Net wor k Wor ki ng Group A. Newt on
Request for Comments: 4992 Veri Sign, Inc.
Updat es: 3981 August 2007
Cat egory: Standards Track

XML Pi pelining with Chunks
for the Internet Registry Information Service
Status of This Meno
Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for
i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nmenmo is unlimted.
Copyri ght Notice
Copyright (C The IETF Trust (2007).
Abst r act
Thi s docunent describes a sinple TCP transfer protocol for the

Internet Registry Information Service (IRIS). Data is transferred
between clients and servers using chunks to achi eve pipelining.

Newt on St andards Track [Page 1]

RFC 49

Tabl e

PwnNE

o o

R © 0~
oo X

12.
13.

14.

15.

App
App

Newt on

92 RIS XM_ Pi pelining with Chunks August 2007

of Contents
[Nt roducCti ON ... 3
Document Term nol 0gy 3
Request Bl ock (R@B)t e 4
Response Bl OCKS 4
4.1. Response Block (RSB)ciiii e 5
4.2. Connection Response Block (CRB) 5
Bl ock Header 6
CNUNKS . 7
6.1. No Data TYPeS 9
6.2. Version Information TYypes iy 9
6.3. Size Informati on TYpPeS i 9
6.4. Oher Information Types 10
6. 5. SASL TYPES . .o 11
6.6. Authentication Success Information Types 12
6.7. Authentication Failure Information Types 12
6.8. Application Data TYpPeSttt e e e e 12
Fdl @ SeSSi ONS 13
Closing Sessions Due to an Error 13
Use over TLS 13
Update to RFC 3981 e 13
RIS Transport Mapping Definitions 14
11.1. URI SCheme ..o 14
11.2. Application Protocol Label 14
Internationalization Considerations 14
[ANA Considerati ONS 14
13.1. XPC URI Schene Registration, 14
13.2. XPCS URI Scheme Registration, 15
13.3. S NAPTR XPC Registration 15
13.4. S NAPTR XPCS Registration 15
13.5. Well-Known TCP Port Registration for XPC 16
13. 6. Well-Known TCP Port Registration for XPCS 16
Security Considerati ONS 17
14.1. Security Mechani Snme e 17
14.2. SASL Conpliance e e e 18
Ref er eNCes 19
15.1. Normative References 19
15.2. Informative References 19
endi X A EXanpl es 20
endix B. Contributors 28
St andards Track [Page 2]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

1. Introduction

Using S-NAPTR [5], IRIS has the ability to define the use of nmultiple
application transports (or transfer protocols) for different types of
registry services, all at the discretion of the server operator. The
TCP transfer protocol defined in this docunment is conpletely nodul ar
and may be used by any registry types.

This transfer protocol defines sinple fram ng for sending XM. in
chunks so that XML fragnments may be acted upon (or pipelined) before
the reception of the entire XM instance. This docunent calls this
XML pipelining with chunks (XPC) and its use with IRIS as | Rl S- XPC.

XPC is for use with sinple request and response interactions between
clients and servers. dients send a series of requests to a server
in data bl ocks. The server will respond to each data bl ock
individually with a correspondi ng data bl ock, but through the sane
connection. Request and response data bl ocks are sent using the TCP
SEND function and recei ved using the TCP RECEI VE function

The lifecycle of an XPC session has the foll ow ng phases:

1. Aclient establishes a TCP connection with a server.

2. The server sends a connection response bl ock (CRB)

3. The client sends a request block (R@). |In this request, the

client can set a "keep open" flag requesting that the server keep
the XPC session open followi ng the response to this request.

4. The server responds with a response block (RSB). In this
response, the server can indicate to the client whether or not
the XPC session will be closed.

5. If the XPC session is not to be term nated, then the lifecycle

repeats fromstep 3.
6. The TCP connection is closed.
2. Document Term nol ogy
The key words "MJST", "MJST NOT*, "REQU RED', "SHALL", "SHALL NOT",
" SHOULD', "SHOULD NOT", "RECOMMENDED', "MNAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [8].
Cctet fields with nuneric values are given according to the

conventions in RFC 1166 [12]: the leftnost bit of the whole field is
the nost significant bit; when a nulti-octet quantity is transnmtted

Newt on St andards Track [Page 3]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

the nost significant octet is transmtted first. Bits signifying
flags in an octet are nunbered according to the conventions of RFC
1166 [12]: bit O is the npst significant bit and bit 7 is the |east
significant bit. Wen a diagram describes a group of octets, the
order of transmission for the octets starts fromthe left.

3. Request Bl ock (RQB)

The format for the request block (R@) is as foll ows:

Fomm e TSR TSR S +
field | header | authority | authority | chunks 1..n
| | length | | |
Fomm e Fom e Fom e Fom e +
octets 1 1 0..255 vari abl e

Request Bl ock
These fields have the foll owi ng neani ngs:
o header - as described in Section 5.

o authority length - the length of the authority field in this
request bl ock.

o authority - a string of octets describing the authority agai nst
which this request is to be executed. See [1] for the definition
and description of an authority. The number of octets in this
string MJST be no nore and no | ess than the nunber specified by
the authority I ength.

o chunks 1..n - the request data broken into chunks (Section 6).
4. Response Bl ocks

There are two types of blocks used by a server to respond to a
client. The first type is a response bl ock (RSB) defined in Section

4.1. It is used by a server to respond to request blocks (R@Bs).
The second type is a specialized version of a response block called a
connection response block (CRB) defined in Section 4.2. It is sent

by a server to a client when a connection is established to initiate
protocol negotiation. Conceptually, a CRBis a type of RQ@B; they
share the same format, but a CRB is constrained in conveying only
specific information and is only sent at the beginning of the session
lifecycle.

