Network Working Group Request for Comments: 5132

Obsoletes: 2932

Category: Standards Track

D. McWalter
Data Connection Ltd
D. Thaler
Microsoft Corporation
A. Kessler
Cisco Systems
December 2007

IP Multicast MIB

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects used for managing multicast function, independent of the specific multicast protocol(s) in use. This document obsoletes RFC 2932.

Table of Contents

1. Introduction	
1.1. Terminology	. 2
2. History	. 2
3. The Internet-Standard Management Framework	. 2
4. Overview	
5. IMPORTED MIB Modules and REFERENCE Clauses	. 4
6. Definitions	. 4
7. Security Considerations	. 54
7.1. SNMPv3	. 54
7.2. Writeable Objects	. 54
7.3. Readable Objects	. 55
8. IANA Considerations	. 55
9. Acknowledgements	. 55
10. References	. 56
10.1. Normative References	. 56
10.2. Informative References	. 57

1. Introduction

This MIB describes objects used for managing IP multicast function, including IP multicast routing. These objects are independent of the specific multicast routing protocol in use. Managed objects specific to particular multicast protocols are defined elsewhere.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. History

This document obsoletes [RFC2932]. The MIB module defined by this document is a re-working of the MIB module from [RFC2932], with changes that include the following:

- o This MIB module includes support for IPv6 addressing and the IPv6 scoped address architecture. [RFC2932] supported only IPv4.
- o This MIB module allows several multicast protocols to perform routing on a single interface, where [RFC2932] assumed each interface supported at most one multicast routing protocol. Multicast routing protocols are now per-route, see ipMcastRouteProtocol.
- o This MIB module includes objects that are not specific to multicast routing. It allows management of multicast function on systems that do not perform routing, whereas [RFC2932] was restricted to multicast routing.
- o This MIB module includes a table of Source-Specific Multicast (SSM) address ranges to which SSM semantics [RFC3569] should be applied.
- o This MIB module includes a table of local applications that are receiving multicast data.
- o This MIB module includes a table of multicast scope zones.
- 3. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, ([RFC2578], [RFC2579] and [RFC2580]).

4. Overview

This MIB module contains two scalars and eight tables. The tables are:

- 1. The IP Multicast Interface Table, which contains multicast information specific to interfaces.
- 2. The IP Multicast SSM Range Table, which contains one row per range of multicast group addresses to which Source-Specific Multicast semantics [RFC3569] should be applied.
- 3. The IP Multicast Route Table, which contains multicast routing information for IP datagrams sent by particular sources to the IP multicast groups known to a system.
- 4. The IP Multicast Routing Next Hop Table, which contains information about next-hops for the routing of IP multicast datagrams. Each entry is one of a list of next-hops on outgoing interfaces for particular sources sending to a particular multicast group address.
- 5. The IP Multicast Scope Boundary Table, which contains the boundaries configured for multicast scopes [RFC2365].
- 6. The IP Multicast Scope Name Table, which contains human-readable names for multicast scopes.
- 7. The IP Multicast Local Listener Table, which contains identifiers for local applications that are receiving multicast data.
- 8. The IP Multicast Zone Table, which contains an entry for each scope zone known to a system, and maps each zone to the multicast address range that is the corresponding scope.

This MIB module uses textual conventions defined in the IF-MIB [RFC2863], the INET-ADDRESS-MIB [RFC4001] and the IANA-RTPROTO-MIB.

RFC 5132 IP MCAST MIB December 2007

5. IMPORTED MIB Modules and REFERENCE Clauses

The MIB modules defined in this document IMPORTs definitions normatively from the following MIB modules, beyond [RFC2578], [RFC2579], and [RFC2580]: HCNUM-TC [RFC2856], IF-MIB [RFC2863], IANA-RTPROTO-MIB, SNMP-FRAMEWORK-MIB [RFC3411], INET-ADDRESS-MIB [RFC4001], and LANGTAG-TC-MIB [RFC5131].

This MIB module also includes REFERENCE clauses that make normative references to Administratively Scoped IP Multicast [RFC2365], Unicast-Prefix-based IPv6 Multicast Addresses [RFC3306], IPv6 Scoped Address Architecture [RFC4007], and IPv6 Addressing Architecture [RFC4291].

Finally, this MIB module makes informative references to several RFCs in the text of DESCRIPTION clauses, including sysApplMIB [RFC2287], IP-MIB [RFC4293], Source-Specific Multicast [RFC3569], Protocol Independent Multicast-Sparse Mode version 2 (PIM-SMv2) Protocol Specification [RFC4601], Bidirectional Protocol Independent Multicast (BIDIR-PIM) [RFC5015], and Tags for Identifying Languages [RFC4646].

6. Definitions

IPMCAST-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, mib-2, Unsigned32, Counter64, Gauge32, TimeTicks FROM SNMPv2-SMI -- [RFC2578] RowStatus, TruthValue, StorageType, TimeStamp FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF CounterBasedGauge64 FROM HCNUM-TC InterfaceIndexOrZero. -- [RFC2579] -- [RFC2580] -- [RFC2856] InterfaceIndexOrZero, InterfaceIndex FROM IF-MIB -- [RFC2863] IANAipRouteProtocol, IANAIpMRouteProtocol FROM IANA-RTPROTO-MIB SnmpAdminString FROM SNMP-FRAMEWORK-MIB -- [RFC3411] InetAddress, InetAddressType, InetAddressPrefixLength, InetZoneIndex, InetVersion FROM INET-ADDRESS-MIB -- [RFC4001] LangTag FROM LANGTAG-TC-MIB; -- [RFC5131]

[Page 4]

ipMcastMIB MODULE-IDENTITY

LAST-UPDATED "200711090000Z" -- 9 November 2007
ORGANIZATION "IETF MBONE Deployment (MBONED) Working Group"
CONTACT-INFO "David McWalter
Data Connection Limited

McWalter, et al. Standards Track

100 Church Street Enfield, EN2 6BQ UK

Phone: +44 208 366 1177

EMail: dmcw@dataconnection.com

Dave Thaler Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399

Phone: +1 425 703 8835

EMail: dthaler@dthaler.microsoft.com

Andrew Kessler Cisco Systems 425 E. Tasman Drive San Jose, CA 95134 US

Phone: +1 408 526 5139 EMail: kessler@cisco.com"

DESCRIPTION

"The MIB module for management of IP Multicast, including multicast routing, data forwarding, and data reception.

Copyright (C) The IETF Trust (2007). This version of this MIB module is part of RFC 5132; see the RFC itself for full legal notices."

REVISION "200711090000Z" -- 9 November 2007 DESCRIPTION "Initial version, published as RFC 5132.

This MIB module obsoletes IPMROUTE-STD-MIB defined by [RFC2932]. Changes include the following:

- o This MIB module includes support for IPv6 addressing and the IPv6 scoped address architecture. [RFC2932] supported only IPv4.
- o This MIB module allows several multicast protocols to perform routing on a single interface, where [RFC2932] assumed each interface supported at most one multicast routing protocol. Multicast routing protocols are now per-route, see ipMcastRouteProtocol.

- o This MIB module includes objects that are not specific to multicast routing. It allows management of multicast function on systems that do not perform routing, whereas [RFC2932] was restricted to multicast routing.
- o This MIB module includes a table of Source-Specific Multicast (SSM) address ranges to which SSM semantics [RFC3569] should be applied.
- o This MIB module includes a table of local applications that are receiving multicast data.
- o This MIB module includes a table of multicast scope zones."

```
::= { mib-2 168 }
-- Top-level structure of the MIB
        OBJECT IDENTIFIER ::= { ipMcastMIB 1 }
ipMcast
ipMcastEnabled OBJECT-TYPE
   SYNTAX TruthValue
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
           "The enabled status of IP Multicast function on this
           system.
           The storage type of this object is determined by
           ipMcastDeviceConfigStorageType."
    ::= { ipMcast 1 }
ipMcastRouteEntryCount OBJECT-TYPE
   SYNTAX Gauge32
   MAX-ACCESS read-only
   STATUS
             current
   DESCRIPTION
           "The number of rows in the ipMcastRouteTable. This can be
           used to check for multicast routing activity, and to monitor
           the multicast routing table size."
    ::= { ipMcast 2 }
ipMcastDeviceConfigStorageType OBJECT-TYPE
   SYNTAX StorageType
```

MAX-ACCESS read-write

```
STATUS
               current
   DESCRIPTION
           "The storage type used for the global IP multicast
           configuration of this device, comprised of the objects
           listed below. If this storage type takes the value
           'permanent', write-access to the listed objects need not be
           allowed.
           The objects described by this storage type are:
           ipMcastEnabled."
      DEFVAL { nonVolatile }
    ::= { ipMcast 11 }
   The Multicast Interface Table
ipMcastInterfaceTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastInterfaceEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The (conceptual) table used to manage the multicast
           protocol active on an interface."
    ::= { ipMcast 3 }
ipMcastInterfaceEntry OBJECT-TYPE
   SYNTAX IpMcastInterfaceEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "An entry (conceptual row) containing the multicast protocol
           information for a particular interface.
           Per-interface multicast forwarding statistics are also
           available in ipIfStatsTable."
   REFERENCE "RFC 4293 ipIfStatsTable"
              { ipMcastInterfaceIPVersion,
                ipMcastInterfaceIfIndex }
    ::= { ipMcastInterfaceTable 1 }
IpMcastInterfaceEntry ::= SEQUENCE {
   ipMcastInterfaceIPVersion InetVersion,
   ipMcastInterfaceIfIndex
                                    InterfaceIndex,
                                   Unsigned32,
   ipMcastInterfaceTtl
   ipMcastInterfaceRateLimit
                                    Unsigned32,
   ipMcastInterfaceStorageType
                                    StorageType
```

```
ipMcastInterfaceIPVersion OBJECT-TYPE
   SYNTAX InetVersion
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
          "The IP version of this row."
    ::= { ipMcastInterfaceEntry 1 }
ipMcastInterfaceIfIndex OBJECT-TYPE
   SYNTAX InterfaceIndex
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
          "The index value that uniquely identifies the interface to
           which this entry is applicable. The interface identified by
           a particular value of this index is the same interface as
           identified by the same value of the IF-MIB's ifIndex."
    ::= { ipMcastInterfaceEntry 2 }
ipMcastInterfaceTtl OBJECT-TYPE
   SYNTAX Unsigned32 (0..256)
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
           "The datagram Time to Live (TTL) threshold for the
           interface. Any IP multicast datagrams with a TTL (IPv4) or
           Hop Limit (IPv6) less than this threshold will not be
           forwarded out the interface. The default value of 0 means
           all multicast packets are forwarded out the interface. A
           value of 256 means that no multicast packets are forwarded
           out the interface."
   DEFVAL { 0 }
   ::= { ipMcastInterfaceEntry 3 }
ipMcastInterfaceRateLimit OBJECT-TYPE
   SYNTAX Unsigned32
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
           "The rate-limit, in kilobits per second, of forwarded
           multicast traffic on the interface. A rate-limit of 0
           indicates that no rate limiting is done."
   DEFVAL { 0 }
    ::= { ipMcastInterfaceEntry 4 }
ipMcastInterfaceStorageType OBJECT-TYPE
   SYNTAX StorageType
   MAX-ACCESS read-write
```

```
STATUS
               current
   DESCRIPTION
            "The storage type for this row. Rows having the value
            'permanent' need not allow write-access to any columnar
            objects in the row."
      DEFVAL { nonVolatile }
    ::= { ipMcastInterfaceEntry 5 }
-- The SSM Range Table
ipMcastSsmRangeTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastSsmRangeEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "This table is used to create and manage the range(s) of
           group addresses to which SSM semantics should be applied."
   REFERENCE "RFC 3569"
   ::= { ipMcast 4 }
ipMcastSsmRangeEntry OBJECT-TYPE
           IpMcastSsmRangeEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "An entry (conceptual row) containing a range of group
            addresses to which SSM semantics should be applied.
            Object Identifiers (OIDs) are limited to 128
            sub-identifiers, but this limit is not enforced by the
            syntax of this entry. In practice, this does not present
           a problem, because IP address types allowed by conformance
           statements do not exceed this limit."
   REFERENCE "RFC 3569"
    INDEX
              { ipMcastSsmRangeAddressType,
                 ipMcastSsmRangeAddress,
                 ipMcastSsmRangePrefixLength }
    ::= { ipMcastSsmRangeTable 1 }
IpMcastSsmRangeEntry ::= SEQUENCE {
    \verb"ipMcastSsmRangeAddressType" In \verb=tAddressType",
    ipMcastSsmRangeAddress InetAddress,
    ip {\tt McastSsmRangePrefixLength} \quad {\tt InetAddressPrefixLength},
    ipMcastSsmRangeRowStatus RowStatus,
   ipMcastSsmRangeStorageType StorageType
```

