Net wor k Wor ki ng Group JH. Song

Request for Comments: 4493 R Poovendr an
Cat egory: I nfornmational Uni versity of Washi ngton
J. Lee

Sansung El ectronics

T. Iwata

Nagoya University

June 2006

The AES- CMAC Al gorithm
Status of This Menp

This menmo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno i s unlinted.

Copyri ght Notice
Copyright (C) The Internet Society (2006).
Abst r act

The National Institute of Standards and Technol ogy (N ST) has
recently specified the G pher-based Message Authentication Code
(CMAC), which is equivalent to the One-Key CBC MAC1 (OWACl) submitted
by Iwata and Kurosawa. This nmenp specifies an authentication

al gorithm based on CMAC with the 128-bit Advanced Encryption Standard
(AES). This new authentication algorithmis naned AES-CMAC. The
purpose of this docunent is to nake the AES-CMAC al gorithm
conveniently available to the Internet Conmunity.

Song, et al. | nf or mati onal [Page 1]

RFC 4493 The AES- CMAC Al gorithm June 2006

Tabl e of Contents

1. Introducti On ... e 2
2. Specification of AES-CMAC i 3
2.1. Basic Definitions 3
2.2, OVEI VI BW . ottt 4
2.3. Subkey Generation Algorithm........... 5
2.4. MAC Generation Algorithm........ 7
2.5. MAC Verification Algorithm 9
3. Security Considerati ONS 10
4. TesSt VeCt OIS .. 11
5. Acknow edgement 12
6. Ref erenCes 12
6.1. Normative References 12
6.2. Informative References i 12
Appendi X A Test Code 14
1. Introduction

The National Institute of Standards and Technol ogy (N ST) has
recently specified the C pher-based Message Authentication Code
(CMAC). CMAC [NIST-CMAC] is a keyed hash function that is based on a
symmretric key bl ock cipher, such as the Advanced Encryption Standard
[NIST-AES]. CMAC is equivalent to the One-Key CBC MACL (OVACL)
submitted by Iwata and Kurosawa [OVACla, OVAClb]. OQOVACl is an

i mprovenent of the exXtended G pher Bl ock Chaini ng node (XCBC)
submitted by Bl ack and Rogaway [XCBCa, XCBCb], which itself is an

i mprovenent of the basic G pher Bl ock Chaini ng- Message Authentication
Code (CBC-MAC). XCBC efficiently addresses the security deficiencies
of CBC-MAC, and OVACL efficiently reduces the key size of XCBC

AES- CMAC provi des stronger assurance of data integrity than a
checksum or an error-detecting code. The verification of a checksum
or an error-detecting code detects only accidental nodifications of
the data, while CMAC i s designed to detect intentional, unauthorized
nmodi ficati ons of the data, as well as accidental nodifications.

AES- CMAC achi eves a security goal simlar to that of HVAC [RFC- HVAC] .
Since AES-CVAC is based on a symmetric key block cipher, AES, and
HVAC i s based on a hash function, such as SHA-1, AES-CMAC is
appropriate for information systens in which AES is nore readily
avail abl e than a hash function.

This menmo specifies the authentication algorithm based on CMAC with
AES-128. This new authentication algorithmis named AES- CMAC

Song, et al. I nf or mati onal [Page 2]

RFC 4493 The AES- CMAC Al gorithm June 2006

2. Specification of AES-CMAC
2.1. Basic Definitions

The foll owi ng table describes the basic definitions necessary to
explain the specification of AES- CMAC

||y Concat enati on
X || yis the string x concatenated with the string

y.
0000 || 1111 is 00001111.

X XOR 'y Excl usi ve- OR operati on.
For two equal length strings, x and vy,
X XORy is their bit-w se exclusive-OR

ceil (x) Ceiling function
The smallest integer no smaller than x.
ceil(3.5) is 4. ceil(5) is b.

X << 1 Left-shift of the string x by 1 bit.
The nost significant bit di sappears, and a zero
cones into the least significant bit.
10010001 << 1 is 00100010.

0”n The string that consists of n zero-bits.
0”3 nmeans 000 in binary format.
104 neans 10000 in binary format.
10Mi neans 1 followed by i-tinmes repeated

zeros.
VBB(x) The nost-significant bit of the string x.
MBB(10010000) neans 1.
paddi ng(x) 10"i padded out put of input x.
It is described in detail in section 2.4.
Key 128-bit (16-octet) long key for AES-128
Denot ed by K

First subkey 128-bit (16-octet) long first subkey,
derived through the subkey
generation algorithmfromthe key K
Denot ed by K1l

Song, et al. I nf or mati onal [Page 3]

RFC 4493 The AES- CMAC Al gorithm June 2006

2.

