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Abst r act
Thi s docunent describes an algorithmto generate one-tinme password
val ues, based on Hashed Message Aut henticati on Code (HVAC). A

security analysis of the algorithmis presented, and inportant
paranmeters related to the secure depl oynent of the algorithmare

di scussed. The proposed al gorithm can be used across a w de range of

networ k applications ranging fromrenote Virtual Private Network
(VPN) access, W-Fi network logon to transaction-oriented Wb
applications.

This work is a joint effort by the OATH (Qpen AuTHenti cati on)
menbership to specify an algorithmthat can be freely distributed to
the technical conmunity. The authors believe that a conmon and
shared algorithmw |l facilitate adoption of two-factor

aut hentication on the Internet by enabling interoperability across
conmer ci al and open-source inpl enmentations.
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1

Overvi ew

The docunent introduces first the context around an al gorithm that
generates one-time password val ues based on HVAC [ BCK1] and, thus, is
naned the HMAC- Based One-Ti me Password (HOTP) algorithm In Section
4, the algorithmrequirenents are listed and in Section 5, the HOTP
algorithmis described. Sections 6 and 7 focus on the algorithm
security. Section 8 proposes sone extensions and inprovenents, and
Section 10 concludes this docunent. |In Appendix A the interested
reader will find a detailed, full-fledged analysis of the algorithm
security: an idealized version of the algorithmis eval uated, and
then the HOTP al gorithm security is anal yzed.

| nt roducti on

Today, depl oynment of two-factor authentication remmins extrenely
l[imted in scope and scale. Despite increasingly higher |evels of
threats and attacks, nobst Internet applications still rely on weak
aut hentication schenmes for policing user access. The |ack of

i nteroperability anpbng hardware and software technol ogy vendors has
been a limting factor in the adoption of two-factor authentication
technology. In particular, the absence of open specifications has
led to solutions where hardware and software conponents are tightly
coupl ed through proprietary technol ogy, resulting in high-cost

sol utions, poor adoption, and limted innovation

In the last two years, the rapid rise of network threats has exposed
the i nadequaci es of static passwords as the prinmary nean of

aut hentication on the Internet. At the same time, the current
approach that requires an end user to carry an expensive, single-
function device that is only used to authenticate to the network is
clearly not the right answer. For two-factor authentication to
propagate on the Internet, it will have to be enbedded in nore
flexi bl e devices that can work across a wi de range of applications.

The ability to enbed this base technol ogy while ensuring broad
interoperability requires that it be nmade freely available to the
broad technical community of hardware and software devel opers. Only
an open-system approach will ensure that basic two-factor

aut hentication primtives can be built into the next generation of
consumer devices such as USB mass storage devices, |P phones, and
personal digital assistants.

One-Tinme Password is certainly one of the sinplest and npbst popul ar
forns of two-factor authentication for securing network access. For
exanple, in large enterprises, Virtual Private Network access often
requires the use of One-Tine Password tokens for renote user

aut hentication. One-Tine Passwords are often preferred to stronger
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forns of authentication such as Public-Key Infrastructure (PKI) or
bi ometri cs because an air-gap device does not require the
installation of any client desktop software on the user nachine,
therefore allowing themto roam across nmultiple machi nes incl uding
hone conputers, kiosks, and personal digital assistants.

Thi s docunent proposes a sinple One-Tinme Password al gorithmthat can
be i nmpl enented by any hardware nmanufacturer or software devel oper to
create interoperabl e authentication devices and software agents. The
algorithmis event-based so that it can be enbedded in high-vol une
devi ces such as Java smart cards, USB dongles, and GSM SI M car ds.

The presented algorithmis nade freely available to the devel oper
conmunity under the terns and conditions of the | ETF Intellectua
Property Rights [RFC3979].

The authors of this docunent are menbers of the Open AuTHenticati on
initiative [OATH . The initiative was created in 2004 to facilitate
col I aborati on anobng strong authentication technol ogy providers.

3. Requirenents Term nol ogy

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

4. Al gorithm Requirenments

This section presents the main requirenments that drove this algorithm
design. A lot of enphasis was placed on end-consunmer usability as
well as the ability for the algorithmto be inplenented by | ow cost
hardware that nmay provide nminimal user interface capabilities. In
particular, the ability to enbed the algorithminto high-volume SIM
and Java cards was a fundamental prerequisite.

R1 - The al gorithm MJST be sequence- or counter-based: one of the
goals is to have the HOTP al gorithm enbedded in high-vol ume devices
such as Java snart cards, USB dongles, and GSM SI M cards.

R2 - The al gorithm SHOULD be econonical to inplenment in hardware by
m ni m zing requirenents on battery, number of buttons, conputationa
hor sepower, and size of LCD displ ay.

R3 - The algorithm MJUST work with tokens that do not support any
numeri c input, but MAY al so be used with nore sophisticated devices
such as secure PIN- pads.

R4 - The val ue displayed on the token MJST be easily read and entered
by the user: This requires the HOTP val ue to be of reasonable | ength.
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The HOTP val ue nust be at least a 6-digit value. It is also
desirable that the HOTP val ue be 'nunmeric only’ so that it can be
easily entered on restricted devices such as phones.

R5 - There MJST be user-friendly mechanisns available to
resynchroni ze the counter. Section 7.4 and Appendi x E. 4 details the
resynchroni zati on nechani sm proposed in this docunent

R6 - The al gorithm MJST use a strong shared secret. The |ength of
the shared secret MJST be at least 128 bits. This docunent
RECOMVENDs a shared secret |length of 160 bits.

5. HOTP Al gorithm

In this section, we introduce the notation and descri be the HOTP
al gorithm basi c bl ocks -- the base function to conpute an HMAGC- SHA- 1
val ue and the truncation nethod to extract an HOTP val ue.

5.1. Notation and Synbols

A string always neans a binary string, nmeaning a sequence of zeros
and ones.

If s is astring, then |s| denotes its |ength.
If nis a nunber, then |n| denotes its absol ute val ue.

If sis astring, then s[i] denotes its i-th bit. W start nunbering
the bits at 0, so s = s[0]s[1]...s[n-1] where n = |s| is the length
of s.

Let St ToNum (String to Number) denote the function that as input a
string s returns the nunmber whose binary representation is s. (For
exanpl e, St ToNun(110) = 6.)

Here is a list of synbols used in this docunent.

Synbol Represents

C 8-byte counter value, the nmoving factor. This counter
MJST be synchroni zed between the HOTP generator (client)
and the HOTP validator (server).

K shared secret between client and server; each HOTP
generator has a different and uni que secret K

T throttling parameter: the server will refuse connections
froma user after T unsuccessful authentication attenpts.
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S resynchroni zati on paraneter: the server will attenpt to
verify a received authenticator across s consecutive
counter val ues.

