Net wor k Wor ki ng Group M Terada

Request for Comments: 4154 NTT DoCoMo
Cat egory: I nfornmational K. Fujinmura
NTT

Sept enber 2005

Voucher Tradi ng System Application Programm ng Interface (VTS-API)
Status of This Meno

This menmo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2005).
| ESG Not e

Thi s docunent is not a candidate for any | evel of Internet Standard.
Thi s docunent specifies the Voucher Trading System Application
Programm ng Interface (VTS-API), which assunmes that the VTS plug-in
is trusted by its user. The application making calls to VTS-API
ought to authenticate the VIS plug-in and securely bind the plug-in
with the VTS provider information specified in the Voucher Conponent.
However, this docunent does not specify an approach to application
aut hentication. The VTS-API should not be used without being
augnented by an application authenticati on nechani sm

Abstract

Thi s docunent specifies the Voucher Trading System Application
Programmi ng Interface (VIS-APlI). The VIS-API allows a wallet or
other application to issue, transfer, and redeem vouchers in a

uni f orm manner independent of the VTS inplenentation. The VISis a
system for securely transferring vouchers; e.g., coupons, tickets,

| oyalty points, and gift certificates. This process is often
necessary in the course of paynent and/or delivery transactions.

Terada & Fujinmura | nf or mati onal [Page 1]

RFC 4154

VTS- API Sept ember 2005

Tabl e of Contents

1. Introducti On 3
2. Processing Model 4
3. Design OVerVIi BW ... 6
4. CONCEPL S o ot 6
5. Interface Definitions i, 8
5. 1. VISMANAGEIt 8
5.1.1. getParticipantRepository 8

5.1.2. getVoucher Conmponent Repository 8

5.2. Participant RepoSi tory 9
5.2.1. lookup 9

5.3. Participant 9
5.3.1. getldentifier 10

5.3.2. getVISAgeNnt 10

5.4, VISAQENt . .. 10
5.4, 1. 10Qin o 11

5.4.2. 10QgoUt 12

B 4. 3. PrepPar @ ... 12

B A 4. I SSUR .. 13

5.4.5. transfer 14

5.4.6. CONSUITEt e e e e e e 15

5. 4. 7. Present 16

5.4.8. cancel 17

5.4.9. FeSUMB 18

5.4.10. Create 18

5.4.11. delete ... 19

5.4.12. getContents 19

5.4.13. get SesSiONsS 19

5.4.14. gethog 20

5.4.15. addReceptionListener 20

5.4.16. renoveReceptionListener 21

B 5. SESSI ON .. 21
5.5.1. getldentifier 21

5.5.2. getVoucher 22

5.5.3. getSender 22

5.5.4. getRecei Ver 22

5.5.5. isPrepared 22

5.5.6. isActivated 23

5.5.7. isSuspended 23

5.5.8. isConmpleted 23

5.6. MOUCher 23
5.6. 1. getlssuer 23

5.6.2. getProm Se 24

5.6.3. getCount 24

5.7. Voucher Conmponent RepoSi tory 24

5. 7. 1. regiSter ... 24

5.8. Voucher Component e 25

Terada & Fujinmura I nf or mati onal [Page 2]

RFC 4154 VTS- API Sept enber 2005

5.8.1. getldentifier 25

5.8.2. getDocument 26

5.9. ReceptionListener 26

5. 0. L. Al Ve . 26

5.10. EXCePtions 27

6. Exanple Code 28
7. Security Considerations i 29
8. ACKknowW edgement S 30
9. Normative References i 30
10. Informative References i, 30

1. Introduction

Thi s docunent specifies the Voucher Trading System Application
Programm ng Interface (VIS-API). The notivation and background of
the Voucher Trading System (VTS) are described in Requirenents for
Generi c Voucher Trading [VTS].

A voucher is a logical entity that represents a certain right, and it
is logically managed by the VIS. A voucher is generated by the

i ssuer, traded anpong users, and finally collected using VIS. The
term nol ogy and nodel of the VIS are al so described in [VTS].

VTSes can be inplenented in different ways, such as a centralized
VTS, which uses a centralized online server to store and manage al
vouchers, or a distributed VTS, which uses per-user smartcards to

mai ntai n the vouchers owned by each user. However, the VTS-API
allows a caller application to issue, transfer, and redeem vouchers
in a uni form manner independent of the VIS inplenmentation. Severa
attenpts have been made to provide a generic payment APlI. Java
Conmerce Cient [JCC] and Generic Payment Service Franmework [GPSF],
for exanple, introduce a nodular wallet architecture that pernits

di verse types of paynent nodul es to be added as plug-ins and supports
bot h check-1ike/cash-1ike paynent nodels. This docunent is inspired
by these approaches but its scope is linmted to the VIS nodel, in

whi ch the cash-1ike payment nodel is assunmed and vouchers are
directly or indirectly transferred between the sender (transferor)
and receiver (transferee) via the VIS. This docurment is not intended
to support APl for SET, e-check, or other paynent schemes that do not
fit the VTS nodel

Unli ke the APIs provided in JCC and GPSF, which are designed to
transfer only nonetary values, this APl enables the transfer of a

wi de range of val ues through the use of XM.-based Generic Voucher
Language [GVL]. The monetary neaning of the voucher is interpreted
by the upper application layer using the information described in the
| anguage. This approach makes it possible to provide a sinpler API
in the voucher-transfer |ayer and enhances runtinme efficiency. The

Terada & Fujinmura I nf or mati onal [Page 3]

RFC 4154 VTS- API Sept enber 2005

APl specification in this docunent is described in the Java | anguage
syntax. Bindings for other programm ng | anguages may be conpleted in
a future version of this docunment or in separate rel ated

speci fications.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119]

2. Processing Mde

This section provides the processing nodel in which the VIS-API is
used. A part of the text in this section has been taken fromthe
Generi ¢ Voucher Language specification [GVL].

