Net wor k Wor ki ng G- oup L. Zhu

Request for Comments: 4121 K. Jaganat han
Updat es: 1964 M cr osoft
Cat egory: Standards Track S. Hartnman
MT

July 2005

The Kerberos Version 5
Generic Security Service Application ProgramlInterface (GSS-API)
Mechani sm Version 2

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2005).
Abst r act

Thi s docunent defines protocols, procedures, and conventions to be
enpl oyed by peers inplenenting the Generic Security Service
Application ProgramInterface (GSS-API) when using the Kerberos
Version 5 mechani sm

RFC 1964 is updated and i ncrenmental changes are proposed in response
to recent devel opments such as the introduction of Kerberos
cryptosystem framework. These changes support the inclusion of new
cryptosystens, by defining new per-nessage tokens along with their
encryption and checksum al gorithms based on the cryptosystem
profiles.

Zhu, et al. St andards Track [Page 1]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Tabl e of Contents

1. IntroduCti On ... e 2
2. Key Derivation for Per-Message Tokens 4
3. Quality of Protection 4
4. Definitions and Token Formatso, 5
4.1. Context Establishnment Tokens 5
4.1.1. Authenticator Checksum 6

4.2. Per-Message TOKENS 9
4.2.1. Sequence Number 9

4.2.2. Flags Field e 9

4.2.3. EC Field 10

4.2.4. Encryption and Checksum Qperations 10

4.2.5. RRC Field e 11

4.2.6. Message Layouts 12

4.3. Context Deletion Tokens 13
4.4. Token Identifier Assignment Considerations 13

5. Parameter Definitions 14
5.1. Mnor Status Codesiiiii 14
5.1.1. Non-Kerberos-specific Codes 14

5.1.2. Kerberos-specific Codes 15

5.2, Buffer Sizes 15

6. Backwards Conpatibility Considerations 15
7. Security Considerati Ons 16
8. Acknow edgemEnt S. e 17
9. ReferenCeS ... 18
9.1. Normative References 18
9.2. Informative References 18

1. Introduction

[RFC3961] defines a generic framework for describing encryption and
checksum types to be used with the Kerberos protocol and associ at ed
pr ot ocol s.

[RFC1964] describes the GSS-API nmechani sm for Kerberos Version 5. It
defines the fornat of context establishnment, per-nessage and context
del eti on tokens, and uses algorithmidentifiers for each cryptosystem
in per-message and context del etion tokens.

The approach taken in this document obviates the need for algorithm
identifiers. This is acconplished by using the sane encryption
algorithm specified by the crypto profile [RFC3961] for the session
key or subkey that is created during context negotiation, and its
requi red checksum al gorithm Message |ayouts of the per-nessage
tokens are therefore revised to renove algorithmindicators and to
add extra information to support the generic crypto framework

[RFC3961] .

Zhu, et al. St andards Track [Page 2]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Tokens transferred between GSS-APlI peers for security context
establishment are al so described in this docunment. The data el ements
exchanged between a GSS- APl endpoint inplementation and the Kerberos
Key Distribution Center (KDC) [RFC4120] are not specific to GSS-API
usage and are therefore defined within [RFC4120] rather than this
speci fication.

The new token fornmats specified in this document MJST be used with
all "newer" encryption types [RFC4120] and MAY be used with
encryption types that are not "newer", provided that the initiator
and acceptor know fromthe context establishment that they can both
process these new token formats.

"Newer" encryption types are those which have been specified al ong
with or since the new Kerberos cryptosystem specification [RFC3961],
as defined in section 3.1.3 of [RFC4120]. The list of not-newer
encryption types is as foll ows [RFC3961]:

Encrypti on Type Assi gned Nunber
des-cbc-crc 1
des-cbhc- nd4 2
des-cbc- nd5 3
des3-cbhc- md5 5
des3-chc-shal 7
dsaWt hSHA1- CnsQ D 9
nmd5W t hRSAEncr ypti on- CrsOl D 10
shalW t hRSAEncrypti on- CrsO D 11
rc2CBC- EnvA D 12
rsakEncryption-EnvO D 13
r saES- OAEP- ENV- O D 14
des- ede3-cbc-Env-A D 15
des3-chc-shal- kd 16
rc4- hmac 23

Conventions used in this docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

The term"little-endian order"” is used for brevity to refer to the

| east-significant-octet-first encoding, while the term "big-endi an
order" is for the nost-significant-octet-first encoding.