Newt on St andards Track [Page 4]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

4.1. Response Bl ock (RSB)

The format for the response block (RSB) is as foll ows:

field | header | chunks 1..n

octets 1 vari abl e
Response Bl ock
These fields have the followi ng neani ngs:
0o header - as described in Section 5.
o chunks 1..n - the response data broken into chunks (Section 6).

Servers SHOULD NOT send an RSB to a client until they have received
the entire RB. Servers that do begin sending an RSB before the
reception of the entire RQB nust consider that clients will not be
expected to start processing the RSB until they have fully sent the
RMB, and that the RSB may fill the client’s TCP buffers.

4.2. Connection Response Bl ock (CRB)

A connection response block (CRB) is a response block sent by a
server to a client in response to the client initiating a session. A
connection response bl ock has the sane format as a response bl ock
(RSB) (Section 4.1). The only difference is that it is constrained
in one of two ways:

1. It contains only one chunk (see Section 6) containing version
i nformati on (see Section 6.2) and the keep-open (KO flag in the
bl ock header (see Section 5) has a value of 1 (neaning the
connection is not closing). Servers MJST use this type of CRBto
i ndicate service availability.

2. It contains only one chunk (see Section 6) containing a system
error (see 'systemerror’ under Section 6.4) and the keep-open
(KO flag in the bl ock header (see Section 5) has a value of O
(meaning the server will close the connection i mediately after
sending the CRB). Servers MJST use this type of CRB when they
can accept connections but cannot process requests.

Newt on St andards Track [Page 5]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

5.

Bl ock Header

Each data block starts with a one-octet header called the bl ock
header. This header has the sane format for both request and
response data bl ocks, though sone of the bits in the header only have
nmeani ng in one type of data block. The bits are ordered according to
the convention given in RFC 1166 [12], where bit 0 is the nopst
significant bit and bit 7 is the least significant bit. Each bit in
the bl ock header has the follow ng meani ng:

o bits O and 1 - version (V field) - If O (both bits are zero), the
protocol is the version defined in this docunent. Oherw se, the
rest of the bits in the header and the bl ock may be interpreted as

anot her version. |If a server receives a request for a version it
does not support, it SHOULD foll ow the behavi or described in
Section 8.

o hit 2 - keep open (KOflag) - This flag is used to request that a
connection stay open by a client and to indicate that a connection
will stay open by a server, depending on the type of block. 1In a
request block (R@B): a value of 1 indicates that a client is
requesting that the server not close the TCP session, and a val ue
of O indicates the client will expect their server to close the
TCP session i mediately after sending the correspondi ng response.
In a response block (RSB) or a connection response block (CRB): a
value of 1 indicates that the server expects the client to keep
the TCP session open for the server to receive another request,
and a value of 0 indicates that the server expects the client to
cl ose the TCP session imedi ately follow ng this bl ock

o bits 3, 4, 5, 6, and 7 - reserved - These MJST be 0. |If a server
receives a request in which any of these bits is set to 1 and the
server does not understand the purpose for the value, the server
SHOULD fol l ow t he behavi or described in Section 8.

R SR Fomm e m e +
field | Version | Keep Open | reserved
I (v | (KO | |
R R S +
bits 0 and 1 2 3 -7
Bl ock Header

Newt on St andards Track [Page 6]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

6.

Chunks

Request and response bl ocks break down the request and response XM
data i nto chunks. Request and response bl ocks MJST al ways have a

m ni mum of 1 chunk. Each chunk has a one-octet descriptor. The
first bit of the descriptor determines if the chunk is the |last chunk
in the bl ock.

The bits of the chunk descriptor octet are ordered according to the
convention given in RFC 1166 [12], where bit 0 is the npst
significant bit and bit 7 is the |least significant bit. The bits of
the chunk descriptor octet have the foll ow ng neaning:

o bit 0 - last chunk (LC flag) - If 1, this chunk is the last chunk
in the bl ock.

o bit 1 - data complete (DC flag) - If 1, the data in this chunk
represents the end of the data for the chunk type given. |If this
bit is never set to 1 in any chunk descriptor for chunks of the
same type in a block, clients and servers MJST NOT assune the data

will continue in another block. |If the block transitions from one
type of chunk to another w thout signaling conpletion of the data,
clients and servers MJST assume that the remaining data will not

be sent in a remaining chunk
o bits 2, 3, and 4 - reserved - These MJST be O.

o bits 5, 6, and 7 - chunk type (CT field) - determ nes the type of
data carried in the chunk. These are the binary values for the
chunk types:

* 000 - no data or 'nd type (see Section 6.1)

* 001 - version information or 'vi’ type (see Section 6.2)
* 010 - size information or 'si’ type (see Section 6.3)
* 011 - other information or 'oi’ type (see Section 6.4)

* 100 - SASL (Sinple Authentication and Security Layer) data or
"sd’” type (see Section 6.5)

* 101 - authentication success information or 'as' type (see
Section 6.6)
* 110 - authentication failure information or "af’ type (see

Section 6.7)

Newt on St andards Track [Page 7]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

* 111 - application data or 'ad' type (see Section 6.8)

. . . . +
field | Last Chunk | Data Conplete | reserved | Chunk Type
I (LO I (DO I I (CT) I
S Fom e e e oo oo - Fomm e m e S +
bits 0 1 2 -4 5-7

Chunk Descri ptor

A bl ock MAY have multiple types of chunks, but all chunks of the same
type MUST be contiguous in a block and MIST be ordered in the bl ock
in the order in which their data is to be interpreted. Contiguous
chunks nust be ordered by type within a block in the follow ng way:

1. authentication-related chunks - either SASL data chunks (type
100), authentication success information chunks (type 101), or
aut hentication failure informati on chunks (type 110), but not
nore than one type. During the setup of security mechani sns
usi ng these chunks, clients MJUST NOT send subsequent requests
until they have received either an authentication success or
failure chunk.