There are several ways to inplenment VIS. For discount coupons or
event tickets, for exanple, a smartcard-based distributed offline VTS
is often preferred, whereas for bonds or securities, a centralized
online VIS is preferred. Wile distributed VISes would utilize
public (asymretric) key-based or shared (symetric) key-based

crypt ographi c chal | enge-and-response protocols to trade vouchers
securely, centralized VISes would utilize transactions that rewite
owner shi ps of vouchers on their database. Therefore, it is

i mpractical to define standard protocols for issuing, transferring,

or redeemi ng vouchers at this tine.

To provide inplenmentation flexibility, this docunent assumes a
nmodul ar wall et architecture that allows multiple VISes to be added as
plug-ins. In this architecture, instead of specifying a standard
voucher transfer protocol, two specifications, Voucher Component and
VTS-APl, are standardized (Figure 1).

Terada & Fujinmura I nf or mati onal [Page 4]

RFC 4154 VTS- API Sept enber 2005

Sender wal | et/ | ssuing system Recei ver wal l et/ Col |l ecting system

| Voucher Conponent
| (Specifies VIS Provider and Proni se)

+
| |
| |
| |
| -mmmmmm e >
|| | | ||
|| Intention to receive and paynent (option) |
| < - - - s e e e e e e e e e e e e e |
	Issue/transfer/ VIS		VTS Regi st er
	redeem request plug-in	plug-in Listener(*1)]	
I R R S EEEEPEE >			
	(VTS API)	<- - - - - - - -3 (VTS API)	
		VTS-specific	
	protocol if VTS		
		is distributed	
	Result	<- - - - - - - -3 Notify(*2)	
I RREETRELE . | e >
oo e e e e e e e oo - + oo e e e e e e e oo - +

(*1) Registration is optional. Note also that the VIS plug-ins are
usual |y pre-registered when the wallet or collecting system
is started.

(*2) If alistener is registered.
Figure 1. Wallet architecture with VTS plug-ins

In this architecture, a VIS provides a |ogical view of vouchers
called a Vvalid Voucher Set (WS), which is a set that includes the
vouchers <I, P, H> managed by the VIS [VTS]. A user’'s wallet can
access (e.g., view, transfer, and redeem) the subset of the WS that

i ncludes a set of vouchers owned by the user by interacting with the
VTS plug-in via the VIS-API. Likew se, an issuing systemcan issue a
voucher and add it to the WS, and a collecting system can be
notified of the redenption of vouchers via the VTS-API.

After a sender and a receiver agree on what vouchers are to be traded
and which VIS is to be used, the issuing systemor wallet system
requests the corresponding VIS plug-in to permt the issue, transfer,
or redenption transactions to be perfornmed via the VIS-API. The VTS
then logically rewites the ownership of the vouchers on the WS
using the VTS-specific protocol. Since the VIS is responsible for
preventing illegal acts on vouchers |like forgery or reproduction, as
required in [VTS], the protocol would include a cryptographic

chal | enge- and-response (in a distributed VIS) or a transactiona

Terada & Fujinmura I nf or mati onal [Page 5]

RFC 4154 VTS- API Sept enber 2005

4.

dat abase mani pul ati on with adequate access controls (in a centralized
VTS). Finally, a conpletion event is sent to the wallet systens or
i ssuing/collecting systens.

Thi s docunent describes the VIS-API specification. See [GVL] for the
Voucher Conponent specification that gives the syntax and senantics
for describing and interpreting the nmeaning of vouchers.

Desi gn Overvi ew
We have adopted the follow ng approach to specify the VIS-API.

1) Provide an abstract and uniform APl that encapsul ates the VTS
i mpl enentation. For exanple, a conmon APl is provided for both
centralized and distributed VISes. |ssuers and application
devel opers have nore freedomin VTS sel ection

2) To provide an abstract and uniform API, this docunent
i ntroduces an interface called VISAgent that is associated with
a hol der and provi des nethods to nani pul ate vouchers held by
its holder. Vouchers are accessed through the nethods provided
by the VTSAgent.

3) Use existing standards for the VTS brandi ng nmechani sm
(negotiation). This docunent assunes that the VIS to be used
for sending a voucher has settled the VIS-APIs are call ed.
Negoti ati on can be done within the upper application |ayer
usi ng ot her standards (e.g., [IOIP] or [ECM.]), if necessary.

4) Support only the push-type voucher transfer interface, in which
the voucher transfer session is initiated by the transferor
side. A pull-type voucher transfer interface can be
i mpl enented on top of the push-type VIS interface at the
application | evel.

Concepts

The VTS-API consists of the following interfaces. A VIS is required
to inmplenent all of the interfaces except ReceptionListener, which is
i ntended to be inplenmented by wallets or other applications that use
VTS.

VTSManager
Provides the starting point for using a VIS plug-in. Al of
the objects needed to mani pul ate vouchers can be directly or
indirectly acquired via the VISvanager. A VISManager naintains
the two repositories: a ParticipantRepository and a
Voucher Conponent Repository, both of which are described bel ow.

Terada & Fujinmura I nf or mati onal [Page 6]

RFC 4154 VTS- API Sept enber 2005

Parti ci pant Repository
Provi des the access points of participants that are to be
trading partners. A ParticipantRepository maintains
Partici pants and acts as an "address book" of trading partners.

Partici pant
Represents a participant (such as an issuer, a holder, or a
collector). A Participant interface knows how to obtain the
correspondi ng VISAgent descri bed bel ow.

VTSAgent (extends Participant)
Provi des the access point of vouchers in the Valid Voucher Set
(WS) that is logically managed by the VTIS. A VTSAgent
provi des a nmeans of manipul ati ng vouchers held by its hol der
according to basic trading methods; i.e., issue, transfer,
consume, and present. Before calling trading nethods, the
application nust create a Session, which is described bel ow

Sessi on
Represents the | ogical connection established by the trade. A
Session has references to two Participant interfaces; i.e.

those of the sender and the receiver. After trading nethods
are called using a Session, the Session holds a reference to
t he Vouchers to be traded.