Zhu, et al. St andards Track [Page 3]

RFC 4121 Ker beros Version 5 GSS- API July 2005

2. Key Derivation for Per-Mssage Tokens

To limt the exposure of a given key, [RFC3961] adopted "one-way"
"entropy-preserving" derived keys, froma base key or protocol key,
for different purposes or key usages.

Thi s docunent defines four key usage val ues bel ow that are used to
derive a specific key for signing and sealing nessages fromthe
sessi on key or subkey [RFC4120] created during the context
establ i shnent .

Name Val ue
KG- USAGE- ACCEPTOR- SEAL 22
KG- USAGE- ACCEPTOR- SI GN 23
KG- USAGE- | NI TI ATOR- SEAL 24
KG USAGE- | NI TI ATOR- SI GN 25

When the sender is the context acceptor, KG USAGE- ACCEPTOR-SIGN is
used as the usage nunber in the key derivation function for deriving
keys to be used in MC tokens (as defined in section 4.2.6.1).

KG USAGE- ACCEPTOR- SEAL is used for Wap tokens (as defined in section
4.2.6.2). Simlarly, when the sender is the context initiator,

KG USAGE- I NI TI ATOR-SIGN i s used as the usage nunber in the key
derivation function for MC tokens, while KG USAGE-I Nl TI ATOR- SEAL i s
used for Wap tokens. Even if the Wap token does not provide for
confidentiality, the sane usage val ues specified above are used.

During the context initiation and acceptance sequence, the acceptor
MAY assert a subkey in the AP-REP nessage. |If the acceptor asserts a
subkey, the base key is the acceptor-asserted subkey and subsequent
per - message tokens MJST be flagged with "Acceptor Subkey", as
described in section 4.2.2. Oherwise, if the initiator asserts a
subkey in the AP-REQ nmessage, the base key is this subkey; if the
initiator does not assert a subkey, the base key is the session key
in the service ticket.

3. Quality of Protection

The GSS- APl specification [RFC2743] provides Quality of Protection
(QOP) values that can be used by applications to request a certain
type of encryption or signing. A zero QOP value is used to indicate
the "default" protection; applications that do not use the default
QOP are not guaranteed to be portable across inplenentations, or even
to inter-operate with different depl oyment configurations of the same
i mpl enentation. Using a different algorithmthan the one for which
the key is defined may not be appropriate. Therefore, when the new
nmethod in this docunment is used, the QOP value is ignored.

Zhu, et al. St andards Track [Page 4]

RFC 4121 Ker beros Version 5 GSS- API July 2005

The encryption and checksum al gorithns in per-nmessage tokens are now
implicitly defined by the algorithnms associated with the session key
or subkey. Therefore, algorithmidentifiers as described in

[RFC1964] are no | onger needed and are renoved fromthe new t oken
headers.

4. Definitions and Token Fornmats

This section provides terns and definitions, as well as descriptions
for tokens specific to the Kerberos Version 5 GSS-API mechani sm

4.1. Context Establishnment Tokens

Al'l context establishnent tokens emtted by the Kerberos Version 5
GSS- APl mechani sm SHALL have the frami ng described in section 3.1 of
[RFC2743], as illustrated by the foll owi ng pseudo-ASN. 1 structures:

GSS- APl DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI Fl ER
-- representing Kerberos V5 nechani sm

GSSAPI - Token :: =
-- option indication (delegation, etc.) indicated within
-- mechani smspeci fic token
[APPLI CATI ON O] I MPLICI T SEQUENCE {
thi sMech MechType
i nner Token ANY DEFI NED BY t hi sMech
-- contents nechani smspecific
-- ASN. 1 structure not required

END
The i nner Token field starts with a two-octet token-identifier
(TOK_ I D) expressed in big-endian order, followed by a Kerberos
nmessage.

Foll owi ng are the TOK I D val ues used in the context establishnent

t okens:
Token TOK_I D Val ue in Hex
KRB_AP_REQ 01 00
KRB_AP_REP 02 00
KRB_ERRCR 03 00

Zhu, et al. St andards Track [Page 5]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Wher e Kerberos nmessage KRB_AP_REQUEST, KRB _AP_REPLY, and KRB_ERROR
are defined in [RFC4120].