ipMcastSsmRangeAddressType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The address type of the multicast group prefix." ::= { ipMcastSsmRangeEntry 1 } ipMcastSsmRangeAddress OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The multicast group address which, when combined with ipMcastSsmRangePrefixLength, gives the group prefix for this SSM range. The InetAddressType is given by ipMcastSsmRangeAddressType. This address object is only significant up to ipMcastSsmRangePrefixLength bits. The remaining address bits are set to zero. This is especially important for this index field, which is part of the index of this entry. Any non-zero bits would signify an entirely different entry. For IPv6 SSM address ranges, only ranges prefixed by FF3x::/16 are permitted, where 'x' is a valid IPv6 RFC 4291 multicast address scope. The syntax of the address range is given by RFC 3306, Sections 4 and 7. For addresses of type ipv4z or ipv6z, the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this SSM range entry applies only within the given zone. Zone index zero is not valid in this table. If non-global scope SSM range entries are present, then consistent ipMcastBoundaryTable entries are required on routers at the zone boundary." REFERENCE "RFC 2365, RFC 4291 Section 2.7, RFC 3306 Sections 4, 6, and 7" ::= { ipMcastSsmRangeEntry 2 } ipMcastSsmRangePrefixLength OBJECT-TYPE

SYNTAX InetAddressPrefixLength

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The length in bits of the mask which, when combined with

```
ipMcastSsmRangeAddress, gives the group prefix for this SSM
            range.
           The InetAddressType is given by ipMcastSsmRangeAddressType.
           For values 'ipv4' and 'ipv4z', this object must be in the
           range 4..32. For values 'ipv6' and 'ipv6z', this object
           must be in the range 8..128."
   REFERENCE "RFC 2365, RFC 4291 Section 2.7, RFC 3306 Sections 4, 6,
           and 7"
    ::= { ipMcastSsmRangeEntry 3 }
ipMcastSsmRangeRowStatus OBJECT-TYPE
   SYNTAX RowStatus
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
           "The status of this row, by which rows in this table can
           be created and destroyed.
           This status object can be set to active(1) without setting
           any other columnar objects in this entry.
           All writeable objects in this entry can be modified when the
            status of this entry is active(1)."
    ::= { ipMcastSsmRangeEntry 4 }
ipMcastSsmRangeStorageType OBJECT-TYPE
   SYNTAX StorageType
   MAX-ACCESS read-create
   STATUS
               current
   DESCRIPTION
          "The storage type for this row. Rows having the value
           'permanent' need not allow write-access to any columnar
          objects in the row."
      DEFVAL { nonVolatile }
    ::= { ipMcastSsmRangeEntry 5 }
   The IP Multicast Routing Table
ipMcastRouteTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastRouteEntry
   MAX-ACCESS not-accessible
   STATUS
            current
   DESCRIPTION
            "The (conceptual) table containing multicast routing
           information for IP datagrams sent by particular sources
```

```
to the IP multicast groups known to this router."
        ::= { ipMcast 5 }
ipMcastRouteEntry OBJECT-TYPE
        SYNTAX IpMcastRouteEntry
        MAX-ACCESS not-accessible
        STATUS current
        DESCRIPTION
                         "An entry (conceptual row) containing the multicast routing
                         information for IP datagrams from a particular source and
                         addressed to a particular IP multicast group address.
                         OIDs are limited to 128 sub-identifiers, but this limit
                         is not enforced by the syntax of this entry. In practice,
                         this does not present a problem, because IP address types
                         allowed by conformance statements do not exceed this limit."
        TNDEX
                                { ipMcastRouteGroupAddressType,
                                    ipMcastRouteGroup,
                                    ipMcastRouteGroupPrefixLength,
                                    ipMcastRouteSourceAddressType,
                                    ipMcastRouteSource,
                                    ipMcastRouteSourcePrefixLength }
        ::= { ipMcastRouteTable 1 }
IpMcastRouteEntry ::= SEQUENCE {
        ipMcastRouteGroupAddressType
                                                                            InetAddressType,
        ipMcastRouteGroup
                                                                                InetAddress,
        ipMcastRouteGroupPrefixLength
ipMcastRouteSourceAddressType
ipMcastRouteSource
ipMca
                                                                               InetAddress,
        ipMcastRouteSource
        ipMcastRouteUpstreamNeighborType InetAddressType,
        ipMcastRouteTimeStamp
                                                                              TimeStamp,
                                                                            TimeTicks,
        ipMcastRouteExpiryTime
                                                                             IANAipMRouteProtocol,
        ipMcastRouteProtocol
        ipMcastRouteRtProtocol
                                                                        IANAipRouteProtocol,
InetAddressType,
InetAddress,
        ipMcastRouteRtAddressType
ipMcastRouteRtAddress
ipMcastRouteRtAddress
        ipMcastRouteRtType
                                                                               INTEGER,
        ipMcastRouteOctets
                                                                                Counter64,
                                                                             Counter64,
        ipMcastRoutePkts
        ipMcastRouteTtlDropPackets
ipMcastRouteDiff

ipMcastRouteDiff
        ipMcastRouteDifferentInIfOctets Counter64,
        ipMcastRouteDifferentInIfPackets Counter64,
```

```
ipMcastRouteBps
                                     CounterBasedGauge64
ipMcastRouteGroupAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
           contained in ipMcastRouteGroup. Legal values correspond to
           the subset of address families for which multicast
           forwarding is supported."
   ::= { ipMcastRouteEntry 1 }
ipMcastRouteGroup OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The IP multicast group address which, when combined with
           the corresponding value specified in
           ipMcastRouteGroupPrefixLength, identifies the groups for
           which this entry contains multicast routing information.
           This address object is only significant up to
           ipMcastRouteGroupPrefixLength bits. The remaining address
           bits are set to zero. This is especially important for this
           index field, which is part of the index of this entry. Any
           non-zero bits would signify an entirely different entry.
           For addresses of type ipv4z or ipv6z, the appended zone
           index is significant even though it lies beyond the prefix
           length. The use of these address types indicate that this
           forwarding state applies only within the given zone. Zone
           index zero is not valid in this table."
   ::= { ipMcastRouteEntry 2 }
ipMcastRouteGroupPrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The length in bits of the mask which, when combined with
           the corresponding value of ipMcastRouteGroup, identifies the
           groups for which this entry contains multicast routing
           information.
           The InetAddressType is given by
```

```
ipMcastRouteGroupAddressType. For values 'ipv4' and
            'ipv4z', this object must be in the range 4..32. For values
            'ipv6' and 'ipv6z', this object must be in the range
            8..128."
    ::= { ipMcastRouteEntry 3 }
ipMcastRouteSourceAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
           contained in ipMcastRouteSource.
           A value of unknown(0) indicates a non-source-specific entry,
           corresponding to all sources in the group. Otherwise, the
           value MUST be the same as the value of
           ipMcastRouteGroupType."
    ::= { ipMcastRouteEntry 4 }
ipMcastRouteSource OBJECT-TYPE
    SYNTAX InetAddress
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The network address which, when combined with the
           corresponding value of ipMcastRouteSourcePrefixLength,
           identifies the sources for which this entry contains
           multicast routing information.
           This address object is only significant up to
           ipMcastRouteSourcePrefixLength bits. The remaining address
           bits are set to zero. This is especially important for this
           index field, which is part of the index of this entry. Any
           non-zero bits would signify an entirely different entry.
           For addresses of type ipv4z or ipv6z, the appended zone
           index is significant even though it lies beyond the prefix
           length. The use of these address types indicate that this
           source address applies only within the given zone. Zone
           index zero is not valid in this table."
    ::= { ipMcastRouteEntry 5 }
ipMcastRouteSourcePrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS not-accessible
   STATUS
              current
   DESCRIPTION
```

