Net wor k Wor ki ng Group R Sparks, Ed.

Request for Comments: 5393 Tekel ec
Updates: 3261 S. Lawrence
Cat egory: Standards Track Nortel Networks, Inc.

A. Hawryl yshen
Ditech Networks I|nc.
B. Canpen

Tekel ec

Decenmber 2008

Addressing an Anplification Vulnerability
in Session Initiation Protocol (SIP) Forking Proxies

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice

Copyright (c) 2008 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunments (http://trustee.ietf.org/
license-info) in effect on the date of publication of this docunent.
Pl ease revi ew these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

Abst r act

Thi s docunent nornatively updates RFC 3261, the Session Initiation
Protocol (SIP), to address a security vulnerability identified in SIP
proxy behavior. This vulnerability enables an attack against SIP
networ ks where a small nunber of legitimte, even authorized, SIP
requests can stinmul ate nmassi ve anounts of proxy-to-proxy traffic.

Thi s docunent strengthens | oop-detection requirenents on SIP proxies
when they fork requests (that is, forward a request to nore than one
destination). It also corrects and clarifies the description of the
| oop-detection algorithmsuch proxies are required to inplenent.
Additionally, this docurment defines a Max-Breadth nechani sm for
[imting the nunber of concurrent branches pursued for any given
request.

Spar ks, et al. St andards Track [Page 1]

RFC 5393 Amplification Vulnerability in SIP December 2008

Tabl e

PwnNE

Spar ks,

of Contents

Nt roduCti ON 3
Conventions and Definitions i, 3
Vul nerability: Leveraging Forking to Flood a Network 3
Updates t0 RFC 3261t e e e e 7

4.1. Strengthening the Requirenent to Perform Loop Detection7
4.2. Correcting and Carifying the RFC 3261

Loop-Detection Algorithm 7
4.2.1. Update to Section 16.6, 7
4.2.2. Update to Section 16.3, 8
4.2.3. lnmpact of Loop Detection on Overall Network
Performance 9
4.2.4. Note to Inplementers 9
Max- Breadt h 10
B L. VeI VI BW .ot 10
5.2, EXampl €S . .. 11
5.3. Formal Mechanism 12
5.3.1. Max-Breadth Header Field 12
5.3.2. Terminology 13
5.3.3. Proxy Behavior 13
5.3.3.1. Reusing Max-Breadth 14
5.3.4. UAC Behavi or 14
5.3.5. UAS Behavi Or 14
5.4, Inmplementer NOteS e e 14
5.4.1. Treatnent of CANCEL, 14
5.4.2. Reclamation of Max-Breadth on 2xx Responses 14
5.4.3. Max-Breadth and Automaton UAs 14
5.5. Parallel and Sequential Forking 15
5.6. Max-Breadth Split Weight Selection 15
5.7. Max-Breadth's Effect on Forking-Based
Amplification Attacks 15
5.8. Max-Breadth Header Field ABNF Definition 16
[ANA Considerati ONS e e 16
6.1. Max-Breadth Header Field 16
6.2. 440 Max-Breadth Exceeded Responseo.... 16
Security Considerati ONS 16
7.1. Alternate Solutions That Were Considered and Rejected 17
ACKNOW edgmENt S . ..o 19
Ref er eNCes 19
9.1. Normative References 19
9.2. Informative References i, 19
et al. St andards Track [Page 2]

RFC 5393 Amplification Vulnerability in SIP December 2008

1

| ntroducti on

Interoperability testing uncovered a vulnerability in the behavior of
forking SIP proxies as defined in [RFC3261]. This vulnerability can
be | everaged to cause a small nunber of valid SIP requests to
generate an extrenely |arge nunber of proxy-to-proxy nessages. A
version of this attack denonstrates fewer than ten nessages
stimulating potentially 2771 nessages.

Thi s docunent specifies normative changes to the SIP protocol to
address this vulnerability. According to this update, when a SIP
proxy forks a request to nore than one destination, it is required to
ensure it is not participating in a request | oop

This normative update alone is insufficient to protect against
crafted variations of the attack described here involving multiple
Addr esses of Record (AORs). To further address the vulnerability,
thi s docunent defines the Max-Breadth mechanismto limt the tota
nunber of concurrent branches caused by a forked SIP request. The
mechanismonly limts concurrency. It does not linmit the tota
nunber of branches a request can traverse over its lifetine.

The nmechanisns in this update will protect against variations of the
attack described here that use a small nunber of resources, including
nost unintentional self-inflicted variations that occur through

acci dental msconfiguration. However, an attacker with access to a
sufficient nunber of distinct resources will still be able to
stimulate a very |l arge nunber of messages. The nunber of concurrent
messages will be limted by the Max-Breadth nechanism so the entire
set will be spread out over a long period of time, giving operators
better opportunity to detect the attack and take corrective neasures
outside the protocol. Future protocol work is needed to prevent this
formof the attack.