Digit nunber of digits in an HOIP val ue; system paraneter.

5.2. Description
The HOTP al gorithmis based on an increasing counter value and a
static synmetric key known only to the token and the validation
service. |In order to create the HOTP value, we will use the HVAC
SHA-1 algorithm as defined in RFC 2104 [ BCK2].
As the output of the HVMAC-SHA-1 cal culation is 160 bits, we nust

truncate this value to something that can be easily entered by a
user.

HOTP( K, C) = Truncat e( HVAC- SHA- 1( K, C))
Wer e:

- Truncate represents the function that converts an HVAC SHA-1
val ue into an HOTP val ue as defined in Section 5. 3.

The Key (K), the Counter (C), and Data val ues are hashed hi gh-order
byte first.

The HOTP val ues generated by the HOTP generator are treated as big
endi an.

5.3. Cenerating an HOTP Val ue
We can describe the operations in 3 distinct steps:

Step 1: Generate an HVAC-SHA-1 value Let HS = HVAC-SHA-1(K,C) // HS
is a 20-byte string

Step 2: Cenerate a 4-byte string (Dynam ¢ Truncati on)
Let Sbits = DT(HS) /1 DT, defined bel ow,
/1l returns a 31-bit string

Step 3: Conpute an HOTP val ue

Let Snum = St ToNun{Shits) /1 Convert S to a nunber in
0...27{31}-1

Return D = Snum nod 10”Digit // D is a nunber in the range
0...10"{Digit}-1
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The Truncate function perforns Step 2 and Step 3, i.e., the dynamc
truncation and then the reducti on nmodul o 10"Digit. The purpose of
the dynam c offset truncation technique is to extract a 4-byte
dynam c binary code froma 160-bit (20-byte) HVAC SHA-1 result.

DT(String) // String = String[0]...String[19]

Let OFfsetBits be the loworder 4 bits of String[19]
Ofset = StToNun(OffsetBits) // 0 <= OFfSet <= 15
Let P = String[OFfSet]...String[Of Set +3]

Return the Last 31 bits of P

The reason for masking the nost significant bit of Pis to avoid
confusi on about signed vs. unsigned nodul o conmputations. Different
processors performthese operations differently, and masking out the
signed bit renoves all anbiguity.

| mpl ement ati ons MUST extract a 6-digit code at a m ni mum and possibly
7 and 8-digit code. Depending on security requirements, Digit = 7 or
nore SHOULD be considered in order to extract a |onger HOTP val ue.

The foll owi ng paragraph is an exanpl e of using this technique for

Digit =6, i.e., that a 6-digit HOTP value is calculated fromthe
HMAC val ue.

5.4. Exanple of HOIP Computation for Digit =6
The foll owi ng code exanpl e descri bes the extraction of a dynamc
bi nary code given that hmac_result is a byte array with the HVAC
SHA-1 result:
i nt of fset = hmac_result[19] & Oxf ;
int bin_code = (hmac_result[offset] & Ox7f) << 24
| (hmac_result[of fset+1] & Oxff) << 16
| (hmac_result[offset+2] & Oxff) << 8
| (hmac_result[offset+3] & Oxff) ;
SHA- 1 HVAC Byt es ( Exanpl e)

| 1f | 86| 98] 69| Oe| 02| ca| 16| 61| 85| 50| ef | 7 | 19| da| 8e| 94| 5b| 55/ 5al|

_______________________________ ***********________________++|
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The | ast byte (byte 19) has the hex val ue 0x5a.

The value of the lower 4 bits is Oxa (the offset value).
The of fset value is byte 10 (0Oxa).

The value of the 4 bytes starting at byte 10 is Ox50ef 7f 19,
which is the dynam c binary code DBCl.

The MSB of DBCl is 0Ox50 so DBC2 = DBCL = 0x50ef 7f 19

HOTP = DBC2 nodul o 1076 = 872921

* X X X

* %

W treat the dynam c binary code as a 31-bit, unsigned, big-endian
integer; the first byte is masked with a Ox7f.

We then take this nunber nodul o 1,000,000 (1076) to generate the 6-
digit HOTP val ue 872921 deci nal .

6. Security Considerations

The concl usion of the security analysis detailed in the Appendix is
that, for all practical purposes, the outputs of the Dynamc
Truncation (DT) on distinct counter inputs are uniformy and

i ndependently distributed 31-bit strings.

The security analysis then details the inpact of the conversion from
a string to an integer and the final reduction nodulo 10"Digit, where
Digit is the nunber of digits in an HOIP val ue.

The anal ysis denmonstrates that these final steps introduce a
negl i gi bl e bias, which does not inpact the security of the HOTP
algorithm in the sense that the best possible attack against the
HOTP function is the brute force attack.

Assumi ng an adversary is able to observe nunerous protocol exchanges
and col | ect sequences of successful authentication values. This
adversary, trying to build a function F to generate HOTP val ues based
on his observations, will not have a significant advantage over a
random guess.

The | ogical conclusion is sinply that the best strategy will once
again be to performa brute force attack to enunerate and try all the
possi bl e val ues.

Consi dering the security analysis in the Appendi x of this document,

wi thout | oss of generality, we can approximate closely the security
of the HOTP al gorithmby the follow ng forml a:

Sec = sv/107Digit
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Wher e:
- Sec is the probability of success of the adversary;
- s is the | ook-ahead synchronizati on wi ndow si ze;
- v is the nunmber of verification attenpts;
- Digit is the nunber of digits in HOIP val ues.

Qoviously, we can play with s, T (the Throttling paranmeter that would
[imt the nunber of attenpts by an attacker), and Digit unti
achieving a certain |level of security, still preserving the system
usability.

7. Security Requirenents

Any One-Tinme Password algorithmis only as secure as the application
and the authentication protocols that inplenent it. Therefore, this
section discusses the critical security requirenments that our choice
of al gorithminposes on the authentication protocol and validation
sof t war e.

The paraneters T and s discussed in this section have a significant

i mpact on the security -- further details in Section 6 el aborate on
the rel ati ons between these paraneters and their inpact on the system
security.

It is also inportant to remark that the HOTP algorithmis not a
substitute for encryption and does not provide for the privacy of
data transmi ssion. Oher nechani sns should be used to defeat attacks
ai med at breaking confidentiality and privacy of transactions.

7.1. Authentication Protocol Requirenents

We introduce in this section sone requirenments for a protocol P
i mpl ementing HOTP as the authentication nethod between a prover and a
verifier.

RP1 - P MJST support two-factor authentication, i.e., the

conmuni cati on and verification of sonething you know (secret code
such as a Password, Pass phrase, PIN code, etc.) and sonething you
have (token). The secret code is known only to the user and usually
entered with the One-Ti me Password val ue for authentication purpose
(two-factor authentication).