"The length in bits of the mask which, when combined with the corresponding value of ipMcastRouteSource, identifies

```
the sources for which this entry contains multicast routing
           information.
           The InetAddressType is given by
           ipMcastRouteSourceAddressType. For the value 'unknown',
           this object must be zero. For values 'ipv4' and 'ipv4z',
           this object must be in the range 4..32. For values 'ipv6'
           and 'ipv6z', this object must be in the range 8..128."
   ::= { ipMcastRouteEntry 6 }
ipMcastRouteUpstreamNeighborType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
           contained in ipMcastRouteUpstreamNeighbor.
           An address type of unknown(0) indicates that the upstream
           neighbor is unknown, for example in BIDIR-PIM."
   REFERENCE "RFC 5015"
   ::= { ipMcastRouteEntry 7 }
ipMcastRouteUpstreamNeighbor OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The address of the upstream neighbor (for example, RPF
           neighbor) from which IP datagrams from these sources to
           this multicast address are received."
   ::= { ipMcastRouteEntry 8 }
ipMcastRouteInIfIndex OBJECT-TYPE
   SYNTAX InterfaceIndexOrZero
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The value of ifIndex for the interface on which IP
           datagrams sent by these sources to this multicast address
           are received. A value of 0 indicates that datagrams are not
           subject to an incoming interface check, but may be accepted
           on multiple interfaces (for example, in BIDIR-PIM)."
   REFERENCE "RFC 5015"
   ::= { ipMcastRouteEntry 9 }
```

```
ipMcastRouteTimeStamp OBJECT-TYPE
   SYNTAX TimeStamp
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The value of sysUpTime at which the multicast routing
           information represented by this entry was learned by the
           router.
           If this information was present at the most recent re-
           initialization of the local management subsystem, then this
           object contains a zero value."
    ::= { ipMcastRouteEntry 10 }
ipMcastRouteExpiryTime OBJECT-TYPE
   SYNTAX TimeTicks
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The minimum amount of time remaining before this entry will
           be aged out. The value 0 indicates that the entry is not
           subject to aging. If ipMcastRouteNextHopState is pruned(1),
           this object represents the remaining time until the prune
           expires. If this timer expires, state reverts to
           forwarding(2). Otherwise, this object represents the time
           until this entry is removed from the table."
    ::= { ipMcastRouteEntry 11 }
ipMcastRouteProtocol OBJECT-TYPE
   SYNTAX IANAipMRouteProtocol
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
            "The multicast routing protocol via which this multicast
            forwarding entry was learned."
    ::= { ipMcastRouteEntry 12 }
ipMcastRouteRtProtocol OBJECT-TYPE
   SYNTAX IANAipRouteProtocol
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
            "The routing mechanism via which the route used to find the
           upstream or parent interface for this multicast forwarding
           entry was learned."
    ::= { ipMcastRouteEntry 13 }
ipMcastRouteRtAddressType OBJECT-TYPE
```

```
InetAddressType
   MAX-ACCESS read-only
   STATUS
           current
   DESCRIPTION
            "A value indicating the address family of the address
            contained in ipMcastRouteRtAddress."
    ::= { ipMcastRouteEntry 14 }
ipMcastRouteRtAddress OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The address portion of the route used to find the upstream
            or parent interface for this multicast forwarding entry.
            This address object is only significant up to
            ipMcastRouteRtPrefixLength bits. The remaining address bits
            are set to zero.
            For addresses of type ipv4z or ipv6z, the appended zone
            index is significant even though it lies beyond the prefix
            length. The use of these address types indicate that this
            forwarding state applies only within the given zone. Zone
            index zero is not valid in this table."
    ::= { ipMcastRouteEntry 15 }
ipMcastRouteRtPrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS read-only
   STATUS
           current
   DESCRIPTION
            "The length in bits of the mask associated with the route
            used to find the upstream or parent interface for this
            multicast forwarding entry.
            The InetAddressType is given by ipMcastRouteRtAddressType.
            For values 'ipv4' and 'ipv4z', this object must be in the
            range 4..32. For values 'ipv6' and 'ipv6z', this object
           must be in the range 8..128."
    ::= { ipMcastRouteEntry 16 }
ipMcastRouteRtType OBJECT-TYPE
   SYNTAX
              INTEGER {
               unicast (1), -- Unicast route used in multicast RIB
multicast (2) -- Multicast route
   MAX-ACCESS read-only
```

```
STATUS
              current
   DESCRIPTION
           "The reason the given route was placed in the (logical)
           multicast Routing Information Base (RIB). A value of
           unicast means that the route would normally be placed only
           in the unicast RIB, but was placed in the multicast RIB
           due (instead or in addition) to local configuration, such as
           when running PIM over RIP. A value of multicast means that
           the route was explicitly added to the multicast RIB by the
           routing protocol, such as the Distance Vector Multicast
           Routing Protocol (DVMRP) or Multiprotocol BGP."
    ::= { ipMcastRouteEntry 17 }
ipMcastRouteOctets OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The number of octets contained in IP datagrams that were
           received from these sources and addressed to this multicast
           group address, and which were forwarded by this router.
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of routes being
           removed and replaced, which can be detected by observing
           the value of ipMcastRouteTimeStamp."
    ::= { ipMcastRouteEntry 18 }
ipMcastRoutePkts OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
            "The number of packets routed using this multicast route
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of routes being
           removed and replaced, which can be detected by observing
           the value of ipMcastRouteTimeStamp."
    ::= { ipMcastRouteEntry 19 }
```

SYNTAX Counter64

ipMcastRouteTtlDropOctets OBJECT-TYPE

MAX-ACCESS read-only STATUS current

DESCRIPTION

"The number of octets contained in IP datagrams that this router has received from these sources and addressed to this multicast group address, which were dropped because the TTL (IPv4) or Hop Limit (IPv6) was decremented to zero, or to a value less than ipMcastInterfaceTtl for all next hops.

Discontinuities in this monotonically increasing value occur at re-initialization of the management system. Discontinuities can also occur as a result of routes being removed and replaced, which can be detected by observing the value of ipMcastRouteTimeStamp."

::= { ipMcastRouteEntry 20 }

ipMcastRouteTtlDropPackets OBJECT-TYPE

SYNTAX Counter64
MAX-ACCESS read-only
STATUS current

DESCRIPTION

"The number of packets that this router has received from these sources and addressed to this multicast group address, which were dropped because the TTL (IPv4) or Hop Limit (IPv6) was decremented to zero, or to a value less than ipMcastInterfaceTtl for all next hops.

Discontinuities in this monotonically increasing value occur at re-initialization of the management system. Discontinuities can also occur as a result of routes being removed and replaced, which can be detected by observing the value of ipMcastRouteTimeStamp."

::= { ipMcastRouteEntry 21 }

ipMcastRouteDifferentInIfOctets OBJECT-TYPE

SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION

"The number of octets contained in IP datagrams that this router has received from these sources and addressed to this multicast group address, which were dropped because they were received on an unexpected interface.

For RPF checking protocols (such as PIM-SM), these packets arrived on interfaces other than ipMcastRouteInIfIndex, and were dropped because of this failed RPF check. (RPF paths are 'Reverse Path Forwarding' paths; the unicast routes to the expected origin of multicast data flows).

RFC 5132 IP MCAST MIB December 2007

Other protocols may drop packets on an incoming interface check for different reasons (for example, BIDIR-PIM performs a DF check on receipt of packets). All packets dropped as a result of an incoming interface check are counted here.

If this counter increases rapidly, this indicates a problem. A significant quantity of multicast data is arriving at this router on unexpected interfaces, and is not being forwarded.

For guidance, if the rate of increase of this counter exceeds 1% of the rate of increase of ipMcastRouteOctets, then there are multicast routing problems that require investigation.

Discontinuities in this monotonically increasing value occur at re-initialization of the management system. Discontinuities can also occur as a result of routes being removed and replaced, which can be detected by observing the value of ipMcastRouteTimeStamp."

REFERENCE "RFC 4601 and RFC 5015"
::= { ipMcastRouteEntry 22 }

ipMcastRouteDifferentInIfPackets OBJECT-TYPE

SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION

> "The number of packets which this router has received from these sources and addressed to this multicast group address, which were dropped because they were received on an unexpected interface.

> For RPF checking protocols (such as PIM-SM), these packets arrived on interfaces other than ipMcastRouteInIfIndex, and were dropped because of this failed RPF check. (RPF paths are 'Reverse Path Forwarding' path; the unicast routes to the expected origin of multicast data flows).

Other protocols may drop packets on an incoming interface check for different reasons (for example, BIDIR-PIM performs a DF check on receipt of packets). All packets dropped as a result of an incoming interface check are counted here.

If this counter increases rapidly, this indicates a problem. A significant quantity of multicast data is arriving at this router on unexpected interfaces, and is not being forwarded.

For guidance, if the rate of increase of this counter

exceeds 1% of the rate of increase of ipMcastRoutePkts, then there are multicast routing problems that require investigation.

Discontinuities in this monotonically increasing value occur at re-initialization of the management system. Discontinuities can also occur as a result of routes being removed and replaced, which can be detected by observing the value of ipMcastRouteTimeStamp."

REFERENCE "RFC 4601 and RFC 5015"
::= { ipMcastRouteEntry 23 }

ipMcastRouteBps OBJECT-TYPE

SYNTAX CounterBasedGauge64
UNITS "bits per second"

MAX-ACCESS read-only STATUS current

DESCRIPTION

"Bits per second forwarded by this router using this multicast routing entry.

This value is a sample; it is the number of bits forwarded during the last whole 1 second sampling period. The value during the current 1 second sampling period is not made available until the period is completed.

The quantity being sampled is the same as that measured by ipMcastRouteOctets. The units and the sampling method are different."

::= { ipMcastRouteEntry 24 }

-- The IP Multicast Routing Next Hop Table

_ _

ipMcastRouteNextHopTable OBJECT-TYPE

SYNTAX SEQUENCE OF IPMcastRouteNextHopEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The (conceptual) table containing information on the next-hops on outgoing interfaces for routing IP multicast datagrams. Each entry is one of a list of next-hops on outgoing interfaces for particular sources sending to a particular multicast group address."