Conventions and Definitions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Vul nerability: Leveraging Forking to Fl ood a Network

This section describes setting up an attack with a sinplifying
assunption: that two accounts on each of two different RFC 3261
conpliant proxy/registrar servers that do not perform | oop detection
are available to an attacker. This assunption is not necessary for
the attack but makes representing the scenario sinpler. The sane
attack can be realized with a single account on a single server.

Sparks, et al. St andards Track [Page 3]

RFC 5393 Amplification Vulnerability in SIP

Consi der two proxy/registrar services, Pl and P2,
of Record, a@1l, b@1l, a@?2, and b@?2. Using normnal
requests, establish bindings to these AORs as foll

details elided):

REG STER sip:P1 SIP/ 2.0

To: <sip:a@1l>

Contact: <sip:a@2> <sip:b@2>
REGQ STER sip: P1 SIP/2.0

To: <sip:b@1>

Contact: <sip:a@2> <sip:b@2>
REQ STER sip: P2 SIP/ 2.0

To: <sip:a@?2>

Contact: <sip:a@1l> <sip:b@1>
REQ STER sip: P2 SIP/ 2.0

To: <sip: b@2>

Contact: <sip:a@1l> <sip:b@1>

Wth these bindings in place, introduce an |INVITE
the four AORs, say a@1l. This request will fork t
handl ed by P2, which will fork to four requests ha

December 2008

and four Addresses
REQ STER
ows (non-essenti al

request to any of
0 two requests
ndl ed by P1, which

will fork to eight nessages handled by P2, and so on. This nessage
flowis represented in Figure 1.
|
a@1
/ \
/ \
/ \
/ \
a@?2 b@?2
[\ [\
/ \ / \
/ \ / \
a@l b@1 a@l b@1
[\ [\ [\ [\
a@2 b@2 a@2 b@2 a@2 b@2 a@2 ba@?2
/\ /\ /\ /\ /\ /\ /\ /\
Figure 1: Attack Request Propagation

Sparks, et al. St andards Track

[Page 4]

RFC 5393 Amplification Vulnerability in SIP December 2008

Requests will continue to propagate down this tree until Max-Forwards
reaches zero. |If the endpoint and two proxies involved foll ow RFC
3261 recommendations, the tree will be 70 rows deep, representing
27"71-1 requests. The actual nunber of messages may be much larger if
the time to process the entire tree’s worth of requests is |onger
than Timer C at either proxy. |In this case, a stormof 408 responses
and/ or a storm of CANCEL requests will al so be propagating through
the tree along with the INVITE requests. Renenber that there are
only two proxies involved in this scenario - each having to hold the
state for all the transactions it sees (at |east 2770 sinultaneously
active transactions near the end of the scenario).

The attack can be sinmplified to one account at one server if the
service can be convinced that contacts with varying attributes
(parameters, schenes, enbedded headers) are sufficiently distinct,
and these paranmeters are not used as part of AOR conpari sons when
forwardi ng a new request. Since RFC 3261 nandates that all UR

par anmeters nmust be renoved froma URI before looking it up in a

| ocation service and that the URIs fromthe Contact header field are
conpared using URI equality, the follow ng registration should be
sufficient to set up this attack using a single REA STER request to a
singl e account:

REGQ STER sip: P1 SIP/2.0
To: <sip:a@1l>
Cont act: <si p: a@?1; unknown- par anFwhack>, <si p: a@?1; unknown- par anmrt hud>

This attack was realized in practice during one of the SIP
Interoperability Test (SIPit) sessions. The scenario was extended to
i nclude nore than two proxies, and the participating proxies al
l[imted Max-Forwards to be no larger than 20. After a handful of
nessages to construct the attack, the participating proxies began
bonbardi ng each other. Extrapolating fromthe several hours the
experiment was allowed to run, the scenario would have conmpleted in
just under 10 days. Had the proxies used the RFC 3261 recomended
Max- Forwar ds val ue of 70, and assunming they performed linearly as the

state they held increased, it would have taken 3 trillion years to
conpl ete the processing of the single INVITE request that initiated
the attack. It is interesting to note that a few proxies rebooted

during the scenario and rejoined in the attack when they restarted
(as long as they maintained registration state across reboots). This
points out that if this attack were | aunched on the Internet at

large, it mght require coordination anmong all the affected el enents
to stop it.