2. data chunks - either no data chunks (type 000) or application
data chunks (type 111), but not both.

3. information chunks - either version information (type 001) or
other information (type 011), but not bot h.

A bl ock MUST have at | east one type of the above chunks.

The format for a chunk is as foll ows:

S B RS B R +
field | chunk | chunk data | chunk
| descriptor| length | data
Fom oo Fom ek Fomm e e +
octets 1 2 vari abl e
chunk

These fields have the followi ng neani ngs:
o chunk descriptor - as described above.

o chunk data length - the length of the data of the chunk
0o chunk data - the data of the chunk

Newt on St andards Track [Page 8]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

6.1. No Data Types

Servers and clients MJST ignore data in chunk types | abel ed no data.
There is no requirenent for these types of chunks to be zero | ength.
A client MAY send "no data" to a server, and the server MJST respond
with either a chunk of the sane type or other information (Section
6.4).

6.2. Version Information Types

Chunks of this type contain XML conformant to the schema specified in
[9] and MUST have the <versions> el enent as the root el enent.

In the context of IR S-XPC, the protocol identifiers for these
el ements are as foll ows:

o <transferProtocol> - the value "iris.xpcl” to indicate the
protocol specified in this docunent.

o <application> - the XM. nanespace identifier for IRIS [1].
0 <dataModel > - the XM. nanmespace identifier for IRIS registries.

In the context of IRIS-XPC, the authentication nechanismidentifiers
are the SASL nechani sm nanes found in the | ANA SASL nechani sm
regi stry defined by RFC 4422 [10].

Thi s docunment defines no extension identifiers.

Clients MAY send a block with this type of chunk to a server. These
chunks SHOULD be zero length, and servers MJST ignhore any data in
them Wen a server receives a chunk of this type, it MJST respond
with a chunk of this type. This interchange allows a client to query
the version information of a server.

The octet sizes for the 'requestSizeCctets’ and 'responseSi zeCctets’
attributes of the <tranferProtocol> elenment are defined in Section
6. 3.

6.3. Size Information Types

Chunks of this type contain XML conformant to the schena specified in
RFC 4991 [9] and MJST have the <size> elenent as the root el enent.

Cctet counts provided by this information are defined as the sum of
the count of all chunk data of a particular chunk type. For
instance, if an XM instance is broken up into chunks of 20, 30, and
40 octets, the octet count would be 90 (20 + 30 + 40).

Newt on St andards Track [Page 9]

RFC 4992

RIS XM_ Pi pelining with Chunks August 2007

Clients MJUST NOT send chunks of this type, and servers MAY cl ose down
a session using the procedure in Section 8 if a chunk of this type is
received.

6. 4.

O her Information Types

Chunks of this type contain XM. conformant to the schena specified in
RFC 4991 [9] and MJST have the <other> el ement as the root el enent.

The values for the "type attribute of <other> are as follows:

Newt on

"bl ock-error’ - indicates there was an error decoding a bl ock
Servers SHOULD send a block error in the foll owi ng cases:

1

When a request block is received containing a chunk of this
type.
When a request block is received containing authentication
success (see Section 6.6) or authentication failure (see
Section 6.7) information
When a request block is received containing size information
(see Section 6.3).
When reserved bits in the request block are 1
When a bl ock has not been received in its entirety and the TCP
session has been idle for a specific period of time (i.e., a
data bl ock has been received but no term nating chunk for the
dat a bl ock has been received). Two mnutes is RECOVMENDED f or
this timeout value. Note, there is a difference between an
idle condition due to the inconplete reception of a data bl ock
and an idle condition between request/response transactions
associ ated with keeping the session open. For the latter, see
Section 7.

"data-error’ - indicates there was an error parsing data in chunks

contai ning application or SASL data (e.g., XM. is not valid in
application data).

"systemerror’ - indicates that the receiver cannot process the
request due to a condition not related to this protocol. Servers
SHOULD send a systemerror when they are capable of responding to
requests but not capable of processing requests.

St andards Track [Page 10]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

"authority-error’ - indicates that the intended authority
specified in the corresponding request is not served by the
receiver. Servers SHOULD send an authority error when they
receive a request directed to an authority other than those they
serve.

"idle-tineout’ - indicates that an XPC session has been idle for
too long. Usage of this value is defined in Section 7. Note,
there is a difference between an idle condition due to the

i nconpl ete reception of a data bl ock and an idle condition between
request/response transacti ons associ ated with keepi ng the session
open. For the former, see 'block-error’ above.

Clients MJST NOT send chunks of this type, and servers MAY cl ose down
a session using the procedure in Section 8 if a chunk of this type is
recei ved.

6. 5.

SASL Types

The SASL chunk type allows clients and servers to exchange SASL dat a.