I f an unknown token identifier (TOK ID) is received in the initial
cont ext establishnent token, the receiver MJST return

GSS_S CONTI NUE_NEEDED maj or status, and the returned output token
MUST contain a KRB _ERROR nessage with the error code
KRB_AP_ERR MSG TYPE [RFC4120] .

4.1.1. Authenticator Checksum

The authenticator in the KRB_AP_REQ nessage MJST include the optiona
sequence nunber and the checksumfield. The checksumfield is used
to convey service flags, channel bindings, and optional del egation

i nf ormati on.

The checksum type MJUST be 0x8003. When del egation is used, a
ticket-granting ticket will be transferred in a KRB _CRED nessage.
This ticket SHOULD have its forwardable flag set. The EncryptedData
field of the KRB CRED nessage [RFC4120] MJST be encrypted in the
session key of the ticket used to authenticate the context.

The aut henticator checksumfield SHALL have the foll ow ng fornmat:

Cct et Nane Descri ption

0..3 Lgth Nunber of octets in Bnd field; Represented
inlittle-endian order; Currently contains
hex value 10 00 00 00 (16).

4..19 Bnd Channel binding information, as described in
section 4.1.1. 2.

20..23 Fl ags Four-octet context-establishnent flags in
l[ittle-endian order as described in section
4.1.1.1.

24. .25 Dl gOpt The del egation option identifier (=1) in

little-endian order [optional]. This field
and the next two fields are present if and
only if GSS_C DELEG FLAG is set as described
in section 4.1.1.1.

26..27 D gth The I ength of the Deleg field in
littl e-endian order [optional].

28..(n-1) Del eg A KRB_CRED nessage (n = Digth + 28)
[optional].

n..|l ast Exts Ext ensi ons [optional].

The I ength of the checksumfield MIST be at |east 24 octets when

GSS _C DELEG FLAG is not set (as described in section 4.1.1.1), and at
| east 28 octets plus Digth octets when GSS C DELEG FLAG is set. Wen

Zhu, et al. St andards Track [Page 6]

RFC 4121 Ker beros Version 5 GSS- API July 2005

GSS C DELEG FLAG is set, the DigOpt, Digth, and Deleg fields of the
checksum data MJUST i medi ately follow the Flags field. The optiona
trailing octets (nanely the "Exts" field) facilitate future
extensions to this mechanism Wen del egation is not used, but the
Exts field is present, the Exts field starts at octet 24 (D gOpt,
Digth and Del eg are absent).

Initiators that do not support the extensions MJST NOT include nore
than 24 octets in the checksumfield (when GSS_C DELEG FLAG i s not
set) or nmore than 28 octets plus the KRB_.CRED in the Deleg field
(when GSS C DELEG FLAG is set). Acceptors that do not understand the

Ext ensi ons MJST ignhore any octets past the Deleg field of the
checksum data (when GSS C DELEG FLAG is set) or past the Flags field
of the checksum data (when GSS_C DELEG FLAG is not set).

4.1.1.1. Checksum Flags Field

The checksum "Fl ags" field is used to convey service options or
ext ensi on negoti ation information

The foll owi ng context establishment flags are defined in [RFC2744].

GSS_C_DELEG FLAG 1
GSS_C_MUTUAL_FLAG 2
GSS_C_REPLAY_FLAG 4
GSS_C_SEQUENCE_FLAG 8
GSS_C_CONF_FLAG 16
GSS_C_I NTEG FLAG 32

Cont ext establishnment flags are exposed to the calling application

If the calling application desires a particular service option, then
it requests that option via GSS_ Init_sec_context() [RFC2743]. If the
corresponding return state values [RFC2743] indicate that any of the
above optional context |evel services will be active on the context,
the corresponding flag values in the table above MJST be set in the
checksum Fl ags fi el d.

Fl ag val ues 4096..524288 (2712, 2713, ..., 2"19) are reserved for use
with | egacy vendor-specific extensions to this nechani sm

Zhu, et al. St andards Track [Page 7]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Al other flag values not specified herein are reserved for future
use. Future revisions of this nechanismnmay use these reserved fl ags
and may rely on inplenmentations of this version to not use such flags
in order to properly negotiate nechani smversions. Undefined flag
val ues MJUST be cleared by the sender, and unknown fl ags MJST be

i gnored by the receiver.

