Net wor k Wor ki ng Group M Thomnson
Request for Comments: 5573 Andr ew
Cat egory: Experi ment al June 2009

Asynchronous Channels for the Bl ocks Extensible Exchange Protocol (BEEP)
Status of This Meno

This meno defines an Experinental Protocol for the Internet
conmunity. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this nmenop is unlimted.

Copyri ght Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunments in effect on the date of
publication of this docunment (http://trustee.ietf.org/license-info).
Pl ease review these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

Abstract

The Bl ocks Extensi bl e Exchange Protocol (BEEP) provides a protoco
franmework for the devel opnent of application protocols. This
document describes a BEEP feature that enabl es asynchrony for

i ndi vi dual channel s.

Tabl e of Contents

L. IntroduCtiOn 2
2. Asynchronous BEEP Channels i, 3
2.1. Asynchronous Feature i 3
2.2. Starting an Asynchronous Channel 4
2.3. Asynchronous Channel Behavior 5
2.4. Error Handling e 6
3. AL erNati VS o 6
3. 1. Increasing Throughput 6
3.2. Asynchrony in the Application Protocol 7
4. Security Considerati Ons e 7
5. TANA Considerati ONS 8
6. Ref erences 8
6.1. Normative References i, 8
6.2. Informative References i 8

Thonson Experi nment al [Page 1]

RFC 5573 Asynchr onous BEEP Channel s June 2009

1. Introduction

The Bl ocks Extensi bl e Exchange Protocol (BEEP) provides a protoco
framewor k that manages many of the aspects necessary in devel opi ng an
application protocol: fram ng, encoding, privacy, authentication, and
asynchrony. However, the asynchrony provided by BEEP is linted to
asynchrony between channels; replies to nessages sent on any channe
are strictly ordered.

Serial processing behavior is desirable for a range of applications.
However, serial processing is less suitable for applications that
rely nore heavily on asynchrony. In particular, if a response takes
a significant anount of tinme to create, the channel is effectively
bl ocked until the request has been processed and the response sent.
Pi pelining only ensures that network | atency does not add to this
time; subsequent requests cannot be processed until a response is
made to the first request.

Asynchronous applications require a protocol that is able to support
a | arge nunber of concurrent outstanding requests. The anal ogy of a
channel as a thread does not scale to the |arge nunber of threads
used in nodern systems. Modern applications regularly have | arge
nunbers of concurrent processing threads. Thus, a better way of

nmul tiplexing | arge nunbers of concurrent requests is required.

Thi s document describes a BEEP feature, an extension to BEEP, that
enabl es the creation of an asynchronous channel. An asynchronous
channel is a channel where response ordering is not fixed to the
order of the requests sent by the client peer. An asynchronous
channel is identical to other channels, using unnodified fram ng
except that requests nmay be processed in parallel and responses nay
be sent in any order

An asynchronous channel enables the efficient use of a single channe
for multiple concurrent requests. There is no inpact on requests
arising fromthe timng of responses to other requests. The
requesti ng peer can process responses to the requests it sends as
they conme available; simlarly, the serving peer can take advantage
of parallel processing without artificial constraints on the order of
responses.

Asynchronous channels allow for greater throughput where the serving
peer requires any tine to process requests. This is particularly
rel evant where the serving peer needs to perform | engthy conputations
or make network-based requests as a part of servicing the request.

Thonson Experi ment al [Page 2]

RFC 5573 Asynchr onous BEEP Channel s June 2009

BEEP feature negotiation is used to ensure that both peers are
mutually willing to create asynchronous channels. A neans for
est abl i shing an asynchronous channel is described.

Thi s docunent is published as an Experinmental RFC in order to find
out whether the extension is going to be deployed for use in a
variety of use cases and applications.

2. Asynchronous BEEP Channel s

Thi s docunent defines a BEEP feature that enables the use of
asynchronous channels. An asynchronous channel is a BEEP channe
that is not subject to the restrictions of Section 2.6.1 of [RFC3080]
regardi ng ordering of responses; requests can be processed and
responded to in any order by the serving peer

Asynchronous channel s use the "msgno" el ement of the BEEP frane
header to correlate request and response. Regular BEEP channel s do
not use "msgno" for request/response correlation, contrary to what
m ght be inferred by the presence of the parameter. |In a regular
BEEP channel , the "nmsgno" only serves as a means of checking for
prot ocol errors.

Asynchronous channels are not suitable for applications where state
establ i shed by requests is relied upon in subsequent requests or the
ordering of nessages is significant.