The format for the data of this type of chunk is as follows:

SR SR SR SR +
field | nmechanism | nechanism| nechanism | mechani sm

| name | name | dat a | dat a

| length | | length | |

S S S S +
octets 1 vari abl e 2 vari abl e

SASL Aut henticati on

These fields have the foll ow ng meani ng:

o

o

(0]

o

mechani sm nanme | ength - the length of the SASL nechani sm nane.

nmechani sm nane - the nane of the SASL nechanismas registered in
the I ANA SASL mechani smregistry defined by [10].

mechani smdata length - the length of the SASL data.

nmechani smdata - the data used for SASL

These fields MJST NOT span multiple chunks. Therefore, it should be
noted that SASL data | ength exceeding the I ength of the chunk m nus
the length of SASL profile nane nminus one is an error

Newt on

St andards Track [Page 11]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Dependi ng on the nature of the SASL nechani sm bei ng used, SASL data
is sent fromclients to servers and fromservers to clients and may
require multiple request/response transactions to conplete. However,
once a SASL exchange is conmplete and a server can determ ne

aut hentication status, the server MJST send either authentication
success information (see Section 6.6) or authentication failure

i nformati on (see Section 6.7).

When used as an initial challenge response for SASL mechani sns that
support such a feature, the mechanismdata | ength may be set to a
deci mal value of 65,535 to indicate an absent initial response. A
value of 0 indicates an enpty initial response.

6.6. Authentication Success Information Types

Chunks of this type contain XML conformant to the schenma specified in
RFC 4991 [9] and MJST have the <authenticationSuccess> el ement as the
root el enent.

This type of chunk is only sent froma server to a client. If a
client sends it to a server, this will result in a block error (see
"bl ock-error’ in Section 6.4). The usage of this chunk type is
defined in Section 6.5. A server MAY cl ose down a session due to
reception of this type of chunk using the procedure in Section 8.

SASL mechani snms nmay use the <data> child el enment to pass back
arbitrary binary data as base 64 binary. The absence of this el enent
i ndi cates the absence of such data, where as the presence of the
element with no content indicates an enpty data set.

6.7. Authentication Failure Information Types

Chunks of this type contain XM. conformant to the schena specified in
RFC 4991 [9] and MJST have the <authenticationFailure> element as the
root el ement.

This type of chunk is only sent froma server to a client. If a
client sends it to a server, this will result in a block error (see
"bl ock-error’ in Section 6.4). The usage of this chunk type is
defined in Section 6.5. A server MAY cl ose down a session due to
reception of this type of chunk using the procedure in Section 8.

6.8. Application Data Types

These chunks contain application data. For IR'S, these are IRIS [1]
XM i nst ances.

Newt on St andards Track [Page 12]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

7.

10.

| dl e Sessi ons

If a server needs to close a connection due to it being idle, it
SHOULD do the foll ow ng:

1. Send an unsolicited response bl ock containing an idle tineout
error (see "idle-tinmeout’ in Section 6.4) with the keep-open (KO
flag in the block header (Section 5) set to a value of O.

2. Close the TCP connection
Cl osing Sessions Due to an Error

If a server is to close a session due to an error, it SHOULD do the
foll ow ng:

1. Send a response block containing either a block-error or data-
error (see Section 6.4) or version information (see Section 6.2)
with the keep-open (KO flag in the block header (Section 5) set
to a value of 0.

2. Close the TCP connection
Use over TLS

XPC may be tunnel ed over TLS [4] by establishing a TLS session
i Mmediately after a TCP session is opened and before any bl ocks are
sent. This type of session is known as XPCS

When using TLS, a convention nust be established to allowa client to
authenticate the validity of a server. XPCS uses the sane convention
as described by IR S-BEEP [2].

TLS enabl es authenticati on and confidentiality.

| mpl enenters shoul d note that while XPC and XPCS have separate UR
schene nanes and S- NAPTR application protocol |abels, both are
identified with the same <transferProtocol > value in version

i nformati on chunks (see Section 6.2).

Update to RFC 3981

Section 6.2 of RFC 3981 [1] (IRIS-CORE) states that IRIS-BEEP [2] is
the default transport for IRIS. This docunment revises RFC 3981 and
specifies |RIS-XPC as the default transport for IRIS. The TCP well -
known port registration is specified in Section 13.5.

Newt on St andards Track [Page 13]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

11. I RIS Transport ©Mapping Definitions

This section lists the definitions required by IRIS [1] for transport
mappi ngs.

11.1. UR Schene
See Section 13.1 and Section 13. 2.
11.2. Application Protocol Labe
See Section 13.3 and Section 13.4.
12. Internationalization Considerations
XM. processors are obliged to recogni ze both UTF-8 and UTF-16 [3]
encodi ngs. Use of the XML defined by [9] MJST NOT use any other
character encodi ngs other than UTF-8 or UTF-16.
13. | ANA Consi derations
13.1. XPC URI Scheme Registration
URL schenme nane: iris.xpc
Status: pernmanent
URL schene syntax: defined in [1].
Character encodi ng considerations: as defined in RFC 3986 [6].
I nt ended usage: identifies RIS XM usi ng chunks over TCP
Applications using this scheme: defined in IRIS [1].
Interoperability considerations: n/a
Security Considerations: defined in Section 14.
Rel evant Publications: IRIS [1].
Contact Information: Andrew Newton <andy@xr. us>

Aut hor/ Change controller: the | ESG

Newt on St andards Track [Page 14]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

13.2. XPCS URI Schene Registration
URL schene nane: iris.Xxpcs
Status: permanent
URL schene syntax: defined in [1].
Character encoding considerations: as defined in RFC 3986 [6].
I ntended usage: identifies IRIS XM. usi ng chunks over TLS
Applications using this schenme: defined in IRIS [1].
Interoperability considerations: n/a
Security Considerations: defined in Section 14.
Rel evant Publications: IRIS [1].
Contact Information: Andrew Newton <andy@xr. us>
Aut hor/ Change controller: the I ESG
13.3. S-NAPTR XPC Regi stration
Application Protocol Label (see [5]): iris.xpc
I ntended usage: identifies an IRI'S server using XPC
Interoperability considerations: n/a
Security Considerations: defined in Section 14.
Rel evant Publications: IRIS [1].
Contact Information: Andrew Newton <andy@xr. us>
Aut hor/ Change controller: the | ESG
13.4. S-NAPTR XPCS Regi stration
Application Protocol Label (see [5]): iris.xpcs
I nt ended usage: identifies an IRI'S server using secure XPCS

Interoperability considerations: n/a

Newt on St andards Track [Page 15]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Security Considerations: defined in Section 14.
Rel evant Publications: IRIS [1].
Contact Information: Andrew Newt on <andy@xr. us>
Aut hor/ Change controller: the | ESG

13.5. Well-Known TCP Port Registration for XPC
Protocol Nunber: TCP
TCP Port Nunber: 713

Message Formats, Types, Opcodes, and Sequences: defined in Section
4.2, Section 3, and Section 4. 1.