4.1.1.2. Channel Binding Information

These tags are intended to be used to identify the particul ar

conmuni cati ons channel for which the GSS-API security context
establ i shnent tokens are intended, thus limting the scope within
whi ch an intercepted context establishnment token can be reused by an
attacker (see [RFC2743], section 1.1.6).

When using C | anguage bi ndi ngs, channel bindings are conmmuni cated to
the GSS-API using the follow ng structure [RFC2744]:

typedef struct gss_channel bindings_struct {

OM ui nt 32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM _ui nt 32 accept or _addrtype;

gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;
} *gss_channel _bindings_t;

The nenber fields and constants used for different address types are
defined in [RFC2744] .

The "Bnd" field contains the MD5 hash of channel bindings, taken over
all non-null conponents of bindings, in order of declaration

Integer fields within channel bindings are represented in little-
endi an order for the purposes of the MD5 cal cul ation

In conmputing the contents of the Bnd field, the foll ow ng detail ed
poi nts apply:

(1) For purposes of MD5 hash conputation, each integer field and
input length field SHALL be fornmatted into four octets, using
littl e-endian octet ordering.

(2) Al input length fields within gss_buffer _desc el enents of a
gss_channel _bi ndi ngs_struct even those which are zero-val ued,
SHALL be included in the hash cal culation. The value el ements of
gss_buffer_desc el ements SHALL be dereferenced, and the resulting
data SHALL be included within the hash conputation, only for the
case of gss_buffer_desc el ements having non-zero | ength
speci fiers.

Zhu, et al. St andards Track [Page 8]

RFC 4121 Ker beros Version 5 GSS- API July 2005

(3) If the caller passes the value GSS C NO BI NDINGS i nstead of a
val id channel binding structure, the Bnd field SHALL be set to 16
zero-val ued octets.

If the caller to GSS Accept_sec_context [RFC2743] passes in

GSS_C NO CHANNEL_ BI NDI NGS [RFC2744] as the channel bindings, then the
acceptor MAY ignore any channel bindings supplied by the initiator,
returni ng success even if the initiator did pass in channel bindings.

If the application supplies, in the channel bindings, a buffer with a
length field | arger than 4294967295 (2732 - 1), the inplenentation of
thi s mechani sm MAY choose to reject the channel bindings altogether
using maj or status GSS S BAD BI NDI NGS [RFC2743]. | n any case, the

si ze of channel -bi nding data buffers that can be used (interoperable,
wi t hout extensions) with this specificationis limted to 4294967295
octets.

4.2. Per-Message Tokens

Two cl asses of tokens are defined in this section: (1) "MC' tokens,
emtted by calls to GSS_GetM C() and consumed by calls to

GSS VerifyMC(), and (2) "Wap" tokens, emtted by calls to

GSS Wap() and consuned by calls to GSS_Unw ap().

These new per-nessage tokens do not include the generic GSS-API token
fram ng used by the context establishnent tokens. These new tokens
are designed to be used with newer crypto systens that can have
vari abl e-si ze checksuns.

4.2.1. Sequence Nunber

To distinguish intentionally-repeated nessages from naliciously-
repl ayed ones, per-nessage tokens contain a sequence nunber field,
which is a 64 bit integer expressed in big-endian order. After
sending a GSS GetM C() or GSS Wap() token, the sender’s sequence
nunbers SHALL be increnented by one.

4.2.2. Flags Field

The "Flags" field is a one-octet integer used to indicate a set of
attributes for the protected message. For exanple, one flag is

all ocated as the direction-indicator, thus preventing the acceptance
of the sane nessage sent back in the reverse direction by an
adversary.

Zhu, et al. St andards Track [Page 9]

RFC 4121 Ker beros Version 5 GSS- API July 2005

The neanings of bits in this field (the |east significant bit is bit
0) are as follows:

Bit Nanme Descri ption

0 Sent ByAccept or When set, this flag indicates the sender
is the context acceptor. Wen not set,
it indicates the sender is the context
initiator.

1 Seal ed VWen set in Wap tokens, this flag
i ndi cates confidentiality is provided
for. It SHALL NOT be set in M C tokens.