Voucher
Represents one or nore vouchers in which all of the issuer and
prom se parts of the vouchers are the same. A Voucher hol ds
references to the Participant interface who issued the voucher
(issuer) and to a Voucher Conponent (prom se), which is
descri bed bel ow.

Voucher Conmponent
Represents a Voucher Conponent, described in [G/L]. It defines
the prom se part of the voucher

Voucher Conponent Reposi tory
Provi des the access points of VoucherConponents. A
Voucher Conponent Reposi tory nai ntai ns Voucher Conponents and acts
as a "voucher type book" nanaged by the VTIS. This docunent
assunes that a set of VoucherConmponents has been acquired and
stored in this repository. Delivery of VoucherConponents is
beyond the scope of this docunent. It nay be delivered within
the VTS fromthe trading partners or nmanually acquired froma
trusted third party (see Section 3 of [GVL]).

Terada & Fujinmura I nf or mati onal [Page 7]

RFC 4154 VTS- API Sept enber 2005

Recepti onLi st ener
Provides a listener function with regard to the receipt of a
voucher by a VTSAgent to wallets or other applications that
inmplenent this interface. (This interface may not be
i mpl enented as part of the VTS.)
5. Interface Definitions
The interfaces defined in this docunent reside in the package named
"org.ietf.vts". Wallets or other applications that use this API,
shoul d inmport this package as "inport org.ietf.vts.*;"
5.1. VTSManager
public interface VISManager
Provides the starting point for using a VTS plug-in.
Al'l of the objects needed to nani pul ate vouchers can be directly
or indirectly acquired via a VISManager so that wallets or other
applications can nake the VTS avail able by instantiating an object
i mpl enenting this interface.
A class that inplenents the VISManager interface nust have a
public default constructor (a constructor wthout any paraneters).
The VTS provides a nane for such a constructor so that the
i mpl ement ation class can bootstrap the interface.
5.1.1. getParticipantRepository
public Participant Repository getPartici pant Repository()
Returns a repository that nmaintains Participants.
Ret ur ns:

the Participant Repository of the VTS, or null if no
Partici pant Repository is avail abl e.

5.1.2. getVoucher Conponent Repository
publ i ¢ Voucher Conponent Reposi t ory get Voucher Conponent Reposi tory()

Returns a repository that naintains Voucher Conponents.

Terada & Fujinmura I nf or mati onal [Page 8]

RFC 4154 VTS- API Sept enber 2005

Ret ur ns:

t he Voucher Conponent Repository of the VIS, or null if no
Voucher Conmponent Repository is avail abl e.

5.2. Participant Repository
public interface Partici pant Repository
Provi des the access points of Participants. A
Partici pant Repository maintains Participants and acts as an
"address book" of trading partners.
The object inplementing this interface maintains Participants (or
hol ds a reference to an object maintaining Participants), which
are to be tradi ng partners.
The i npl enentation of a ParticipantRepository may be either (an
adaptor to) "yell ow pages", which is a network-w de directory
service |like LDAP, or "pocket address book", which maintains only
per sonal acquai nt ances.
5.2.1. | ookup
public Participant | ookup(String id)
Retrieves the participant that has the specified id.

Ret ur ns:

the participant associated with the specified id, or null if the
idis null or the corresponding partici pant cannot be found.

5.3. Participant
public interface Participant

Represents the participants (such as issuers, holders, and
col l ectors).

This interface is used as a representation of the trade partners

and issuers of vouchers. Anyone can retrieve objects that
i npl enent Participants fromthe partici pant repository.

Terada & Fujinmura I nf or mati onal [Page 9]

RFC 4154 VTS- API Sept enber 2005

5.3.1. getldentifier
public String getldentifier()

Returns the identifier of the participant. Each participant nust
have a unique identifier

The identifier can be used for |ooking up and retrieving the
participant via the Participant Repository.

The format of the identifier is inplenentation-specific.
Ret ur ns:
the identifier string of the participant.
5.3.2. getVISAgent
VTSAgent get VTSAgent ()

Returns a VTSAgent, whose identifier is the same as the identifier
of the participant.

Ret ur ns:
an object that inplenents the VISAgent.
5.4. VTSAgent
public interface VISAgent extends Partici pant

Represents contact points to access vouchers in a Valid Voucher
Set (WS) that is managed by the VTS

Each VTSAgent is associated with a hol der and provides a neans for
managi ng vouchers owned by the holder. The hol der nust be

aut henticated using the login() nmethod before being called by any
ot her method, otherw se, a VISSecurityException will be issued.

Before any trading method is called, e.g., issue(), transfer(),
consume(), and present(), the application nust establish a session
by the prepare() nethod.

Due to network failure, sessions may often be suspended when the
voucher is sent via a network. The suspended sessions can be
restarted by the resune() nethod. Details on the state managenent
of a session are described in Section 5.5.

Terada & Fujinmura I nf or mati onal [Page 10]

RFC 4154 VTS- API Sept enber 2005

Sone VTSAgents nay not have all of the tradi ng nmethods; a voucher
collecting systemdoesn't require its VISAgent to provide a nethod
for issuing or creating vouchers. A VISAgent returns a

Feat ur eNot Avai | abl eExcepti on when an unsupported nethod is

i nvoked.

5.4.1. login

public void login(String passphrase)
throws VTSException

Aut henticates the VISAgent. The passphrase is specified if the
VTS requires it for authentication, otherwise it nust be null
Nothing is performed if the VISAgent has already been | ogged-in
The aut hentication scheme is inplenentation-specific. Exanples of
the inplementation are as foll ows:

1) Vouchers are nmanaged on a renpte centralized server
(centralized VIS), which requires a password to login. In this
case, the application my pronpt the user to input the password
and the password can be given to the VISAgent through this
met hod. For further information, see the |Inplenentation Notes
bel ow.