Loop detection, as specified in this docunment, at any of the proxies

in the scenarios described so far woul d have stopped the attack
i mediately. (If all the proxies involved inplenented this | oop

Sparks, et al. St andards Track [Page 5]

RFC 5393 Amplification Vulnerability in SIP December 2008

detection, the total nunber of stinulated nessages in the first
scenari o described would be reduced to 14; in the variation involving
one server, the nunmber of stinmulated nmessages woul d be reduced to
10.) However, there is a variant of the attack that uses multiple
AORs where | oop detection alone is insufficient protection. 1In this
vari ation, each participating ACR forks to all the other
participating AORs. For snall nunbers of participating AORs (10, for
exanpl e), paths through the resulting tree will not |oop until very

| arge nunbers of messages have been generated. Acquiring a
sufficient number of AORs to | aunch such an attack on networks
currently available is quite feasible.

In this scenario, requests will often take many hops to conplete a

| oop, and there are a very |large nunber of different |oops that wll
occur during the attack. |In fact, if Nis the nunber of
participating AORs, and provided Nis less than or equal to Max-
Forwards, the anmpunt of traffic generated by the attack is greater
than NI, even if all proxies involved are perform ng | oop detection

Suppose we have a set of N AORs, all of which are set up to fork to
the entire set. For clarity, assune AOR 1 is where the attack
begins. Every pernutation of the remaining N1 AORs will play out,
defining (N-1)! distinct paths, w thout repeating any AOR Then
each of these paths will fork N ways one last tinme, and a |l oop wll
be detected on each of these branches. These final branches al one
total N requests ((N-1)! paths, with N forks at the end of each
pat h) .

Z

| Requests_
| 1
| 4
| 15
| 64
| 325
| 1956
|
|
|
|

13699
109600
986409

9864100

QOO ~NOOUIA,WNE

=

Forwar ded Requests vs. Nunmber of Participating AORs

In a network where all proxies are performng | oop detection, an
attacker is still afforded rapidly increasing returns on the numnber
of AORs they are able to | everage. The Max-Breadth mechani sm defi ned
in this docunment is designed to limt the effectiveness of this
variation of the attack.

Sparks, et al. St andards Track [Page 6]

RFC 5393 Amplification Vulnerability in SIP December 2008

In all of the scenarios, it is inportant to notice that at each
forking proxy, an additional branch could be added pointing to a
single victim (that mght not even be a SlIP-aware el enent), resulting
in a massive amount of traffic being directed towards the victimfrom
potentially as many sources as there are AORs participating in the
attack.

4. Updates to RFC 3261
4.1. Strengthening the Requirement to Perform Loop Detection

The following requirements mtigate the risk of a proxy falling
victimto the attack described in this docunent.

When a SIP proxy forks a particular request to nore than one

| ocation, it MJST ensure that request is not |ooping through this
proxy. It is RECOVMENDED that proxies neet this requirement by
perform ng the | oop-detection steps defined in this docunent.

The requirement to use this docunment’s refinenment of the | oop-
detection algorithmfrom RFC 3261 is set at should-strength to allow
for future Standards-Track mechanisms that will allow a proxy to
determine it is not |ooping. For exanple, a proxy forking to
destinati ons established using the sip-outbound mechani sm [OQUTBOUND]
woul d know t hose branches will not | oop.

A SIP proxy forwarding a request to only one | ocation MAY perform

| oop detection but is not required to. Wen forwarding to only one
| ocation, the anplification risk being exploited is not present, and
the Max- Forwards nechanismw || protect the network to the extent it
was designed (always keep in nmind the constant nultiplier due to
exhausting Max- Forwards while not forking). A proxy is not required
to perform !l oop detection when forwarding a request to a single

| ocation even if it happened to have previously forked that request
(and performed | oop detection) in its progression through the

net wor k.

4.2. Correcting and Carifying the RFC 3261 Loop-Detection Al gorithm
4.2.1. Update to Section 16.6

This section replaces all of item8 in Section 16.6 of RFC 3261 (item
8 begi ns on page 105 and ends on page 106 of RFC 3261).

Sparks, et al. St andards Track [Page 7]

RFC 5393 Amplification Vulnerability in SIP December 2008

4. 2.

8. Add a Via Header Field Val ue

The proxy MUST insert a Via header field value into the copy before
the existing Via header field values. The construction of this value
follows the same guidelines of Section 8.1.1.7. This inplies that
the proxy will conpute its own branch paraneter, which will be
globally unique for that branch, and will contain the requisite magic
cookie. Note that following only the guidelines in Section 8.1.1.7
will result in a branch paraneter that will be different for

di fferent instances of a spiraled or |ooped request through a proxy.

Proxies required to performloop detection by RFC 5393 have an

addi tional constraint on the value they place in the Via header
field. Such proxies SHOULD create a branch val ue separable into two
parts in any inpl enentation-dependent way.