RP2 - P SHOULD NOT be vulnerable to brute force attacks. This
inplies that a throttling/lockout scheme i s RECOWENDED on t he
val i dation server side

RP3 - P SHOULD be i nmpl enented over a secure channel in order to
protect users’ privacy and avoid replay attacks.
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7.2. Validation of HOTP Val ues

The HOTP client (hardware or software token) increnments its counter

and then cal cul ates the next HOTP value HOTP client. |f the val ue
recei ved by the authentication server matches the val ue cal cul ated by
the client, then the HOTP value is validated. 1In this case, the

server increments the counter value by one.

If the value received by the server does not match the val ue
calcul ated by the client, the server initiate the resynch protoco
(1 ook- ahead wi ndow) before it requests another pass.

If the resynch fails, the server asks then for another
aut hentication pass of the protocol to take place, until the
maxi mum nunber of authorized attenpts is reached.

I f and when the maxi mum nunber of authorized attenpts is reached, the
server SHOULD | ock out the account and initiate a procedure to inform
t he user.

7.3. Throttling at the Server

Truncating the HVAC- SHA-1 value to a shorter value makes a brute
force attack possible. Therefore, the authentication server needs to
detect and stop brute force attacks.

We RECOMMVEND setting a throttling paranmeter T, which defines the
maxi mum nunber of possible attenpts for One-Time Password validation
The val i dation server manages individual counters per HOTP device in
order to take note of any failed attenpt. W RECOMMEND T not to be
too large, particularly if the resynchronization nmethod used on the
server i s w ndow based, and the wi ndow size is large. T SHOULD be
set as | ow as possible, while still ensuring that usability is not
significantly inpacted.

Anot her option would be to inplenent a delay schenme to avoid a brute
force attack. After each failed attenpt A the authentication server
woul d wait for an increased T*A nunber of seconds, e.g., say T = 5,
then after 1 attenpt, the server waits for 5 seconds, at the second
failed attenpt, it waits for 5*2 = 10 seconds, etc.

The del ay or | ockout schemes MJUST be across | ogin sessions to prevent
attacks based on nultiple parallel guessing techniques.
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7.4. Resynchronization of the Counter

Al t hough the server’s counter value is only increnented after a
successful HOTP aut hentication, the counter on the token is
increnented every tinme a new HOTP is requested by the user. Because
of this, the counter values on the server and on the token night be
out of synchronization

We RECOMMVEND setting a | ook-ahead paranmeter s on the server, which
defines the size of the | ook-ahead window. 1In a nutshell, the server
can recal cul ate the next s HOTP-server values, and check t hem agai nst
the received HOTP client.

Synchroni zati on of counters in this scenario sinply requires the
server to cal cul ate the next HOTP values and deternine if there is a
match. Optionally, the system MAY require the user to send a
sequence of (say, 2, 3) HOIP values for resynchronization purpose,
since forging a sequence of consecutive HOTP val ues is even nore
difficult than guessing a single HOIP val ue.

The upper bound set by the paranmeter s ensures the server does not go
on checki ng HOTP val ues forever (causing a denial-of-service attack)
and also restricts the space of possible solutions for an attacker
trying to manufacture HOTP val ues. s SHOULD be set as | ow as
possi bl e, while still ensuring that usability is not inpacted.

7.5. Management of Shared Secrets

The operations dealing with the shared secrets used to generate and
verify OTP val ues nust be perfornmed securely, in order to nmtigate

ri sks of any | eakage of sensitive infornmation. W describe in this
section different nodes of operations and techniques to performthese
different operations with respect to the state of the art in data
security.

We can consider two different avenues for generating and storing
(securely) shared secrets in the Validation system

* Determnistic Generation: secrets are derived froma master
seed, both at provisioning and verification stages and generated
on-the-fly whenever it is required.

* Random Generation: secrets are generated randonly at
provi si oning stage and nust be stored i nmedi ately and kept
secure during their life cycle.
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Determ ni stic Generation

A possible strategy is to derive the shared secrets froma master
secret. The master secret will be stored at the server only. A
tamper-resi stant device MJST be used to store the naster key and
derive the shared secrets fromthe master key and some public
information. The nain benefit would be to avoid the exposure of the
shared secrets at any tinme and al so avoid specific requirenments on
storage, since the shared secrets could be generated on-denand when
needed at provisioning and validation tinme.

We di stinguish two different cases:

- A single naster key MK is used to derive the shared secrets;
each HOTP device has a different secret, Ki = SHA-1 (M i)
where i stands for a public piece of information that identifies
uni quely the HOTP devi ce such as a serial nunber, a token ID,
etc. CQbviously, this is in the context of an application or
service -- different application or service providers will have
di fferent secrets and settings.

- Several master keys MK i are used and each HOTP device stores a
set of different derived secrets, {Ki,j = SHA-1(Mi,j)} where
j stands for a public piece of information identifying the
device. The idea would be to store ONLY the active master key
at the validation server, in the Hardware Security Mdul e (HSM,
and keep in a safe place, using secret sharing methods such as
[Shamir] for instance. |In this case, if a master secret MK is
conprom sed, then it is possible to switch to another secret
wi t hout replacing all the devices.

The drawback in the deternministic case is that the exposure of the
mast er secret woul d obviously enable an attacker to rebuild any
shared secret based on correct public information. The revocation of
all secrets would be required, or switching to a new set of secrets
in the case of nultiple master keys.

On the other hand, the device used to store the master key(s) and
generate the shared secrets MJST be tanper resistant. Furthernore,
the HSMwi Il not be exposed outside the security perinmeter of the
val idation system therefore reducing the risk of |eakage.
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Random Gener ati on

The shared secrets are randomy generated. We RECOVMMEND fol |l owi ng
the reconmrendations in [ RFC4086] and sel ecting a good and secure
random source for generating these secrets. A (true) random
generator requires a naturally occurring source of randomess.
Practically, there are two possible avenues to consider for the
generation of the shared secrets:

* Har dwar e- based generators: they exploit the randomess t hat
occurs in physical phenonena. A nice inplenentation can be based on
oscillators and built in such ways that active attacks are nore
difficult to perform

* Sof t war e- based generators: designing a good software random
generator is not an easy task. A sinple, but efficient,
i npl enent ati on shoul d be based on vari ous sources and apply to the
sanpl ed sequence a one-way function such as SHA-1

We RECOMVEND sel ecting proven products, being hardware or software
generators, for the conputation of shared secrets.

