I nt ernet Engi neering Task Force (1 ETF) D. Bl ack

Request for Comments: 5663 S. Fridella
Cat egory: Standards Track EMC Cor poration
| SSN: 2070-1721 J. d asgow

CGoogl e

January 2010

Paral | el NFS (pNFS) Bl ock/ Vol ume Layout
Abst r act

Paral | el NFS (pNFS) extends Network File Sharing version 4 (NFSv4) to
allowclients to directly access file data on the storage used by the
NFSv4 server. This ability to bypass the server for data access can
i ncrease both performance and parallelism but requires additiona
client functionality for data access, sone of which is dependent on
the class of storage used. The nain pNFS operations docunent

speci fies storage-cl ass-i ndependent extensions to NFS; this docunent
specifies the additional extensions (primarily data structures) for
use of pNFS with bl ock- and vol ume-based st orage.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it nmay be obtained at
http://ww. rfc-editor.org/info/rfc5663.

Bl ack, et al. St andards Track [Page 1]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Copyri ght Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Bl ack, et al. St andards Track [Page 2]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Tabl e

1

Nookw

Bl ack,

of Contents
Nt roduCti ON 4
1.1. Conventions Used in This Docunent 4
1.2. General Definitions 5
1.3. Code Components Licensing Notice 5
1.4. XDR DesCription ... e e e e e 5
Bl ock Layout DesCription 7
2.1. Background and Architecture 7
2.2. CGETDEVICELIST and GETDEVICEINFOt 9
2.2.1. Volume Identification, 9
2.2.2. Volume Topol ogy 10
2.2.3. GETDEVI CELI ST and GETDEVI CEI NFO deviceid4 12
2.3. Data Structures: Extents and Extent Lists 12
2.3.1. Layout Requests and Extent Lists 15
2.3.2. Layout Commits 16
2.3.3. Layout RetUIrns e 16
2.3.4. Cient Copy-on-Wite Processing 17
2.3.5. Extents are Permissions 18
2.3.6. End-of-file Processing 20
2.3.7. Layout Hints 20
2.3.8. dient FeNCinNg 21
2.4. Crash Recovery ISSUBS e 23
2.5. Recalling Resources: CB RECALL ANY 23
2.6. Transient and Permanent Errors 24
Security Considerati ons 24
CoONCl USI ONS 26
IANA Considerati ONS i e e e e e e e 26
Acknow edgment S 26
Ref Br BNCES . .. 27
7.1. Normative References, 27
7.2. Informative References 27
et al. St andards Track [Page 3]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

1. Introduction

Figure 1 shows the overall architecture of a Parallel NFS (pNFS)

system
SR +
| 4----------- + R +
|| +-----mmmm - + | |
[]] | NFSv4. 1 + pNFS | |
| dients |<--------mmmmi i >| Server |
+| | | |
Fom e + | |
|1 taREEERE R +
|1 |
|1 |
||| Storage R + |
||| Protocol | +----------- +
|| +---------------- || +----------- + Control
| #----emmm - []] | Prot ocol |
A R +|| Storage |------------ +
+| Systens |
S +

Figure 1. pNFS Architecture

The overall approach is that pNFS-enhanced clients obtain sufficient
information fromthe server to enable themto access the underlying
storage (on the storage systens) directly. See the pNFS portion of
[NFSv4.1] for nore details. This docunment is concerned with access
frompNFS clients to storage systens over storage protocols based on
bl ocks and vol unes, such as the Small Conputer System Interface
(SCsSl) protocol family (e.g., parallel SCSI, Fibre Channel Protoco
(FCP) for Fibre Channel, Internet SCSI (iSCSl), Serial Attached SCS
(SAS), and Fi bre Channel over Ethernet (FCoE)). This class of
storage is referred to as bl ock/volume storage. Wiile the Server to
St orage System protocol, called the "Control Protocol", is not of
concern for interoperability here, it will typically also be a

bl ock/vol ume protocol when clients use block/ volume protocols.

1.1. Conventions Used in This Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Bl ack, et al. St andards Track [Page 4]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

1.2. General Definitions

The foll owing definitions are provided for the purpose of providing
an appropriate context for the reader

Byt e

Thi s docunent defines a byte as an octet, i.e., a datumexactly 8
bits in length.

dient

The "client” is the entity that accesses the NFS server’s
resources. The client nmay be an application that contains the
logic to access the NFS server directly. The client may al so be
the traditional operating systemclient that provides rempte file
system services for a set of applications.

