplicated that a person
trying to read the code wi thout coments woul dn’t know what the
program was doing. Unfortunately, actual use of this algorithm
showed that it alnost i mmediately converged to a single repeated

val ue in one case and a small cycle of values in another case.

Not only does conpl ex mani pul ati on not help you if you have a limted
range of seeds, but blindly-chosen compl ex mani pul ati on can destroy
the entropy in a good seed!

6.1.2. The Fallacy of Selection froma Large Database

Anot her approach that can give a m sl eadi ng appearance of
unpredictability is to randomy select a quantity from a database and
to assunme that its strength is related to the total number of bits in
the dat abase. For exanple, typical USENET servers process many
negabytes of information per day [USENET 1, USENET 2]. Assune that a
random quantity was selected by fetching 32 bytes of data froma
random starting point in this data. This does not yield 32*8 = 256
bits worth of unguessability. Even if nmuch of the data is human

| anguage that contains no nore than 2 or 3 bits of information per
byte, it doesn't yield 32*2 = 64 bits of unguessability. For an
adversary with access to the same Usenet database, the unguessability
rests only on the starting point of the selection. That is perhaps a
little over a couple of dozen bits of unguessability.

The sane argument applies to selecting sequences fromthe data on a
publicly available CDO/DVD recording or any other large public

dat abase. |f the adversary has access to the sane database, this
"selection froma | arge volune of data" step buys little. However,

if a selection can be made fromdata to which the adversary has no
access, such as systembuffers on an active nmulti-user system it may
be of hel p.
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6.1.3. Traditional Pseudo-random Sequences

This section tal ks about traditional sources of determnistic or
"pseudo-random’ nunbers. These typically start with a "seed"
guantity and use sinple numeric or |ogical operations to produce a
sequence of values. Note that none of the techniques discussed in
this section is suitable for cryptographic use. They are presented
for general information.

[ KNUTH has a cl assic exposition on pseudo-random nunbers.
Applications he nentions are simulations of natural phenonena,
sanpling, numerical analysis, testing conputer prograns, decision
nmaki ng, and ganes. None of these have the same characteristics as
the sorts of security uses we are talking about. Only in the |ast
two could there be an adversary trying to find the random quantity.
However, in these cases, the adversary normally has only a single
chance to use a guessed value. |In guessing passwords or attenpting
to break an encryption schene, the adversary nornally has nany,
perhaps unlimted, chances at guessing the correct value. Sonetines
the adversary can store the nmessage to be broken and repeatedly
attack it. Adversaries are also be assumed to be aided by a

conput er.

For testing the "randomess" of nunbers, Knuth suggests a variety of
neasures, including statistical and spectral. These tests check
things like autocorrelation between different parts of a "randont
sequence or distribution of its values. But these tests could be net
by a constant stored random sequence, such as the "random' sequence
printed in the CRC Standard Mat hematical Tables [CRC]. Despite
neeting all the tests suggested by Knuth, that sequence is unsuitable
for cryptographic us, as adversaries nust be assuned to have copies
of all commonly published "randon sequences and to be able to spot
the source and predict future val ues.

A typi cal pseudo-random nunber generation technique is the |inear
congruence pseudo-random nunmber generator. This technique uses
nmodul ar arithmetic, where the value nunbered N+1 is cal culated from
t he val ue nunbered N by

V. =(V *a+b)(Mdc)
N+1 N

The above technique has a strong relationship to linear shift

regi ster pseudo-random nunmber generators, which are well understood
cryptographically [SHI FT*]. |In such generators, bits are introduced
at one end of a shift register as the Exclusive Or (binary sum

wi thout carry) of bits fromselected fixed taps into the register.
For exanple, consider the foll ow ng:
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+----+ +----+ +----+ +----+
| B | <<-|] B | <=-| B | <- . .. .. .<-]| B | <+
| 0| | 1| | 2| | n | |
+--- -+ +--- -+ +--- -+ +--- -+ |
| | | |
| | v MRREES
| Vv Fome e > | |
Vv T > | XOR
T NN > | |
+--m - - +
V =((V *2)+B XOR B... )(Md 27n)
N+1 N 0 2

The quality of traditional pseudo-random nunber generator al gorithns
is measured by statistical tests on such sequences. Carefully-chosen
values a, b, ¢, and initial V or carefully-chosen placenent of the
shift register tap in the above sinple process can produce excell ent
statistics.