The remai nder of this section’s description assunes the existence of
these two parts. |[|f a proxy chooses to enpl oy some ot her nechani sm
it is the inplenenter’'s responsibility to verify that the detection

properties defined by the requirenents placed on these two parts are
achi eved.

The first part of the branch value MJST satisfy the constraints of
Section 8.1.1.7. The second part is used to perform|oop detection
and di stinguish |oops fromspirals.

This second part MJST vary with any field used by the | ocation
service logic in determ ning where to retarget or forward this
request. This is necessary to distinguish |ooped requests from
spirals by allowing the proxy to recognize if none of the val ues

af fecting the processing of the request have changed. Hence, the
second part MJST depend at | east on the received Request-URI and any
Rout e header field val ues used when processing the received request.
| mpl ementers need to take care to include all fields used by the

| ocation service logic in that particular inplenentation

This second part MJST NOT vary with the request nethod. CANCEL and
non- 200 ACK requests MJST have the same branch paraneter value as the
correspondi ng request they cancel or acknow edge. This branch
parameter value is used in correlating those requests at the server
handl i ng them (see Sections 17.2.3 and 9. 2).

2. Update to Section 16.3

This section replaces all of item4 in Section 16.3 of RFC 3261 (item
4 appears on page 95 of RFC 3261).

Sparks, et al. St andards Track [Page 8]

RFC 5393 Amplification Vulnerability in SIP December 2008

4. Loop-Detection Check

Proxies required to performloop detection by RFC 5393 MJST perform
the follow ng | oop-detection test before forwarding a request. Each
Via header field value in the request whose sent-by val ue matches a
val ue placed into previous requests by this proxy MJUST be inspected
for the "second part" defined in Section 4.2.1 of RFC 5393. This
second part will not be present if the nessage was not forked when
that Via header field value was added. |If the second field is
present, the proxy MJST performthe second-part cal cul ati on descri bed
in Section 4.2.1 of RFC 5393 on this request and conpare the result
to the value fromthe Via header field. |If these values are equal
the request has | ooped and the proxy MJST reject the request with a
482 (Loop Detected) response. |f the values differ, the request is
spiraling and processing continues to the next step.

4.2.3. Inpact of Loop Detection on Overall Network Perfornance

These requirements and the recommendati on to use the | oop-detection
mechani sns in this docunent nake the favorable trade of exponentia
nmessage growmh for work that is, at worst, order n*"2 as a nessage
crosses n proxies. Specifically, this work is order mn where mis
the nunber of proxies in the path that fork the request to nmore than
one location. 1In practice, mis expected to be snall

The | oop-detection al gorithmexpressed in this docunment requires a
proxy to inspect each Via elenent in a received request. 1In the
wor st case, where a nmessage crosses N proxies, each of which | oop
detect, proxy k does k inspections, and the overall nunber of

i nspections spread across the proxies handling this request is the
sum of k fromk=1 to k=N which is N(N+1)/2.

4.2.4. Note to Inplenmenters

A common way to create the second part of the branch paraneter val ue
when forking a request is to conmpute a hash over the concatenation of
the Request-URI, any Route header field values used during processing
the request, and any other values used by the location service logic
whil e processing this request. The hash should be chosen so that
there is a low probability that two distinct sets of these paraneters
will collide. Because the maxi mum nunber of inputs that need to be
conpared is 70, the chance of a collision is loweven with a
relatively small hash val ue, such as 32 bhits. CRC-32c as specified
in [RFC4960] is a specific acceptable function, as is MD5 [RFC1321].
Note that MD5 is being chosen purely for non-cryptographic
properties. An attacker who can control the inputs in order to
produce a hash collision can attack the connection in a variety of

ot her ways. Wen formng the second part using a hash,

Sparks, et al. St andards Track [Page 9]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.

5.

i mpl enent ati ons SHOULD i nclude at |east one field in the input to the
hash that varies between different transactions attenpting to reach
the sane destination to avoid repeated failure should the hash
collide. The Call-ID and CSeq fields would be good inputs for this
pur pose.

A common point of failure to interoperate at SIPit events has been
due to parsers objecting to the contents of another elenent’s Via
header field values when inspecting the Via stack for | oops.

| mpl ementers need to take care to avoid maki ng assunpti ons about the
format of another elenent’s Via header field value beyond the basic
constraints placed on that format by RFC 3261. In particular,
parsi ng a header field value wth unknown paraneter nanes, paraneters
with no values, or paraneter values with or without quoted strings
nmust not cause an inplenentation to fail

Renovi ng, obfuscating, or in any other way nodifying the branch
paraneter values in Via header fields in a received request before
forwarding it renpves the ability for the node that placed that
branch paranmeter into the nessage to performloop detection. If two
elements in a loop nodi fy branch paraneters this way, a |loop can
never be detect ed.