Server

The "server" is the entity responsible for coordinating client
access to a set of file systems and is identified by a server
owner .

1.3. Code Conponents Licensing Notice

The external data representation (XDR) description and scripts for
extracting the XDR description are Code Conponents as described in
Section 4 of "Legal Provisions Relating to | ETF Documents” [LEGAL].
These Code Components are |licensed according to the terns of Section
4 of "Legal Provisions Relating to | ETF Docunents".

1.4. XDR Description

Thi s docunent contains the XDR ([XDR]) description of the NFSv4.1

bl ock | ayout protocol. The XDR description is enbedded in this
docunent in a way that nmakes it sinple for the reader to extract into
a ready-to-conmpile form The reader can feed this docunent into the
follow ng shell script to produce the machi ne readabl e XDR
description of the NFSv4.1l bl ock | ayout:

#!/ bi n/ sh
grep "N *[[]" $* | sed 's?™ *[[] ??° | sed 's?N *[]]$??

Bl ack, et al. St andards Track [Page 5]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

That is, if the above script is stored in a file called "extract.sh",
and this docunment is in a file called "spec.txt", then the reader can
do:

sh extract.sh < spec.txt > nfs4_bl ock_| ayout _spec. x

The effect of the script is to renove both | eading white space and a
sentinel sequence of "///" from each matching Iine.

The enbedded XDR fil e header follows, with subsequent pieces enbedded
t hroughout the docunent:

1=

/1l * This code was derived from RFC 5663.

/1l * Please reproduce this note if possible.

1 *

1=

/1l * Copyright (c) 2010 | ETF Trust and the persons identified
/1l * as the docunent authors. All rights reserved.

1 *

/11 * Redistribution and use in source and binary forms, with
/1] * or without nodification, are permitted provided that the
/1l * follow ng conditions are net:

1 *

/1l * - Redistributions of source code nust retain the above
[* copyright notice, this list of conditions and the

I * foll owi ng discl ainer.

1=

/1l * - Redistributions in binary form must reproduce the above
I * copyright notice, this list of conditions and the

[* foll owi ng disclainmer in the docunentati on and/or ot her
[* materials provided with the distribution

I *

/1l * - Neither the name of Internet Society, |ETF or |ETF

[* Trust, nor the nanes of specific contributors, may be
I * used to endorse or pronote products derived fromthis
[* software wi thout specific prior witten pernission

1 *

o TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
1= AND CONTRI BUTORS "AS | S" AND ANY EXPRESS OR | MPLI ED
1 * WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE

1 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS
1= FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO

[* EVENT SHALL THE COPYRI GHT OWNER OR CONTRI BUTORS BE
o LI ABLE FOR ANY DI RECT, | NDI RECT, | NClI DENTAL, SPECI AL
1= EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT
1 * NOT LI M TED TO PROCUREMENT OF SUBSTI TUTE GOODS OR
1 * SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

Bl ack, et al. St andards Track [Page 6]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

o | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
I * LI ABI LI TY, WHETHER I N CONTRACT, STRICT LI ABILITY,
1= OR TORT (| NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
1= IN ANY WAY QUT OF THE USE OF THI' S SOFTWARE, EVEN I F
1= ADVI SED OF THE PCSSI Bl LI TY OF SUCH DAMAGE

1 *l

I

1rrr*

[l * nfs4 bl ock_|l ayout _prot.x

1 *

111

/1] % nclude "nfsv4l. h"

I

The XDR code contained in this docunent depends on types fromthe
nfsv4l.x file. This includes both nfs types that end with a 4, such
as offset4, length4, etc., as well as nore generic types such as
uint32 .t and uint64_t.

2. Block Layout Description
2.1. Background and Architecture

The fundanental storage abstraction supported by bl ock/vol une storage
is a storage volunme consisting of a sequential series of fixed-size
bl ocks. This can be thought of as a logical disk; it my be realized
by the storage systemas a physical disk, a portion of a physica

di sk, or something nore complex (e.g., concatenation, striping, RAID
and conbi nations thereof) involving multiple physical disks or
portions thereof.