We al so RECOMMVEND storing the shared secrets securely, and nore
specifically encrypting the shared secrets when stored using tanper-
resi stant hardware encryption and exposi ng them only when required:
for exanple, the shared secret is decrypted when needed to verify an
HOTP val ue, and re-encrypted i mediately to limt exposure in the RAM
for a short period of tinme. The data store holding the shared
secrets MJUST be in a secure area, to avoid as much as possible direct
attack on the validation system and secrets database.

Particularly, access to the shared secrets should be linited to
programs and processes required by the validation systemonly. W
will not elaborate on the different security nechanisns to put in
pl ace, but obviously, the protection of shared secrets is of the
utternost inportance.
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8. Composite Shared Secrets

It may be desirable to include additional authentication factors in
the shared secret K. These additional factors can consist of any
data known at the token but not easily obtained by others. Exanples
of such data include:

* PIN or Password obtained as user input at the token
* Phone nunber
* Any unique identifier progranmatically available at the token

In this scenario, the conposite shared secret Kis constructed during
the provisioning process froma random seed val ue conbi ned with one
or nore additional authentication factors. The server could either
bui |l d on-demand or store conposite secrets -- in any case, depending
on inplementation choice, the token only stores the seed value. Wen
the token perforns the HOTP cal culation, it computes K fromthe seed
val ue and the locally derived or input values of the other

aut hentication factors.

The use of conposite shared secrets can strengthen HOTP- based

aut hentication systens through the inclusion of additiona
authentication factors at the token. To the extent that the token is
a trusted device, this approach has the further benefit of not
requiri ng exposure of the authentication factors (such as the user
input PIN) to other devices.

9. Bi-Directional Authentication

Interestingly enough, the HOTP client could also be used to
aut henticate the validation server, claimng that it is a genuine
entity knowi ng the shared secret.

Since the HOTP client and the server are synchronized and share the

same secret (or a nmethod to reconpute it), a sinple 3-pass protoco

could be put in place:

1- The end user enter the TokenID and a first OTP val ue OTP1;

2- The server checks OTP1l and if correct, sends back OTP2;

3- The end user checks OTP2 using his HOTP device and if correct,
uses the web site.

Qoviously, as indicated previously, all the OIP comunications have

to take pl ace over a secure channel, e.g., SSL/TLS, |Psec
connecti ons.
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10.

11.

12.

13.

13.

Concl usi on
Thi s docunent describes HOTP, a HVAC-based One-Ti ne Password
algorithm It also recommends the preferred inplenmentation and
rel ated nodes of operations for deploying the algorithm
The docurent al so exhibits el enents of security and denpnstrates that
the HOTP algorithmis practical and sound, the best possible attack
being a brute force attack that can be prevented by carefu
i mpl enentati on of countermeasures in the validation server.

Eventual | y, several enhancenents have been proposed, in order to
i nprove security if needed for specific applications.
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Appendi x A - HOTP Al gorithm Security: Detail ed Analysis

The security analysis of the HOTP algorithmis summarized in this
section. W first detail the best attack strategies, and then

el aborate on the security under various assunptions and the inpact of
the truncation and nake sone recommendati ons regardi ng the nunber of
digits.

We focus this analysis on the case where Digit = 6, i.e., an HOIP
function that produces 6-digit values, which is the bare m ni mum
reconmended in this docunent.

A.1. Definitions and Notations
We denote by {0, 1}~ the set of all strings of length I.
Let z{n} ={0,.., n - 1}.

Let IntDiv(a,b) denote the integer division algorithmthat takes
i nput integers a, b where a >= b >= 1 and returns integers (q,r)

the quotient and remainder, respectively, of the division of a by b.
(Thus, a=bg +r and 0 <= r < b.)

Let H {0,1}"*k x {0,1}”c --> {0,1}*n be the base function that takes
a k-bit key Kand c-bit counter C and returns an n-bit output H(K C.
(I'n the case of HOTP, His HVAC-SHA-1; we use this formal definition
for generalizing our proof of security.)

A.2. The ldealized Al gorithm HOTP-I|DEAL

We now define an idealized counterpart of the HOTP algorithm In
this algorithm the role of His played by a random function that
forns the key.

To be nore precise, |let Maps(c,n) denote the set of all functions
mappi ng from {0, 1}*c to {0,1}~n. The idealized algorithm has key
space Maps(c,n), so that a "key" for such an algorithmis a function
h from{0,1}”c to {0,1}*n. We imagine this key (function) to be
drawn at random It is not feasible to inplement this idealized
algorithm since the key, being a function from{0, 1}~c to {0, 1}"n,
is way too large to even store. So why consider it?

Qur security analysis will show that as long as H satisfies a certain
wel | -accept ed assunption, the security of the actual and idealized
algorithms is for all practical purposes the same. The task that
really faces us, then, is to assess the security of the idealized

al gorithm
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In analyzing the idealized algorithm we are concentrating on
assessing the quality of the design of the algorithmitself,
i ndependently of HVAC-SHA-1. This is in fact the inportant issue.

A. 3. Model of Security

The nodel exhibits the type of threats or attacks that are being
consi dered and enabl es one to assess the security of HOTP and HOTP-

| DEAL. We denote ALG as either HOTP or HOTP-1DEAL for the purpose of
this security anal ysis.

The scenario we are considering is that a user and server share a key
K for ALG Both maintain a counter C, initially zero, and the user
authenticates itself by sending ALGK, C) to the server. The latter
accepts if this value is correct.

In order to protect against accidental increment of the user counter,
the server, upon receiving a value z, will accept as long as z equals

AL K,i) for some i inthe range C,...,C + s-1, where s is the
resynchroni zati on paraneter and Cis the server counter. If it
accepts with sone value of i, it then increnents its counter to i+1

If it does not accept, it does not change its counter val ue.

The nodel we specify captures what an adversary can do and what it
needs to achieve in order to "win". First, the adversary is assuned
to be able to eavesdrop, neaning, to see the authenticator
transmtted by the user. Second, the adversary wins if it can get
the server to accept an authenticator relative to a counter value for
whi ch the user has never transmtted an authenticator.

The formal adversary, which we denote by B, starts out knowi ng which
algorithm ALG i s being used, know ng the system design, and know ng
all system paraneters. The one and only thing it is not given a
priori is the key K shared between the user and the server.

The nodel gives B full control of the scheduling of events. It has
access to an authenticator oracle representing the user. By calling
this oracle, the adversary can ask the user to authenticate itself
and get back the authenticator in return. 1t can call this oracle as
often as it wants and when it wants, using the authenticators it
accunul ates to perhaps "learn" how to nake authenticators itself. At
any time, it may also call a verification oracle, supplying the
latter with a candi date authenticator of its choice. It wins if the
server accepts this accunul ator.