2) Vouchers are nmanaged on a renote centralized server
(centralized VTS), which requires chall enge-and-response
aut hentication using smartcards held by users. In this case,
the passphrase may be null because access to the smartcard can
be done without contacting the application or user (i.e., the
VTSAgent receives the challenge fromthe server, sends the
chall enge to the smartcard (within the VIS), and returns the
response fromthe smartcard to the server). Note that a PINto
unl ock the smartcard nmay be given through this nethod,
dependi ng on the inplenmentation.

3) Each user holds their own smartcard in which their own vouchers
are stored (distributed VIS). 1In this case, the passphrase may
be null because no authentication is required. Note that a PIN
to unlock the smartcard nay be given, though this depends on
the inplementation.

| mpl enent ati on Not es:

A VTS is responsible for providing secure ways for users to
login(). It is strongly recomrended that secure conmunication
channel s such as [TLS] be used if secret or private information
is sent via networks. Fake server attacks, including the so-
called MTM (man-in-t he-m ddl e), nust be considered as well.

Terada & Fujinmura I nf or mati onal [Page 11]

RFC 4154 VTS- API Sept enber 2005

Thr ows:
VTSSecurityException - if authentication fails.
5.4.2. |ogout

public void | ogout ()
throws VTSException

Voi ds the authentication perforned by the |ogin() nethod.

After this nethod is called, calling any other nethod (except
login()) will cause a VTSSecurityException

The VTSAgent can login again by the |ogin() method.
Thr ows:

VTSSecurityException - if the VISAgent is not authenticated
correctly.

5.4.3. prepare

public Session prepare(Participant receiver)
throws VTSException

Est abl i shes a session that is required for trading vouchers. The
tradi ng partner who receives the vouchers is specified as the
receiver. The vouchers to be traded will be specified | ater (when
a trading method is called).

The establishnent of a session is inplementation-specific. A
centralized VIS inplenmentation may start a transaction, while a
di stributed VTS inplementation may get the chall enge needed to
create an authentic response fromthe receiver in the follow ng
tradi ng net hod.

If the VTSAgent does not have the ability to establish a session
with the specified receiver (pernanent error), the VISAgent throws
an I nvalidParticipant Exeption. |f the VISAgent cannot establish a
session due to network failure (transient error), the VISAgent
throws a Cannot ProceedException

Par anmet er s:

receiver - the trading partner who receives vouchers.

Terada & Fujinmura I nf or mati onal [Page 12]

RFC 4154 VTS- API Sept enber 2005

Ret ur ns:

an established session whose state is "prepared" (see Section
5.5).

Thr ows:

Cannot ProceedException - if the preparation of the session is
aborted (e.g., network failures).

Feat ur eNot Avai | abl eException - if the VISAgent does not provide
any tradi ng nethods.

I nval i dParti ci pant Exception - if the specified participant is
i nvalid.

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.4. issue

public void issue(Session session,
Voucher Conmponent prom se,
j ava. | ang. Nuber num
throws VTSException

| ssues vouchers. This method creates the specified nunmber of
vouchers <this, prom se, receiver> and adds themto the WS. |If
the VIS is distributed, this nethod would create a "response” that
corresponds to the challenge received in the prepare() nethod and
send it to the receiver. Note that the receiver is specified when
prepare() is called. Nothing is perforned if the specified nunber

is O.

The session MJST be "prepared" when calling this method. The
state of the session will be "activated" when the vouchers are
created, and it will be "conpleted" when the transaction is

successfully conpleted or "suspended" if the transaction is
interrupted abnormally (e.g., network failures).

Par anmet er s:
session - the session used by the issue transaction
promi se - the promi se part of the voucher

num - the nunber of vouchers to be issued.

Terada & Fujinmura I nf or mati onal [Page 13]

RFC 4154 VTS- API Sept enber 2005

Thr ows:

Cannot ProceedException - if the transaction cannot be successfully
conpl et ed.

Feat ur eNot Avai | abl eException - if the VISAgent does not provide a
neans of issuing vouchers.

I nval i dSt at eException - if the session is not "prepared"

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.5. transfer

public void transfer(Session session,
Partici pant issuer,
Voucher Conponent prom se,
j ava. | ang. Nurber num
throws VTSException

Transfers vouchers. This method rewites the specified nunber of
vouchers <issuer, prom se, this> to <issuer, promse, receiver>in
the WS; i.e., deletes the vouchers fromthe sender and stores
themfor the receiver. Simlar to issue(), this nmethod woul d
create and send the response to the receiver if the VISis

di stributed. The VTSAgent must have sufficient vouchers in the
WS. Nothing is performed if the specified nunmber is O.

The session MJST be "prepared" when calling this nmethod. The
state of the session will be "activated" when the voucher are
retrieved fromthe sender, and it will be "conpl eted" when the
transaction is successfully conpleted or "suspended" if the
transaction is interrupted abnormally (e.g., network failures).

If null is specified for the issuer parameter, it indicates "any
issuer". This nethod selects vouchers to be transferred fromthe
set of vouchers returned by the getContents(null, promse).

Terada & Fujinmura I nf or mati onal [Page 14]

RFC 4154 VTS- API Sept enber 2005

Par anmet er s:
session - the session used by the transfer transaction
i ssuer - the issuer part of the voucher, or null
prom se - the prom se part of the voucher
num - the nunber of vouchers to be transferred.
Thr ows:

Cannot ProceedException - if the transaction cannot be successfully
conpl et ed

Feat ur eNot Avai | abl eException - if the VISAgent does not provide a
means of transferring vouchers.

I nsuf fici ent Voucher Exception - if the VISAgent does not have a
sufficient number of vouchers to transfer.

I nval i dSt at eException - if the session is not "prepared"

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.6. consume

public void consunme(Session session
Partici pant issuer,
Voucher Conponent prom se,
java.l ang. Nunber num
throws VTSException

Consumes vouchers. This nethod del etes the specified nunber of
vouchers <issuer, promse, this> fromthe WS and notifies the
receiver of the deletion. Simlar to issue() and transfer(), the
response woul d be created and sent to the receiver if the VISis
di stributed so that the receiver can obtain proof of the deletion
The VTSAgent mnust have a sufficient nunber of vouchers in the WS
Nothing is performed if the specified nunber is O.