2.

Second subkey 128-bit (16-octet) | ong second subkey,
derived through the subkey
generation algorithmfromthe key K
Denot ed by K2.

Message A nmessage to be authenticated
Denoted by M
The nmessage can be null, which nmeans that the Il ength
of Mis 0.

Message length The length of the nmessage Min octets.
Denoted by | en
The m ni mum val ue of the Iength can be 0. The
maxi mum val ue of the length is not specified in
thi s docunent.

AES- 128(K, M AES-128(K, M is the 128-bit ciphertext of AES-128
for a 128-bit key, K, and a 128-bit nessage, M

MAC A 128-bit string that is the output of AES- CVAC
Denoted by T.
Val i dating the MAC provi des assurance of the
integrity and authenticity of the nessage from
t he source.

MAC | engt h By default, the Iength of the output of AES-CMAC is
128 bits. It is possible to truncate the MAC
The result of the truncation should be taken in nost
significant bits first order. The MAC |l ength nust be
specified before the comunication starts, and
it must not be changed during the lifetinme of the
key.

Overvi ew

AES- CMAC uses the Advanced Encryption Standard [NI ST-AES] as a

buil ding block. To generate a MAC, AES-CMAC takes a secret key, a
nessage of variable length, and the length of the nessage in octets
as inputs and returns a fixed-bit string called a MAC

The core of AES-CMAC is the basic CBC-MAC. For a nmessage, M to be
aut henticated, the CBCMAC is applied to M There are two cases of
operation in CMAC. Figure 2.1 illustrates the operation of CBC MAC
in both cases. If the size of the input nessage block is equal to a
positive multiple of the block size (nanely, 128 bits), the | ast

bl ock shall be exclusive-OR ed with Kl before processing. O herw se,
the last block shall be padded with 107 (notation is described in
section 2.1) and exclusive-OR ed with K2. The result of the previous

Song, et al. I nf or mati onal [Page 4]

RFC 4493 The AES- CMAC Al gorithm June 2006

process will be the input of the last encryption. The output of
AES- CMAC provides data integrity of the whol e i nput nessage.

Fo-m - - + Fo-m - - + Fo-m - - + Fo-m - - + Fo-m - - + T
| M1 | | M2 | | Mn | | M1 | | M2 | | M_n| 1070 |
+---- - + +---- - + +---- - + +---- - + +---- - + Foo e - -+
+- -+ | | | +- -+
| +--->(4) +--->(+) <-| K1| | +--->(+) +--->(+) <-| K2|
| | | N | | | | N
+-- - - + | +-- - - + | +-- - - + +-- - - + | +-- - - + | +-- - - +
| AES K| | |JAES_K | |AESLK| | AES K| | |AES_K | |AESLK|
+---- - + +---- - + +---- - + +---- - + +---- - + +---- - +
| | | | | | | | | |
+--m-a + +--m-a + | +--m-a + +--m-a + |
| |
Fo-m - - + Fo-m - - +
| T | | T |
+---- - + +---- - +
(a) positive multiple block Iength (b) otherwi se
Figure 2.1. Illustration of the two cases of AES-CVAC
AES K is AES-128 with key K
The nessage Mis divided into blocks M1,...,Mn,
where Mi is the i-th message bl ock.
The length of Mi is 128 bits for i =1,...,n-1, and

the length of the last block, Mn, is less than or equal to 128 bits.
K1 is the subkey for the case (a), and

K2 is the subkey for the case (b).

K1 and K2 are generated by the subkey generation al gorithm

described in section 2.3.

2.3. Subkey Generation Al gorithm

The subkey generation al gorithm Generate_ Subkey(), takes a secret
key, K, which is just the key for AES-128.

The outputs of the subkey generation algorithmare two subkeys, Kl
and K2. We wite (K1, K2) := CGenerate_Subkey(K).

Subkeys K1 and K2 are used in both MAC generation and MAC
verification algorithns. K1 is used for the case where the |l ength of
the last block is equal to the block Iength. K2 is used for the case
where the length of the last block is | ess than the block |ength.