Max- Br eadt h
1. Overview

The Max-Breadth mechani sm defined here limts the total nunber of
concurrent branches caused by a forked SIP request. Wth this
nmechani sm all proxyable requests are assigned a positive integra
Max- Breadt h val ue, whi ch denotes the maxi mum nunber of concurrent
branches this request may spawn through parallel forking as it is
forwarded fromits current point. Wen a proxy forwards a request,
its Max-Breadth value is divided anbng the outgoing requests. In
turn, each of the forwarded requests has a linmt on how many
concurrent branches it may spawn. As branches conplete, their
portion of the Max-Breadth val ue becones avail abl e for subsequent
branches, if needed. |If there is insufficient Max-Breadth to carry
out a desired parallel fork, a proxy can return the 440 (Max-Breadth
Exceeded) response defined in this docunent.

Thi s mechani sm operates i ndependently from Max- Forwards. Max-
Forwards limts the depth of the tree a request may traverse as it is
forwarded fromits origination point to each destination it is forked
to. As Section 3 shows, the nunber of branches in a tree of even
[imted depth can be nmade | arge (exponential wth depth) by

| everagi ng forking. Each such branch has a pair of SIP transaction

Sparks, et al. St andards Track [Page 10]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.

2.

state machi nes associated with it. The Max-Breadth nechanismlimts
the number of branches that are active (those that have running
transaction state machines) at any given point in tine.

Max- Breadt h does not prevent forking. It only Iimts the nunber of
concurrent parallel forked branches. In particular, a Max-Breadth of
1 restricts a request to pure serial forking rather than restricting
it frombeing forked at all

A client receiving a 440 (Max-Breadth Exceeded) response can infer
that its request did not reach all possible destinations. Recovery
options are simlar to those when receiving a 483 (Too Many Hops)
response, and include affecting the routing decisions through

what ever mechani snms are appropriate to result in a | ess broad search,
or refining the request itself before subnission to nmake the search
space small er.

Exanpl es
UAC Proxy A Proxy B Proxy C

| INVITE | | |
| Max-Breadth: 60 | INVITE |

| Max- Forwards: 70 | Max-Breadth: 30 | |
R >| Max- Forwards: 69 | |
| e ERRREEE T EEEEEE > |
	INVITE	
	Max-Breadth: 30	
	Max- Forwards: 69	

| | oo >
| | | |

Paral | el Forking
UAC Proxy A Proxy B Proxy C

INVITE		
Max-Breadth: 60	INVITE	
Max- Forwards: 70	Max-Breadth: 60	
R >	Max- Forwards: 69	
R >		
	some error response	
	<o	
	INVITE	
	Max-Breadth: 60	
	Max- Forwards: 69	
R REEEEELEEEEEEEEEEEEEEEEEE >		

Sequenti al Forking

Sparks, et al. St andards Track [Page 11]

RFC 5393 Amplification Vulnerability in SIP December 2008

UAC Proxy A Proxy B Proxy C
INVITE		
Max-Breadth: 60	INVITE	
Max- Forwards: 70	Max-Breadth: 60	INVITE
R >	Max- Forwards: 69	Max-Breadth: 60
R >	Max- Forwards: 68	
		----mmmm oo >

No For ki ng
MB == Max- Breadth MF == Max- For war ds
| MB: 4
| M~ 5
MB: 2 P MB: 2
M- 4 [\ M- 4
. + . +
MB: 1 P MB: 1 MB: 1 P MB: 1
M- 3/ 0\ M 3 M- 3 [\ M 3
+-- -+ R, + +----+ R, +
P P P P
MB: 1 | MB: 1 | MB: 1 | MB: 1
M- 2| M- 2| M- 2| M- 2
P P P P
MB: 1 | MB: 1 | MB: 1 | MB: 1
M- 1| M- 1| M- 1| M 1
P P P P

Max- Breadt h and Max- Forwards Wor ki ng Toget her
5.3. Formal Mechani sm
5.3.1. Max-Breadth Header Field

The Max-Breadth header field takes a single positive integer as its
val ue. The Max-Breadth header field value takes no paraneters.

Sparks, et al. St andards Track [Page 12]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.3.2. Term nol ogy

For each "response context" (see Section 16 of [RFC3261]) in a proxy,
this mechani sm defines two positive integral values: |ncom ng Max-
Breadt h and Qutgoi ng Max-Breadth. |Incom ng Max-Breadth is the val ue
in the Max-Breadth header field in the request that fornmed the
response context. Qutgoing Max-Breadth is the sum of the Max-Breadth
header field values in all forwarded requests in the response context
that have not received a final response.