::= { ipMcast 6 }

ipMcastRouteNextHopEntry OBJECT-TYPE

SYNTAX IpMcastRouteNextHopEntry

```
MAX-ACCESS not-accessible
    STATUS
              current
   DESCRIPTION
            "An entry (conceptual row) in the list of next-hops on
            outgoing interfaces to which IP multicast datagrams from
            particular sources to an IP multicast group address are
            routed.
            OIDs are limited to 128 sub-identifiers, but this limit
            is not enforced by the syntax of this entry. In practice,
            this does not present a problem, because IP address types
            allowed by conformance statements do not exceed this limit."
    INDEX
               { ipMcastRouteNextHopGroupAddressType,
                 ipMcastRouteNextHopGroup,
                 ipMcastRouteNextHopGroupPrefixLength,
                 ipMcastRouteNextHopSourceAddressType,
                 ipMcastRouteNextHopSource,
                 ipMcastRouteNextHopSourcePrefixLength,
                 ipMcastRouteNextHopIfIndex,
                 ipMcastRouteNextHopAddressType,
                 ipMcastRouteNextHopAddress }
    ::= { ipMcastRouteNextHopTable 1 }
IpMcastRouteNextHopEntry ::= SEQUENCE {
    ipMcastRouteNextHopGroupAddressType
                                           InetAddressType,
    ipMcastRouteNextHopGroup
                                            InetAddress,
    ipMcastRouteNextHopGroupPrefixLength
ipMcastRouteNextHopSourceAddressType
                                           InetAddressPrefixLength,
                                           InetAddressType,
    ipMcastRouteNextHopSource
                                           InetAddress,
    ipMcastRouteNextHopSourcePrefixLength InetAddressPrefixLength,
    ipMcastRouteNextHopIfIndex
                                           InterfaceIndex,
    ipMcastRouteNextHopIfIndex
ipMcastRouteNextHopAddressType
                                          InetAddressType,
    ipMcastRouteNextHopAddress
                                          InetAddress,
    ipMcastRouteNextHopState
                                           INTEGER,
    ipMcastRouteNextHopTimeStamp
                                           TimeStamp,
    ipMcastRouteNextHopExpiryTime
                                          TimeTicks,
    ipMcastRouteNextHopClosestMemberHops Unsigned32,
    ipMcastRouteNextHopProtocol
                                          IANAipMRouteProtocol,
    ipMcastRouteNextHopOctets
                                           Counter64,
    ipMcastRouteNextHopPkts
                                           Counter64
}
ipMcastRouteNextHopGroupAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
    STATUS
              current
   DESCRIPTION
            "A value indicating the address family of the address
```

```
contained in ipMcastRouteNextHopGroup. Legal values
           correspond to the subset of address families for which
           multicast forwarding is supported."
   ::= { ipMcastRouteNextHopEntry 1 }
ipMcastRouteNextHopGroup OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS not-accessible
   STATUS
           current
   DESCRIPTION
           "The IP multicast group address which, when combined with
           the corresponding value specified in
           ipMcastRouteNextHopGroupPrefixLength, identifies the groups
           for which this entry contains multicast forwarding
           information.
           This address object is only significant up to
           ipMcastRouteNextHopGroupPrefixLength bits. The remaining
           address bits are set to zero. This is especially important
           for this index field, which is part of the index of this
           entry. Any non-zero bits would signify an entirely
           different entry.
           For addresses of type ipv4z or ipv6z, the appended zone
           index is significant even though it lies beyond the prefix
           length. The use of these address types indicate that this
           forwarding state applies only within the given zone. Zone
           index zero is not valid in this table."
   ::= { ipMcastRouteNextHopEntry 2 }
ipMcastRouteNextHopGroupPrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS not-accessible
           current
   DESCRIPTION
           "The length in bits of the mask which, when combined with
           the corresponding value of ipMcastRouteGroup, identifies the
           groups for which this entry contains multicast routing
           information.
           The InetAddressType is given by
           ipMcastRouteNextHopGroupAddressType. For values 'ipv4' and
           'ipv4z', this object must be in the range 4..32. For values
           'ipv6' and 'ipv6z', this object must be in the range
           8..128."
   ::= { ipMcastRouteNextHopEntry 3 }
ipMcastRouteNextHopSourceAddressType OBJECT-TYPE
```

SYNTAX InetAddressType MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A value indicating the address family of the address contained in ipMcastRouteNextHopSource.

A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of ipMcastRouteNextHopGroupType."

::= { ipMcastRouteNextHopEntry 4 }

ipMcastRouteNextHopSource OBJECT-TYPE

SYNTAX InetAddress
MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The network address which, when combined with the corresponding value of the mask specified in ipMcastRouteNextHopSourcePrefixLength, identifies the sources for which this entry specifies a next-hop on an outgoing interface.

This address object is only significant up to ipMcastRouteNextHopSourcePrefixLength bits. The remaining address bits are set to zero. This is especially important for this index field, which is part of the index of this entry. Any non-zero bits would signify an entirely different entry.

For addresses of type ipv4z or ipv6z, the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this source address applies only within the given zone. Zone index zero is not valid in this table."

::= { ipMcastRouteNextHopEntry 5 }

ipMcastRouteNextHopSourcePrefixLength OBJECT-TYPE

SYNTAX InetAddressPrefixLength

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The length in bits of the mask which, when combined with the corresponding value specified in ipMcastRouteNextHopSource, identifies the sources for which this entry specifies a next-hop on an outgoing interface.

```
The InetAddressType is given by
           ipMcastRouteNextHopSourceAddressType. For the value
            'unknown', this object must be zero. For values 'ipv4' and
            'ipv4z', this object must be in the range 4..32. For values
            'ipv6' and 'ipv6z', this object must be in the range
           8..128."
   ::= { ipMcastRouteNextHopEntry 6 }
ipMcastRouteNextHopIfIndex OBJECT-TYPE
            InterfaceIndex
   MAX-ACCESS not-accessible
   STATUS
             current
   DESCRIPTION
           "The ifIndex value of the interface for the outgoing
           interface for this next-hop."
   ::= { ipMcastRouteNextHopEntry 7 }
ipMcastRouteNextHopAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
           contained in ipMcastRouteNextHopAddress."
   ::= { ipMcastRouteNextHopEntry 8 }
ipMcastRouteNextHopAddress OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The address of the next-hop specific to this entry. For
           most interfaces, this is identical to
           ipMcastRouteNextHopGroup. Non-Broadcast Multi-Access
           (NBMA) interfaces, however, may
           have multiple next-hop addresses out a single outgoing
           interface."
   ::= { ipMcastRouteNextHopEntry 9 }
ipMcastRouteNextHopState OBJECT-TYPE
   SYNTAX INTEGER { pruned(1), forwarding(2) }
   MAX-ACCESS read-only
   STATUS
           current
   DESCRIPTION
           "An indication of whether the outgoing interface and next-
           hop represented by this entry is currently being used to
           forward IP datagrams. The value 'forwarding' indicates it
           is currently being used; the value 'pruned' indicates it is
```

```
not."
   ::= { ipMcastRouteNextHopEntry 10 }
ipMcastRouteNextHopTimeStamp OBJECT-TYPE
   SYNTAX TimeStamp
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The value of sysUpTime at which the multicast routing
           information represented by this entry was learned by the
           If this information was present at the most recent re-
           initialization of the local management subsystem, then this
           object contains a zero value."
   ::= { ipMcastRouteNextHopEntry 11 }
ipMcastRouteNextHopExpiryTime OBJECT-TYPE
   SYNTAX TimeTicks
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The minimum amount of time remaining before this entry will
           be aged out. If ipMcastRouteNextHopState is pruned(1), the
           remaining time until the prune expires and the state reverts
           to forwarding(2). Otherwise, the remaining time until this
           entry is removed from the table. The time remaining may be
           copied from ipMcastRouteExpiryTime if the protocol in use
           for this entry does not specify next-hop timers. The value
           O indicates that the entry is not subject to aging."
   ::= { ipMcastRouteNextHopEntry 12 }
ipMcastRouteNextHopClosestMemberHops OBJECT-TYPE
           Unsigned32 (0..256)
   MAX-ACCESS read-only
   STATUS
           current
   DESCRIPTION
           "The minimum number of hops between this router and any
           member of this IP multicast group reached via this next-hop
           on this outgoing interface. Any IP multicast datagrams for
```

the group that have a TTL (IPv4) or Hop Count (IPv6) less than this number of hops will not be forwarded to this next-hop.

A value of 0 means all multicast datagrams are forwarded out the interface. A value of 256 means that no multicast datagrams are forwarded out the interface.

```
This is an optimization applied by multicast routing
           protocols that explicitly track hop counts to downstream
           listeners. Multicast protocols that are not aware of hop
           counts to downstream listeners set this object to 0."
    ::= { ipMcastRouteNextHopEntry 13 }
ipMcastRouteNextHopProtocol OBJECT-TYPE
   SYNTAX IANAipMRouteProtocol
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The routing mechanism via which this next-hop was learned."
    ::= { ipMcastRouteNextHopEntry 14 }
ipMcastRouteNextHopOctets OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The number of octets of multicast packets that have been
           forwarded using this route.
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of routes being
           removed and replaced, which can be detected by observing
           the value of ipMcastRouteNextHopTimeStamp."
    ::= { ipMcastRouteNextHopEntry 15 }
ipMcastRouteNextHopPkts OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The number of packets which have been forwarded using this
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of routes being
           removed and replaced, which can be detected by observing
           the value of ipMcastRouteNextHopTimeStamp."
    ::= { ipMcastRouteNextHopEntry 16 }
   The IP Multicast Scope Boundary Table
```

```
ipMcastBoundaryTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastBoundaryEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The (conceptual) table listing the system's multicast scope
           zone boundaries."
   REFERENCE "RFC 4007 Section 5"
    ::= { ipMcast 7 }
ipMcastBoundaryEntry OBJECT-TYPE
             IpMcastBoundaryEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "An entry (conceptual row) describing one of this device's
           multicast scope zone boundaries.
           OIDs are limited to 128 sub-identifiers, but this limit
           is not enforced by the syntax of this entry. In practice,
           this does not present a problem, because IP address types
           allowed by conformance statements do not exceed this limit."
   REFERENCE "RFC 2365 Section 5, RFC 4007 Section 5"
              { ipMcastBoundaryIfIndex,
                ipMcastBoundaryAddressType,
                ipMcastBoundaryAddress,
                ipMcastBoundaryAddressPrefixLength }
    ::= { ipMcastBoundaryTable 1 }
IpMcastBoundaryEntry ::= SEQUENCE {
   ipMcastBoundaryAddressType
    ipMcastBoundaryIfIndex
                                      InterfaceIndex,
                                      InetAddressType,
                                      InetAddress,
    ipMcastBoundaryAddressPrefixLength InetAddressPrefixLength,
    ipMcastBoundaryTimeStamp
                                      TimeStamp,
    ipMcastBoundaryDroppedMcastOctets Counter64,
    ipMcastBoundaryDroppedMcastPkts Counter64,
    ipMcastBoundaryStatus
                                      RowStatus,
    ipMcastBoundaryStorageType
                                    StorageType
}
ipMcastBoundaryIfIndex OBJECT-TYPE
   SYNTAX InterfaceIndex
   MAX-ACCESS not-accessible
   STATUS
           current
   DESCRIPTION
           "The IfIndex value for the interface to which this boundary
           applies. Packets with a destination address in the
```

associated address/mask range will not be forwarded over this interface.

For IPv4, zone boundaries cut through links. Therefore, this is an external interface. This may be either a physical or virtual interface (tunnel, encapsulation, and so forth.)

For IPv6, zone boundaries cut through nodes. Therefore, this is a virtual interface within the node. This is not an external interface, either real or virtual. Packets crossing this interface neither arrive at nor leave the node, but only move between zones within the node."