2 Accept or Subkey A subkey asserted by the context acceptor
is used to protect the nessage.

The rest of available bits are reserved for future use and MJST be
cl eared. The receiver MJST ignore unknown fl ags.

4.2.3. ECField

The "EC' (Extra Count) field is a two-octet integer field expressed
i n big-endian order.

In Wap tokens with confidentiality, the EC field SHALL be used to
encode the nunber of octets in the filler, as described in section
4.2.4.

In Wap tokens wi thout confidentiality, the EC field SHALL be used to
encode the number of octets in the trailing checksum as described in
section 4.2.4.

4.2.4. Encryption and Checksum Qperati ons

The encryption algorithms defined by the crypto profiles provide for
integrity protection [RFC3961]. Therefore, no separate checksumis
needed.

The result of decryption can be |onger than the original plaintext

[RFC3961] and the extra trailing octets are called "crypto-system
residue” in this docunent. However, given the size of any plaintext
data, one can always find a (possibly larger) size, such that when
paddi ng the to-be-encrypted text to that size, there will be no
crypto-systemresi due added [RFC3961].

In Wap tokens that provide for confidentiality, the first 16 octets
of the Wap token (the "header", as defined in section 4.2.6), SHALL
be appended to the plaintext data before encryption. Filler octets
MAY be inserted between the plaintext data and the "header." The

Zhu, et al. St andards Track [Page 10]

RFC 4121 Ker beros Version 5 GSS- API July 2005

val ues and size of the filler octets are chosen by inplenentations,
such that there SHALL be no crypto-systemresi due present after the
decryption. The resulting Wap token is {"header"
encrypt(plaintext-data | filler | "header")}, where encrypt() is the
encryption operation (which provides for integrity protection)
defined in the crypto profile [RFC3961], and the RRC field (as
defined in section 4.2.5) in the to-be-encrypted header contains the
hex val ue 00 00.

In Wap tokens that do not provide for confidentiality, the checksum
SHALL be cal cul ated first over the to-be-signed plaintext data, and
then over the first 16 octets of the Wap token (the "header", as
defined in section 4.2.6). Both the EC field and the RRC field in
the token header SHALL be filled with zeroes for the purpose of

cal cul ating the checksum The resulting Wap token is {"header"

pl ai ntext-data | get_mic(plaintext-data | "header")}, where get_mc()
is the checksum operation for the required checksum nechani sm of the
chosen encryption mechanismdefined in the crypto profile [RFC3961].

The paraneters for the key and the cipher-state in the encrypt() and
get_mc() operations have been omitted for brevity.

For M C tokens, the checksum SHALL be cal cul ated as follows: the
checksum operation is calculated first over the to-be-signed

pl ai ntext data, and then over the first 16 octets of the M C token
where the checksum nechani smis the required checksum nmechani sm of
the chosen encryption mechani smdefined in the crypto profile

[RFC3961] .

The resulting Wap and M C tokens bind the data to the token header
i ncludi ng the sequence nunmber and the direction indicator.

4.2.5. RRC Field

The "RRC' (Right Rotation Count) field in Wap tokens is added to
allow the data to be encrypted in-place by existing SSPI (Security
Service Provider Interface) [SSPI] applications that do not provide
an additional buffer for the trailer (the cipher text after the in-
pl ace-encrypted data) in addition to the buffer for the header (the
ci pher text before the in-place-encrypted data). Excluding the first
16 octets of the token header, the resulting Wap token in the
previous section is rotated to the right by "RRC' octets. The net
result is that "RRC' octets of trailing octets are noved toward the
header .

Consi der the followi ng as an exanple of this rotation operation

Assunme that the RRC value is 3 and the token before the rotation is
{"header" | aa | bb | cc | dd | ee | ff | gg | hh}. The token after

Zhu, et al. St andards Track [Page 11]

RFC 4121 Ker beros Version 5 GSS- API July 2005

rotation would be {"header" | ff | gg| hh | aa| bb | cc | dd | ee
}, where {aa | bb | cc |...| hh} would be used to indicate the octet
sequence.

The RRC field is expressed as a two-octet integer in big-endian
order.

The rotation count value is chosen by the sender based on

i mpl ementation details. The receiver MJST be able to interpret al
possi bl e rotati on count values, including rotation counts greater
than the I ength of the token.