5.3.3. Proxy Behavi or

If a SIP proxy receives a request with no Max-Breadth header field
val ue, it MJST add one, with a value that is RECOWENDED to be 60.
Proxi es MUST have a maxi mum al | owabl e | nconi ng Max-Breadth val ue,
which is RECOWENDED to be 60. |If this maxinumis exceeded in a
recei ved request, the proxy MJST overwite it with a value that
SHOULD be no greater than its allowabl e maxi num

Al'l proxied requests MIST contain a single Max-Breadth header field
val ue.

SIP proxi es MUST NOT all ow the Qutgoi ng Max-Breadth to exceed the
I ncom ng Max-Breadth in a given response context.

If a SIP proxy determnes a response context has insufficient

I ncom ng Max-Breadth to carry out a desired parallel fork, and the
proxy is unwilling/unable to conpensate by forking serially or
sending a redirect, that proxy MJST return a 440 (Max-Breadth
Exceeded) response.

Notice that these requirements nean a proxy receiving a request with
a Max-Breadth of 1 can only fork serially, but it is not required to
fork at all -- it can return a 440 instead. Thus, this mechanismis
not a tool a user agent can use to force all proxies in the path of a
request to fork serially.

A SI P proxy MAY distribute Max-Breadth in an arbitrary fashion

bet ween active branches. A proxy SHOULD NOT use a snaller anount of
Max- Breadth than was present in the original request unless the

I ncom ng Max- Breadth exceeded the proxy’s maxi mum accept abl e val ue.
A proxy MUST NOT decrenment Max-Breadth for each hop or otherw se use
it torestrict the "depth" of a request’s propagation

Sparks, et al. St andards Track [Page 13]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.3.3.1. Reusing Max-Breadth

Because forwarded requests that have received a final response do not
count towards the Qutgoing Max-Breadth, whenever a final response
arrives, the Max-Breadth that was used on that branch becones
avai l abl e for reuse. Proxies SHOULD be prepared to reuse this Max-
Breadth in cases where there may be el enents left in the target-set.

5.3.4. UAC Behavi or

A User Agent dient (UAC) MAY place a Max-Breadth header field val ue
in outgoing requests. If so, this value is RECOMWENDED to be 60.

5.3.5. UAS Behavi or

Thi s mechani sm does not affect User Agent Server (UAS) behavior. A
UAS receiving a request with a Max-Breadth header field will ignore
that field while processing the request.

5.4. Inplenenter Notes
5.4.1. Treatment of CANCEL

Si nce CANCEL requests are never proxied, a Max-Breadth header field
val ue i s neaningless in a CANCEL request. Sending a CANCEL in no way
af fects the Qutgoing Max-Breadth in the associated | NVITE response
context. Receiving a CANCEL in no way affects the Incom ng Max-
Breadth of the associated | NVI TE response context.

5.4.2. Reclamation of Max-Breadth on 2xx Responses

Whet her 2xx responses free up Max-Breadth is nostly a noot issue,
since proxies are forbidden to start new branches in this case. But,
there is one caveat. A proxy may receive nultiple 2xx responses for
a single forwarded I NVITE request. Also, [RFC2543] inplenentations
may send back a 6xx followed by a 2xx on the sane branch

| mpl enent ations that subtract fromthe Qutgoi ng Max-Breadth when they
receive a 2xx response to an INVITE request nust be careful to avoid
bugs caused by subtracting nmultiple times for a single branch

5.4.3. Max-Breadth and Aut omat on UAs

Desi gners of automaton user agents (UAs) (including B2BUAs, gateways,
expl oders, and any other el enent that progranmatically sends requests
as a result of incoming SIP traffic) should consider whether Max-
Breadth Iimtations should be placed on outgoing requests. For
exanple, it is reasonable to design B2BUAs to carry the Max-Breadth
val ue fromincomng requests into requests that are sent as a result.

Sparks, et al. St andards Track [Page 14]

RFC 5393 Amplification Vulnerability in SIP December 2008

Also, it is reasonable to place Max-Breadth constraints on sets of
requests sent by expl oders when they may be | everaged in an
anplification attack.

5.5. Parallel and Sequential Forking

Inherent in the definition of this mechanismis the ability of a
proxy to reclai mapportioned Max-Breadth while forking sequentially.
The Iimtation on outgoing Max-Breadth is applied to concurrent
branches only.

For exanple, if a proxy receives a request with a Max-Breadth of 4
and has 8 targets to forward it to, that proxy nmay parallel fork to 4
of these targets initially (each with a Max-Breadth of 1, totaling an
Qut goi ng Max-Breadth of 4). |If one of these transactions conpl etes
with a failure response, the outgoing Max-Breadth drops to 3,
allowing the proxy to forward to one of the 4 remaining targets
(again, with a Max-Breadth of 1).