Song, et al. I nf or mati onal [Page 5]

RFC 4493 The AES- CMAC Al gorithm June 2006

Figure 2.2 specifies the subkey generation algorithm

L L L e L L L e

+ Al gorithm Gener at e_Subkey +
+++++++++++ AR
+ +
+ | nput . K (128-bit key) +
+ Qut put . KL (128-bit first subkey) +
+ K2 (128-bit second subkey) +
o m m e m e m e m e m e mem e +
+ +
+ Constants: const_Zero is 0x00000000000000000000000000000000 +
+ const _Rb i s 0x00000000000000000000000000000087 +
+ Variables: L for output of AES-128 applied to 07128 +
+ +
+ Step 1. L := AES-128(K, const_Zero); +
+ Step 2. if MSB(L) is equal to O +
+ t hen KL := L << 1; +
+ el se Kl := (L << 1) XOR const_Rb; +
+ Step 3. if MSB(K1) is equal to O +
+ t hen K2 1= K1 << 1; +
+ el se K2 := (KL << 1) XOR const_Rb; +
+ Step 4. return K1, K2; +
+ +

++++++H+
Figure 2.2. Al gorithm Generate_Subkey

In step 1, AES-128 with key Kis applied to an all-zero input bl ock.

In step 2, Kl is derived through the foll owi ng operati on:

If the nost significant bit of L is equal to 0, Kl is the left-shift
of L by 1 bit.

QO herwise, KL is the exclusive-OR of const_ Rb and the left-shift of L
by 1 bit.

In step 3, K2 is derived through the follow ng operation:

If the nost significant bit of Kl is equal to 0, K2 is the left-shift
of KL by 1 bit.

QO herwi se, K2 is the exclusive-OR of const Rb and the left-shift of
Kl by 1 bit.

In step 4, (K1,K2) := Generate_Subkey(K) is returned.

Song, et al. I nf or mati onal [Page 6]

RFC 4493 The AES- CMAC Al gorithm June 2006

The mat henati cal neaning of the procedures in steps 2 and 3,
i ncl udi ng const _Rb, can be found in [OVACla].

2.4. NAC Generation Algorithm

The MAC generation algorithm AES-CMAC(), takes three inputs, a
secret key, a nessage, and the length of the nessage in octets. The
secret key, denoted by K, is just the key for AES-128. The nessage
and its length in octets are denoted by Mand | en, respectively. The
nmessage Mis denoted by the sequence of Mi, where Mi is the i-th
message block. That is, if Mconsists of n blocks, then Mis witten
as

- M=M1]|] M2 || ... || M{n-1} || Mn

The length of Mi is 128 bits for i =1,...,n-1, and the | ength of
the last block Mn is less than or equal to 128 bits.

The output of the MAC generation algorithmis a 128-bit string,
called a MAC, which is used to validate the i nput nmessage. The MAC
is denoted by T, and we wite T := AES-CMAC(K, M1len). Validating the
MAC provi des assurance of the integrity and authenticity of the
message fromthe source.

It is possible to truncate the MAC. According to [NI ST-CVAC], at
| east a 64-bit MAC shoul d be used as protection agai nst guessing
attacks. The result of truncation should be taken in nopst
significant bits first order

The block length of AES-128 is 128 bits (16 octets). There is a
special treatment if the Iength of the nmessage is not a positive
multiple of the block length. The special treatnment is to pad Mwith
the bit-string 107 to adjust the length of the Iast block up to the
bl ock | ength.

For an input string x of r-octets, where 0 <= r < 16, the padding
function, padding(x), is defined as foll ows:

- paddi ng(x) = x || 107i where i is 128-8*r-1

That is, padding(x) is the concatenation of x and a single "1’

foll owed by the m ni mum nunber of '0’s, so that the total length is
equal to 128 bits.

Figure 2.3 describes the MAC generation al gorithm

Song, et al. I nf or mati onal [Page 7]

RFC 4493

The AES- CMAC Al gorithm

June 2006

L O O O

+

Al gorithm AES- CVAC

+

L L L e L L L e L

+ I nput
+

+

+ Qut put

K
M

128-bit key)

T

(
(nessage to be authenticated)

len (length of the nessage in octets)
(nessage authentication code)

+

+ 4+ + + +

T L L o o

Step
Step
Step

wN ke

Step 4.

Step 5.
Step 6.

T I T Tk T T i T i S S S e e e e A e T T T T

Step 7.