Functions: defined in IRIS [1].

Use of Broadcast/Milticast: none

Proposed Name: IRI'S over XPC

Short nane: iris.xpc

Contact Information: Andrew Newton <andy@xr. us>
13.6. Well-Known TCP Port Registration for XPCS

Protocol Number: TCP

TCP Port Number: 714

Message Formats, Types, Opcodes, and Sequences: defined in Sections
9, 4.2, 3, and 4.1.

Functions: defined in IRIS [1].
Use of Broadcast/Milticast: none
Proposed Name: I RIS over XPCS
Short nane: iris.xpcs

Contact Information: Andrew Newton <andy@xr. us>

Newt on St andards Track [Page 16]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

14.

Security Considerations

| mpl ementers should be fully aware of the security considerations
given by IRIS [1] and TLS [4]. Wth respect to server authentication
with the use of TLS, see Section 6 of IR S-BEEP [2].

14. 1.

Security Mechani sns

Clients SHOULD be prepared to use the followi ng security nmechani sns
in the foll owi ng manner:

o

1.

2.

SASL/ DI GEST- MD5 - for user authentication wthout the need of
session encryption.

SASL/ OTP - for user authentication without the need of session
encryption.

TLS using the TLS RSA W TH 3DES EDE CBC SHA ci pher - for
encryption.

TLS using the TLS_RSA W TH 3DES EDE CBC SHA ci pher with client-
side certificates - for encryption and user authentication.

TLS using the TLS RSA WTH AES 128 CBC SHA ci pher - for
encryption. See [7].

TLS using the TLS RSA WTH AES 128 CBC SHA ci pher with client-side
certificates - for encryption and user authentication. See [7].

TLS using the TLS RSA WTH AES 256 CBC SHA ci pher - for
encryption. See [7].

TLS using the TLS_RSA W TH _AES 256_CBC_SHA ci pher with client-side
certificates - for encryption and user authentication. See [7].

Anonynous client access SHOULD be considered in one of two
met hods:

When no aut hentication has been used.

Usi ng the SASL anonynous profile: SASL/ ANONYMOUS

As specified by SASL/PLAIN, clients MJST NOT use the SASL/PLAIN
mechani smwi thout first encrypting the TCP session (e.g., such as
with TLS). dients MJST inmpl ement SASL/PLAIN and TLS using the
TLS RSA W TH 3DES_EDE_CBC_SHA ci pher.

Newt on

St andards Track [Page 17]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

14. 2.

SASL Conpl i ance

The following list details the conpliance of IR S-XPC for use with
SASL, as specified by RFC 4422 [10], Section 4.

1

2.

Newt on

The SASL service nane to be used by IRIS-XPCis "iris-xpc"

Section 6.2 describes the negotiation facility used to determn ne
the avail abl e security mechanisms. This facility nmay be used
both before the initiation of SASL exchanges and after the
installation of security mechani sms.

a) Section 6.5 describes the mechanismto initiate
aut henti cati on exchanges.

b) Section 6.5 describes the mechanismto transfer server
chal | enges and client responses.

c) Section 6.6 and Section 6.7 describe the nmechanisns to
i ndi cate the outcone of an authentication exchange. Section
6.6 describes how additional data may be carried with this
nessage.

Non-enpty authorization identity strings used within IR S XPC
MUST be normalized according to RFC 4013 [11]. The semantics of
the non-enpty authorization identity strings is server dependent,
and clients MJST use the values for these strings as given by
configuration or the user.

Clients or servers wi shing to abort an ongoi ng authentication
exchange MUST cl ose the connection

After new security layers are negotiated, they take effect on the
first octet follow ng the authentication success (as) (Section
6.6) chunk sent by the server and on the first octet sent after
recei pt of the authentication success (as) chunk sent by the
client.

| RS- XPC can be used with both TLS and SASL. When used in
conbi nati on, TLS MUST al ways be applied before any SASL
nmechani sm

| RI S- XPC does not support multiple SASL authentications.

However, if TLS is being used in combination with SASL, TLS
aut henti cati on MJUST occur before any SASL aut hentication

St andards Track [Page 18]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

15. References
15.1. Normmtive References

[1] Newt on, A. and M Sanz, "IR'S: The Internet Registry
Information Service (IRIS) Core Protocol", RFC 3981, January
2005.

[2] Newt on, A. and M Sanz, "Using the Internet Registry
I nformati on Service over the Bl ocks Extensible Exchange
Protocol ", RFC 3983, January 2005.

[3] The Uni code Consortium "The Uni code Standard, Version 3",
| SBN 0-201-61633-5, 2000, <The Uni code Standard, Version 3>.

[4] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.1", RFC 4346, April 2006.

[5] Daigle, L. and A. Newton, "Dommin-Based Application Service
Location Using SRV RRs and the Dynami c Del egati on Di scovery
Service (DDDS)", RFC 3958, January 2005.