2.1. Asynchronous Feature
The "feature" attribute in the BEEP greeting contains a whitespace-
separated |ist of features supported by each peer. |If both lists
contain the sane feature, that feature may be used by either peer
Thi s docunent registers the feature "async". |If either peer does not
include this feature in the greeting message, neither peer is able to
create an asynchronous channel

Figure 1 shows an exanpl e exchange where both peers decl are
willingness to use this feature.

Thonson Experi ment al [Page 3]

RFC 5573 Asynchr onous BEEP Channel s June 2009

<wait for incom ng connection>
<open connecti on>

RPY 0 0 . 0 133

Cont ent - Type: appli cati on/ beep+xm

<greeting features="async x-foo">
<profile uri="http://exanpl e.conl beep/ APP" />
</ greeting>
END
RPY 0 O . 0 69
Cont ent - Type: appl i cati on/ beep+xm

<greeting features="async" />
END

S I D P

Figure 1: BEEP G eetings with Asynchronous Feature
The registration tenplate for BEEP features is included in Section 5.
2.2. Starting an Asynchronous Channe
To create an asynchronous channel, an "async" paranmeter set to "true"
is included in the "start" request. |If omtted, or set to "fal se"

the channel is not asynchronous.

Fi gure 2 shows how the "async" attribute can be used to start an
asynchronous channel

MSG 0 1 . 52 130
Cont ent - Type: appli cation/ beep+xm
<start nunber="1" async="true">
<profile uri="http://exanple.org/protocol"/>
</start>
END

RPY 0 1 . 221 102
Cont ent - Type: appli cation/ beep+xm

<profile uri="http://exanple.org/protocol"/>
END

PRLNNOOOOOOO

Figure 2: Asynchronous Channel Start

If the serving peer is unable to create an asynchronous channel for
any reason, the channel start is rejected. This could occur if the
sel ected profile is not suitable for an asynchronous channel. The
response can include the "553" response code (paranmeter invalid) and
an appropriate nessage, as shown in Figure 3.

Thonson Experi ment al [Page 4]

RFC 5573 Asynchr onous BEEP Channel s June 2009

2.

MSG 0 1 . 52 128
Cont ent - Type: appli cation/ beep+xm
<start nunber="1" async="true">
<profile uri="http://exanple.org/serial"/>
</start>
END

ERR O 1 . 221 152
Cont ent - Type: appli cation/ beep+xm

<error code="553">Profile & t;http://exanple.org/serial > ;
cannot be used for asynchronous channels. </error>
END

PRRRLNOOOOOOO

Fi gure 3: Asynchronous Channel Start Error
Asynchr onous Channel Behavi or

Asynchronous channels differ fromnornal BEEP channels in one way
only: an asynchronous channel is not subject to the restrictions in
Section 2.6.1 of [RFC3080] regarding the processing and response
ordering. A peer in the serving role may process and respond to
requests in any order it chooses.

In an asynchronous channel, the "nsgno" elenment of the frane header
is used to correlate request and response. A BEEP peer receiving
responses in a different order than the requests that triggered them
must not regard this as a protocol error

"MBG' nmessages sent on an asynchronous channel nmamy be processed in
paral l el by the serving peer. Responses ("RPY", "ANS", "NUL", or
"ERR' messages) can be sent in any order. Different "ANS' nessages
that are sent in a one-to-nmany exchange may be interleaved with
responses to other "MSG' messages.

An asynchronous channel nust still observe the rules in [RFC3080]
regardi ng segnented nessages. Each nessage nust be conpl eted before
any other nessage can be sent on that sanme channel

Note: An exception to this rule is made in [RFC3080] for interleaved

"ANS"' segnents sent in response to the sane "M5SG'. It is
recormmended that BEEP peers do not generate interleaved ANS
segnent s.

The BEEP management channel (channel 0) is never asynchronous.

Thonson Experi ment al [Page 5]

RFC 5573 Asynchr onous BEEP Channel s June 2009

2. 4.

3.

1

Error Handl i ng

BEEP does not provide any nechani smfor managi ng a peer that does not
respond to a request. Synchronous channel s cannot be used or even
closed if a peer does not provide a response to a request. The only
renmedy available is closing the underlying transport. Wile an
asynchronous channel cannot be closed, it can still be used for
further requests. However, any outstanding request still consunes
state resources. Cient peers may di spose of such state after a
configured interval, but nust be prepared to discard unrecogni zed
responses if they do so.

Al ternatives

The option presented in this docunment provides for asynchronous
conmuni cati on. Asynchronous channels m ght not be applicable in
every circunstance, particularly where ordering of requests is
significant. Depending on application protocol requirenments, the
alternatives discussed in this section could be nore applicable.