A pNFS | ayout for this block/volune class of storage is responsible
for mapping froman NFS file (or portion of a file) to the bl ocks of
storage volunmes that contain the file. The blocks are expressed as
extents with 64-bit offsets and | engths using the existing NFSv4

of fset4 and | ength4 types. Cdients nust be able to performl/Oto
the block extents without affecting additional areas of storage
(especially inmportant for wites); therefore, extents MJST be aligned
to 512-byte boundaries, and witable extents MJIST be aligned to the
bl ock size used by the NFSv4 server in nanaging the actual file
system (4 kil obytes and 8 kil obytes are common bl ock sizes). This

bl ock size is available as the NFSv4.1 | ayout bl ksize attribute.

[NFSv4.1]. Readable extents SHOULD be aligned to the block size used
by the NFSv4 server, but in order to support legacy file systens with
fragments, alignnment to 512-byte boundaries is acceptable.

Bl ack, et al. St andards Track [Page 7]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

The pNFS operation for requesting a | ayout (LAYOUTGET) includes the
"l ayouti onode4 | oga_i onode" argument, which indicates whether the
requested |l ayout is for read-only use or read-wite use. A read-only
| ayout may contain holes that are read as zero, whereas a read-wite
layout will contain allocated, but un-initialized storage in those
hol es (read as zero, can be witten by client). This docunent also
supports client participation in copy-on-wite (e.g., for file
systens with snapshots) by providing both read-only and un-
initialized storage for the same range in a |ayout. Reads are
initially performed on the read-only storage, with wites going to
the un-initialized storage. After the first wite that initializes
the un-initialized storage, all reads are perfornmed to that now
initialized witable storage, and the correspondi ng read-only storage
is no | onger used.

The bl ock/vol une | ayout solution expands the security
responsibilities of the pNFS clients, and there are a nunber of
environnents where the mandatory to inplenent security properties for
NFS cannot be satisfied. The additional security responsibilities of
the client follow, and a full discussion is present in Section 3,
"Security Considerations".

o Typically, storage area network (SAN) di sk arrays and SAN
protocol s provide access control mechanisms (e.g., Logical Unit
Nunmber (LUN) nappi ng and/or masking), which operate at the
granul arity of individual hosts, not individual blocks. For this
reason, bl ock-based protection nust be provided by the client
sof t war e.

o Simlarly, SAN disk arrays and SAN protocols typically are not
able to validate NFS | ocks that apply to file regions. For
instance, if afile is covered by a mandatory read-only | ock, the
server can ensure that only readable layouts for the file are
granted to pNFS clients. However, it is up to each pNFS client to
ensure that the readable |ayout is used only to service read
requests, and not to allow wites to the existing parts of the
file.

Si nce bl ock/vol ume storage systems are generally not capable of
enforcing such fil e-based security, in environnents where pNFS
clients cannot be trusted to enforce such policies, pNFS bl ock/vol une
storage | ayouts SHOULD NOT be used.

Bl ack, et al. St andards Track [Page 8]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.2. CETDEVI CELI ST and GETDEVI CEI NFO
2.2.1. Volune ldentification

St orage systems such as storage arrays can have nultiple physica
network ports that need not be connected to a common network,
resulting in a pNFS client having sinultaneous nultipath access to
the sane storage volunes via different ports on different networks.

The networks may not even be the sane technology -- for exanple,
access to the same volune via both i SCSI and Fi bre Channel is
possi bl e, hence network addresses are difficult to use for vol une
identification. For this reason, this pNFS bl ock | ayout identifies
storage volunmes by content, for exanple providing the neans to nmatch
(uni que portions of) |abels used by vol ume managers. Vol une
identification is performed by nmatching one or nore opaque byte
sequences to specific parts of the stored data. Any bl ock pNFS
systemusing this layout MJST support a neans of content-based uni que
vol une identification that can be enployed via the data structure

gi ven here.

/1] struct pnfs_bl ock_sig component4 { /* disk signature conmponent */

/11 int64_t bsc_sig_offset; /* byte offset of component
/11 on vol une*/

/11 opaque bsc_cont ent s<>; /* contents of this conponent
/11 of the signature */

1y,

/11

Not e that the opaque "bsc_contents" field in the
"pnfs_block _sig _component4" structure MUST NOT be interpreted as a
zero-terminated string, as it may contain enbedded zero-val ued bytes.
There are no restrictions on alignment (e.g., neither bsc_sig_offset
nor the length are required to be nultiples of 4). The
bsc_sig_offset is a signed quantity, which, when positive, represents
an byte offset fromthe start of the volune, and when negative
represents an byte offset fromthe end of the vol une.