[6] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66, RFC 3986,
January 2005.

[7] Chown, P., "Advanced Encryption Standard (AES) C phersuites for
Transport Layer Security (TLS)", RFC 3268, June 2002.

[8] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", RFC 2119, BCP 14, March 1997.

[9] Newt on, A., "A Common Scherma for Internet Registry Information
Service Transfer Protocols", RFC 4991, August 2007.

[10] Melnikov, A and K Zeilenga, "Sinple Authentication and
Security Layer (SASL)", RFC 4422, June 2006.

[11] Zeilenga, K., "SASLprep: Stringprep Profile for User Names and
Passwor ds", RFC 4013, February 2005.

15.2. Informmtive References

[12] Kirkpatrick, S., Stahl, M, and M Recker, "Internet numbers",
RFC 1166, July 1990.

Newt on St andards Track [Page 19]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Appendi x A. Exanpl es

This section gives exanples of IRl S-XPC sessions. Lines beginning
with "C:" denote data sent by the client to the server, and lines
beginning with "S:" denote data sent by the server to the client.
Following the "C:" or "S:", the line contains either octet values in
hexadeci mal notation with coments or XM. fragnents. No |ine
contains both octet values with comments and XM. fragnments. Conments
are contained within parentheses.

It should also be noted that flag values of "yes" and refl ect

bi nary values 1 and 0.

no

The foll owi ng exanpl e denonstrates an IRIS client issuing two

requests in one XPC session. |In the first request, the client is
requesting status information for "exanple.com. This request and
its response are transferred with one chunk. In the second request,

the client is requesting status infornmation for "m |l o.exanple.cont
"felix.exanple.con', and "hobbes. exanpl e.con'. This request and its
response are transferred with three chunks.

(connection response bl ock)

0x20 (bl ock header: V=0, KO=yes)
(chunk 1)
oxC1 (LC=yes, DC=yes, CT=vi)

0x01 OxBF (chunk | engt h=447)
(Version | nformation)
<?xm version="1.0"7?>
<versions xmns="urn:ietf:parans: xm :ns:iris-transport">
<transferProtocol protocolld="iris.xpcl"
aut henti cati onl ds="PLAI N EXTERNAL" >
<application protocol ld="urn:ietf:params:xm:ns:irisl"
ext ensi onl ds="htt p://exanpl e. com S| MPLEBAG' >
<dat aModel protocol I d="urn:ietf:parans: xm :ns:dchkl"/>
<dat aMbdel protocol I d="urn:ietf:parans: xm:ns:dregl"/>
</ application>
</transferProtocol >
</versions>

(request bl ock)
0x20 (bl ock header: V=0, KO=yes)
0x0B (authority | ength=11)
(aut hority="exanpl e. con")
0x65 0x78 0x61 Ox6D 0x70 Ox6C 0x65 0x23 0x63 Ox6F 0x6D
(chunk 1)
0xC7 (LC=yes, DC=yes, CT=ad)
0x01 0x53 (chunk | engt h=339)
(IRI'S XM request)

OO00000000 VLLLVLRLLLLRLRLLLLWWD

Newt on St andards Track [Page 20]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

<request xm ns="urn:ietf:parans:xm:ns:irisl"
Xxsi :schemaLocati on="urn:ietf:paranms:xm :ns:irisl iris.xsd" >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:paranms: xm :ns:dchkl"
entityC ass="donai n- nang"
ent it yNanme="exanpl e. com' />
</ sear chSet >
</ request >

(response bl ock)

0x20 (bl ock header: V=0, KO=yes)
(chunk 1)
oxC7 (LC=yes, DC=yes, CT=ad)

0x01 OxEO (chunk I engt h=480)
(IRI'S XM_ response)
<iris:response xmns:iris="urn:ietf:params:xm:ns:irisl">
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e. com' registryType="dchkl"
entityCd ass="donai n- nane" entityNanme="exanpl e.com 1"
t erpor ar yRef er ence="t rue"
xm ns="urn:ietf:paramnms: xm :ns:dchkl">
<dommai nNane>exanpl e. conx/ domai nNane>
<status>
<assi gnedAndActi ve/ >
</status>
</ domai n>
<liris:answer>
</iris:resultSet>
</iris:response>

(request bl ock)

0x00 (bl ock header: V=0, KO=no)

0x0B (authority | ength=11)
(aut hority="exanpl e. cont)

0x65 0x78 0x61 Ox6D 0x70 Ox6C 0x65 0x23 0x63 Ox6F 0x6D
(chunk 1)

0x07 (LC=no, DC=no, CT=ad)

0x01 Ox4E (chunk | engt h=339)
(RIS XM request)
<request xm ns="urn:ietf:parans:xm:ns:irisl"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xxsi :schemaLocati on="urn:ietf:paranms:xm :ns:irisl iris.xsd" >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:paranms: xm :ns:dchkl"
entityC ass="donai n- nang"

QO000000000000000 VLNNNNNDNNNDNDNDNDNNNNNNL O0O0O0O0OO0O0

Newt on St andards Track [Page 21]

RFC 4992 RIS XM_ Pi pelining with Chunks August

Newt on

PRRRDRDRRDNDDDRDNNNDNDNDNNNNDDL OO0O000O0O0OO0000O0O000O0O0O0O0O0

entityNanme="m | o. exanpl e. com' />
</ sear chSet >
(chunk 2)
0x07 (LC=no, DC=no, CT=ad)
0x00 OxA9 (chunk I engt h=169)
(IRI'S XM request)
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:paranms: xm :ns:dchkl"
entityCd ass="donai n- nane"
entityName="fel i x. exampl e. cont’ />
</ sear chSet >
(chunk 3)
oxC7 (LC=yes, DC=yes, CT=ad)
0x00 O0xB5 (chunk | engt h=181)
(IRI'S XM request)
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:parans: xm :ns:dchkl"
entityCd ass="donai n- nane"
entityName="hobbes. exanpl e. cont' />
</ sear chSet >