These sequences may be adequate in sinmulations (Monte Carlo
experiments) as long as the sequence is orthogonal to the structure
of the space being explored. Even there, subtle patterns may cause
probl ens. However, such sequences are clearly bad for use in
security applications. They are fully predictable if the initia
state is known. Depending on the formof the pseudo-random nunber
generator, the sequence may be deterni nable from observation of a
short portion of the sequence [ SCHNEI ER, STERN]. For exanple, with
the generators above, one can determ ne V(n+l) given know edge of
V(n). In fact, it has been shown that with these techni ques, even if
only one bit of the pseudo-random val ues are rel eased, the seed can
be determi ned from short sequences.

Not only have linear congruent generators been broken, but techni ques
are now known for breaking all polynom al congruent generators
[ KRAVCZYK] .

6.2. Cryptographically Strong Sequences

In cases where a series of random quantities nust be generated, an
adversary may | earn sone values in the sequence. |n general
adversari es should not be able to predict other values fromthe ones
that they know.

The correct technique is to start with a strong random seed, to take
cryptographically strong steps fromthat seed [ FERGUSON, SCHNEIER],

and not to reveal the conplete state of the generator in the sequence
elements. |If each value in the sequence can be calculated in a fixed
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way fromthe previous val ue, then when any value is conprom sed, al
future values can be determ ned. This would be the case, for
exanple, if each value were a constant function of the previously
used val ues, even if the function were a very strong, non-invertible
message di gest function.

(Note that if a technique for generating a sequence of key values is
fast enough, it can trivially be used as the basis for a
confidentiality system |If two parties use the same sequence
generation technique and start with the same seed material, they wll
generate identical sequences. These could, for exanple, be XOR ed at
one end with data being sent to encrypt it, and XOR ed with this data
as received to decrypt it, due to the reversible properties of the
XOR operation. This is commonly referred to as a sinple stream

ci pher.)

6.2.1. OFB and CTR Sequences

One way to produce a strong sequence is to take a seed val ue and hash
the quantities produced by concatenating the seed with successive
integers, or the like, and then to nask the val ues obtained so as to
[imt the amount of generator state available to the adversary.

It may al so be possible to use an "encryption" algorithmwith a
random key and seed val ue to encrypt successive integers, as in
counter (CTR) node encryption. Alternatively, one can feedback al
of the output value fromencryption into the value to be encrypted
for the next iteration. This is a particular exanple of output

f eedback nmode (OFB) [ MODES] .

An exanple is shown bel ow in which shifting and nmasking are used to
conbi ne part of the output feedback with part of the old input. This
type of partial feedback should be avoi ded for reasons described

bel ow.
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Note that if a shift of one is used, this is the same as the shift
regi ster techni que described in Section 6.1.3, but with the all-

i nportant difference that the feedback is determ ned by a conpl ex
non-linear function of all bits rather than by a sinple linear or
pol ynomi al conbi nati on of output froma few bit position taps.

Donal d W Davies showed that this sort of shifted partial output

f eedback significantly weakens an al gorithm conpared to feeding al
the output bits back as input. In particular, for DES, repeatedly
encrypting a full 64-bit quantity will give an expected repeat in
about 2763 iterations. Feeding back anything | ess than 64 (and nore
than 0) bits will give an expected repeat in between 2731 and 2732
iterations!