The session MJST be "prepared" when this nethod is called. The
state of the session will be "activated" when the vouchers are
deleted, and it will be "conpleted" when the transaction is
successfully conmpl eted or "suspended" if the transaction is
interrupted abnormally (e.g., network failures).

Terada & Fujinmura I nf or mati onal [Page 15]

RFC 4154 VTS- API Sept enber 2005

If null is specified for the issuer paranmeter, it indicates "any
i ssuer”. This nethod sel ects vouchers to be consunmed fromthe set
of vouchers returned by the getContents(null, pronise).

Par anmet er s:
session - the session used by the consune transaction
i ssuer - the issuer part of the voucher, or null
prom se - the prom se part of the voucher
num - the nunber of vouchers to be consuned.
Thr ows:

Cannot ProceedException - if the transacti on cannot be successfully
conpl et ed

Feat ur eNot Avai | abl eException - if the VISAgent does not provide a
nmeans of consuni ng vouchers.

I nsuf fici ent Voucher Exception - if the VISAgent does not have a
suf ficient nunmber of vouchers to consune.

I nval i dSt at eException - if the session is not "prepared"

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.7. present

public void present(Session session
Partici pant issuer,
Voucher Conmponent prom se,
j ava. | ang. Nuber num
throws VTSException

Presents vouchers. This method shows that the sender has the
speci fi ed nunber of vouchers <issuer, promise, this>in the WS to
the receiver of the session; no nodification is performed to the
WS. However, the response would be sent to the receiver as well
as consune() in order to prove that the VTS has been distributed.
The VTSAgent must have a sufficient nunber of vouchers in the WS
Nothing is performed if the specified nunber is O.

The session MJST be "prepared” when this method is called. The
state of the session will be "activated" when the vouchers are

Terada & Fujinmura I nf or mati onal [Page 16]

RFC 4154 VTS- API Sept enber 2005

retrieved, and it will be "conpleted" when the transaction is
successfully conpleted or "suspended" if the transaction is
interrupted abnormally (e.g., by network failures).

If null is specified for the issuer paranmeter, it indicates "any
issuer”. This nethod sel ects vouchers to be presented fromthe
set of vouchers returned by the getContents(null, promse).

Par anmet ers:
session - the session used by the present transaction
i ssuer - the issuer part of the voucher, or null
promi se - the promi se part of the voucher

num - the nunber of the voucher to be presented.

Thr ows:
Cannot ProceedException - if the transaction cannot be successfully
conpl et ed.
I nsuf fici ent Voucher Exception - if the VISAgent does not have a

sufficient nunmber of vouchers to present.
I nval i dSt at eException - if the session is not "prepared"

Feat ur eNot Avai | abl eException - if the VISAgent does not provide a
neans of presenting vouchers.

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.8. cance

public void cancel (Sessi on session)
throws VTSException

Rel eases the session. "Prepared" sessions MJST be cancel ed. An
i mpl enentati on MAY be permitted to cancel "activated" or
"suspended" sessions.

Thr ows:

I nval i dSt at eException - if the state of the session cannot be
cancel ed.

Terada & Fujinmura I nf or mati onal [Page 17]

RFC 4154 VTS- API Sept enber 2005

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.9. resune

public void resune(Sessi on session)
throws VTSException

Restarts the session. Only "suspended" sessions can be resuned.
The state of the session will be re-"activated" imediately, and
it will be "conpleted" when the transaction is successfully
conpl eted or "suspended" again if the transaction is interrupted
abnormal ly (e.g., network failures).

Thr ows:
Cannot ProceedException - if the transacti on cannot be successfully
conpl et ed
I nval i dSt at eException - if the session is not "suspended"

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.10. create

public void create(Voucher Conponent pronise, java.lang.Nunber num
throws VTSException

Creates vouchers where the issuer is the VISAgent itself. This
net hod creates the specified nunber of vouchers <this, prom se,
thi s> and adds themto the WS. Nothing is performed if the
speci fied nunmber is O.

Thr ows:

Feat ur eNot Avai | abl eException - if the VISAgent does not provide a
nmeans of creating vouchers.

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

Terada & Fujinmura I nf or mati onal [Page 18]

RFC 4154 VTS- API Sept enber 2005

5.4.11. delete

public void delete(Participant issuer, VoucherComnmponent prom se,
j ava. |l ang. Number num
throws VTSException

Del et es vouchers. This nmethod del etes the specified nunber of
vouchers <issuer, prom se, this> fromthe WS. The VTSAgent nust

have sufficient vouchers in the WS. Nothing is perforned if the
speci fied nunber is O.

Thr ows:

I nsuf fi ci ent Voucher Exception - if the VISAgent does not have a
sufficient nunber of vouchers to delete.

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.12. getContents
public java.util.Set getContents(Participant issuer
Voucher Conponent promi se)
throws VTSException

Returns the set of vouchers whose issuer and proni se both match
the issuer and prom se specified in the paraneters.

If null is specified for the issuer or prom se parameter, it
i ndi cates "any issuer" or "any pronmise", respectively. If null is
specified for both paraneters, this nethod selects all vouchers
owned by the holder fromthe WS.

Ret ur ns:
the set of vouchers held by the hol der of the VTSAgent.

Thr ows:

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.13. getSessions

public java.util.Set getSessions()
throws VTSException

Returns a set of inconplete sessions prepared by the VTSAgent.

Terada & Fujinmura I nf or mati onal [Page 19]

RFC 4154 VTS- API Sept enber 2005

Ret ur ns:

the set of sessions prepared by the VISAgent that are not yet
conpl et ed.

Thr ows:

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.14. getlLog

public java.util.Set getLog()
throws VTSException

Returns a set of conpleted sessions prepared or received by the
VTSAgent. This set represents the trading | og of the VISAgent. A
VTS may delete an old | og eventually, so that the entire | og may
not be returned; the anount of the | og kept by the VTSAgent is
i mpl ement ati on-specific.