Consi der the follow ng gane involving an adversary B that is

attenpting to conprom se the security of an authentication algorithm
ALG K x {0,1}7c --> R
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Initializations - A key Kis selected at random from K, a counter C
is initialized to 0, and the Bool ean value win is set to false.

Gane execution - Adversary B is provided with the two follow ng
oracl es:

Oracl e Aut hQ()

A = AL K, QO
cC=C+1
Return Oto B

Oracl e VerQ A

i =C

Wiile (i <= C+ s - 1 and Wn == FALSE) do
If A== ALK, i) then Wn = TRUE;, C=1i + 1
Elsei =i +1

Return Wn to B

AuthQ() is the authenticator oracle and VerQ(A) is the verification
oracl e.

Upon execution, B queries the two oracles at will. Let Adv(B) be the
probability that win gets set to true in the above gane. This is the
probability that the adversary successfully inpersonates the user.

Qur goal is to assess how large this value can be as a function of
the nunmber v of verification queries nmade by B, the nunber a of

aut henticator oracle queries nmade by B, and the running time t of B.
This will tell us howto set the throttle, which effectively upper
bounds v.

A 4. Security of the lIdeal Authentication Al gorithm
This section sunmari zes the security anal ysis of HOTP-1DEAL, starting
with the inmpact of the conversion nodul o 10"Digit and then focusing
on the different possible attacks.

A 4.1. FromBits to Digits
The dynamic offset truncation of a randomn-bit string yields a

random 31-bit string. Wat happens to the distribution when it is
taken nodulo m= 10"Digit, as done in HOTP?
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The following | emma estinmates the biases in the outputs in this case.

Let N>= m>= 1 be integers, and let (q,r) = IntDiv(Nm. For z in
Z{m let:

P{NmM(z) =Pr [x mod m= z : x randomy pick in Z_{n}]
Then for any z in Z_{m

P{NM(z) = (qg+1) / N if 0 <=z <
g/ N ifr <=z<m

Proof of Lemma 1
Let the randomvariable X be uniformy distributed over Z {N}. Then:
P{Nn(z) =Pr [X md m= z]

Pr [ X<nmg] * Pr [ Xmd m=z| X < nqg]

+ Pr [mg<=X<N *Pr [Xmd m=2z|] njg <= X<N|
=ng/N* 1/m+
(N- mg)/N* 1/ (N- ng) if 0 <=z <N- ng
0 if N- nmg <=z <=m
:q/N+
rifN* 1/ r if 0 <=z <N- m
0 if r <=z <=m

Sinplifying yields the clained equation.

Let N=2731, d =6, and m= 10"d. |If x is chosen at random from
Z {N} (meaning, is a random 31-bit string), then reducing it to a 6-
digit nunber by taking x nod mdoes not yield a random 6-digit
nunber .

Rather, x nod mis distributed as shown in the follow ng table:

Val ues Probability that each appears as out put
0,1,...,483647 2148/ 2”31 roughly equals to 1.00024045/10"6
483648, ..., 999999 2147/ 2”31 roughly equals to 0.99977478/ 10"6

If Xis uniformy distributed over Z {2731} (neaning, is a random
31-bit string), then the above shows the probabilities for different
out puts of X nod 10"6. The first set of values appears with
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probability slightly greater than 10"-6, the rest with probability
slightly less, meaning that the distribution is slightly non-uniform

However, as the table above indicates, the bias is small, and as we
will see later, negligible: the probabilities are very close to
10”- 6.

A.4.2. Brute Force Attacks

If the authenticator consisted of d randomdigits, then a brute force
attack using v verification attenpts would succeed with probability
sv/10"Digit.

However, an adversary can exploit the bias in the outputs of
HOTP- | DEAL, predicted by Lemma 1, to mount a slightly better attack

Nanely, it makes authentication attenpts with authenticators that are
the nost |likely values, neaning the ones in the range 0,...,r - 1,
where (qg,r) = IntDv(2731,10"Digit).

The foll owi ng specifies an adversary in our nodel of security that
mounts the attack. It estimates the success probability as a
function of the number of verification queries.

For sinplicity, we assune that the nunber of verification queries is
at nost r. Wth N = 2231 and m= 1076, we have r = 483,648, and the
throttle value is certainly less than this, so this assunption is not
much of a restriction.

Proposition 1

Suppose m= 10"Digit < 2731, and let (q,r) = IntDiv(2"31,m. Assune
s <= m The brute-force-attack adversary B-bf attacks HOTP using v
<=r verification oracle queries. This adversary makes no
aut henticator oracle queries, and succeeds with probability
Adv(B-bf) =1 - (1 - v(g+l)/2731)"s
which is roughly equal to
sv * (g+1)/2"31

Wth m= 10"6 we get q = 2,147. |In that case, the brute force attack
using v verification attenpts succeeds with probability

Adv(B-bf) roughly = sv * 2148/2731 = sv * 1.00024045/ 106
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As this equation shows, the resynchronization paraneter s has a
significant inmpact in that the adversary’'s success probability is
proportional to s. This means that s cannot be nmade too | arge

wi t hout conprom sing security.

A.4.3. Brute force attacks are the best possible attacks.

A central question is whether there are attacks any better than the
brute force one. In particular, the brute force attack did not
attenpt to collect authenticators sent by the user and try to
cryptanal yze themin an attenpt to learn how to better construct

aut henticators. Wuld doing this help? Is there sone way to "l earn"
how to build authenticators that result in a higher success rate than
given by the brute-force attack?

The foll owi ng says the answer to these questions is no. No matter
what strategy the adversary uses, and even if it sees, and tries to
exploit, the authenticators fromauthentication attenpts of the user
its success probability will not be above that of the brute force
attack -- this is true as long as the nunber of authentications it
observes is not incredibly large. This is valuable information
regardi ng the security of the schene.

Proposition 2 ------------- Suppose m= 10"Digit < 2731, and |et
(gq,r) = IntDiv(2731,n). Let B be any adversary attacki ng HOTP-| DEAL
using v verification oracle queries and a <= 2*c - s authenticator
oracle queries. Then

Adv(B) < = sv * (g+1)/ 2731

Note: This result is conditional on the adversary not seeing nore
than 2”c - s authentications performed by the user, which is hardly
restrictive as long as c is |arge enough

Wth m= 10"6, we get q = 2,147. |In that case, Proposition 2 says
that any adversary B attacking HOTP-1 DEAL and nmeking v verification
attenpts succeeds with probability at nopst

Equation 1

sv * 2148/ 2731 roughly = sv * 1.00024045/ 10”6

Meani ng, B's success rate is not nore than that achieved by the brute
force attack.
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A.5. Security Analysis of HOTP

We have anal yzed, in the previous sections, the security of the

i deal i zed counterparts HOTP-1DEAL of the actual authentication

al gorithm HOTP. W now show that, under appropriate and well -
bel i eved assunption on H, the security of the actual algorithns is
essentially the same as that of its idealized counterpart.