To predict values of a sequence from ot hers when the sequence was
generated by these techniques is equivalent to breaking the
cryptosystemor to inverting the "non-invertible" hashing with only
partial information available. The less information revealed in each
iteration, the harder it will be for an adversary to predict the
sequence. Thus it is best to use only one bit fromeach value. It
has been shown that in sone cases this nakes it inpossible to break a
system even when the cryptographic systemis invertible and could be
broken if all of each generated val ue were reveal ed.

6.2.2. The Bl um Bl um Shub Sequence Gener at or

Currently the generator which has the strongest public proof of
strength is called the Bl um Bl um Shub generator, naned after its
inventors [BBS]. It is also very sinple and is based on quadratic
residues. |Its only disadvantage is that it is conmputationally

i ntensive conpared to the traditional techniques given in Section
6.1.3. This is not a major drawback if it is used for noderately-
i nfrequent purposes, such as generating session keys.
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Sinply choose two | arge prinme nunbers (say, p and ) that each gives
a remai nder of 3 when divided by 4. Let n =p * q. Then choose a
random nunber, x, that is relatively prime to n. The initial seed
for the generator and the nethod for cal cul ati ng subsequent val ues

are then:
2
S = ( x )(Md n)
0
2
S =( s ) (Mod n)
i +1 [
Be careful to use only a few bits fromthe bottomof each s. It is
always safe to use only the |owest-order bit. |If one uses no nore
than the:

log (log (s ))
2 2 i

| ow-order bits, then predicting any additional bits froma sequence
generated in this manner is provably as hard as factoring n. As |ong
as the initial x is secret, n can be made public if desired.

An interesting characteristic of this generator is that any of the s
val ues can be directly calculated. |In particular

( (27%) (Md ((p-1)*(9-1)) ) )
s = (s ) (Mbd n)
[ 0

This means that in applications where many keys are generated in this
fashion, it is not necessary to save themall. Each key can be

ef fectively indexed and recovered fromthat small index and the
initial s and n.

6.3. Entropy Pool Techni ques

Many nodern pseudo-random nunber sources, such as those described in
Sections 7.1.2 and 7.1.3 utilize the technique of mmintaining a
"pool " of bits and providing operations for strongly m xing input
with some randomess into the pool and extracting pseudo-randombits
fromthe pool. This is illustrated in the figure bel ow.
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Fomm e e + Fomm o + . +
---> Mx In |[---> POOL |---> Extract |--->
| Bits | | | | Bits |
Fomm e m oo - + Fomm e o - + S +
n \Y
| |
Fom oo +

Bits to be fed into the pool can come fromany of the various

har dwar e, environmental, or user input sources discussed above. It
is also conmmon to save the state of the pool on system shutdown and
to restore it on re-starting, when stable storage is avail able.

Care must be taken that enough entropy has been added to the pool to
support particul ar output uses desired. See [RSA BULL1] for simlar
suggesti ons.

7. Randomess Generation Exanpl es and Standards

Several public standards and w dely depl oyed exanples are now in

pl ace for the generation of keys or other cryptographically random
guantities. Sone, in section 7.1, include an entropy source.

O hers, described in section 7.2, provide the pseudo-random nunber
strong- sequence generator but assume the input of a random seed or
i nput froma source of entropy.

7.1. Compl ete Randommess Cenerators

Three standards are described below. The two ol der standards use
DES, with its 64-bit block and key size limt, but any equally strong
or stronger m xing function could be substituted [DES]. The third is
a nore nodern and stronger standard based on SHA-1 [SHA*]. Lastly,
the wi dely depl oyed nodern UNI X and W ndows random nunber generators
are descri bed.

7.1.1. US DoD Recomendati ons for Password Generation
The United States Departnent of Defense has specific recommendations

for password generation [DoD]. It suggests using the US Data
Encryption Standard [DES] in Qutput Feedback Mode [ MODES] as foll ows:
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Use an initialization vector determnmined from

the system cl ock,

system | D,

user 1D, and

date and ti ne;
use a key determ ned from

systeminterrupt registers,

system status registers, and

system counters; and,
as plain text, use an external randonmly generated 64-bit
guantity such as the ASCII bytes for 8 characters typed
in by a system adm ni strator.