4.2.6. Message Layouts

Per - nessage tokens start with a two-octet token identifier (TOK_ID)
field, expressed in big-endian order. These tokens are defined
separately in the follow ng sub-sections.

4.2.6.1. MC Tokens

Use of the GSS GetM C() call yields a token (referred as the MC
token in this docunment), separate fromthe user data being protected,
whi ch can be used to verify the integrity of that data as received.
The token has the follow ng format:

Cctet no Nare Descri ption

0..1 TOK I D Identification field. Tokens emitted by
GSS GetM C() contain the hex value 04 04
expressed in big-endian order in this

field.

2 Fl ags Attributes field, as described in section
4.2.2.

3..7 Filler Contains five octets of hex val ue FF.

8..15 SND_SEQ Sequence nunber field in clear text,
expressed in big-endian order

16. .l ast SGN CKSUM Checksum of the "to-be-signed" data and
octet 0..15, as described in section 4.2.4.

The Filler field is included in the checksum cal cul ati on for
simplicity.

Zhu, et al. St andards Track [Page 12]

RFC 4121 Ker beros Version 5 GSS- API July 2005

4.2.6.2. Wap Tokens

Use of the GSS Wap() call yields a token (referred as the Wap token
in this document), which consists of a descriptive header, foll owed
by a body portion that contains either the input user data in

pl ai nt ext concatenated with the checksum or the input user data
encrypted. The GSS Wap() token SHALL have the follow ng format:

Cctet no Nare Descri ption

0..1 TOK_ I D Identification field. Tokens emitted by
GSS Wap() contain the hex value 05 04
expressed in big-endian order in this

field.

2 Fl ags Attributes field, as described in section
4.2.2.

3 Filler Cont ai ns the hex val ue FF.

4..5 EC Contains the "extra count" field, in big-
endi an order as described in section 4.2.3.

6..7 RRC Contains the "right rotation count” in big-
endi an order, as described in section
4.2.5.

8..15 SND SEQ Sequence number field in clear text,
expressed in big-endian order

16..last Data Encrypted data for Wap tokens with
confidentiality, or plaintext data foll owed
by the checksum for Wap tokens wi thout
confidentiality, as described in section
4.2.4.

4.3. Context Deletion Tokens

Cont ext del etion tokens are enpty in this mechanism Both peers to a
security context invoke GSS Del ete_sec_context() [RFC2743]

i ndependently, passing a null output_context_token buffer to indicate
that no context _token is required. |nplenentations of

GSS Del ete_sec_context() should del ete relevant |ocally-stored
context information.

4.4. Token ldentifier Assignment Considerations
Token identifiers (TOK ID) from Ox60 0x00 through 0x60 OxFF incl usive
are reserved and SHALL NOT be assigned. Thus, by examining the first

two octets of a token, one can tell unanbiguously if it is wapped
with the generic GSS-API token fram ng.

Zhu, et al. St andards Track [Page 13]

RFC 4121 Ker beros Version 5 GSS- API July 2005

5.

5.

5.

1

1

Par anet er Definitions

This section defines paraneter val ues used by the Kerberos V5 GSS- API
mechanism It defines interface el enents that support portability,
and assumes use of C | anguage bi ndi ngs per [RFC2744].

M nor St atus Codes

Thi s section reconmends comon synbolic names for mnor_status val ues
to be returned by the Kerberos V5 GSS-APlI nechanism Use of these
definitions will enabl e independent inplenenters to enhance
application portability across different inplenentations of the
nmechani smdefined in this specification. (In all cases,

i mpl enentati ons of GSS Display status() will enable callers to
convert minor_status indicators to text representations.) Each

i mpl enent ati on shoul d make avail abl e, through include files or other
means, a facility to translate these synbolic names into the concrete
val ues that a particular GSS-APlI inplenentation uses to represent the
m nor _status values specified in this section

This list nmay grow over tine and the need for additional m nor_status
codes, specific to particular inplenentations, may arise. However,

it is reconmrended that inplenentations should return a m nor_status
val ue as defined on a mechani smwi de basis within this section when
that code accurately represents reportable status rather than using a
separate, inplenmentation-defined code.