Negative offsets are pernmitted in order to sinmplify the client

i mpl enentati on on systens where the device label is found at a fixed
offset fromthe end of the volume. |If the server uses negative

of fsets to describe the signature, then the client and server MJST
NOT see different volune sizes. Negative offsets SHOULD NOT be used
in systens that dynam cally resize volumes unless care is taken to
ensure that the device label is always present at the offset fromthe
end of the volune as seen by the clients.

Bl ack, et al. St andards Track [Page 9]

RFC 5663

pNFS Bl ock/ Vol une Layout

January 2010

A signature is an array of up to "PNFS BLOCK MAX SI G COWP"' (defined

bel ow) signature conponents.

The client MJST NOT assune that al

si gnature conmponents are co-located within a single sector on a bl ock
devi ce.

The pNFS client block |ayout driver

uses this volume identification

to map pnfs_bl ock vol ume_type4 PNFS BLOCK VOLUME SI MPLE devi ceid4s to

its | ocal

2.2.2.

Vol urmre Topol ogy

vi ew of a LUN

The pNFS bl ock server vol une topology is expressed as an arbitrary
conbi nati on of base volunme types enunerated in the followi ng data

structures.

The i ndi vi dua

conponents of the topol ogy are contained

in an array and conponents may refer to other components by using
array indices.

/11l enum pnfs_bl ock_vol une_type4d {
PNFS BLOCK VOLUME SIMPLE = 0, /* volunme maps to a single

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

Bl ack,

PNFS_BLOCK_VOLUVE_SLI CE

PNFS_BLOCK_VOLUVE_CONCAT

PNFS_BLOCK_VOLUME_STRI PE

b

const PNFS_BLOCK_MAX_SI G COWP = 16;/*

/* volunme is a slice of

anot her vol une */

concat enati on of
nmul tiple vol unes */

LU */
=1,
=2, [/[* volune is a
=3

/* volume is striped across

mul tiple vol umes */

struct pnfs_bl ock_sinple volune_info4 {
pnfs_bl ock_si g _component4 bsv_ds<PNFS_BLOCK MAX_SI G_COwP>
/* disk signhature */

b

struct pnfs_block _slice volunme_info4 {

of fset4 bsv_start;

uint32_t bsv_vol uneg;

b

maxi mum conponent s per
signature */

/* offset of the start of the

slice in bytes */
| ength4 bsv_I engt h; /* length of slice in bytes */

struct pnfs_bl ock_concat_vol ume_i nfo4 {

/* array index of sliced
vol ume */

uint32_t

et al.

bcv_vol umes<>;

/*

St andards Track

array indices of vol unes
whi ch are concatenated */

[Page 10]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

1y,

[

/1l struct pnfs_block_stripe_volune_info4 {

[| ength4 bsv_stripe_unit; [* size of stripe in bytes */
Iy uint32_t bsv_vol unes<>; /* array indices of volunes
/11 which are striped across --
/11 MUST be sane size */
1y,

Iy

/1] union pnfs_block volume4 switch (pnfs_bl ock_vol ume_type4d type) {
/11 case PNFS_BLOCK VOLUME_SI MPLE

/11 pnfs_bl ock_si npl e _vol ume_i nfo4 bv_sinpl e_info;

/11 case PNFS BLOCK VOLUME SLI CE:

/11 pnfs_ bl ock_slice_volune_info4 bv_slice_info;

Iy case PNFS_BLOCK_VOLUME_CONCAT:

Iy pnfs_bl ock_concat _vol ume_i nf o4 bv_concat _i nf o;

/11 case PNFS_BLOCK VOLUME_STRI PE

/11 pnfs_ bl ock_stripe_volunme_info4 bv_stripe_info;

1y,

[

/11 I* block |ayout specific type for da_addr_body */

/1l struct pnfs_bl ock_devi ceaddr4 {

Iy pnfs_bl ock_vol uned4 bda_vol umes<>; /* array of volunes */
1y,

/11

The "pnfs_bl ock_devi ceaddr4" data structure is a structure that
allows arbitrarily compl ex nested volune structures to be encoded.
The types of aggregations that are allowed are stripes,
concatenations, and slices. Note that the vol une topol ogy expressed
in the pnfs_bl ock deviceaddr4 data structure will always resolve to a
set of pnfs_block vol une_type4 PNFS BLOCK VOLUME SI MPLE. The array
of volunes is ordered such that the root of the volume hierarchy is
the last element of the array. Concat, slice, and stripe vol unes
MJST refer to volunes defined by | ower indexed el ements of the array.