The password can then be calculated fromthe 64 bit "cipher text"
generated by DES in 64-bit Qutput Feedback Mbde. As many bits as are
needed can be taken fromthese 64 bits and expanded into a
pronounceabl e word, phrase, or other format if a human being needs to
remenber the password.

.1.2. The /dev/random Devi ce

Several versions of the UNI X operating system provide a kernel -
resi dent random nunber generator. Some of these generators use
events captured by the Kernel during normal system operation

For exanple, on sone versions of Linux, the generator consists of a
random pool of 512 bytes represented as 128 words of 4 bytes each
When an event occurs, such as a disk drive interrupt, the time of the
event is XOR ed into the pool, and the pool is stirred via a
primtive polynom al of degree 128. The pool itself is treated as a
ring buffer, with new data being XOR ed (after stirring with the

pol ynomi al) across the entire pool

Each call that adds entropy to the pool estinmates the anpunt of
likely true entropy the input contains. The pool itself contains a
accunul ator that estinmates the total over all entropy of the pool

| nput events conme from several sources, as |isted bel ow
Unfortunately, for server machines without human operators, the first
and third are not available, and entropy nmay be added slowy in that
case.

1. Keyboard interrupts. The tine of the interrupt and the scan code
are added to the pool. This in effect adds entropy fromthe hunman
operator by neasuring inter-keystroke arrival tinmes.

2. Disk completion and other interrupts. A system being used by a
person will likely have a hard-to-predict pattern of disk
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accesses. (But not all disk drivers support capturing this timng
information with sufficient accuracy to be useful.)

3. Mouse notion. The timng and nobuse position are added in.

When random bytes are required, the pool is hashed with SHA-1 [ SHA*]
to yield the returned bytes of randomess. |f nore bytes are
required than the output of SHA-1 (20 bytes), then the hashed out put
is stirred back into the pool and a new hash is performed to obtain
the next 20 bytes. As bytes are rempved fromthe pool, the estimate
of entropy is correspondi ngly decrenented.

To ensure a reasonably random pool upon system startup, the standard
startup and shutdown scripts save the pool to a disk file at shutdown
and read this file at system startup.

There are two user-exported interfaces. /dev/randomreturns bytes
fromthe pool but blocks when the estinmated entropy drops to zero.

As entropy is added to the pool fromevents, nore data becones

avail abl e via /dev/random Random data obtai ned from such a
/dev/random device is suitable for key generation for |long term keys,
i f enough random bits are in the pool or are added in a reasonable
amount of tine.

/ dev/ urandom wor ks |i ke /dev/random however, it provides data even
when the entropy estinmate for the random pool drops to zero. This
may be adequate for session keys or for other key generation tasks
for which blocking to await nore randombits is not acceptable. The
risk of continuing to take data even when the pool’s entropy estinate
is small in that past output may be conputable from current output,
provided that an attacker can reverse SHA-1l. Gven that SHA-1 is
designed to be non-invertible, this is a reasonable risk.

To obtain random nunbers under Linux, Solaris, or other UN X systens
equi pped with code as descri bed above, all an application has to do
is open either /dev/random or /dev/urandom and read the desired
nunber of bytes.

(The Li nux Random device was witten by Theodore Ts’o. It was based
| oosely on the random nunber generator in PGP 2. X and PGP 3.0 (aka
PGP 5.0).)

7.1.3. Wndows Crypt GenRandom
M crosoft’s recomrendation to users of the w dely depl oyed W ndows
operating systemis generally to use the Crypt GenRandom pseudo-random

nunber generation call with the Crypt APl cryptographic service
provider. This takes a handle to a cryptographic service provider
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library, a pointer to a buffer by which the caller can provide
entropy and into which the generated pseudo-randomess is returned,
and an indication of how nmany octets of randomess are desired.