REFERENCE "RFC 2365 Section 5, RFC 4007 Section 5"
::= { ipMcastBoundaryEntry 1 }

ipMcastBoundaryAddressType OBJECT-TYPE

SYNTAX InetAddressType MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A value indicating the address family of the address contained in ipMcastBoundaryAddress. Legal values correspond to the subset of address families for which multicast forwarding is supported."

::= { ipMcastBoundaryEntry 2 }

ipMcastBoundaryAddress OBJECT-TYPE

SYNTAX InetAddress MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The group address which, when combined with the corresponding value of ipMcastBoundaryAddressPrefixLength, identifies the group range for which the scoped boundary exists. Scoped IPv4 multicast address ranges must be prefixed by 239.0.0.0/8. Scoped IPv6 multicast address ranges are FF0x::/16, where x is a valid RFC 4291 multicast scope.

An IPv6 address prefixed by FFlx::/16 is a non-permanently-assigned address. An IPv6 address prefixed by FF3x::/16 is a unicast-prefix-based multicast addresses. A zone boundary for FF0x::/16 implies an identical boundary for these other prefixes. No separate FFlx::/16 or FF3x::/16 entries exist in this table.

This address object is only significant up to

```
ipMcastBoundaryAddressPrefixLength bits. The remaining
           address bits are set to zero. This is especially important
           for this index field, which is part of the index of this
           entry. Any non-zero bits would signify an entirely
           different entry."
   ::= { ipMcastBoundaryEntry 3 }
ipMcastBoundaryAddressPrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS not-accessible
   STATUS
             current
   DESCRIPTION
           "The length in bits of the mask which when, combined with
           the corresponding value of ipMcastBoundaryAddress,
           identifies the group range for which the scoped boundary
           exists.
           The InetAddressType is given by ipMcastBoundaryAddressType.
           For values 'ipv4' and 'ipv4z', this object must be in the
           range 4..32. For values 'ipv6' and 'ipv6z', this object
           must be set to 16."
   ::= { ipMcastBoundaryEntry 4 }
ipMcastBoundaryTimeStamp OBJECT-TYPE
   SYNTAX TimeStamp
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The value of sysUpTime at which the multicast boundary
           information represented by this entry was learned by the
           router.
           If this information was present at the most recent re-
           initialization of the local management subsystem, then this
           object contains a zero value."
   ::= { ipMcastBoundaryEntry 5 }
ipMcastBoundaryDroppedMcastOctets OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The number of octets of multicast packets that have been
           dropped as a result of this zone boundary configuration.
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of boundary
```

```
configuration being removed and replaced, which can be
           detected by observing the value of
           ipMcastBoundaryTimeStamp."
    ::= { ipMcastBoundaryEntry 6 }
ipMcastBoundaryDroppedMcastPkts OBJECT-TYPE
   SYNTAX Counter64
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The number of multicast packets that have been dropped as a
           result of this zone boundary configuration.
           Discontinuities in this monotonically increasing value
           occur at re-initialization of the management system.
           Discontinuities can also occur as a result of boundary
           configuration being removed and replaced, which can be
           detected by observing the value of
           ipMcastBoundaryTimeStamp."
    ::= { ipMcastBoundaryEntry 7 }
ipMcastBoundaryStatus OBJECT-TYPE
   SYNTAX
           RowStatus
   MAX-ACCESS read-create
   STATUS
           current
   DESCRIPTION
            "The status of this row, by which rows in this table can
           be created and destroyed.
           This status object can be set to active(1) without setting
           any other columnar objects in this entry.
           All writeable objects in this entry can be modified when the
           status of this entry is active(1)."
    ::= { ipMcastBoundaryEntry 8 }
ipMcastBoundaryStorageType OBJECT-TYPE
   SYNTAX
             StorageType
   MAX-ACCESS read-create
   STATUS
               current
   DESCRIPTION
          "The storage type for this row. Rows having the value
           'permanent' need not allow write-access to any columnar
          objects in the row."
      DEFVAL { nonVolatile }
    ::= { ipMcastBoundaryEntry 9 }
```

-- The IP Multicast Scope Name Table

```
ipMcastScopeNameTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastScopeNameEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The (conceptual) table listing multicast scope names."
   REFERENCE "RFC 4007 Section 4"
    ::= { ipMcast 8 }
ipMcastScopeNameEntry OBJECT-TYPE
   SYNTAX IpMcastScopeNameEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "An entry (conceptual row) that names a multicast address
           scope.
           OIDs are limited to 128 sub-identifiers, but this limit
           is not enforced by the syntax of this entry. In practice,
           this does not present a problem, because IP address types
           allowed by conformance statements do not exceed this limit."
   REFERENCE "RFC 4007 Section 4"
    INDEX
              { ipMcastScopeNameAddressType,
                ipMcastScopeNameAddress,
                ipMcastScopeNameAddressPrefixLength,
                ipMcastScopeNameLanguage }
    ::= { ipMcastScopeNameTable 1 }
IpMcastScopeNameEntry ::= SEQUENCE {
    ipMcastScopeNameAddressType InetAddressType,
    ipMcastScopeNameAddress
                                       InetAddress,
    ipMcastScopeNameAddressPrefixLength InetAddressPrefixLength,
    ipMcastScopeNameLanguage
                                      LangTag,
    ipMcastScopeNameString
                                      SnmpAdminString,
    ipMcastScopeNameDefault
                                      TruthValue,
    ipMcastScopeNameStatus
                                      RowStatus,
    ipMcastScopeNameStorageType
                                      StorageType
}
ipMcastScopeNameAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
    STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
McWalter, et al.
                          Standards Track
                                                             [Page 32]
```

```
contained in ipMcastScopeNameAddress. Legal values
           correspond to the subset of address families for which
           multicast forwarding is supported."
    ::= { ipMcastScopeNameEntry 1 }
ipMcastScopeNameAddress OBJECT-TYPE
   SYNTAX InetAddress
   MAX-ACCESS not-accessible
   STATUS
           current
   DESCRIPTION
           "The group address which, when combined with the
           corresponding value of ipMcastScopeNameAddressPrefixLength,
           identifies the group range associated with the multicast
           scope. Scoped IPv4 multicast address ranges must be
           prefixed by 239.0.0.0/8. Scoped IPv6 multicast address
           ranges are FF0x::/16, where x is a valid RFC 4291 multicast
           scope.
           An IPv6 address prefixed by FF1x::/16 is a non-permanently-
           assigned address. An IPv6 address prefixed by FF3x::/16 is
           a unicast-prefix-based multicast addresses. A scope
           FF0x::/16 implies an identical scope name for these other
           prefixes. No separate FF1x::/16 or FF3x::/16 entries exist
           in this table.
           This address object is only significant up to
           \verb|ipMcastScopeNameAddressPrefixLength| bits. The remaining
           address bits are set to zero. This is especially important
           for this index field, which is part of the index of this
           entry. Any non-zero bits would signify an entirely
           different entry."
    ::= { ipMcastScopeNameEntry 2 }
ipMcastScopeNameAddressPrefixLength OBJECT-TYPE
   SYNTAX InetAddressPrefixLength
   MAX-ACCESS not-accessible
   STATUS
            current
   DESCRIPTION
            "The length in bits of the mask which, when combined with
           the corresponding value of ipMcastScopeNameAddress,
           identifies the group range associated with the multicast
           scope.
           The InetAddressType is given by ipMcastScopeNameAddressType.
           For values 'ipv4' and 'ipv4z', this object must be in the
           range 4..32. For values 'ipv6' and 'ipv6z', this object
           must be set to 16."
    ::= { ipMcastScopeNameEntry 3 }
```

```
ipMcastScopeNameLanguage OBJECT-TYPE
   SYNTAX
           LangTag
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
          "Language tag associated with the scope name."
   REFERENCE "RFC 4646"
   ::= { ipMcastScopeNameEntry 4 }
ipMcastScopeNameString OBJECT-TYPE
   SYNTAX SnmpAdminString
   MAX-ACCESS read-create
   STATUS
           current
   DESCRIPTION
           "The textual name associated with the multicast scope. The
           value of this object should be suitable for displaying to
           end-users, such as when allocating a multicast address in
           this scope.
           When no name is specified, the default value of this object
           for IPv4 should be the string 239.x.x.x/y with x and y
           replaced with decimal values to describe the address and
           mask length associated with the scope.
           When no name is specified, the default value of this object
           for IPv6 should be the string FF0x::/16, with x replaced by
           the hexadecimal value for the RFC 4291 multicast scope.
           An IPv6 address prefixed by FFlx::/16 is a non-permanently-
           assigned address. An IPv6 address prefixed by FF3x::/16 is
           a unicast-prefix-based multicast addresses. A scope
           FF0x::/16 implies an identical scope name for these other
           prefixes. No separate FF1x::/16 or FF3x::/16 entries exist
           in this table."
   REFERENCE "RFC 2365, RFC 3306 Section 4, RFC 4291 Section 2.7"
    ::= { ipMcastScopeNameEntry 5 }
ipMcastScopeNameDefault OBJECT-TYPE
   SYNTAX TruthValue
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
            "If true, indicates a preference that the name in the
           following language should be used by applications if no name
           is available in a desired language."
   DEFVAL { false }
    ::= { ipMcastScopeNameEntry 6 }
```

```
ipMcastScopeNameStatus OBJECT-TYPE
   SYNTAX RowStatus
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
           "The status of this row, by which rows in this table can
           be created and destroyed. Before the row can be activated,
           the object ipMcastScopeNameString must be set to a valid
           value. All writeable objects in this entry can be modified
           when the status is active(1)."
    ::= { ipMcastScopeNameEntry 7 }
ipMcastScopeNameStorageType OBJECT-TYPE
   SYNTAX StorageType
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
          "The storage type for this row. Rows having the value
          'permanent' need not allow write-access to any columnar
          objects in the row."
      DEFVAL { nonVolatile }
    ::= { ipMcastScopeNameEntry 8 }
   The Multicast Listeners Table
ipMcastLocalListenerTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IpMcastLocalListenerEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The (conceptual) table listing local applications or
           services that have joined multicast groups as listeners.
           Entries exist for all addresses in the multicast range for
           all applications and services as they are classified on this
           device."
    ::= { ipMcast 9 }
ipMcastLocalListenerEntry OBJECT-TYPE
   SYNTAX IpMcastLocalListenerEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "An entry (conceptual row) identifying a local application
           or service that has joined a multicast group as a listener.
```

```
OIDs are limited to 128 sub-identifiers, but this limit
           is not enforced by the syntax of this entry. In practice,
           this does not present a problem, because IP address types
           allowed by conformance statements do not exceed this limit."
              { ipMcastLocalListenerGroupAddressType,
   INDEX
                ipMcastLocalListenerGroupAddress,
                ipMcastLocalListenerSourceAddressType,
                ipMcastLocalListenerSourceAddress,
                ipMcastLocalListenerSourcePrefixLength,
                ipMcastLocalListenerIfIndex,
                ipMcastLocalListenerRunIndex }
   ::= { ipMcastLocalListenerTable 1 }
IpMcastLocalListenerEntry ::= SEQUENCE {
   ipMcastLocalListenerGroupAddressType InetAddressType,
   ipMcastLocalListenerGroupAddress
                                        InetAddress,
   \verb|ipMcastLocalListenerSourceAddressType| InetAddressType, \\
   InterfaceIndex,
   ipMcastLocalListenerIfIndex
                                         Unsigned32
   ipMcastLocalListenerRunIndex
ipMcastLocalListenerGroupAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "A value indicating the address family of the address
           contained in ipMcastLocalListenerGroupAddress. Legal values
           correspond to the subset of address families for which
           multicast is supported."
   ::= { ipMcastLocalListenerEntry 1 }
ipMcastLocalListenerGroupAddress OBJECT-TYPE
            InetAddress
   MAX-ACCESS not-accessible
   STATUS
           current
   DESCRIPTION
           "The IP multicast group for which this entry specifies
           locally joined applications or services."
   ::= { ipMcastLocalListenerEntry 2 }
ipMcastLocalListenerSourceAddressType OBJECT-TYPE
   SYNTAX InetAddressType
   MAX-ACCESS not-accessible
   STATUS
             current
   DESCRIPTION
```

"A value indicating the address family of the address contained in ipMcastLocalListenerSource.