. </ request >

(response bl ock)

0x00 (bl ock header: V=0, KO=no)
(chunk 1)
0x07 (LC=no, DC=no, CT=ad)

0x01 OxDA (chunk | engt h=474)
(IRI'S XM response)
<iris:response xmns:iris="urn:ietf:paranms:xm:ns:irisl">
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e.com' regi stryType="dchk1"

2007

entityC ass="domai n-nane" entityName="m | o. exanpl e. com 1"

t emrpor ar yRef erence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<dorai nNanme>m | 0. exanpl e. conx/ donmai nNane>
<status>
<assi gnedAndActi ve/ >
</ st atus>
</ domai n>
</iris:answer>
</iris:resultSet>
(chunk 2)
0x07 (LC=no, DC=no, CT=ad)
0x01 O0xA2 (chunk | engt h=418)
(IRI'S XM response)

St andards Track [Page 22]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e.com' registryType="dchkl"
entityC ass="domai n- nane" entityName="felix.exanmple.com 1"
t erpor ar yRef er ence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<donai nNane>f el i x. exanpl e. conk/ donai nNane>
<status>
<assi gnedAndActi ve/ >
</ status>
</ domai n>
</iris:answer>
</iris:resultSet>
(chunk 3)
0xC7 (LC=yes, DC=yes, CT=ad)
0x01 0xB5 (chunk | engt h=437)
(IRI'S XM response)
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e. com' registryType="dchkl"
entityCd ass="donai n- nane"
ent i t yName="hobbes. exanpl e. com 1"
t erpor ar yRef er ence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<donai nNane>hobbes. exanpl e. conx/ donai nNane>
<status>
<assi gnedAndActi ve/ >
</ status>
</ domai n>
</iris:answer>
</iris:resultSet>
</iris:response>

DRURVVRRRRRDRDDDRDRDRDDDDDDDDDDDDDUDUNUNN

Example 1

In the follow ng exanple, an IRIS client requests domain status
information for "mlo.exanple.cont, "felix.exanple.cont, and
"hobbes. exanpl e.com' in one request. The request is sent with one
chunk; however, the answer is returned in three chunks.

(connection response bl ock)
0x20 (bl ock header: V=0, KO=yes)
(chunk 1)
oxC1 (LC=yes, DC=yes, CT=vi)

0x01 OxBF (chunk | engt h=447)
(Version Information)
<?xm version="1.0"7?>
<versions xmns="urn:ietf:parans:xm :ns:iris-transport">

CRORORORORORON)

Newt on St andards Track [Page 23]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

<transferProtocol protocolld="iris.xpcl"
aut henti cati onl ds="PLAI N EXTERNAL" >
<application protocol ld="urn:ietf:paranms:xm:ns:irisl"
ext ensi onl ds="http://exanpl e. com SI MPLEBAG' >
<dat aMbdel protocol I d="urn:ietf:parans: xm :ns:dchkl"/>
<dat aModel protocol I d="urn:ietf:parans:xm:ns:dregl"/>
</ application>
</transferProtocol >
</versions>

(request bl ock)

0x00 (bl ock header: V=0, KO=no)

0x0B (authority | ength=11)
(aut hority="exanpl e. com")

0x65 0x78 0x61 0x6D Ox70 0x6C 0x65 0x23 0x63 Ox6F 0x6D
(chunk 1)

0xCr (LC=yes, DC=yes, CT=ad)

0x02 OxAB (chunk | engt h=683)
(IRI'S XM request)
<request xmns="urn:ietf:paranms:xm:ns:irisl"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi :schemalLocati on="urn:ietf:params:xm :ns:irisl iris.xsd" >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:parans: xm :ns:dchkl"
entityCd ass="donai n- nane"
entityName="m | o. exanpl e. com' />
</ sear chSet >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:parans: xm :ns:dchkl"
entityCd ass="donai n- nane"
entityName="felix.exanple.com />
</ sear chSet >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:parans: xm :ns:dchkl"
entityCd ass="donai n- nane"
entityName="hobbes. exanpl e. cont' />
</ sear chSet >
</ request >

(response bl ock)

0x00 (bl ock header: V=0, KO=no)
(chunk 1)
0x07 (LC=no, DC=no, CT=ad)

0x01 OxDA (chunk | engt h=474)
(IRI'S XM response)

PRULVNVYW 0000000000000 00000000000000 LVLLLLLLUL®N

Newt on St andards Track [Page 24]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Newt on

PRDDDRDRDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDUNUNWN

<iris:response xmns:iris="urn:ietf:paranms:xm:ns:irisl">
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e.com' regi stryType="dchk1"
entityC ass="domai n-nane" entityName="m | o. exanpl e. com 1"
t emrpor ar yRef erence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<dorai nNanme>m | 0. exanpl e. conx/ donmai nNane>
<status>
<assi gnedAndActi ve/ >
</ st atus>
</ domai n>
</iris:answer>
</iris:resultSet>
(chunk 2)
0x07 (LC=no, DC=no, CT=ad)
0x01 O0xA2 (chunk | engt h=418)
(IRI'S XM response)
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e. com' registryType="dchkl"
entityC ass="domai n- nane" entityName="felix.exanmple.com1"
t erpor ar yRef er ence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<donmai nNane>f el i x. exanpl e. conk/ donai nNane>
<status>
<assi gnedAndActi ve/ >
</ status>
</ domai n>
</iris:answer>
</iris:resultSet>
(chunk 3)
0oxC7 (LC=yes, DC=yes, CT=ad)
0x01 0xB5 (chunk | engt h=437)
(IRI'S XM response)
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e.com' registryType="dchkl"
entityCd ass="donai n- nane"
ent i t yName="hobbes. exanpl e. com 1"
t erpor ar yRef er ence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<donai nNane>hobbes. exanpl e. conx/ donai nNane>
<stat us>
<assi gnedAndActi ve/ >
</ status>
</ domai n>
</iris:answer>