The W ndows Crypt APl cryptographic service provider stores a seed
state variable with every user. Wen Crypt GenRandomis called, this
is conbined with any randonmess provided in the call and with various
system and user data such as the process ID, thread ID, system clock
systemtine, systemcounter, nenory status, free disk clusters, and
hashed user environment block. This data is all fed to SHA-1, and
the output is used to seed an RC4 key stream That key streamis
used to produce the pseudo-random data requested and to update the
user’s seed state variabl e.

Users of Wndows ".NET" will probably find it easier to use the
RNGCr ypt oSer vi ceProvi der. Get Byt es nethod interface.

For further information, see [W5(C].
7.2. Cenerators Assumi ng a Source of Entropy

The pseudo-random nunber generators described in the follow ng three
sections all assune that a seed value with sufficient entropy is
provided to them They then generate a strong sequence (see Section
6.2) fromthat seed.

7.2.1. X9.82 Pseudo- Random Nunber Generati on

The ANSI X9F1 committee is in the final stages of creating a standard
for random nunber generation covering both true randommess generators
and pseudo-random nunber generators. It includes a nunber of
pseudo-random nunber generators based on hash functions, one of which
will probably be based on HVAC SHA hash constructs [ RFC2104]. The
draft version of this generator is described below, omtting a number
of optional features [X9.82].

In the subsections bel ow, the HVAC hash construct is sinply referred
to as HVAC but, of course, a particular standard SHA function nust be
selected in an particular use. GCenerally speaking, if the strength
of the pseudo-random val ues to be generated is to be N bits, the SHA
function chosen nust generate N or nore bits of output, and a source
of at least N bits of input entropy will be required. The sane hash
function nmust be used throughout an instantiation of this generator.
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7.2.1.1. Notation
In the foll owing sections, the notation give belowis used:

hash_l ength is the output size of the underlying hash function in
use.

i nput_entropy is the input bit string that provides entropy to the
gener at or .

Kis a bit string of size hash_length that is part of the state of
the generator and is updated at | east once each tine random
bits are generated.

Vis a bit string of size hash_length and is part of the state of
the generator. It is updated each tine hash_length bits of
out put are generat ed.

“|" represents concatenation

7.2.1.2. Initializing the Generator

Set Vto all zero bytes, except the loworder bit of each byte is set
to one.

Set Kto all zero bytes, then set:

K=HVAC ( K, V| 0x00 | input_entropy )
V = HWAC ( K, V)
K=HWVAC ( K, V| 0x01 | input_entropy )
V = HVAC ( K, V)

Note: Al SHA al gorithnms produce an integral nunber of bytes, so the
| engths of Kand V will be integral nunbers of bytes.

7.2.1.3. Cenerating Random Bits
VWhen output is called for, sinply set:

V = HVAC ( K, V)

and use the leading bits fromV. |If nore bits are needed than the
length of V, set "tenp" to a null bit string and then repeatedly
perform
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7.

2.

V = HMAC ( K V)
temp = tenp | V

stopping as soon as tenp is equal to or |longer than the nunber of
random bits requested. Use the requested nunber of |eading bits from
temp. The definition of the algorithmprohibits requesting nore than
2735 bits.

After extracting and saving the pseudo-random out put bits as
descri bed above, before returning you nust also performtwo nore
HVACs as fol | ows:

K
\%

0x00 )

HVAC ( K, V|
HVAC ( K, V)

2. X9.17 Key Ceneration

The Anmerican National Standards Institute has specified the
foll owi ng method for generating a sequence of keys [X9.17]:

s istheinitial 64 bit seed.
0

g is the sequence of generated 64-bit key quantities
n

k is a random key reserved for generating this key sequence.

t is the tine at which a key is generated, to as fine a resol ution
as is available (up to 64 bits).