The assunption in question is that His a secure pseudorandom
function, or PRF, neaning that its input-output values are
i ndi stingui shable fromthose of a random function in practi ce.

Consi der an adversary A that is given an oracle for a function f:
{0,1}"c --> {0, 1}"n and eventually outputs a bit. W denote Adv(A)
as the prf-advantage of A which represents how well the adversary
does at distinguishing the case where its oracle is HK,.) fromthe
case where its oracle is a random function of {0,1}"c to {0, 1}"n.

One possible attack is based on exhaustive search for the key K If
Aruns for t steps and T denotes the tinme to perform one conputation
of H its prf-advantage fromthis attack turns out to be (t/T)2"-k.
Anot her possible attack is a birthday one [PrOo], whereby A can
attain advantage p”2/2"n in p oracle queries and running tine about
pT.

Qur assunption is that these are the best possible attacks. This
translates into the follow ng.

Assumption 1

Let T denotes the tine to performone conputation of H  Then if Ais
any adversary with running tinme at nost t and naking at nost p oracle
qgueri es,

Adv(A) <= (t/T)/2"k + p~2/2"n
In practice, this assunption neans that His very secure as PRF. For
exanpl e, given that k = n = 160, an attacker with running time 2760

and nmaki ng 2740 oracle queries has advantage at nost (about) 27-80.

Theorem 1

Suppose m= 10"Digit < 2731, and let (q,r) = IntDiv(2*31,m). Let B
be any adversary attacking HOTP using v verification oracle queries,
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a <= 2"c - s authenticator oracle queries, and running tinmnet. Let T
denote the time to performone conputation of H |If Assunption 1 is
true, then

Adv(B) <= sv * (g + 1)/2731 + (t/T)/2%k + ((sv + a)~2)/2"n

In practice, the (t/T)2*-k + ((sv + a)*2)2"-n termis much snaller
than the sv(g + 1)/2"n term so that the above says that for al
practical purposes the success rate of an adversary attacking HOIP is
sv(q + 1)/2”"n, just as for HOIP-IDEAL, meaning the HOTP algorithmis
in practice essentially as good as its idealized counterpart.

In the case m= 10”6 of a 6-digit output, this neans that an
adversary making v authentication attenpts will have a success rate
that is at nost that of Equation 1.

For exanple, consider an adversary with running tinme at nost 2760
that sees at nobst 2740 authentication attenpts of the user. Both
these choices are very generous to the adversary, who will typically
not have these resources, but we are saying that even such a powerful
adversary will not have mobre success than indicated by Equation 1

We can safely assume sv <= 2740 due to the throttling and bounds on
s. So:

(t/T)y/2"k + ((sv + a)n2)/2"n <= 2"60/27160 + (2741)"2/ 27160
roughly <= 27-78

which is much smaller than the success probability of Equation 1 and
negligible conpared to it.
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Appendi x B - SHA-1 Attacks

Thi s sections addresses the inpact of the recent attacks on SHA-1 on
the security of the HVAC SHA- 1-based HOTP. W begin with sone

di scussion of the situation of SHA-1 and then di scuss the rel evance
to HVAC-SHA-1 and HOTP. Cited references are in Section 13

B.1. SHA-1 Status

A collision for a hash function h neans a pair x,y of different

i nputs such that h(x)=h(y). Since SHA-1 outputs 160 bits, a birthday
attack finds a collision in 27{80} trials. (A trial nmeans one
conputation of the function.) This was thought to be the best
possi bl e until Wang, Yin, and Yu announced on February 15, 2005, that
they had an attack finding collisions in 22{69} trials.

Is SHA-1 broken? For nobst practical purposes, we would say probably
not, since the resources needed to nount the attack are huge. Here
is one way to get a sense of it: we can estimate it is about the sane
as the time we would need to factor a 760-bit RSA nmodul us, and this
is currently considered out of reach

Burr of NIST is quoted in [Crack] as saying "Large nationa
intelligence agencies could do this in a reasonable anount of tine
with a fewnillion dollars in conputer tinme". However, the
conputati on may be out of reach of all but such well-funded agenci es.

One shoul d al so ask what inpact finding SHA-1 collisions actually has
on security of real applications such as signatures. To exploit a
collision x,y to forge signatures, you need to sonehow obtain a
signature of x and then you can forge a signature of y. How danmagi ng
this is depends on the content of y: the y created by the attack may
not be meaningful in the application context. Also, one needs a
chosen- nessage attack to get the signature of x. This seenms possible
in sone contexts, but not others. Overall, it is not clear that the
i mpact on the security of signatures is significant.

I ndeed, one can read in the press that SHA-1 is "broken" [Shal] and
that encryption and SSL are "broken" [Res]. The nedia have a
tendency to magnify events: it would hardly be interesting to
announce in the news that a team of cryptanalysts did very
interesting theoretical work in attacking SHA-1

Cryptographers are excited too. But mainly because this is an

i mportant theoretical breakthrough. Attacks can only get better with
time: it is therefore inportant to monitor any progress in hash
functions cryptanal ysis and be prepared for any really practica

break with a sound migration plan for the future.
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B.2. HMAC-SHA-1 Status

The new attacks on SHA-1 have no inmpact on the security of

HVAC- SHA- 1. The best attack on the latter remmi ns one needing a
sender to authenticate 27{80} nessages before an adversary can create
a forgery. Wy?

HVAC is not a hash function. It is a nmessage authentication code
(MAC) that uses a hash function internally. A MAC depends on a
secret key, while hash functions don't. Wat one needs to worry
about with a MAC is forgery, not collisions. HMAC was designed so
that collisions in the hash function (here SHA-1) do not yield
forgeries for HVAC.

Recal | that HMAC SHA-1(K,x) = SHA-1(K o, SHA-1(K_ i, X)) where the keys
K o,Ki are derived fromK. Suppose the attacker finds a pair X,y
such that SHA-1(K.i,x) = SHA-1(K.i,y). (Call this a hidden-key
collision.) Then if it can obtain the MAC of x (itself a tall

order), it can forge the MAC of y. (These values are the sanme.) But
findi ng hidden-key collisions is harder than finding collisions,
because the attacker does not know the hidden key Ki. Al it may
have is sone outputs of HVAC-SHA-1 with key K To date, there are no
clains or evidence that the recent attacks on SHA-1 extend to find

hi dden-key col i si ons.

Hi storically, the HVMAC design has already proven itself in this
regard. MD5 is considered broken in that collisions in this hash
function can be found relatively easily. But there is still no
attack on HVAC-MD5 better than the trivial 27{64} time birthday one.
(MD5 outputs 128 bits, not 160.) W are seeing this strength of HVAC
conmng into play again in the SHA-1 context.