Ret ur ns:

the set of conpleted sessions prepared or received by the
VTSAgent .

Thr ows:

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.4.15. addRecepti onLi st ener

public void addRecepti onLi st ener (Recepti onLi stener 1)
throws VTSException

Adds a ReceptionListener to the listener |ist.

After a ReceptionListener | is registered by this nethod,
[.arrive() will be called whenever the VISAgent receives a
voucher.

Nothing is performed if the specified listener is null
Thr ows:

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

Terada & Fujinmura I nf or mati onal [Page 20]

RFC 4154 VTS- API Sept enber 2005

5.4.16. renoveReceptionLi stener

public void renoveReceptionLi st ener (Recepti onLi stener 1)
throws VTSException

Renoves a ReceptionListener fromthe listener list.

Not hing is performed when the specified listener is null or not
regi stered.

Thr ows:

VTSSecurityException - if the VISAgent cannot be authenticated
correctly.

5.5. Session
public interface Session

Represents the | ogical connection established by the trade.
Sessions are established by VTSAgent#prepare().

A session has four states: prepared, activated, suspended, and
conpleted. The initial state of a session is "prepared”, and the
session will be "activated" i mediately when any of the trading
net hods of VTSAgent is called. The "activated" session will be
"conpl eted" after the trading method is successfully conpleted.

If the trading method fails transiently (e.g., network failure),
the session will be "suspended”. Suspended sessions can be re-
"activated" and restarted by calling VTSAgent #resume().

A conpl et ed session may di sappear fromthe VISAgent; the session
will be collected by the GC unl ess other objects keep its
ref erence.

5.5.1. getldentifier

public String getldentifier()

Returns the identifier of the session. The generation schenme of
the identifier is inplenmentation-specific. An inplenentation may
use a transaction ID as the identifier of the session

Ret ur ns:

the string of the identifier of the session.

Terada & Fujinmura I nf or mati onal [Page 21]

RFC 4154 VTS- API Sept enber 2005

5.5.2. getVoucher
publ i c Voucher get Voucher ()

Returns the voucher to be traded using the session, or returns

null if the session has not been activated.

Ret ur ns:
the voucher to be traded, or null if the state of the session is
"prepared”.

5.5.3. get Sender
public Participant get Sender()

Returns the sender of the session (i.e., the creator who prepared
the session).

Ret ur ns:
the sender of the session.
5.5.4. getReceiver
public Participant getReceiver()

Returns the receiver of the session (i.e., the participant

speci fi ed when preparing the session (by the VTSAgent #prepare()
net hod)) .

Ret ur ns:
the receiver of the session.
5.5.5. isPrepared
publ i c bool ean i sPrepared()
Verifies if the session is "prepared".

Ret ur ns:

true if the session is in the "prepared" state, otherw se, false.

Terada & Fujinmura I nf or mati onal [Page 22]

RFC 4154 VTS- API Sept enber 2005

5.5.6. isActivated
public bool ean isActivated()
Verifies if the session is "activated"
Ret ur ns:
true if the session is in the "activated" state, otherw se, false.
5.5.7. isSuspended
publ i c bool ean i sSuspended()
Verifies if the session is "suspended"
Ret ur ns:
true if the session is in the "suspended" state, otherw se, false.
5.5.8. isConpleted
publ i c bool ean i sConpl et ed()
Verifies if the session is "conpl eted".
Ret ur ns:
true if the session is in the "conpleted" state, otherw se, false.
5.6. Voucher
public interface Voucher
Represents voucher(s) described in [VTS]. An object inplenmenting
this interface can represent nore than one voucher if all of the
i ssuer part and the prom se part of the vouchers are the sane.
5.6.1. getlssuer
public Participant getlssuer()
Returns the issuer part of the voucher(s).
Ret ur ns:

the partici pant who issued the voucher(s).

Terada & Fujinmura I nf or mati onal [Page 23]

RFC 4154 VTS- API Sept enber 2005

5.6.2. getProm se
publ i ¢ Voucher Conponent get Promi se()
Returns the prom se part of the voucher(s).
Ret ur ns:
the voucher conponent that defines the prom se of the voucher
5.6.3. get Count
public java.l ang. Nunber get Count ()
Returns the nunber of the voucher(s).
Ret ur ns:
the positive (>0) number of the voucher(s).
5.7. Voucher Conponent Reposi tory
public interface Voucher Conponent Repository
Mai nt ai ns Voucher Conponent s.
An obj ect inplenmenting Voucher Conponent Repository provi des a neans
of retrieving the voucher conponents that are the prom ses of
vouchers in the WS
Bef ore issuing a voucher, the prom se of the voucher nust be
registered with this repository. The repository can be
i mpl enented as either a network-w de directory service or persona
storage like the Partici pant Repository.
5.7.1. register

publ i ¢ Voucher Conponent regi ster(org.w3c.dom Docunent docunent)

Creates a voucher conponent associated with the specified DOM
obj ect and registers the voucher conponent with the repository.

A voucher conponent of the voucher to be issued nmust be registered
usi ng this nethod.

Nothing is performed (and the nmethod returns null) if the

speci fied docunent is null or the syntax of the document does not
conformto the VTS

Terada & Fujinmura I nf or mati onal [Page 24]

RFC 4154 VTS- API Sept enber 2005

5.

5.

The nethod returns the regi stered voucher conponent if the
speci fi ed DOM obj ect has been already regi stered (no new voucher
conponent is created in this case).

Ret ur ns:

8.

8.

a regi stered voucher conponent associated with the specified
document, or null if the docunment is null or has wong syntax.

Voucher Conmponent

public interface Voucher Conponent

1

Represents the voucher conmponent that defines the promi se of the
voucher.

Each Voucher Conponent object has its own unique identifier and is

associ ated with an XM. docunent that describes the prom se nade by
the i ssuer of the voucher (e.g., goods or services can be clained

i n exchange for redeem ng the voucher).