5.6. Max-Breadth Split Wi ght Selection
There are a variety of mechanisnms for controlling the weight of each

fork branch. Fork branches that are given nore Max-Breadth are nore
likely to conplete quickly (because it is less likely that a proxy

down the line will be forced to fork sequentially). By the sane
token, if it is known that a given branch will not fork later on, a
Max- Breadth of 1 may be assigned with no ill effect. This would be

appropriate, for exanple, if a proxy knows the branch is using the
SI P out bound ext ensi on [QUTBOUND] .

5.7. Max-Breadth’'s Effect on Forking-Based Amplification Attacks

Max-Breadth limits the total nunber of active branches spawned by a
gi ven request at any one time, while placing no constraint on the
di stance (neasured in hops) that the request can propagate. (i.e.
receiving a request with a Max-Breadth of 1 neans that any forking
nust be sequential, not that forking is forbidden)

This limts the effectiveness of any anplification attack that

| everages forking because the anount of state/bandw dth needed to
process the traffic at any given point in tine is capped.

Sparks, et al. St andards Track [Page 15]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.8. Max-Breadth Header Field ABNF Definition
This specification extends the granmar for the Session Initiation
Prot ocol by addi ng an extension-header. The ABNF [RFC5234]
definition is as foll ows.
Max-Breadth = "Max-Breadth" HCOLON 1*DIA T

6. | ANA Consi derations

This specification registers a new SIP header field and a new SIP
response according to the processes defined in [RFC3261].

6.1. Mux-Breadth Header Field

This information appears in the Header Fields sub-registry of the SIP
Paranmeters registry.

RFC 5393 (this specification)
Header Field Nane: Mx-Breadth
Conmpact Form none

6.2. 440 Max-Breadth Exceeded Response

This informati on appears in the Response Codes sub-registry of the
SIP Parameters registry

Response code: 440
Def ault Reason Phrase: Max-Breadth Exceeded
7. Security Considerations

This docunent is entirely about docunenting and addressing a
vul nerability in SIP proxies as defined by RFC 3261 that can lead to
an exponentially growi ng nessage exchange attack

The Max-Breadth mechani sm defi ned here does not decrease the
aggregate traffic caused by the forking-loop attack. It only serves
to spread the traffic caused by the attack over a |onger period by
limting the nunber of concurrent branches that are being processed
at the sane tine. An attacker could punp nmultiple requests into a
network that uses the Max-Breadth mechani sm and gradually build
traffic to unreasonable | evels. Deploynents should nonitor carefully
and react to gradual increases in the nunber of concurrent

out standi ng transactions related to a given resource to protect

Sparks, et al. St andards Track [Page 16]

RFC 5393 Amplification Vulnerability in SIP December 2008

against this possibility. Operators should anticipate being able to
temporarily disable any resources identified as being used in such an
attack. A rapid increase in outstanding concurrent transactions
systemw de may be an indication of the presence of this kind of
attack across many resources. Deploynments in which it is feasible
for an attacker to obtain a very |large nunber of resources are
particularly at risk. |If detecting and intervening in each instance
of the attack is insufficient to reduce the | oad, overload nay occur

| mpl ementers and operators are encouraged to follow the
recommendat i ons bei ng devel oped for handling overload conditions (see

[REQS] and [DESIG\]).

Desi gners of protocol gateways should consider the inplications of
this kind of attack carefully. As an exanple, if a nessage transits
froma SIP network into the Public Switched Tel ephone Network (PSTN)
and subsequently back into a SIP network, and information about the
hi story of the request on either side of the protocol translation is
lost, it becones possible to construct |oops that neither Max-
Forwards nor | oop detection can protect against. This, conbined with
forking anplification on the SIP side of the loop, will result in an
attack as described in this docurment that the nechani sns here will
not abate, not even to the point of limting the nunber of concurrent
nessages in the attack. These considerations are particularly

i mportant for designers of gateways fromSIP to SIP (as found in
B2BUAs, for exanple). Many existing B2BUA i npl enentati ons are under
some pressure to hide as much information about the two sides
conmuni cating with them as possible. Inplenmenters of such

i mpl enentati ons may be tenpted to renove the data that nmight be used
by the | oop-detection, Max-Forwards, or Max-Breadth nechani sns at
other points in the network, taking on the responsibility for
detecting loops (or forns of this attack). However, if two such

i mpl ementations are involved in the attack, neither will be able to
detect it.