B.3. HOTP Status

Si nce no new weakness has surfaced in HVAC-SHA-1, there is no inpact
on HOTP. The best attacks on HOTP remain those described in the
docunent, nanely, to try to guess output val ues.

The security proof of HOTP requires that HVAC SHA-1 behave |ike a
pseudor andom function. The quality of HMAC-SHA-1 as a pseudorandom
function is not inpacted by the new attacks on SHA-1, and so neither
is this proven guarantee.
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Appendi x C - HOTP Algorithm Reference |nplenmentation

/

* %k X X X

L B I TN T R S S T B

OneTi mePasswor dAl gorithm java

OATH I nitiative,

HOTP one-tinme password al gorithm
/

Copyright (C) 2004, OATH. Al rights reserved.

Li cense to copy and use this software is granted provided that it
is identified as the "QATH HOTP Al gorithm in all materi al
mentioning or referencing this software or this function.

Li cense is also granted to make and use derivative works provided
that such works are identified as

"derived from QATH HOTP al gorit hnt

in all material mentioning or referencing the derived work.

OATH (Open AuTHentication) and its nenbers nake no

representati ons concerning either the merchantability of this
software or the suitability of this software for any particul ar
pur pose.

It is provided "as is" without express or inplied warranty
of any kind and OATH AND | TS MEMBERS EXPRESSalLY DI SCLAI M5
ANY WARRANTY OR LIABILITY OF ANY KIND relating to this software.

These notices nust be retained in any copies of any part of this
document ati on and/ or software.
/

package org. openaut henti cati on. ot p;

i mport java.io. | OException;

i mport java.io.File;

i mport java.io. Datal nput St ream

i mport java.io.FilelnputStream;

i mport java.lang.refl ect. Undecl aredThr owabl eExcepti on;

i mport java.security. General SecurityException;
i mport java.security.NoSuchAl gorithmExcepti on;
i mport java.security.lnvalidKeyExcepti on;

i mport javax.crypto. Mac;
i mport javax.crypto. spec. Secr et KeySpec;
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*

This class contains static nethods that are used to calculate the
One-Ti me Password (OTP) using
JCE to provide the HVAC- SHA- 1.

@ut hor Loren Hart
@ersion 1.0

Lo T R T

~

public class OneTi mePasswor dAl gorithm {
private OneTi nePasswor dAl gorithnm() {}

/1l These are used to cal culate the check-sumdigits.
/1 0 1 2 3 45 6 7 8 9
private static final int[] doubleDigits =

{0 2, 46, 8 1, 3, 5,7, 91};

/**

* Cal cul ates the checksumusing the credit card al gorithm

* This algorithmhas the advantage that it detects any single
m styped digit and any single transposition of

adj acent digits.

@ar am num the nunber to cal cul ate the checksum for
@aram digits nunber of significant places in the nunber

L B A

@eturn the checksum of num
/
public static int cal cChecksum(long num int digits) {
bool ean doubl eDigit = true;
i nt total = 0;
while (0 < digits--) {

int digit = (int) (num % 10);

num /= 10;

if (doubleDigit) {

digit = doubleDigits[digit];

total +=digit;
doubl eDigit = !doubleDigit;

int result = total % 10;
if (result > 0) {
result = 10 - result;
}
return result;
}
/**

* This method uses the JCE to provide the HVAC SHA-1
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al gorithm
HVAC conputes a Hashed Message Aut hentication Code and
in this case SHAl is the hash al gorithm used.

@ar am keyByt es the bytes to use for the HVAC SHA-1 key
@ar am t ext the nessage or text to be authenticated.

@ hrows NoSuchAl gorithnmException if no provider nmakes
ei t her HmacSHA1 or HMAGC- SHA- 1
di gest al gorithns avail abl e.
@hrows |nval i dKeyException
The secret provided was not a valid HVAC SHA-1 key.

public static byte[] hmac_shal(byte[] keyBytes, byte[] text)

/1

/1
/1
11

}

throws NoSuchAl gorithnException, |nvalidKeyException

try {
Mac hmacShal;

try {
hmacShal = Mac. get | nst ance(" HracSHA1") ;

} catch (NoSuchAl gorithmExcepti on nsae) ({
hmacShal = Mac. get | nst ance(" HVAC- SHA-1") ;

Secr et KeySpec macKey =
new Secr et KeySpec(keyBytes, "RAW);
hmacShal. i ni t (macKey) ;
return hmacShal. doFi nal (text);
} catch (General SecurityException gse) {
t hrow new Undecl ar edThr owabl eExcepti on(gse);
}

private static final int[] DG TS POAER
// 01 2 3 4 5 6 7 8
= {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000} ;

/
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¥ 0% ok 3k X Xk X X *

*

Thi s method generates an OIP value for the given
set of paraneters.

@ar am secr et the shared secret

@ar am novi ngFactor the counter, tinme, or other val ue that
changes on a per use basis.

@aram codeDigits the nunmber of digits in the OIP, not
i ncludi ng the checksum if any.

2005

@ar am addChecksum a flag that indicates if a checksumdigit
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shoul d be appended to the OTP.

@aramtruncati onOffset the offset into the MAC result to
begin truncation. |If this value is out of
the range of 0 ... 15, then dynamc
truncation wll be used.

Dynami c truncation is when the last 4

bits of the last byte of the MAC are

used to determine the start offset.
@ hrows NoSuchAl gorithmException if no provider makes

ei ther HmcSHAL or HVAC- SHA- 1

di gest al gorithns avail abl e.
@hrows | nvalidKeyException

The secret provi ded was not

a valid HVAC SHA-1 key.

@eturn A nunmeric String in base 10 that includes
{@ink codeDigits} digits plus the optional checksum
digit if requested.

static public String generateOTP(byte[] secret,

| ong novi ngFact or,
int codeDigits,
bool ean addChecksum
int truncationOfset)
throws NoSuchAl gorithnException, |nvali dKeyException

/1 put novingFactor value into text byte array

String result = null;
int digits = addChecksum ? (codeDigits + 1) : codeDigits;

byte[] text = new byte[8];

for (int i =text.length - 1; i >=0; i--) {
text[i] = (byte) (novingFactor & Oxff);
novi ngFact or >>= 8;

}

/1 conmpute hmac hash
byte[] hash = hmac_shal(secret, text);

/1 put selected bytes into result int
int offset = hash[hash.length - 1] & Oxf;

if ( (O<=truncationOfset) &&

M Rai hi ,

(truncati onOf fset<(hash.length-4)) ) {

of fset = truncati onOfset;

int binary =
((hash[of fset] & Ox7f) << 24)
| ((hash[offset + 1] & Oxff) << 16)
| ((hash[offset + 2] & Oxff) << 8)
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| (hash[offset + 3] & Oxff);

int otp = binary % DI G TS _PONER] codeDi gi ts];
i f (addChecksum) {
otp = (otp * 10) + cal cChecksum(otp, codeDigits);

result = Integer.toString(otp);

while (result.length() < digits) {
result = "0" + result;

}

return result;

}
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Appendi x D - HOTP Al gorithm Test Val ues

The following test data uses the ASCII string
"12345678901234567890" for the secret:

Secret = 0x3132333435363738393031323334353637383930
Table 1 details for each count, the internedi ate HVAC val ue.