This interface can be inplenented as sort of a "smart pointer" to
the XML docunent. An inplenmentation nmay have a reference to a
voucher conponent repository instead of the voucher conponent, and
it may retrieve the docunent dynamically fromthe repository when
the get Docunent () nmethod is called.

getldentifier

public String getldentifier()

Returns the identifier of the voucher conponent. Each voucher
conponent nust have a unique identifier. The identifier may be
used to check for equival ence of voucher comnmponents.

The format of the identifier is inplenentation-specific, however,
it is RECOWENDED t hat the hash val ue of the voucher conponent in
the identifier be included to assure uni queness. For generating
the hash value, it is desirable to use a secure hash function
(e.g., [SHA-1]) and to apply a canonicalization function (e.g.

[EXC-C14N]) before applying the hash function to m nimze the

i mpact of insignificant format changes to the voucher conponent,
(e.g., line breaks or character encoding).

Ret ur ns:

the identifier string of the voucher conponent.

Terada & Fujinmura I nf or mati onal [Page 25]

RFC 4154 VTS- API Sept enber 2005

5.

5.

5.

8.

2.

get Docunent

public org.w3c. dom Docunent get Documnent ()

Returns a Docunent Cbject Mdel [DOM representation of the
docunent associated with the voucher conponent by the
Voucher Conponent Reposi t or y#r egi ster () nethod.

The DOM object to be returned may be retrieved froma
Voucher Conmponent Repository on demand, instead of the
Voucher Conmponent al ways keeping a reference to the DOM obj ect.

The VTS must guarantee that the getDocunent nethod will eventually
return the DOM object, provided that the voucher associated with
the correspondi ng voucher conmponent exists in the WS,

Ret ur ns:

a DOM representation of the document associated with the voucher
conponent .

Thr ows:

9.

9.

Docurent Not FoundException - if the associ ated DOM obj ect cannot be
retrieved.

Recepti onLi st ener

public interface ReceptionLi stener extends java.util.EventListener

1.

Provides a listener interface with a notification that a VISAgent
has received a voucher.

VWhen a voucher arrives at the VISAgent, the VTSAgent invokes the
arrive() nmethod of each registered ReceptionListener.

Recepti onLi steners can obtain a Session object, which contains

i nformation about the received voucher and the sender of the
voucher.

This interface is intended to provide a neans of notifying a
wal | et that "You have new vouchers"”, so that this interface may be
i npl enented by wal |l ets or other applications that use VTS.

arrive

public void arrive(Session session)

Provi des notification of the arrival of a voucher.

Terada & Fujinmura I nf or mati onal [Page 26]

RFC 4154 VTS- API Sept enber 2005

After the listener is registered to a VISAgent (by the
VTSAgent #addRecepti onLi st ener() nethod), the VTSAgent invokes this
nmet hod whenever it receives a voucher

The specified session is equivalent to the session used by the
sender to trade the voucher. The state of the session is
"“conpl eted" when this nmethod is called.

5.10. Exceptions

java. |l ang. Excepti on
+-- VTSException
+- - Cannot ProceedExcepti on
+- - Docunent Not FoundExcepti on
+-- Feat ur eNot Avai | abl eExcepti on

+-- InsufficientVoucher Exception
+-- InvalidPartici pant Exception
+-- InvalidStateException

+-- VTSSecurityException

VTSExcepti on
This is the superclass of all exceptions thrown by the methods in
the interfaces that construct the VTS-API.

Cannot ProceedExcepti on
This exception is thrown when a trading is interrupted by network
failures or other errors.

Docurent Not FoundExcept i on
Thi s exception is thrown when the docunment associated with a
voucher conponent cannot be found.

Feat ur eNot Avai | abl eExcepti on
Thi s exception is thrown when the invoked method is not supported.

I nsuf fi ci ent Voucher Excepti on
Thi s exception is thrown when the nunber of the voucher is |ess
than the nunber specified for trading.

I nval i dParti ci pant Excepti on
Thi s exception is thrown when the specified participant cannot be
| ocat ed.

I nval i dSt at eExcepti on

This exception is thrown when the state of the session is invalid
and the operation cannot proceed.

Terada & Fujinmura I nf or mati onal [Page 27]

RFC 4154 VTS- API Sept enber 2005

VTSSecurityException
This exception is thrown when authentication fails, or when a
met hod that requires authentication in advance is called w thout
aut henti cati on.

6. Exanpl e Code
/!l 1ssue a voucher

VTSManager vts = new FooVTSManager () ;
Partici pant Repository addrBook = vts.getPartici pant Repository();
Voucher Conponent Repository vcr = vts. get Voucher Conponent Repository();

Partici pant you = addrBook. | ookup("http://exanple.org/foo");
/1 looks up a trading partner identified as
[l "http://exanpl e.org/foo".
VTSAgent me = addr Book. | ookup(" myName"). get VTSAgent () ;
/1 a short-cut name may be used if VIS inplenentation all ows.

Voucher Conponent promni se = vcr. regi ster(anXM.-Voucher Docunent) ;
/1 registers a voucher conmponent that corresponds to the voucher
/1l to be issued.

try {
ne. |l ogin();
/1 sets up the issuer’s smartcard (assum ng distributed VTS)
s = ne.prepare(you);
/1 receives a challenge fromthe partner
nme. i ssue(s, promse, 1);
/1 sends a voucher using the received chall enge.
ne. | ogout () ;
} catch (VTSException e) {
/[l if an error (e.g., a network trouble) occurs..
Systemerr.println("Sorry.");
e.printStackTrace();
/1 this exanple sinply prints a stack trace, but a real wallet
/1 may pronpt the user to retry (or cancel).

}

/1 Transfer all ny vouchers

VTSManager vts = new FooVTSManager () ;
Partici pant Repository addrBook = vts.getPartici pant Repository();

Partici pant you = addrBook. | ookup("8f42 5aab ffff cafe babe...");
/1 some VTS inplementations would use a hash value of a public key
/1 (aka fingerprint) as an identifier of a participant.