DES ( K, Q) is the DES encryption of quantity Qwith key K
Then:

DES ( k, DES ( k, t ) XORs )
n n

«Q
1

s DES ( k, DES( k, t ) XOR g )

n+1 n

If g sub nis to be used as a DES key, then every eighth bit should
be adjusted for parity for that use, but the entire 64 bit unnodified
g should be used in calculating the next s.
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7.2.3. DSS Pseudo-random Nunber GCeneration

Appendi x 3 of the NIST Digital Signature Standard [DSS] provides a
met hod of produci ng a sequence of pseudo-random 160 bit quantities
for use as private keys or the like. This has been nodified by
Change Notice 1 [DSS CN1] to produce the followi ng al gorithmfor
generating general - purpose pseudo-random nunbers:

t = Ox 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1FO0

XKEY = initial seed
0

0to ..

For |j

XVAL = ( XKEY + optional user input ) (Md 27512)
j

X = G t, XVAL)

j

XKEY = ( 1 + XKEY + X ) (Mbd 27512)
j+l i i

The quantities X thus produced are the pseudo-random sequence of
160-bit values. Two functions can be used for "G' above. Each
produces a 160-bit val ue and takes two argunments, a 160-bit val ue and
a 512 bit val ue

The first is based on SHA-1 and works by setting the 5 |inking

vari abl es, denoted H with subscripts in the SHA-1 specification, to
the first argunent divided into fifths. Then steps (a) through (e)
of section 7 of the NI ST SHA-1 specification are run over the second
argunent as if it were a 512-bit data bl ock. The values of the
linking variable after those steps are then concatenated to produce
the out put of G [ SHA*].

As an alternative method, NI ST al so defined an alternate G function
based on multiple applications of the DES encryption function [DSS].

8. Exanpl es of Randommess Required
Bel ow are two exanpl es showi ng rough cal cul ati ons of randommess
needed for security. The first is for noderate security passwords,

whil e the second assunes a need for a very high-security
crypt ographi c key.
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In addition, [ORMAN] and [ RSA BULL13] provide information on the
public key | engths that should be used for exchanging symetric keys.

8.1. Password Generation

Assune that user passwords change once a year and that it is desired
that the probability that an adversary could guess the password for a
particul ar account be less than one in a thousand. Further assune
that sending a password to the systemis the only way to try a
password. Then the crucial question is how often an adversary can
try possibilities. Assune that delays have been introduced into a
system so that an adversary can nake at nbst one password try every
si x seconds. That's 600 per hour, or about 15,000 per day, or about
5,000,000 tries in a year. Assuming any sort of monitoring, it is
unli kely that sonmeone could actually try continuously for a year
Even if log files are only checked nmonthly, 500,000 tries is nore

pl ausi bl e before the attack is noticed and steps are taken to change
passwords and neke it harder to try nore passwords.

To have a one-in-a-thousand chance of guessing the password in
500,000 tries inplies a universe of at |east 500,000, 000 passwords,
or about 2729. Thus, 29 bits of randommess are needed. This can
probably be achi eved by using the US DoD recomrended i nputs for
password generation, as it has 8 inputs that probably average over 5
bits of randommess each (see section 7.1). Using a list of 1,000

wor ds, the password could be expressed as a three-word phrase

(1, 000, 000, 000 possibilities). By using case-insensitive letters and
digits, six characters would suffice ((26+10)"6 = 2,176, 782, 336
possibilities).

For a higher-security password, the nunber of bits required goes up
To decrease the probability by 1,000 requires increasing the universe
of passwords by the sane factor, which adds about 10 bits. Thus, to
have only a one in a mllion chance of a password being guessed under
the above scenario would require 39 bits of randomess and a password
that was a four-word phrase froma 1,000 word |ist, or eight
letters/digits. To go to a one-in-1079 chance, 49 bits of randomess
are needed, inplying a five-word phrase or a ten-letter/digit
passwor d.