The "pnfs_bl ock _device_addr4" data structure is returned by the
server as the storage-protocol -specific opaque field da addr_body in
the "device_addr4" structure by a successful GETDEVI CEI NFO operation
[NFSv4. 1] .

As noted above, all device addr4 structures eventually resolve to a
set of volunes of type PNFS BLOCK VOLUVE SI MPLE. These vol unes are
each uniquely identified by a set of signature conponents.
Conpl i cated vol ume hierarchi es may be conposed of dozens of vol unes
each with several signature conponents; thus, the device address may
requi re several kilobytes. The client SHOULD be prepared to allocate
a large buffer to contain the result. |In the case of the server

Bl ack, et al. St andards Track [Page 11]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

returni ng NFS4ERR TOOSMALL, the client SHOULD all ocate a buffer of at
| east gdir_mncount _bytes to contain the expected result and retry
t he GETDEVI CEI NFO r equest .

2.2.3. GETDEVI CELI ST and CGETDEVI CEI NFO devi cei d4

The server in response to a GETDEVI CELI ST request typically wll
return a single "deviceid4" in the gdlr_deviceid |ist array. This is
because t he devicei d4 when passed to GETDEVICEINFO will return a
"devi ce_addr4", which encodes the entire volunme hierarchy. 1In the
case of copy-on-wite file systems, the "gdlr_deviceid_list" array
may contain two deviceid4’'s, one referencing the read-only vol une

hi erarchy, and one referencing the witable volune hierarchy. There
is no required ordering of the readable and witable IDs in the array
as the volunmes are uniquely identified by their deviceid4, and are
referred to by | ayouts using the deviceid4. Another exanple of the
server returning nultiple device itenms occurs when the file handle
represents the root of a nanespace spanning nultiple physical file
systens on the server, each with a different volunme hierarchy. In
this exanple, a server inplenmentation may return either a list of
device | Ds used by each of the physical file systens, or it may
return an enpty list.

Each devi cei d4 returned by a successful GETDEVI CELI ST operation is a
shorthand id used to reference the whol e vol une topol ogy. These
device IDs, as well as device IDs returned in extents of a LAYOUTGET
operation, can be used as input to the GETDEVI CEI NFO operati on
Decodi ng the "pnfs_bl ock_devi ceaddr4" results in a flat ordering of
dat a bl ocks mapped to PNFS_BLOCK VOLUME_SI MPLE vol unes. Conbi ned
with the mapping to a client LUN described in Section 2.2.1 "Vol une
Identification", a logical volunme offset can be napped to a bl ock on
a pNFS client LUN [NFSv4.1].

2.3. Data Structures: Extents and Extent Lists

A pNFS bl ock layout is a list of extents within a flat array of data
bl ocks in a logical volunme. The details of the vol une topol ogy can
be determ ned by using the GETDEVI CEI NFO operation (see discussion of
vol ume identification, Section 2.2 above). The bl ock |ayout

descri bes the individual block extents on the volume that make up the
file. The offsets and length contained in an extent are specified in
units of bytes.

Bl ack, et al. St andards Track [Page 12]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

/1l enum pnfs_bl ock_extent_state4 {

/11 PNFS BLOCK READ WRI TE DATA = 0,/* the data located by this
Iy extent is valid

[for reading and witing. */
Iy PNFS BLOCK READ DATA =1, /* the data |located by this
/11 extent is valid for reading
/11 only; it may not be

[witten. */

/11 PNFS_BLOCK | NVALI D DATA = 2, /* the location is valid; the
[data is invalid. It is a
/11 newly (pre-) allocated

/11 extent. There is physica
/11 space on the volune. */

/11 PNFS BLOCK NONE_DATA =3 /* the location is invalid.
Iy It is ahole in the file.
[There is no physical space
/11 on the vol unme. */