Const ant s:

const _Bsize is 16

Vari abl es: K1, K2 for 128-bit subkeys
Mi is the i-th block (i=1..ceil (len/const_Bsize))
Mlast is the last block xor-ed with KL or
n for nunmber of blocks to be processed
r for number of octets of |ast block
flag for denoting if last block is conplete or not

(K1, K2) := Cenerate_Subkey(K)
n := ceil(len/const_Bsize);

[=0

t

e e B |

f
he
n:=1,
flag := fal se;
el se
if len nod const Bsize is O
then flag : = true;
else flag := fal se
if flag is true
then Mlast := Mn XOR K1
el se M last := paddi ng(Mn) XOR K2;
X = const_Zero;
for i :=1ton-1 do
begi n
Y .
X :
end
Y := Mlast XOR X;
T := AES-128(K, Y);
return T,

X XOR M.i;
AES-128(K, Y) ;

const_Zero i s 0x00000000000000000000000000000000

T I T Tk T T i T i S S S e e e e A e T T T T

L e O O L

Song, et al.

Figure 2.3. Al gorithm AES- CMAC

| nf or mat i ona

[Page 8]

RFC 4493 The AES- CMAC Al gorithm June 2006

In step 1, subkeys Kl and K2 are derived from K through the subkey
generation algorithm

In step 2, the number of blocks, n, is calculated. The nunber of
bl ocks is the smallest integer value greater than or equal to the
qguotient determ ned by dividing the | ength parameter by the bl ock
| ength, 16 octets.

In step 3, the length of the input nessage is checked. |If the input
length is O (null), the nunber of blocks to be processed shall be 1,
and the flag shall be marked as not-conpl ete-block (fal se).

O herwise, if the last block length is 128 bits, the flag is marked
as conpl ete-block (true); else mark the flag as not-conpl et e-bl ock
(fal se).

In step 4, Mlast is calculated by exclusive-ORing Mn and one of
the previously cal cul ated subkeys. |If the last block is a conplete
bl ock (true), then Mlast is the exclusive-OR of Mn and K1.
QO herwi se, Mlast is the exclusive-OR of padding(Mn) and K2.
In step 5, the variable Xis initialized.
In step 6, the basic CBGMAC is applied to M1,...,M{n-1}, M| ast.
In step 7, the 128-bit MAC, T := AES-CMAC(K,Mlen), is returned.
I f necessary, the MAC is truncated before it is returned.

2.5. MAC Verification Al gorithm
The verification of the MAC is sinply done by a MAC reconputation.
We use the MAC generation algorithm which is described in section
2.4,
The MAC verification algorithm Verify MAC(), takes four inputs, a
secret key, a nessage, the length of the nmessage in octets, and the
received MAC. These are denoted by K, M len, and T, respectively.

The output of the MAC verification algorithmis either | NVALID or
VALI D.

Figure 2.4 describes the MAC verification algorithm

Song, et al. I nf or mati onal [Page 9]

RFC 4493 The AES- CMAC Al gorithm June 2006

L O O O
+ Al gorithm Verify_MAC +
e L L e L L L e e

+

+ I nput K (128-bit Key) +
+ M (nmessage to be verified) +
+ len (length of the nessage in octets) +
+ . (the received MAC to be verified) +
+ Cut put : INVALID or VALID +
+ +
o m e m e +
+ +
+ Step 1. T* := AES-CVAC(K, M | en); +
+ Step 2 if ™ is equal to T +
+ t hen +
+ return VALI D, +
+ el se +
return | NVALI D, +

e e 0 L T B e T s i 2 2
Figure 2.4. A gorithm Verify_MAC

In step 1, T* is derived fromK, M and len through the MAC
generation algorithm

In step 2, T* and T' are conpared. |If T* is equal to T, then return
VALI D; otherwi se return | NVALID.

If the output is INVALID, then the nessage is definitely not
authentic, i.e., it did not originate froma source that executed the
generation process on the nessage to produce the purported MAC

If the output is VALID, then the design of the AES-CMAC provi des
assurance that the message is authentic and, hence, was not corrupted
in transit; however, this assurance, as for any MAC al gorithm is not
absol ute.