1. Non- Kerberos-specific Codes

GSS_KRB5_S G BAD_SERVI CE_NAME

/* "No @in SERVI CE- NAME nane string" */
GSS KRB5_S G BAD STRING U D

[* "STRI NG U D- NAME cont ai ns nondi gits" */
GSS_KRB5_S G NOUSER

[* "U D does not resolve to usernane" */
GSS_KRB5_S_G _VALI DATE_FAI LED

/[* "Validation error" */
GSS_KRB5_S G BUFFER ALLCC

[* "Couldn’t allocate gss_buffer_t data" */
GSS_KRB5_S G BAD MSG CTX

/* "Message context invalid" */
GSS_KRB5_S_G WRONG _SI ZE

/[* "Buffer is the wong size" */
GSS_KRB5_S G BAD USAGE

[* "Credential usage type is unknown" */
GSS_KRB5_S G _UNKNOMN_QCP

/* "Unknown quality of protection specified" */

Zhu, et al. St andards Track [Page 14]

RFC 4121 Ker beros Version 5 GSS- API July 2005

5.

5.

1

2.

2. Kerberos-specific Codes

GSS_KRB5_S_KG_CCACHE_NOVATCH
/[* "Cient principal in credentials does not match
speci fied nanme" */
GSS_KRB5_S_KG_KEYTAB_NOVATCH
/* "No key available for specified service
principal" */
GSS_KRB5_S KG TGT_M SSI NG
/* "No Kerberos ticket-granting ticket avail able" */
GSS_KRB5_S KG_NO_SUBKEY
/* "Authenticator has no subkey" */
GSS_KRB5_S_KG_CONTEXT_ESTABLI SHED
[* "Context is already fully established" */
GSS_KRB5_S KG BAD_SI GN_TYPE
[* "Unknown signature type in token" */
GSS_KRB5_S KG BAD LENGTH
/* "lInvalid field length in token" */
GSS_KRB5_S _KG_CTX_| NCOWPLETE
/[* "Attenpt to use inconplete security context" */

Buf fer Sizes

Al inplenmentations of this specification MUST be capabl e of
accepting buffers of at |least 16K octets as input to GSS GetM (),
GSS VerifyMC(), and GSS Wap(). They MJST al so be capabl e of
accepting the output_token generated by GSS Wap() for a 16K octet
i nput buffer as input to GSS Unw ap(). |nplenmentations SHOULD
support 64K octet input buffers, and MAY support even |arger input
buf fer sizes.

Backwar ds Conpatibility Considerations

The new token formats defined in this document will only be

recogni zed by new i mpl enentations. To address this, inplenmentations
can always use the explicit sign or seal algorithmin [RFC1964] when
the key type corresponds to not "newer" enctypes. As an alternative,
one mght retry sending the nessage with the sign or seal algorithm
explicitly defined as in [RFC1964]. However, this would require

ei ther the use of a nechani smsuch as [RFC2478] to securely negotiate
the met hod, or the use of an out-of-band mechanismto choose the
appropriate nechanism For this reason, it is RECOWENDED that the
new token fornmats defined in this docunent SHOULD be used only if
both peers are known to support the new nmechani sm during context
negoti ati on because of, for exanple, the use of "new' enctypes.

Zhu, et al. St andards Track [Page 15]

RFC 4121 Ker beros Version 5 GSS- API July 2005

GSS Unwrap() or GSS VerifyM C() can process a nessage token as
follows: it can look at the first octet of the token header, and if
it is 0x60, then the token nmust carry the generic GSS-APlI pseudo
ASN. 1 framing. OQherwise, the first two octets of the token contain
the TOK ID that uniquely identify the token nmessage fornat.

7. Security Considerations

Channel bindings are validated by the acceptor. The acceptor can

i gnore the channel bindings restriction supplied by the initiator and
carried in the authenticator checksum if (1) channel bindings are
not used by GSS Accept _sec_context [RFC2743], and (2) the acceptor
does not prove to the initiator that it has the sanme channel bindings
as the initiator (even if the client requested nutua

authentication). This Iimtation should be considered by designers
of applications that woul d use channel bindings, whether to lint the
use of GSS-API contexts to nodes with specific network addresses, to
aut henticate other established, secure channels using Kerberos
Version 5, or for any other purpose.