St andards Track [Page 25]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

S: <liris:resultSet>
S: </iris:response>

Exampl e 2

In the follow ng exanple, an IRIS client sends a request containing
SASL/ PLAI N aut hentication data and a domain status check for

"exanpl e.com'. The server responds with authentication success

i nformati on and the domain status of "exanple.com'. Note that the
client requests that the connection stay open for further requests,
but the server does not honor this request.

(connection response bl ock)

0x20 (bl ock header: V=0, KO=yes)
(chunk 1)
oxC1 (LC=yes, DC=yes, CT=vi)

0x01 OxBF (chunk | engt h=447)
(Version Information)
<?xm version="1.0"?>
<versions xm ns="urn:ietf:params:xm:ns:iris-transport">
<transferProtocol protocolld="iris.xpcl"
aut henti cati onl ds="PLAI N EXTERNAL" >
<application protocolld="urn:ietf:parans: xm :ns:irisl"
ext ensi onl ds="http://exanpl e. conl S| MPLEBAG' >
<dat aModel protocol | d="urn:ietf:parans:xm:ns:dchkl"/>
<dat aMbdel protocol Id="urn:ietf:paramnms: xm :ns:dregl"/>
</ application>
</transferProtocol >
</ versi ons>

(request bl ock)

0x00 (bl ock header: V=0, KO=no)

0x0B (authority I ength=11)
(aut hority="exanpl e. com")

0x65 0x78 0x61 0x6D 0x70 Ox6C 0x65 0x23 0x63 Ox6F 0x6D
(chunk 1)

0x44 (LC=no, DC=yes, CT=sd)

0x00 0x11 (chunk | ength=11)
(SASL dat a)

0x05 (mechani sm | engt h=5)
(mechani sm name="PLAI N")

0x50 0x4C 0x41 0x49 0x43

0x00 OxO0A (sasl PLAIN data | ength=10)
(sasl PLAIN data: authcid="bob")
(sasl PLAIN data: authzid=NULL)
(sasl PLAIN data: password="kEwl")

0x62 Ox6F 0x62 0x20 0x00 0x20 Ox6B 0x45 0x77 0x31
(chunk 2)

QO0000000000000000 VLLLNDNDNLDDDDDDDUNUN®N

Newt on St andards Track [Page 26]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

oxC7 (LC=yes, DC=yes, CT=ad)
0x01 0x53 (chunk | engt h=339)
(IRI'S XM_ request)
<request xm ns="urn:ietf:params:xm:ns:irisl"
xsi :schemaLocati on="urn:ietf:params:xm :ns:irisl iris.xsd" >
<sear chSet >
<l ookupEntity
regi stryType="urn:ietf:paranms: xm :ns:dchkl"
entityCd ass="donai n- nane"
ent it yName="exanpl e. com' />
</ sear chSet >
</ request >

(response bl ock)

0x00 (bl ock header: V=0, KO=no)
(chunk 1)
0x45 (LC=no, DC=yes, CT=as)

0x00 0xDO (chunk | engt h=208)
(aut hentication success response)
<?xm version="1.0"7?>
<aut henti cati onSuccess
xm ns="urn:ietf:params:xm :ns:iris-transport">
<descripti on | anguage="en">
user 'bob’ authenticates via password
</ descri ption>
</ aut henti cati onSuccess>
(chunk 2)
0xC7 (LC=yes, DC=yes, CT=ad)
0x01 OxEO (chunk I engt h=480)
(IRI'S XM response)
<iris:response xmns:iris="urn:ietf:paranms:xm:ns:irisl">
<iris:result Set>
<iris:answer>
<domai n aut hority="exanpl e.com' regi stryType="dchk1"
entityCd ass="domai n- nane" entityName="exanpl e. com 1"
t emrpor ar yRef erence="t rue"
xm ns="urn:ietf:parans: xm :ns:dchkl">
<dorai nNane>exanpl e. conx/ domai nNane>
<status>
<assi gnedAndActi ve/ >
</ st atus>
</ domai n>
</iris:answer>
</iris:resultSet>
</iris:response>

VRULVLLLLLLLLLLLLLLLLLLLLLLLLLLLLY 000000000000

Exampl e 3

Newt on St andards Track [Page 27]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Appendi x B. Contributors

Substantive contributions to this docunent have been provi ded by the
menbers of the IETF's CRI SP Wrking G oup, especially Robert Mrtin-
Legene, Ml ena Caires, and David Bl acka.

Aut hor’ s Addr ess

Andrew L. Newt on
Veri Sign, Inc.

21345 Ridgetop Circle
Sterling, VA 20166
USA

Phone: +1 703 948 3382

EMai | : andy@xr. us
URI : http://ww. veri si gnl abs. conl

Newt on St andards Track [Page 28]

RFC 4992 RIS XM_ Pi pelining with Chunks August 2007

Ful | Copyright Statenent
Copyright (C The IETF Trust (2007).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI' N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Newt on St andards Track [Page 29]