3. Security Considerations

The security provided by AES-CMAC is built on the strong
cryptographic algorithm AES. However, as is true with any
cryptographic algorithm part of its strength lies in the secret key,
K, and the correctness of the inplenentation in all of the

participating systens. |If the secret key is conpronised or
i nappropriately shared, it guarantees neither authentication nor
integrity of nessage at all. The secret key shall be generated in a

way that meets the pseudo randomess requirenment of RFC 4086
[RFC4086] and shoul d be kept safe. If and only if AES-CVMAC is used

Song, et al. I nf or mati onal [Page 10]

RFC 4493

The AES- CMAC Al gorithm

June 2006

properly it provides the authentication and integrity that neet the
best current practice of nmessage authentication

4. Test Vectors

The following test vectors are the sane as those of [NIST-CMAC]. The
following vectors are al so the output of the test programin Appendi x

Subkey Generation

K

AES- 128(key, 0)
K1

2b7e1516 28aed2ab
7df 76b0c 1ab899b3
f beed618 35713366
f 7ddac30 6ae266c¢cc

abf 71588
3e42f 047
7c85e08f
f90bclle

09cf 4f 3c
b91b546f
7236a8de
e46d513b

<enpty string>
bb1d6929 9593728

= 16
6bclbee2 2e409f 96
070a16b4 6b4d4144

e93d7ell
f 79bdd9d

7393172a
d04a287c

= 40

6bclbee2 2e409f 96
ae2d8a57 1e03ac9c
30c81c46 a35ce4ll
df a66747 de9ae630

e93d7ell
9eb76f ac

30ca3261

7393172a
45af 8e51

1497c827

= 64

6bclbee2 2e409f 96
ae2d8a57 1e03ac9c
30c81c46 a35ce4dll
f 69f 2445 df 4f 9b17
51f Obebf 7e3b9d92

e93d7ell
9eb76f ac
e5f bc119
ad2b417b
fc497417

7393172a
45af 8e51
laOab52ef
e66¢c3710
79363cfe

Song,

et al.

| nf or mat i ona

[Page 11]

RFC 4493 The AES- CMAC Al gorithm June 2006

5.

6.

6.

6.

1

2.

Acknowl edgenent

Portions of the text herein are borrowed from [N ST-CMAC]. W
appreci ate the OVMAC1 aut hors, the SP 800-38B aut hor, and Russ Housl ey
for his useful comments and gui dance, which have been incorporated
herein. W also thank Al fred Hoenes for many useful comments. This
nmeno was prepared while Tetsu Iwata was at | baraki University, Japan

We acknow edge the support fromthe follow ng grants: Collaborative
Technol ogy Al liance (CTA) from US Arnmy Research Laboratory, DAAD19-
01-2-0011; Presidential Award from Arny Research O fice, WO11NF-05-
1- 0491; NSF CAREER ANl -0093187. Results do not reflect any position
of the fundi ng agenci es.

Ref er ences
Nor mat i ve Ref er ences

[NI ST-CVMAC] NI ST, Special Publication 800-38B, "Recomendation for
Bl ock C pher Mdes of Operation: The CMAC Mode for
Aut henti cation", My 2005.

[Nl ST-AES] NI ST, FIPS 197, "Advanced Encryption Standard (AES)"
Novenber 2001.
http://csrc.nist.gov/publications/fips/fipsl97/fips-
197. pdf

[RFC4086] East| ake, D., 3rd, Schiller, J., and S. Crocker
"Randomess Requirenents for Security", BCP 106, RFC
4086, June 2005.

I nformati ve References

[RFCG-HMAC] Krawczyk, H., Bellare, M, and R Canetti, "HVAC
Keyed- Hashi ng for Message Authentication", RFC 2104,
February 1997.

[OVACla] Tetsu Iwata and Kaoru Kurosawa, "OVAC. One-Key CBC MAC',
Fast Software Encryption, FSE 2003, LNCS 2887, pp. 129-
153, Springer-Verlag, 2003.

[OVACLDb] Tetsu Iwata and Kaoru Kurosawa, "QOVAC. One-Key CBC MAC',
Subm ssion to N ST, December 2002. Available fromthe
NI ST npbdes of operation web site at
http://csrc.nist.gov/CryptoTool ki t/ nmodes/ proposednodes/
omac/ omac- spec. pdf

Song, et al. I nf or mati onal [Page 12]

RFC 4493

[XCBCal

[XCBCh]

Song,

et al.