Session key types are selected by the KDC. Under the current
mechani sm no negotiation of algorithmtypes occurs, so server-side
(acceptor) inplenmentations cannot request that clients not use

al gorithmtypes not understood by the server. However,

admi ni strators can control what enctypes can be used for session keys
for this mechanismby controlling the set of the ticket session key
enctypes which the KDCis willing to use in tickets for a given
acceptor principal. Therefore, the KDC could be given the task of
[imting session keys for a given service to types actually supported
by the Kerberos and GSSAPI software on the server. This has a
drawback for cases in which a service principal nane is used for both
GSSAPI - based and non- GSSAPI - based conmmuni cation (nost notably the
"host" service key), if the GSSAPI inplenmentation does not understand
(for example) AES [RFC3962], but the Kerberos inplenentation does.
Thi s means that AES session keys cannot be issued for that service
principal, which keeps the protection of non-GSSAPI services weaker
than necessary. KDC admi nistrators desiring to linmt the session key
types to support interoperability with such GSSAPI i npl enentations
shoul d carefully weigh the reduction in protection offered by such
mechani sns agai nst the benefits of interoperability.

Zhu, et al. St andards Track [Page 16]

RFC 4121 Ker beros Version 5 GSS- API July 2005

8.

Acknowl edgenent s

Ken Raeburn and Nicolas WIllians corrected many of our errors in the
use of generic profiles and were instrunental in the creation of this
docunent .

The text for security considerations was contributed by Nicol as
Wl lians and Ken Raeburn

Sam Hart man and Ken Raeburn suggested the "floating trailer" idea,
nanely the encoding of the RRC field.

Sam Hartman and Nicolas WIlians recommended the replacing our
earlier key derivation function for directional keys with different
key usage nunbers for each direction as well as retaining the
directional bit for nmaximum conpatibility.

Paul Leach provided numerous suggestions and conments.

Scott Field, R chard Ward, Dan Sinon, Kevin Danour, and Sinon
Josefsson al so provided val uabl e i nputs on this documnent.

Jeffrey Hutzel man provided coments and clarifications for the text
related to the channel bindings.

Jeffrey Hutzel man and Russ Housl ey suggested many editorial changes.

Luke Howard provided inpl enentations of this docunent for the Heinda
code base, and helped inter-operability testing with the M crosoft
code base, together with Love Hornquist Astrand. These experinents
formed the basis of this docunent.

Martin Rex provided suggestions of TOK I D assi gnment reconmendations,
thus the token tagging in this docunment is unambiguous if the token
is wapped with the pseudo ASN. 1 header

John Linn wote the original Kerberos Version 5 nechani sm
specification [RFC1964], of which sone text has been retained.

Zhu, et al. St andards Track [Page 17]

RFC 4121 Ker beros Version 5 GSS- API July 2005

9. References
9.1. Nornmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC2743] Linn, J., "Ceneric Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC2744] Way, J., "Ceneric Security Service APl Version 2:
C bi ndi ngs", RFC 2744, January 2000.

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechani snf, RFC
1964, June 1996.

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
Ker beros 5", RFC 3961, February 2005.

[RFC4120] Neuman, C., Yu, T., Hartman, S., and K Raeburn, "The
Ker beros Network Authentication Service (V5)", RFC 4120,

July 2005.
9.2. Informative References
[SSPI] Leach, P., "Security Service Provider Interface"

M crosoft Devel oper Network (MSDN), April 2003.

[RFC3962] Raeburn, K., "Advanced Encryption Standard (AES)
Encryption for Kerberos 5", RFC 3962, February 2005.

[RFC2478] Baize, E. and D. Pinkas, "The Sinple and Protected GSS-API
Negoti ati on Mechani sm', RFC 2478, Decenber 1998.

Zhu, et al. St andards Track [Page 18]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Aut hors’ Addresses
Larry Zhu
One M crosoft Wy
Rednond, WA 98052 - USA
EMai | : LZhu@n crosoft.com
Kart hi k Jaganat han
One M crosoft Way
Rednond, WA 98052 - USA
EMai | : karthi kj @ crosoft.com
Sam Har t man
Massachusetts Institute of Technol ogy
77 Massachusetts Avenue

Canbri dge, MA 02139 - USA

EMail: hartmans-ietf@nt. edu

Zhu, et al. St andards Track [Page 19]

RFC 4121 Ker beros Version 5 GSS- API July 2005

Ful | Copyright Statenent
Copyright (C The Internet Society (2005).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Zhu, et al. St andards Track [Page 20]