I ncreasi ng Thr oughput

In sonme cases, asynchronous channel s can be used to renove
limtations on nessage processing throughput. Alternatively,

pi pelining of requests can increase throughput significantly where
network latency is the limting factor. Spreading requests over
several channels increases overall throughput, if throughput is the
only consi derati on.

Note: Be wary of false optimzations that rely on the pipelining of
requests. If later requests in a series of pipelined requests
rely on state established by earlier requests, errors in earlier
requests could invalidate |later requests.

The flow control w ndow used in the TCP nmappi ng [RFC3081] can
introduce a limting factor in throughput for individual channels.
Choi ce of TCP window size sinlarly Iimts throughput, see [RFC1323].
To avoid limtations introduced by flow control, receiving peers can
i ncrease the wi ndow size used; sending peers can open additiona
channels with the sane profile. Correctly managi ng fl ow control al so
applies to asynchronous channel s.

Thonson Experi ment al [Page 6]

RFC 5573 Asynchr onous BEEP Channel s June 2009

3.2. Asynchrony in the Application Protoco

Wth changes to the application protocol, serial channels can be used
for asynchronous exchanges. Asynchrony can be provi ded at a protoco
| ayer above BEEP by separating request and response. This requires
the addition of proprietary MM headers or nodifications to the
application protocol

The serving peer provides an inmediate "RPY" (or "NUL") response to
requests. This frees the channel for further requests. The actua
response is sent as a separate "MSG' using a special identifier
included in the original request to correlate the response with the
request. This second "MSG' can be sent on the sane channel (since
these are full duplex) or on a channel specifically created for this
pur pose.

This method is not favored since it requires that the application
protocol solve the problemof correlating request with response.
BEEP ains to provide a general franework for the creation of an
application protocol, and for it to not provide request/response
correlation would limt its usefulness. Using a MM header is also
possi bl e, but using "nsgno" is the nost el egant sol ution.

4. Security Considerations

Enabl i ng asynchronous nessagi ng for a channel potentially requires
the mai ntenance of additional state information. A peer in the
server role that does not reply to nessages can cause the

accunul ation of state at the client peer. |If this state information
were not linmted, this node could be used to perform denial of
service. This problem while already present in BEEP, is potentially
nore significant due to the nature of the processing on the serving
peer that m ght occur for requests received on an asynchronous
channel. The extent to which denial is possible is limted by what a
serving peer accepts; the number of outstanding requests can be
restricted to protect agai nst excessive accunul ation of state.

A client peer maintains state for each request that it sends. A
client peer should enforce a configurable limt on the nunber of
requests that it will allowto be outstanding at any time. This
[imt could be enforced at channel, connection, or application scope.
Once this Iimt is reached, the client peer mght prevent or bl ock
further requests from been generated.

Peers that serve requests on asynchronous channels al so accumnul ate
state when a request is accepted for processing. Peers in the
serving role may simlarly limt to the nunber of requests that are
processed concurrently. Once this limt is reached the receiving

Thonson Experi ment al [Page 7]

RFC 5573 Asynchr onous BEEP Channel s June 2009

peer can either stop reading new requests, or mght start rejecting
such requests by generating error responses. Alternatively, the flow
control [RFC3081] can be used; "SEQ' frames can be suppressed
allowing the flow control wi ndow to close and preventing the receipt
of further requests.

5. | ANA Consi derations
This section registers the BEEP "async" feature in the BEEP
paranmeters registry, following the tenplate from Section 5.2 of
[RFC3080] .
Feature ldentification: async

Feature Senmantics: This feature enables the creation of asynchronous
channel s, see Section 2 of RFC 5573.

Contact Informmtion: Martin Thonson <martin.thonson@ndrew. cone
6. References
6.1. Nornmtive References

[RFC3080] Rose, M, "The Bl ocks Extensible Exchange Protocol Core"
RFC 3080, March 2001.

6.2. Informative References

[RFC3081] Rose, M, "Mapping the BEEP Core onto TCP", RFC 3081
March 2001

[RFC1323] Jacobson, V., Braden, B., and D. Bornan, "TCP Extensions
for H gh Performance", RFC 1323, May 1992.

Aut hor’ s Addr ess

Martin Thonson

Andr ew

PO Box W40

Wl | ongong Uni versity Canpus, NSW 2500
AU

Phone: +61 2 4221 2915

EMai | : martin.thomson@ndrew. com

URI : http://ww. andr ew. con!

Thonson Experi ment al [Page 8]