The AES- CMAC Al gorithm June 2006

John Black and Phillip Rogaway, "A Suggestion for

Handl ing Arbitrary-Length Messages with the CBC MAC',
NI ST Second Mddes of Operation Wrkshop, August 2001.
Avail able fromthe N ST nodes of operation web site at
http://csrc.nist.gov/CryptoTool ki t/ nmodes/ proposednodes/
xchc- mac/ xcbc- mac- spec. pdf

John Bl ack and Phillip Rogaway, "CBC MACs for Arbitrary-
Length Messages: The Three-Key Constructions", Journal of
Cryptol ogy, Vol. 18, No. 2, pp. 111-132, Springer-Verl ag,
Spring 2005.

I nf or mati onal [Page 13]

RFC 4493 The AES- CMAC Al gorithm

Appendi x A. Test Code

This C source is designed to generate the test vectors that appear

this meno to verify correctness of the algorithm
not intended for use in conmercial products.

June 2006

in
The source code is

/**/

[* AES-CMAC with AES-128 bit */
/* CNMAC Al gorithm descri bed in SP800-38B */
/* Author: Junhyuk Song (junhyuk.song@ansung. com */
/* Jicheol Lee (jicheol.lee@ansung.com */

/**/

#i ncl ude <stdi o. h>

/* For CMAC Cal cul ation */

unsi gned char const_Rb[16] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87
H
unsi gned char const_Zero[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
b
/* Basic Functions */
voi d xor_128(unsi gned char *a, unsigned char *b, unsigned char *out)
{
int i;
for (i=0;i<16; i++)
out[i] = a[i] ™~ b[i];
}
void print_hex(char *str, unsigned char *buf, int |en)
{
i nt i;
for (1=0; i<len; i++) {
if ((i %16) == & & i '= 0) printf(str);
printf("9®2x", buf[i]);
if ((i %4) ==3) printf(" ");
if ((i %16) == 15) printf("\n");
}
if ((1 %16) '=0) printf("\n");
}
Song, et al. I nf or mati onal [Page 14]

RFC 4493 The AES- CMAC Al gorithm June 2006

void printl128(unsi gned char *bytes)

{
i nt i
for (j=0; j<16;j++) {
printf("%®2x", bytes[j]);
if ((j9%) == 3) printf(" ");
}
}

void print96(unsigned char *bytes)
i nt i
for (j=0; j<12;j++) {
printf("9%®2x", bytes[j]);
if ((j%) == 3) printf(" ");

}

/* AES- CMAC Ceneration Function */

void | eftshift_onebit(unsigned char *input,unsigned char *output)
{

i nt i;
unsi gned char overfl ow = O;

for (i=15; i>=0; i--) {
output[i] = input[i] << 1
output[i] |= overfl ow
overflow = (input[i] & 0x80)?1:0;
}
return;
}
voi d gener at e_subkey(unsi gned char *key, unsigned char *K1, unsigned
char *K2)
{

unsi gned char L[16];
unsi gned char Z[16];
unsi gned char tnp[16];
int i;

for (i=0; i<16; i++) Z[i] = 0;
AES 128(key, Z, L) :
if ((L[O] & 0x80) == 0) { /* If MSB(L) = O, then KL = L << 1 */

leftshift_onebit(L, K1);
} else { /* Else KL = (L<<1) (+) Rb*/

Song, et al. I nf or mati onal [Page 15]

RFC 4493 The AES- CMAC Al gorithm June 2006

| eftshift _onebit(L,tnmp);
xor _128(tnp, const Rb, K1);
}

if ((KL[0] & 0x80) == 0) {
| eftshi ft_onebit (K1, K2);
} else {
| eftshift_onebit (KL, tnp);
xor _128(t np, const _Rb, K2);
}

return;

}

voi d paddi ng (unsigned char *lastb, unsigned char *pad, int length)

- .
i nt i

/* original last block */
for (j=0; j<16; j++) {
if (j <length) {
pad[j] = lastb[j];
} elseif (j ==1length) {
pad[j] = 0x80;
} else {
pad[j] = 0xO00;

}

void AES CVAC (unsigned char *key, unsigned char *input, int |ength,
unsi gned char *nmac)

{
unsi gned char X[16], Y[16], M.l ast[16], padded[16];
unsi gned char K1[16], K2[16];
i nt n, i, flag;

gener at e_subkey(key, K1, K2) ;

n = (length+1l5) / 16; /[* n is nunmber of rounds */
if (n=0) {
n =1,
flag = 0;
} else {
if ((lengthd6) == 0) { /* last block is a conplete block */
flag = 1;
} else { /* last block is not conplete block */
flag = 0;
}

Song, et al. I nf or mati onal [Page 16]