A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of ipMcastLocalListenerGroupAddressType."

::= { ipMcastLocalListenerEntry 3 }

ipMcastLocalListenerSourceAddress OBJECT-TYPE

SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION

"The network address which, when combined with the corresponding value of the mask specified in ipMcastLocalListenerSourcePrefixLength, identifies the sources for which this entry specifies a local listener.

This address object is only significant up to ipMcastLocalListenerSourcePrefixLength bits. The remaining address bits are set to zero. This is especially important for this index field, which is part of the index of this entry. Any non-zero bits would signify an entirely different entry.

For addresses of type ipv4z or ipv6z, the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this listener address applies only within the given zone. Zone index zero is not valid in this table."

::= { ipMcastLocalListenerEntry 4 }

ipMcastLocalListenerSourcePrefixLength OBJECT-TYPE

SYNTAX InetAddressPrefixLength

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"The length in bits of the mask which, when combined with the corresponding value specified in ipMcastLocalListenerSource, identifies the sources for which this entry specifies a local listener.

The InetAddressType is given by ipMcastLocalListenerSourceAddressType. For the value 'unknown', this object must be zero. For values 'ipv4' and 'ipv4z', this object must be in the range 4..32. For values 'ipv6' and 'ipv6z', this object must be in the range

```
8..128."
    ::= { ipMcastLocalListenerEntry 5 }
ipMcastLocalListenerIfIndex OBJECT-TYPE
   SYNTAX InterfaceIndex
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The IfIndex value of the interface for which this entry
           specifies a local listener."
    ::= { ipMcastLocalListenerEntry 6 }
ipMcastLocalListenerRunIndex OBJECT-TYPE
   SYNTAX Unsigned32 (0..2147483647)
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "A unique value corresponding to a piece of software running
           on this router or host system. Where possible, this should
           be the system's native, unique identification number.
           This identifier is platform-specific. It may correspond to
           a process ID or application instance number.
           A value of zero indicates that the application instance(s)
           cannot be identified. A value of zero indicates that one or
           more unidentified applications have joined the specified
           multicast groups (for the specified sources) as listeners."
   REFERENCE "RFC 2287 sysApplRunIndex"
   ::= { ipMcastLocalListenerEntry 7 }
-- The Multicast Zone Table
ipMcastZoneTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IPMcastZoneEntry
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "The (conceptual) table listing scope zones on this device."
   REFERENCE "RFC 4007 Section 5"
   ::= { ipMcast 10 }
ipMcastZoneEntry OBJECT-TYPE
   SYNTAX IpMcastZoneEntry
   MAX-ACCESS not-accessible
   STATUS current
```

```
DESCRIPTION
           "An entry (conceptual row) describing a scope zone on this
           device."
   REFERENCE "RFC 4007 Section 5"
   INDEX { ipMcastZoneIndex }
    ::= { ipMcastZoneTable 1 }
IpMcastZoneEntry ::= SEQUENCE {
   ipMcastZoneIndex
                                          InetZoneIndex,
   ipMcastZoneScopeDefaultZoneIndex
                                          InetZoneIndex,
   ipMcastZoneScopeAddressType
                                          InetAddressType,
    ipMcastZoneScopeAddress
                                          InetAddress,
    ipMcastZoneScopeAddressPrefixLength InetAddressPrefixLength
}
ipMcastZoneIndex OBJECT-TYPE
   SYNTAX InetZoneIndex (1..4294967295)
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
           "This zone index uniquely identifies a zone on a device.
           Each zone is for a given scope. Scope-level information in
           this table is for the unique scope that corresponds to this
           zone.
           Zero is a special value used to request the default zone for
           a given scope. Zero is not a valid value for this object.
           To test whether ipMcastZoneIndex is the default zone for
           this scope, test whether ipMcastZoneIndex is equal to
           ipMcastZoneScopeDefaultZoneIndex."
    ::= { ipMcastZoneEntry 1 }
ipMcastZoneScopeDefaultZoneIndex OBJECT-TYPE
           InetZoneIndex (1..4294967295)
   MAX-ACCESS read-only
   STATUS current
   DESCRIPTION
           "The default zone index for this scope. This is the zone
           that this device will use if the default (zero) zone is
           requested for this scope.
           Zero is not a valid value for this object."
    ::= { ipMcastZoneEntry 2 }
ipMcastZoneScopeAddressType OBJECT-TYPE
   SYNTAX InetAddressType
```

ipMcastZoneScopeAddress OBJECT-TYPE

SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The multicast group address which, when combined with ipMcastZoneScopeAddressPrefixLength, gives the multicast address range for this scope. The InetAddressType is given by ipMcastZoneScopeAddressType.

Scoped IPv4 multicast address ranges are prefixed by 239.0.0.0/8. Scoped IPv6 multicast address ranges are FF0x::/16, where x is a valid RFC 4291 multicast scope.

An IPv6 address prefixed by FF1x::/16 is a non-permanently-assigned address. An IPv6 address prefixed by FF3x::/16 is a unicast-prefix-based multicast addresses. A scope FF0x::/16 implies an identical scope for these other prefixes. No separate FF1x::/16 or FF3x::/16 entries exist in this table.

This address object is only significant up to ipMcastZoneScopeAddressPrefixLength bits. The remaining address bits are set to zero."

REFERENCE "RFC 2365, RFC 3306 Section 4, RFC 4291 Section 2.7"
::= { ipMcastZoneEntry 4 }

ipMcastZoneScopeAddressPrefixLength OBJECT-TYPE

SYNTAX InetAddressPrefixLength

MAX-ACCESS read-only STATUS current DESCRIPTION

"The length in bits of the mask which, when combined with ipMcastZoneScopeAddress, gives the multicast address prefix for this scope.

The InetAddressType is given by ipMcastZoneScopeAddressType. For values 'ipv4' and 'ipv4z', this object must be in the range 4..32. For values 'ipv6' and 'ipv6z', this object must be set to 16."

::= { ipMcastZoneEntry 5 }

```
-- Conformance information
ipMcastMIBConformance
                 OBJECT IDENTIFIER ::= { ipMcastMIB 2 }
ipMcastMIBCompliances
                 OBJECT IDENTIFIER ::= { ipMcastMIBConformance 1 }
ipMcastMIBGroups OBJECT IDENTIFIER ::= { ipMcastMIBConformance 2 }
-- Compliance statements
ipMcastMIBComplianceHost MODULE-COMPLIANCE
   STATUS current
   DESCRIPTION
            "The compliance statement for hosts supporting IPMCAST-MIB.
            Support for either InetAddressType ipv4 or ipv6 is
            mandatory; support for both InetAddressTypes ipv4 and ipv6
            is optional. Support for types ipv4z and ipv6z is
            optional.
            -- OBJECT
-- SYNTAX
                          ipMcastLocalListenerGroupAddressType
                          InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                            ipv4z(3), ipv6z(4)
            -- DESCRIPTION
            -- This compliance requires support for ipv4 or ipv6.
            -- OBJECT
                          ipMcastLocalListenerGroupAddress
            -- SYNTAX InetAddress (SIZE (0|4|8|16|20))
            -- DESCRIPTION
                   This compliance requires support for ipv4 or ipv6.
            -- OBJECT
                          ipMcastLocalListenerSourceAddressType
            -- SYNTAX InetAddressType {unknown(0), ipv4(1), ipv6(2),
            --
                                            ipv4z(3), ipv6z(4)
            -- DESCRIPTION
                  This compliance requires support for ipv4 or ipv6.
            -- OBJECT ipMcastLocalListenerSourceAddress
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
                         InetAddress (SIZE (0|4|8|16|20))
            -- DESCRIPTION
                   This compliance requires support for ipv4 or ipv6."
   MODULE -- this module
   MANDATORY-GROUPS { ipMcastMIBLocalListenerGroup,
```