VTSAgent nme = addr Book. | ookup(" nmyName"). get VTSAgent () ;

Terada & Fujinmura I nf or mati onal [Page 28]

RFC 4154 VTS- API Sept enber 2005

try {
me. | ogi n();
Iterator i = ne.getContents(null, null).iterator();

while (i.hasNext()) {
Voucher v = (Voucher) i.next();
s = ne.prepare(you);
ne.transfer(s, v.getlssuer(), v.getProm se(), v.getCount());

}

nme. | ogout () ;

} catch (VTSException e) {
Systemerr.printin("Sorry.");
e.printStackTrace();

}

/1l Register an incom ng voucher notifier (biff)
VTSManager vts = new FooVTSManager () ;

Partici pant Repository addrBook = vts.getPartici pant Repository();
VTSAgent me = addr Book. | ookup("myName"). get VTISAgent () ;

ReceptionLi stener |istener = new ReceptionListener() {
public void arrive(Session s) {
System out. println("You got a new voucher.");
}

b

try {
ne. |l ogin();
nme. addRecepti onLi stener (listener);
nme. | ogout () ;

} catch (VTSException e) {
Systemerr.println("Sorry.");
e.printStackTrace();

}

7. Security Considerations

Security is very inmportant for trading vouchers. VTS inplenentations
are responsi ble for preventing illegal acts upon vouchers (as
described in [VTS]), as well as preventing malicious access from
invalid users and fake server attacks, including nman-in-the-mddle
attacks.

The neans to achi eve the above requirenents are not specified in this
docunent because they depend on VTS inpl enentati on. However,

Terada & Fujinmura I nf or mati onal [Page 29]

RFC 4154 VTS- API Sept enber 2005

securing comruni cation channels (e.g., using TLS) between client VTS
plug-ins and the central server in a centralized VTS (as described in
5.4.1 login()), and applying cryptographic chall enge-and-response
techniques in a distributed VIS are likely to be helpful and are
strongly recomended to inplenment a secure VTS.

Thi s docunent assunes that the VTS plug-in is trusted by its user.
The caller application of a VTS should authenticate the VTS plug-in
and bind it securely using the VTS Provider information specified in
the Voucher Conmponent. This document, however, does not specify any
application authentication scheme and it is assuned to be specified
by other related standards. Until various VTS systens are depl oyed,
it is enough to manually check and install VTS plug-ins |ike other
downl oad applicati ons.

8. Acknow edgenent s

The foll owi ng persons, in al phabetic order, contributed substantially
to the material herein:

Donal d Eastl ake 3rd
| guchi Makot o
Yoshi t aka Nakamur a
Ryuji Shoda

9. Normmtive References

[DOM V. Apparao, S. Byrne, M Chanpion, S. l|saacs, |. Jacobs,
A. Le Hors, G Nicol, J. Robie, R Sutor, C WIson, and
L. Whod. "Docunent Object Mdel (DOM Level 1
Speci fication", WBC Recommendati on, October 1998,
<htt p://wwmv. W3. or g/ TR/ 1998/ REC- DOVt Level - 1- 19981001/ >

[GVL] Fujimura, K and M Terada, "XM. Voucher: Generic Voucher
Language", RFC 4153, Septenber 2005.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

10. I nformati ve References

[ECM] Eastl ake 3rd, D., "Electronic Conmerce Mdeling Language
(ECML) Version 2 Specification", RFC 4112, June 2005.

[EXC-C14N] J. Boyer, D. Eastlake, and J. Reagle, "Exclusive XM
Canoni cal i zati on Version 1.0", WBC Recommrendation, July
2002, <http://ww. w3. org/ TR/ 2002/ REC- xm - exc- c14n-
20020718/ >

Terada & Fujinmura I nf or mati onal [Page 30]

RFC 4154 VTS- API

Sept ember 2005

[GPSF] G Lacoste, B. Pfitznann, M Steiner, and M Wi dner
(Eds.), "SEMPER - Secure El ectronic Marketplace for
Europe, " LNCS 1854, Springer-Verlag, 2000.

[1OTP] Burdett, D., "Internet Open Trading Protocol - |OIP
Version 1.0", RFC 2801, April 2000.

[JCC] T. CGoldstein, "The Gateway Security Mddel in the Java

El ectroni ¢ Comrerce Framewor k",
Crypt ography ' 97, 1997.

[SHA- 1] Depart nent of Comrerce/ Nationa

Proc. of Financi al

Institute of Standards and

Technol ogy, "FIPS PUB 180-1. Secure Hash Standard. U.S. ",
<http://csrc.nist.gov/publications/fips/fipsl80-2/

fi ps180-2wi t hchangenoti ce. pdf >

[TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",

RFC 2246, January 1999.

[VTS] Fujimura, K and D. Eastl ake, "Requirenments and Design for

Voucher Tradi ng System (VTS)"
Aut hors’ Addresses

Masayuki Ter ada
NTT DoCoMbd, | nc.
3-5 Hikari-no-oka, Yokosuka-shi, Kanagawa,

Phone: +81-(0)46-840-3809
Fax: +81- (0) 46- 840- 3705
EMai | : te@ex.yrp.nttdocono. co.jp

Ko Fujinmura
NTT Cor poration
1-1 Hi kari-no-oka, Yokosuka-shi, Kanagawa,

Phone: +81- (0) 46- 859- 3053

Fax: +81- (0) 46- 859- 1730
EMail: fujimura.ko@ab.ntt.co.jp

Terada & Fujinmura I nf or mati ona

RFC 3506, March 2003.

239- 8536 JAPAN

239- 0847 JAPAN

[Page 31]

RFC 4154 VTS- API Sept enber 2005

Ful | Copyright Statenent
Copyright (C The Internet Society (2005).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Terada & Fujinmura I nf or mati onal [Page 32]