RFC 4493 The AES- CMAC Al gorithm June 2006

i nt

Song,

}

if (flag) { /* last block is conplete block */
xor_128(& nput[16*(n-1)], K1, Ml ast);

} else {
paddi ng(& nput [16*(n-1)], padded, | engt h%d.6) ;
xor _128(padded, K2, M | ast);

}
for (i=0; i<16; i++) Xi] = 0;
for (1=0; i<n-1; i++) {
xor_128(X, & nput[16*i],Y); /* Y := M (+) X */
AES 128(key, Y, X); /* X := AES-128(KEY, Y); */
}

xor _128(X, Ml ast,Y);
AES 128(key, Y, X);

for (i=0; i<16; i++) {
mac[i] = X[i];
}

mai n()

unsi gned char L[16], K1[16], K2[16], T[16], TT[12];
unsi gned char M 64] = {
0x6b, Oxcl, Oxbe, 0Oxe2, O0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, Ox7e, O0x11l, Ox73, 0x93, 0x17, Ox2a,
Oxae, 0x2d, 0x8a, 0x57, Oxle, 0x03, Oxac, 0x9c,
0x9e, Oxb7, O0x6f, Oxac, 0x45, Oxaf, 0x8e, 0x51
0x30, 0Oxc8, Oxlc, 0x46, Oxa3, Ox5c, Oxe4, O0x11
0Oxeb5, Oxfb, Oxcl, 0x19, Oxla, O0x0Oa, 0x52, Oxef,
Oxf 6, O0x9f, 0x24, 0x45, Oxdf, Ox4f, 0x9b, 0x17,
Oxad, O0x2b, 0x41, Ox7b, Oxe6, 0x6c¢c, 0x37, 0x10
b
unsi gned char key[16] = {
0x2b, O0x7e, 0x15, 0x16, 0x28, Oxae, 0xd2, 0xa6,
Oxab, Oxf7, O0x15, 0x88, 0x09, Oxcf, 0x4f, 0x3c

Pri Nt f (M -mmmm s mm e \n");
printf("K "); print128(key); printf("\n");

printf("\nSubkey CGeneration\n");

AES 128(key, const _Zero, L);

printf("AES 128(key,0) "); print128(L); printf("\n");
gener at e_subkey(key, K1, K2) ;

et al. I nf or mati onal [Page 17]

RFC 4493 The AES- CMAC Al gorithm June 2006

printf("Kl "); print128(K1); printf("\n");
printf("K2 "); print128(K2); printf("\n");
printf("\nExanple 1: len = 0\n");

printf("M "); printf("<enmpty string>\n");
AES_CMAC(key, M 0, T);

printf("AES_CMAC "); print128(T); printf("\n");
printf("\nExanple 2: len = 16\ n");

printf("M "); print_hex(" ", M16);
AES_CMAC(key, M 16, T);

printf("AES CVMAC "), printl128(T); printf("\n");
printf("\nExanple 3: len = 40\n");

printf("M "); print_hex(" ", M 40);
AES_CMAC(key, M 40, T);

printf("AES CVMAC "); print128(T); printf("\n");
printf("\nExanple 4: len = 64\n");

printf("M "); print_hex(" ", M64);
AES_CMAC(key, M 64, T);

printf("AES CMAC "); print128(T); printf("\n");
Printf (M- e m s m e \n");
return O;

Song, et al. I nf or mati onal [Page 18]

RFC 4493 The AES- CMAC Al gorithm June 2006

Aut hors’ Addr esses

Junhyuk Song
Uni versity of Washi ngton
Sanmsung El ectronics

Phone: (206) 853-5843
EMai | : songl ee@e. washi ngt on. edu, junhyuk. song@ansung. com

Ji cheol Lee
Sansung El ectronics
Phone: +82-31-279-3605

EMai | : jicheol .l ee@ansung. com

Radha Poovendr an

Net wor k Security Lab

Uni versity of Washington
Phone: (206) 221-6512

EMai | : radha@e. washi ngt on. edu

Tetsu | wata
Nagoya Uni versity

EMai | : iwata@se. nagoya-u.ac.jp

Song, et al. I nf or mati onal [Page 19]

RFC 4493 The AES- CMAC Al gorithm June 2006

Ful | Copyright Statenent
Copyright (C The Internet Society (2006).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the |IETF
Admi ni strative Support Activity (1ASA).

Song, et al. I nf or mati onal [Page 20]