ipMcastMIBBasicGroup }

```
OBJECT
               ipMcastEnabled
      MIN-ACCESS read-only
      DESCRIPTION
          "Write access is not required."
                ipMcastDeviceConfigStorageType
      MIN-ACCESS read-only
      DESCRIPTION
          "Write access is not required."
      GROUP
                 ipMcastMIBSsmGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBRouteGroup
     DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBRouteDiagnosticsGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBBoundaryIfGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBScopeNameGroup
     DESCRIPTION
          "This group is optional."
    ::= { ipMcastMIBCompliances 1 }
ipMcastMIBComplianceRouter MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
            "The compliance statement for routers supporting
            IPMCAST-MIB.
            Support for either InetAddressType ipv4 or ipv6 is
            mandatory; support for both InetAddressTypes ipv4 and ipv6
            is optional. Support for types ipv4z and ipv6z is
            optional.
            -- OBJECT
-- SYNTAX
                         ipMcastSsmRangeAddressType
                         InetAddressType {ipv4(1), ipv6(2), ipv4z(3),
                                           ipv6z(4)}
                           Standards Track
                                                               [Page 42]
McWalter, et al.
```

```
-- DESCRIPTION
      This compliance requires support for ipv4 or ipv6.
-- OBJECT
             ipMcastSsmRangeAddress
-- SYNTAX
             InetAddress (SIZE (4|8|16|20))
-- DESCRIPTION
    This compliance requires support for ipv4 or ipv6.
-- OBJECT
             ipMcastRouteGroupAddressType
-- SYNTAX
             InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                ipv4z(3), ipv6z(4)
-- DESCRIPTION
-- This compliance requires support for unknown and
      either ipv4 or ipv6.
--
-- OBJECT ipMcastRouteGroup
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
      This compliance requires support for unknown and
      either ipv4 or ipv6.
--
-- OBJECT ipMcastRouteSourceAddressType
-- SYNTAX InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                ipv4z(3), ipv6z(4)}
-- DESCRIPTION
       This compliance requires support for unknown and
       either ipv4 or ipv6.
-- OBJECT
             ipMcastRouteSource
-- OBJECT ipmcastkoutesource

-- SYNTAX inetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
     This compliance requires support for unknown and
--
      either ipv4 or ipv6.
-- OBJECT
              ipMcastRouteNextHopGroupAddressType
-- SYNTAX
             InetAddressType \{unknown(0), ipv4(1), ipv6(2), \}
                                ipv4z(3), ipv6z(4)
-- DESCRIPTION
-- This compliance requires support for unknown and
      either ipv4 or ipv6.
___
___
-- OBJECT
             ipMcastRouteNextHopGroup
-- SYNTAX
             InetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
    This compliance requires support for unknown and
       either ipv4 or ipv6.
-- OBJECT
             ipMcastRouteNextHopSourceAddressType
```

```
-- SYNTAX
                     InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                        ipv4z(3), ipv6z(4)
        -- DESCRIPTION
              This compliance requires support for unknown and
              either ipv4 or ipv6.
        -- OBJECT ipMcastRouteNextHopSource 
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
        -- DESCRIPTION
              This compliance requires support for unknown and
        --
              either ipv4 or ipv6.
        --
        --
                                       ipv4z(3), ipv6z(4)
        -- DESCRIPTION
        -- This compliance requires support for unknown and
             either ipv4 or ipv6.
        --
        -- OBJECT ipMcastRouteNextHopAddress
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
        -- DESCRIPTION
              This compliance requires support for unknown and
              either ipv4 or ipv6."
MODULE -- this module
MANDATORY-GROUPS { ipMcastMIBRouteProtoGroup,
                   ipMcastMIBBasicGroup,
                   ipMcastMIBSsmGroup,
                   ipMcastMIBRouteGroup }
            ipMcastEnabled
  MIN-ACCESS read-only
  DESCRIPTION
      "Write access is not required."
  OBJECT
           ipMcastDeviceConfigStorageType
  MIN-ACCESS read-only
  DESCRIPTION
      "Write access is not required."
  OBJECT
            ipMcastInterfaceTtl
  MIN-ACCESS read-only
  DESCRIPTION
      "Write access is not required."
            ipMcastInterfaceRateLimit
  MIN-ACCESS read-only
```

```
DESCRIPTION
    "Write access is not required."
          ipMcastInterfaceStorageType
OBJECT
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT
          ipMcastRouteUpstreamNeighborType
          InetAddressType { unknown(0), ipv4(1), ipv6(2),
SYNTAX
                              ipv4z(3), ipv6z(4) }
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    or ipv6."
OBJECT
OBJECT ipMcastRouteUpstreamNeighbor SYNTAX InetAddress (SIZE (0|4|8|16|20))
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    or ipv6."
           ipMcastRouteRtAddressType
OBJECT
SYNTAX
          InetAddressType { unknown(0), ipv4(1), ipv6(2),
                              ipv4z(3), ipv6z(4) }
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    or ipv6."
OBJECT
           ipMcastRouteRtAddress
          InetAddress (SIZE (0|4|8|16|20))
SYNTAX
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    or ipv6."
          ipMcastSsmRangeRowStatus
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT
          ipMcastSsmRangeStorageType
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
GROUP
             ipMcastMIBRouteDiagnosticsGroup
DESCRIPTION
    "This group is not mandatory, but SHOULD be supported where
    hardware permits."
```

```
GROUP
                  ipMcastMIBPktsOutGroup
      DESCRIPTION
         "This group is optional."
                  ipMcastMIBHopCountGroup
      GROUP
     DESCRIPTION
          "This group is optional."
      GROUP
                  ipMcastMIBRouteOctetsGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                  ipMcastMIBRouteBpsGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBLocalListenerGroup
     DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBBoundaryIfGroup
      DESCRIPTION
          "This group is optional."
      GROUP
                   ipMcastMIBScopeNameGroup
      DESCRIPTION
          "This group is optional."
    ::= { ipMcastMIBCompliances 2 }
ipMcastMIBComplianceBorderRouter MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
            "The compliance statement for routers on scope
            boundaries supporting IPMCAST-MIB.
            Support for either InetAddressType ipv4z or ipv6z is
            mandatory; support for both InetAddressTypes ipv4z and
            ipv6z is optional.
            -- OBJECT
                          ipMcastSsmRangeAddressType
            -- SYNTAX
                          InetAddressType {ipv4(1), ipv6(2), ipv4z(3),
                                           ipv6z(4)}
            -- DESCRIPTION
                  This compliance requires support for ipv4 or ipv6.
                          ipMcastSsmRangeAddress
            -- OBJECT
            -- SYNTAX
                          InetAddress (SIZE (4|8|16|20))
McWalter, et al.
                           Standards Track
                                                               [Page 46]
```

```
-- DESCRIPTION
       This compliance requires support for ipv4 or ipv6.
-- OBJECT
              ipMcastRouteGroupAddressType
             InetAddressType {unknown(0), ipv4(1), ipv6(2),
-- SYNTAX
                                ipv4z(3), ipv6z(4)}
-- DESCRIPTION
     This compliance requires support for unknown and
       either ipv4 or ipv6.
-- OBJECT ipMcastRouteGroup
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
       This compliance requires support for unknown and
       either ipv4 and ipv4z or ipv6 and ipv6z.
___
___
-- OBJECT
            ipMcastRouteSourceAddressType
-- SYNTAX
             InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                ipv4z(3), ipv6z(4)}
-- DESCRIPTION
-- This compliance requires support for unknown and
      either ipv4 and ipv4z or ipv6 and ipv6z.
-- OBJECT
              ipMcastRouteSource
-- OBJECT IPMEASTROUTESOUTCE
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
       This compliance requires support for unknown and
       either ipv4 and ipv4z or ipv6 and ipv6z.
-- OBJECT
              ipMcastRouteNextHopGroupAddressType
-- OBJECT ipmcastroutenextnopgroupAddressType
-- SYNTAX InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                ipv4z(3), ipv6z(4)
-- DESCRIPTION
       This compliance requires support for unknown and
      either ipv4 and ipv4z or ipv6 and ipv6z.
-- OBJECT
             ipMcastRouteNextHopGroup
-- SYNTAX
             InetAddress (SIZE (0|4|8|16|20))
-- DESCRIPTION
      This compliance requires support for unknown and
      either ipv4 and ipv4z or ipv6 and ipv6z.
___
-- OBJECT
              ipMcastRouteNextHopSourceAddressType
-- SYNTAX
              InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                ipv4z(3), ipv6z(4)}
-- DESCRIPTION
       This compliance requires support for unknown and
       either ipv4 and ipv4z or ipv6 and ipv6z.
```

```
-- OBJECT
                      ipMcastRouteNextHopSource
        -- SYNTAX InetAddress (SIZE (0|4|8|16|20))
        -- DESCRIPTION
               This compliance requires support for unknown and
               either ipv4 and ipv4z or ipv6 and ipv6z.
        -- OBJECT
                       ipMcastRouteNextHopAddressType
        -- SYNTAX
                       InetAddressType {unknown(0), ipv4(1), ipv6(2),
                                         ipv4z(3), ipv6z(4)
        -- DESCRIPTION
               This compliance requires support for unknown and
               either ipv4 and ipv4z or ipv6 and ipv6z.
        ___
        -- OBJECT ipMcastRouteNextHopAddress
-- SYNTAX InetAddress (SIZE (0|4|8|16|20))
        -- DESCRIPTION
               This compliance requires support for unknown and
        ___
               either ipv4 and ipv4z or ipv6 and ipv6z.
        --
        -- OBJECT ipMcastBoundaryAddressType
-- SYNTAX InetAddressType {ipv4(1).
                       InetAddressType {ipv4(1), ipv6(2)}
        -- SYNTAX
        -- DESCRIPTION
               This compliance requires support for ipv4 or ipv6.
        -- OBJECT
                       ipMcastBoundaryAddress
        -- OBJECT ipmcastBoundaryAddress
-- SYNTAX inetAddress (SIZE (4|16)
        -- DESCRIPTION
        -- This compliance requires support for ipv4 or ipv6.
        -- OBJECT
                       ipMcastScopeNameAddressType
        -- SYNTAX
                      InetAddressType {ipv4(1), ipv6(2)}
        -- DESCRIPTION
              This compliance requires support for ipv4 or ipv6.
        -- OBJECT
                      ipMcastScopeNameAddress
        -- SYNTAX
                      InetAddress (SIZE (4|16)
        -- DESCRIPTION
               This compliance requires support for ipv4 or ipv6."
MODULE -- this module
MANDATORY-GROUPS { ipMcastMIBRouteProtoGroup,
                    ipMcastMIBBasicGroup,
                    ipMcastMIBSsmGroup,
                    ipMcastMIBRouteGroup,
                    ipMcastMIBBoundaryIfGroup,
                    ipMcastMIBScopeNameGroup }
```

```
OBJECT
          ipMcastEnabled
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT
          ipMcastDeviceConfigStorageType
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT ipMcastInterfaceTtl
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT
          ipMcastInterfaceRateLimit
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
OBJECT ipMcastInterfaceStorageType
MIN-ACCESS read-only
DESCRIPTION
    "Write access is not required."
           ipMcastRouteUpstreamNeighborType
          InetAddressType { unknown(0), ipv4(1), ipv6(2),
SYNTAX
                             ipv4z(3), ipv6z(4)
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    and ipv4z, or ipv6 and ipv6z."
OBJECT
           ipMcastRouteUpstreamNeighbor
          InetAddress (SIZE (0|4|8|16|20))
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    and ipv4z, or ipv6 and ipv6z."
OBJECT
           ipMcastRouteRtAddressType
SYNTAX
          InetAddressType { unknown(0), ipv4(1), ipv6(2),
                             ipv4z(3), ipv6z(4) }
DESCRIPTION
    "This compliance requires support for unknown and either ipv4
    and ipv4z, or ipv6 and ipv6z."
         ipMcastRouteRtAddress
OBJECT
          InetAddress (SIZE (0|4|8|16|20))
SYNTAX
DESCRIPTION
```

"This compliance requires support for unknown and either ipv4 and ipv4z, or ipv6 and ipv6z."