In a real system of course, there are other factors. For exanple,
the larger and harder to remenber passwords are, the nore likely
users will bed to wite themdown, resulting in an additional risk of
conpr omi se.
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8.2. A Very Hi gh Security Cryptographic Key

Assume that a very high security key is needed for synmetric
encryption/decrypti on between two parties. Assume also that an
adversary can observe comuni cations and knows the al gorithm being
used. Wthin the field of random possibilities, the adversary can
try key values in hopes of finding the one in use. Assune further
that brute force trial of keys is the best the adversary can do.

8.2.1. Effort per Key Tria

How much effort will it take to try each key? For very high-security
applications, it is best to assume a | ow value of effort. Even if it
woul d clearly take tens of thousands of conputer cycles or nore to
try a single key, there nay be sonme pattern that enabl es huge bl ocks
of key values to be tested with much less effort per key. Thus, it
is probably best to assume no nore than a couple of hundred cycles
per key. (There is no clear |ower bound on this, as conputers
operate in parallel on a nunber of bits and a poor encryption

al gorithmcoul d all ow many keys or even groups of keys to be tested
in parallel. However, we need to assunme sone val ue and can hope that
a reasonably strong al gorithm has been chosen for our hypothetica

hi gh-security task.)

If the adversary can command a highly parallel processor or a |large
network of work stations, 10711 cycles per second is probably a

m ni mum assunpti on today. Looking forward a few years, there should
be at | east an order of magnitude inprovenent. Thus, it is
reasonabl e to assune that 10710 keys could be checked per second, or
3.6*10"12 per hour or 6*10714 per week, or 2.4*10"15 per nonth. This
inmplies a need for a mnimmof 63 bits of randomess in keys, to be
sure that they cannot be found in a nonth. Even then it is possible
that, a few years fromnow, a highly deternined and resourcefu
adversary could break the key in 2 weeks; on average, they need try
only half the keys.

These questions are considered in detail in "Mninmal Key Lengths for
Synmetric C phers to Provide Adequate Commercial Security: A Report
by an Ad Hoc Group of Cryptographers and Computer Scientists"”

[ KeyStudy] that was sponsored by the Business Software Alliance. It
concl uded that a reasonable key length in 1995 for very high security
is in the range of 75 to 90 bits and, since the cost of cryptography
does not vary nmuch with the key size, it recommends 90 bits. To
update these recomendations, just add 2/3 of a bit per year for
Moore’'s law [MOORE]. This translates to a determination, in the year
2004, a reasonable key length is in the 81- to 96-bit range. |In
fact, today, it is increasingly conmon to use keys |onger than 96
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bits, such as 128-bit (or longer) keys with AES and keys with
effective lengths of 112-bits with triple-DES.

8.2.2. Meet-in-the-Mddl e Attacks

I f chosen or known plain text and the resulting encrypted text are
avail able, a "neet-in-the-mddle" attack is possible if the structure
of the encryption algorithmallows it. (In a known plain text

attack, the adversary knows all or part (possibly some standard
header or trailer fields) of the nmessages being encrypted. 1In a
chosen plain text attack, the adversary can force some chosen plain
text to be encrypted, possibly by "leaking" an exciting text that is
sent by the adversary over an encrypted channel because the text is
SO interesting.

The following is an oversinplified explanation of the neet-in-the-

m ddl e attack: the adversary can hal f-encrypt the known or chosen
plain text with all possible first hal f-keys, sort the output, and
then hal f-decrypt the encoded text with all the second hal f-keys. |If
a match is found, the full key can be assenbled fromthe hal ves and
used to decrypt other parts of the message or other nessages. At its
best, this type of attack can hal ve the exponent of the work required
by the adversary while adding a very large but roughly constant
factor of effort. Thus, if this attack can be nounted, a doubling of
the anmobunt of randommess in the very strong key to a m ni mum of 192
bits (96*2) is required for the year 2004, based on the [KeyStudy]
anal ysi s.

Thi s anount of randommess is well beyond the limt of that in the

i nputs recommended by the US DoD for password generation and could
require user-typing timng, hardware random nurmber generation, or

ot her sources of randommess.