Hexadeci mal HMAC- SHA- 1(secret, count)

cc93cf 18508d94934c64b65d8ba7667f b7cde4b0
75a48a19d4cbel00644e8acl1397eea747a2d33ab
Obach7f a082f ef 30782211938bc1c5e70416f f 44
66c28227d03a2d5529262f f 016alebef 76557ece
a904c900a64b35909874b33e61c5938a8el5edlc
a37e783d7b7233c083d4f 62926c¢c7a25f 238d0316
bc9cd28561042c83f 219324d3c607256¢c03272ae
a4f b960c0bc06eleabb804e5b397cdc4b45596f a
1b3c89f 65e6c9e883012052823443f 048b4332db
1637409809a679dc698207310c8c7f c07290d9e5

@OO\I@U'I#OJI\)HOQ
c
5
—

Table 2 details for each count the truncated values (both in
hexadeci mal and decimal) and then the HOTP val ue.

Truncat ed

Count Hexadeci mal Deci nal HOTP

0 4c93cf 18 1284755224 755224
1 41397eea 1094287082 287082
2 82f ef 30 137359152 359152
3 66ef 7655 1726969429 969429
4 61c5938a 1640338314 338314
5 33c083d4 868254676 254676
6 7256¢032 1918287922 287922
7 4e5b397 82162583 162583
8 2823443f 673399871 399871
9 2679dc69 645520489 520489
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Appendi x E - Extensions

We introduce in this section several enhancerments to the HOTP
algorithm These are not reconmended extensions or part of the
standard al gorithm but nerely variations that could be used for
custom zed inpl emrent ati ons.

E.1. Nunber of Digits

A simpl e enhancenent in ternms of security would be to extract nore
digits fromthe HVAC SHA-1 val ue.

For instance, calculating the HOTP val ue nodul o 1078 to build an 8-
digit HOTP val ue woul d reduce the probability of success of the
adversary from sv/ 1076 to sv/10"8.

This could give the opportunity to inprove usability, e.g., by
increasing T and/or s, while still achieving a better security
overall. For instance, s = 10 and 10v/ 1078 = v/ 1077 < v/ 10”6 which
is the theoretical optimumfor 6-digit code when s = 1.

E. 2. Al phanuneric Val ues

Anot her option is to use A-Z and 0-9 val ues; or rather a subset of 32
synbol s taken fromthe al phanuneri cal al phabet in order to avoid any

confusi on between characters: 0, O and Qas well as |, 1, and | are

very simlar, and can | ook the same on a snall display.

The i medi ate consequence is that the security is nowin the order of
sv/ 3276 for a 6-digit HOTP val ue and sv/ 327”8 for an 8-digit HOTP
val ue.

3276 > 10"9 so the security of a 6-al phanumeric HOTP code is slightly
better than a 9-digit HOTP val ue, which is the maxi mum |l ength of an
HOTP code supported by the proposed al gorithm

3278 > 10712 so the security of an 8-al phanuneric HOTP code is
significantly better than a 9-digit HOTP val ue.

Dependi ng on the application and token/interface used for displaying
and entering the HOTP val ue, the choice of al phanuneric val ues could
be a sinple and efficient way to i nprove security at a reduced cost
and i nmpact on users.
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E. 3. Sequence of HOTP Val ues

As we suggested for the resynchronization to enter a short sequence
(say, 2 or 3) of HOIP val ues, we could generalize the concept to the
protocol, and add a parameter L that would define the |length of the
HOTP sequence to enter.

Per default, the value L SHOULD be set to 1, but if security needs to
be increased, users m ght be asked (possibly for a short period of
time, or a specific operation) to enter L HOIP val ues.

This is another way, without increasing the HOTP | ength or using
al phanuneric values to tighten security.

Not e: The system MAY al so be programmed to request synchronization on
a regul ar basis (e.g., every night, twice a week, etc.) and to
achi eve this purpose, ask for a sequence of L HOIP val ues.

E. 4. A Counter-Based Resynchroni zati on Met hod

In this case, we assune that the client can access and send not only
the HOTP val ue but also other information, nmore specifically, the
count er val ue.

A nmore efficient and secure nmethod for resynchronization is possible
in this case. The client application will not send the HOTP-client
val ue only, but the HOTP-client and the related C-client counter

val ue, the HOTP val ue acting as a nessage authentication code of the
counter.

Resynchroni zati on Counter-based Protocol (RCP)

The server accepts if the following are all true, where C-server is
its own current counter val ue:

1) Cclient >= C-server

2) Cclient - Cserver <=s

3) Check that HOTP client is valid HOTP(K, CGCient)

4) If true, the server sets Cto Cclient + 1 and client is
aut henti cat ed

In this case, there is no need for managi ng a | ook-ahead wi ndow
anynore. The probability of success of the adversary is only v/ 1076
or roughly v in one nillion. A side benefit is obviously to be able
to increase s "infinitely" and therefore inprove the systemusability
wi t hout inmnpacting the security.
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Thi's resynchroni zati on protocol SHOULD be used whenever the related
i mpact on the client and server applications is deenmed acceptabl e.

E.5. Data Field

Anot her interesting option is the introduction of a Data field, which
woul d be used for generating the One-Tine Password val ues: HOTP (K

C, [Data]) where Data is an optional field that can be the

concat enati on of various pieces of identity-related information,

e.g., Data = Address | PIN

We could also use a Tinmer, either as the only noving factor or in
conbination with the Counter -- in this case, e.g., Data = Timer,
where Tinmer could be the UNIX-tine (GMI seconds since 1/1/1970)

di vided by some factor (8, 16, 32, etc.) in order to give a specific
time step. The time window for the One-Tine Password is then equa
to the time step multiplied by the resynchronization paraneter as
defined before. For exanple, if we take 64 seconds as the tine step
and 7 for the resynchronization paraneter, we obtain an acceptance
wi ndow of +/- 3 mnutes.

Using a Data field opens for nore flexibility in the algorithm
i mpl enent ati on, provided that the Data field is clearly specified.
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