OBJECT ipMcastSsmRangeRowStatus

MIN-ACCESS read-only

DESCRIPTION

"Write access is not required."

OBJECT ipMcastSsmRangeStorageType

MIN-ACCESS read-only

DESCRIPTION

"Write access is not required."

GROUP ipMcastMIBRouteDiagnosticsGroup

DESCRIPTION

"This group is not mandatory, but SHOULD be supported where hardware permits."

GROUP ipMcastMIBPktsOutGroup

DESCRIPTION

"This group is optional."

GROUP ipMcastMIBHopCountGroup

DESCRIPTION

"This group is optional."

GROUP ipMcastMIBRouteOctetsGroup

DESCRIPTION

"This group is optional."

GROUP ipMcastMIBRouteBpsGroup

DESCRIPTION

"This group is optional."

GROUP ipMcastMIBLocalListenerGroup

DESCRIPTION

"This group is optional."

OBJECT ipMcastZoneScopeAddressType

SYNTAX InetAddressType { ipv4(1), ipv6(2) }

DESCRIPTION

"This compliance requires support for ipv4 or ipv6."

OBJECT ipMcastZoneScopeAddress

SYNTAX InetAddress (SIZE (4|16))

DESCRIPTION

"This compliance requires support for ipv4 or ipv6."

```
::= { ipMcastMIBCompliances 3 }
-- Units of conformance
ipMcastMIBBasicGroup OBJECT-GROUP
   OBJECTS { ipMcastEnabled,
              ipMcastRouteEntryCount,
              ipMcastDeviceConfigStorageType
    STATUS current
   DESCRIPTION
            "A collection of objects to support basic management of IP
            Multicast protocols."
    ::= { ipMcastMIBGroups 1 }
ipMcastMIBSsmGroup OBJECT-GROUP
   OBJECTS { ipMcastSsmRangeRowStatus,
              ipMcastSsmRangeStorageType }
   STATUS current
   DESCRIPTION
            "A collection of objects to support management of Source-
            Specific Multicast routing."
    ::= { ipMcastMIBGroups 2 }
ipMcastMIBRouteGroup OBJECT-GROUP
   OBJECTS { ipMcastInterfaceTtl,
              ipMcastInterfaceRateLimit,
              ipMcastInterfaceStorageType,
              ipMcastRouteUpstreamNeighborType,
              ipMcastRouteUpstreamNeighbor,
              ipMcastRouteInIfIndex,
              ipMcastRouteTimeStamp,
              ipMcastRouteExpiryTime,
              ipMcastRouteNextHopState,
              ipMcastRouteNextHopTimeStamp,
              ipMcastRouteNextHopExpiryTime
    STATUS current
   DESCRIPTION
            "A collection of objects to support basic management of IP
            Multicast routing."
    ::= { ipMcastMIBGroups 3 }
ipMcastMIBRouteDiagnosticsGroup OBJECT-GROUP
    OBJECTS { ipMcastRoutePkts,
              ipMcastRouteTtlDropPackets,
              ipMcastRouteDifferentInIfPackets
```

```
}
    STATUS current
   DESCRIPTION
            "A collection of routing diagnostic packet counters."
    ::= { ipMcastMIBGroups 4 }
ipMcastMIBPktsOutGroup OBJECT-GROUP
    OBJECTS { ipMcastRouteNextHopTimeStamp,
             ipMcastRouteNextHopPkts }
    STATUS current
   DESCRIPTION
            "A collection of objects to support management of packet
            counters for each outgoing interface entry of a route."
    ::= { ipMcastMIBGroups 5 }
ipMcastMIBHopCountGroup OBJECT-GROUP
   OBJECTS { ipMcastRouteNextHopClosestMemberHops }
    STATUS current
   DESCRIPTION
            "A collection of objects to support management of the use of
            hop counts in IP Multicast routing."
    ::= { ipMcastMIBGroups 6 }
ipMcastMIBRouteOctetsGroup OBJECT-GROUP
    OBJECTS { ipMcastRouteTimeStamp,
              ipMcastRouteOctets,
              ipMcastRouteTtlDropOctets,
              ipMcastRouteDifferentInIfOctets,
              ipMcastRouteNextHopTimeStamp,
              ipMcastRouteNextHopOctets }
   STATUS current
   DESCRIPTION
            "A collection of objects to support management of octet
            counters for each forwarding entry."
    ::= { ipMcastMIBGroups 7 }
ipMcastMIBRouteBpsGroup OBJECT-GROUP
   OBJECTS { ipMcastRouteBps }
   STATUS current
   DESCRIPTION
            "A collection of objects to support sampling of data rate
            in bits per second for each forwarding entry."
    ::= { ipMcastMIBGroups 8 }
ipMcastMIBRouteProtoGroup OBJECT-GROUP
    OBJECTS { ipMcastRouteProtocol, ipMcastRouteRtProtocol,
              ipMcastRouteRtAddressType, ipMcastRouteRtAddress,
              ipMcastRouteRtPrefixLength, ipMcastRouteRtType,
```

```
ipMcastRouteNextHopProtocol }
    STATUS current
   DESCRIPTION
            "A collection of objects providing information on the
            relationship between multicast routing information and the
            IP Forwarding Table."
    ::= { ipMcastMIBGroups 9 }
ipMcastMIBLocalListenerGroup OBJECT-GROUP
    OBJECTS { ipMcastLocalListenerRunIndex }
   STATUS current
   DESCRIPTION
            "A collection of objects to support management of local
            listeners on hosts or routers."
    ::= { ipMcastMIBGroups 10 }
ipMcastMIBBoundaryIfGroup OBJECT-GROUP
   OBJECTS { ipMcastBoundaryTimeStamp,
              ipMcastBoundaryDroppedMcastOctets,
              ipMcastBoundaryDroppedMcastPkts,
              ipMcastBoundaryStatus,
              ipMcastBoundaryStorageType,
              ipMcastZoneScopeDefaultZoneIndex,
              ipMcastZoneScopeAddressType,
              ipMcastZoneScopeAddress,
              ipMcastZoneScopeAddressPrefixLength
    STATUS current
   DESCRIPTION
            "A collection of objects to support management of multicast
            scope zone boundaries."
    ::= { ipMcastMIBGroups 11 }
ipMcastMIBScopeNameGroup OBJECT-GROUP
    OBJECTS { ipMcastScopeNameString, ipMcastScopeNameDefault,
              ipMcastScopeNameStatus, ipMcastScopeNameStorageType }
    STATUS current
   DESCRIPTION
            "A collection of objects to support management of multicast
            address scope names."
    ::= { ipMcastMIBGroups 12 }
END
```

7. Security Considerations

7.1. SNMPv3

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to access (read/change/create/delete) them.

7.2. Writeable Objects

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. This section discusses and lists these elements.

Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

In this MIB module, possible effects that can be induced by SET operations on writeable objects include:

- o Modifications to multicast routing behavior that prevent or disrupt services provided by the network, including (but not limited to) multicast data traffic delivery.
- o Modifications to multicast routing behavior that allow interception or subversion of information that is carried by the network. For example, attacks can be envisaged that would pass nominated multicast data streams through a nominated location, without the sources or listeners becoming aware of this subversion.

RFC 5132 IP MCAST MIB December 2007

The following are the read-write and read-create objects defined in this MIB module.

ipMcastEnabled ipMcastDeviceConfigStorageType ipMcastInterfaceTtl
ipMcastInterfaceRateLimit ipMcastInterfaceStorageType
ipMcastSsmRangeRowStatus ipMcastSsmRangeStorageType
ipMcastBoundaryStatus ipMcastBoundaryStorageType
ipMcastScopeNameString ipMcastScopeNameDefault ipMcastScopeNameStatus
ipMcastScopeNameStorageType

7.3. Readable Objects

As well as the writeable objects discussed above, there are a number of readable objects (i.e., objects with a MAX-ACCESS other than not-accessible) that may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP.

In this MIB module, possible effects that can be induced by GET and/or NOTIFY operations include:

- o Determination of the topology, disposition, and composition of the network. This information may be commercially sensitive, and may also be used in preparation for attacks, including any of the attacks described above.
- o Determinion of whether multicast data is flowing in the network, or has flowed recently, as well as the locations of senders and recipients. An attacker can apply 'traffic analysis' to this data. In some cases, the information revealed by traffic analyses can be as damaging as full knowledge of the data being transported.

8. IANA Considerations

IPMCAST-MIB is rooted under the mib-2 subtree. IANA has assigned { mib-2 168 } to the IPMCAST-MIB module specified in this document.

9. Acknowledgements

This MIB module is based on the original work in [RFC2932] by K. McCloghrie, D. Farinacci, and D. Thaler.

Suggested IPv6 multicast MIBs by R. Sivaramu and R. Raghunarayan have been used for comparison while editing this MIB module.

RFC 5132 IP MCAST MIB December 2007

The authors are grateful to Bill Fenner for fine ideas, and to Bharat Joshi for input and several corrections.

The authors also wish to thank John Flick, Bert Wijnen, and Stig Venaas for their reviewing and comments.

10. References

10.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
- [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

- [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.
- [RFC3306] Haberman, B. and D. Thaler, "Unicast-Prefix-based IPv6 Multicast Addresses", RFC 3306, August 2002.
- [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002.
- [RFC4001] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, February 2005.

- [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and B. Zill, "IPv6 Scoped Address Architecture", RFC 4007, March 2005.
- [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006.
- [RFC5131] McWalter, D., "A MIB Textual Convention for Language Tags", RFC 5131, December 2007.

10.2. Informative References

- [RFC2287] Krupczak, C. and J. Saperia, "Definitions of System-Level Managed Objects for Applications", RFC 2287, February 1998.
- [RFC2932] McCloghrie, K., Farinacci, D., and D. Thaler, "IPv4 Multicast Routing MIB", RFC 2932, October 2000.

- [RFC4293] Routhier, S., "Management Information Base for the Internet Protocol (IP)", RFC 4293, April 2006.
- [RFC4601] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)", RFC 4601, August 2006.
- [RFC4646] Phillips, A. and M. Davis, "Tags for Identifying Languages", BCP 47, RFC 4646, September 2006.
- [RFC5015] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bidirectional Protocol Independent Multicast (BIDIR-PIM)", RFC 5015, October 2007.

Authors' Addresses

David McWalter
Data Connection Ltd
100 Church Street
Enfield EN2 6BQ
UK

EMail: dmcw@dataconnection.com

Dave Thaler Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 USA

EMail: dthaler@windows.microsoft.com

Andrew Kessler Cisco Systems 425 E. Tasman Drive San Jose, CA 95134 USA

EMail: kessler@cisco.com

Full Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.