The neet-in-the-mddl e attack assumes that the cryptographic

al gorithm can be deconposed in this way. Hopefully no nodern

al gorithm has this weakness, but there nmay be cases where we are not
sure of that or even of what algorithma key will be used with. Even
if a basic algorithmis not subject to a nmeet-in-the-mddle attack

an attenpt to produce a stronger al gorithm by applying the basic
algorithmtw ce (or two different algorithms sequentially) with
different keys will gain | ess added security than woul d be expected.
Such a conposite al gorithmwould be subject to a neet-in-the-mddle
attack.

Enor mous resources may be required to nmount a neet-in-the-niddle
attack, but they are probably within the range of the nationa
security services of a major nation. Essentially all nations spy on
other nations’ traffic.

East | ake, et al. St andards Track [ Page 37]



RFC 4086 Randommess Requirenents for Security June 2005

8.

10.

2.3. Oher Considerations

[ KeySt udy] al so considers the possibilities of special-purpose code-
br eaki ng hardware and havi ng an adequate safety margin.

Note that key length cal culati ons such as those above are
controversial and depend on various assunptions about the
cryptographic algorithns in use. |In sonme cases, a professional with
a deep know edge of al gorithm breaking techni ques and of the strength
of the algorithmin use could be satisfied with | ess than half of the
192 bit key size derived above.

For further exanples of conservative design principles, see
[ FERGUSQN] .

Concl usi on

Generation of unguessabl e "random' secret quantities for security use
is an essential but difficult task.

Har dwar e techni ques for produci ng the needed entropy woul d be
relatively sinple. |In particular, the volume and quality woul d not
need to be high, and existing computer hardware, such as audio input
or disk drives, can be used.

W del y-avai |l abl e conput ati onal techni ques can process lowquality
random quantities fromnultiple sources, or a larger quantity of such
lowquality input fromone source, to produce a snaller quantity of

hi gher-quality keying material. In the absence of hardware sources
of randommess, a variety of user and software sources can frequently,
with care, be used instead. However, nobst nodern systens already
have hardware, such as disk drives or audio input, that could be used
to produce high-quality randommess.

Once a sufficient quantity of high-quality seed key material (a
coupl e of hundred bits) is available, computational techniques are
avai | abl e to produce cryptographically-strong sequences of

conput ati onal | y-unpredi ctable quantities fromthis seed nateri al

Security Consi derations

The entirety of this docunment concerns techni ques and recomendati ons
for generating unguessable "randon quantities for use as passwords,
cryptographic keys, initialization vectors, sequence nunbers, and
simlar security applications.
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Appendi x A: Changes from RFC 1750

1

2.

3.

10.

11.

Addi ti onal acknow edgenments have been added.
Insertion of section 5.3 on mxing with S-boxes.
Addi tion of section 3.3 on Ring Gscillator randommess sources.

Addi ti on of AES and the nenbers of the SHA series produci ng nore
than 160 bits. Use of AES has been enphasized and the use of DES
de- enphasi zed.

Addition of section 6.3 on entropy pool techniques.

Addition of section 7.2.3 on the pseudo-random nurmber generation
techni ques given in FIPS 186-2 (with Change Notice 1), 7.2.1 on
those given in X9.82, section 7.1.2 on the random nunber
generation techni ques of the /dev/random device in Linux and ot her
UNI X systens, and section 7.1.3 on random nunber generation
techniques in the Wndows operating system

Addition of references to the "M nimal Key Lengths for Symetric
Ci phers to Provide Adequate Commercial Security" study published
in January 1996 [KeyStudy] and to [ RFC1948].

Added caveats to using Diffie-Hellman as a mxing function and,
because of those caveats and its conmputationally intensive nature,
recomend agai nst its use.

Addition of references to the X9.82 effort and the [ TURBI D] and
[ NASLUND] papers.

Addi tion of discussion of mn-entropy and Renyi entropy and
references to the [ LUBY] book.

Maj or restructuring, mnor wording changes, and a variety of
ref erence updat es.
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