7.1. Alternate Solutions That Were Consi dered and Rejected
Alternative solutions that were discussed incl ude:

Doi ng nothing - rely on suing the offender: VWil e systens that have
accounts have |logs that can be mned to | ocate abusers, it isn't
clear that this provides a credible deterrent or defense against
the attack described in this docunent. Systens that don't
recogni ze the situation and take corrective/preventative action
are likely to experience failure of a nmagnitude that precludes
retrieval of the records docunmenting the setup of the attack. (In
one scenario, the registrations can occur in a radically different
time period than the INVITE transaction. The |INVITE request

Sparks, et al. St andards Track [Page 17]

RFC 5393 Amplification Vulnerability in SIP December 2008

itself may have cone froman innocent). |It’'s even possible that
the scenario may be set up unintentionally. Furthernore, for sone
exi sting depl oynents, the cost and audit ability of an account is
sinmply an email address. Finding someone to punish may be

i mpossible. Finally, there are individuals who will not respond
to any threat of |legal action, and the effect of even a single
successful instance of this kind of attack woul d be devastating to
a service provider.

Putting a smaller cap on Max- Forwards: The effect of the attack is
exponential with respect to the initial Max-Forwards val ue.
Turning this value down limts the effect of the attack. This
cones at the expense of severely limting the reach of requests in
the network, possibly to the point that existing architectures
will begin to fail.

Di sal l owi ng regi stration bindings to arbitrary contacts: The way
registration binding is currently defined is a key part of the
success of the kind of attack docunented here. The alternative of
limting registration bindings to allow only binding to the
network el ement performing the registration, perhaps to the
extreme of ignoring bits provided in the Contact in favor of
transport artifacts observed in the registration request, has been
di scussed (particularly in the context of the nechani sns being
defined in [OUTBOUND]). Mechanisns |ike this nay be considered
again in the future, but are currently insufficiently devel oped to
address the present threat.

Deprecat e forking: This attack does not exist in a systemthat
relies entirely on redirection and initiation of new requests by
the original endpoint. Renoving such a large architectura
conponent fromthe systemat this tine was deened too extrene a
sol uti on.

Don’t reclaimbreadth: An alternative design of the Max-Breadth
mechani smthat was considered and rejected was to not allowthe
breadth from conpl eted branches to be reused (see
Section 5.3.3.1). Under this alternative, an introduced request
woul d cause, at nost, the initial value of Max-Breadth
transactions to be generated in the network. While that approach
l[imts any variant of the anplification vulnerability described
here to a constant nultiplier, it would dramatically change the
potential reach of requests, and there is belief that it would
break existing depl oynents.

Sparks, et al. St andards Track [Page 18]

RFC 5393 Amplification Vulnerability in SIP December 2008

8. Acknow edgnents
Thanks go to the inplenenters that subjected their code to this
scenari o and hel ped anal yze the results at SIPit 17. Eric Rescorla
provi ded gui dance and text for the hash reconmendati on note.

9. References

9.1. Nornmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC3261] Rosenberg, J., Schul zrinne, H, Canmarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M, and E
School er, "SIP: Session Initiation Protocol", RFC 3261,

June 2002.
[RFC5234] Crocker, D. and P. Overell, "Augrmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.
9.2. Informative References
[DESI QN Hlt, V., "Design Considerations for Session Initiation
Protocol (SIP) Overload Control", Wrk in Progress,
July 2008.

[QUTBOUND] Jennings, C. and R Mahy, "Managing Client Initiated
Connections in the Session Initiation Protocol (SIP)",
Work in Progress, COctober 2008.

[REQS] Rosenberg, J., "Requirenents for Managenent of Overl oad
in the Session Initiation Protocol", Wrk in Progress,
July 2008.

[RFC1321] Rivest, R, "The MD5 Message-Digest Al gorithni, RFC 1321
April 1992.

[RFC2543] Handl ey, M, Schul zrinne, H., Schooler, E., and J.
Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
March 1999.

[RFC4960] Stewart, R, "Stream Control Transm ssion Protocol"
RFC 4960, Septenber 2007.

Sparks, et al. St andards Track [Page 19]

RFC 5393 Amplification Vulnerability in SIP December 2008

Aut hors’ Addr esses

Robert Sparks (editor)

Tekel ec

17210 Canpbel | Road

Suite 250

Dal | as, Texas 75254-4203
USA

EMai | : Rj S@ostrum com

Scott Lawrence

Nortel Networks, |nc.
600 Technol ogy Park
Billerica, MA 01821
USA

Phone: +1 978 288 5508
EMai |l : scott.|l awence@ortel.com

Al an Haw yl yshen

Ditech Networks Inc.

823 E. Mddlefield Rd
Mountain View, CA 94043
USA

Phone: +1 650 623 1300
EMai | : al an.ietf @ol yphase. ca

Byron Canpen

Tekel ec

17210 Canpbel | Road

Suite 250

Dal | as, Texas 75254-4203
USA

EMai | : bcanpen@st acado. net

Sparks, et al. St andards Track [Page 20]