1y,

Iy

/1l struct pnfs_block_extent4 {

Iy devi cei d4 bex_vol _id; /* id of |ogical volune on

/11 whi ch extent of file is

/11 stored. */

[of f set4 bex_file_offset; /* the starting byte offset in
Iy the file */

[| engt h4 bex | engt h; /[* the size in bytes of the
/11 extent */

/11 of fset4 bex storage offset; /* the starting byte offset
/11 in the volume */

/11 pnfs_ bl ock_extent stated4 bex_state;

Iy /* the state of this extent */
1y,

/11

/11 I'* block | ayout specific type for |oc_body */
/1l struct pnfs_block |ayoutd {

/11 pnfs_ bl ock_extent4 bl o_extent s<>;

/11 /* extents which make up this
[l ayout. */

1y,

/11

The bl ock | ayout consists of a list of extents that map the | ogi cal
regions of the file to physical |ocations on a volune. The
"bex_storage_offset"” field within each extent identifies a |ocation
on the | ogical volunme specified by the "bex_vol _id" field in the
extent. The bex vol _id itself is shorthand for the whol e topol ogy of

Bl ack, et al. St andards Track [Page 13]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

the | ogical volune on which the file is stored. The client is
responsi ble for translating this logical offset into an offset on the

appropriate underlying SAN logical unit. |In nost cases, all extents
in a layout will reside on the same volume and thus have the sane
bex _vol _id. 1In the case of copy-on-wite file systens, the

PNFS BLOCK READ DATA extents may have a different bex vol _id fromthe
writable extents.

Each extent maps a logical region of the file onto a portion of the
specified | ogical volune. The bex file_offset, bex_length, and

bex state fields for an extent returned fromthe server are valid for
all extents. |In contrast, the interpretation of the

bex storage offset field depends on the value of bex state as follows
(in increasing order):

0 PNFS BLOCK READ VWRI TE _DATA neans that bex_storage_offset is valid,
and points to valid/initialized data that can be read and witten.

0 PNFS BLOCK READ DATA neans that bex_storage offset is valid and
points to valid/ initialized data that can only be read. Wite
operations are prohibited; the client nay need to request a
read-write | ayout.

0 PNFS BLOCK | NVALI D_DATA neans that bex_storage offset is valid,
but points to invalid un-initialized data. This data rmust not be
physically read fromthe disk until it has been initialized. A
read request for a PNFS_BLOCK | NVALI D DATA extent mnust fill the
user buffer with zeros, unless the extent is covered by a
PNFS BLOCK_READ DATA extent of a copy-on-wite file system Wite
requests must wite whole server-sized bl ocks to the disk; bytes
not initialized by the user nust be set to zero. Any wite to
storage in a PNFS BLOCK | NVALI D DATA extent changes the written
portion of the extent to PNFS_BLOCK READ WRI TE_DATA; the pNFS
client is responsible for reporting this change via LAYOUTCOWM T

o PNFS BLOCK NONE _DATA neans that bex _storage offset is not valid,
and this extent may not be used to satisfy wite requests. Read
requests may be satisfied by zero-filling as for
PNFS_BLOCK_| NVALI D_DATA. PNFS_BLOCK_NONE_DATA extents may be
returned by requests for readabl e extents; they are never returned
if the request was for a witable extent.

An extent list contains all relevant extents in increasing order of

the bex file offset of each extent; any ties are broken by increasing
order of the extent state (bex_state).

Bl ack, et al. St andards Track [Page 14]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.3.1. Layout Requests and Extent Lists

Each request for a layout specifies at |east three paraneters: file

of fset, desired size, and mininumsize. |If the status of a request
i ndi cates success, the extent list returned nust neet the follow ng
criteria:

o A request for a readable (but not witable) |layout returns only
PNFS_BLOCK _READ DATA or PNFS_BLOCK NONE DATA extents (but not
PNFS_BLOCK | NVALI D_DATA or PNFS_BLOCK READ WRI TE_DATA extents).

o Arequest for a witable |ayout returns PNFS BLOCK READ WRI TE DATA
or PNFS BLOCK | NVALI D DATA extents (but not PNFS BLOCK NONE DATA
extents). It may also return PNFS_BLOCK READ DATA extents only
when the of fset ranges in those extents are also covered by
PNFS BLOCK | NVALI D _DATA extents to permt wites.

o The first extent in the list MJST contain the requested starting
of f set.

o The total size of extents within the requested range MJST cover at
| east the m nimum size. One exception is allowed: the total size
MAY be smaller if only readable extents were requested and EOF is
encount er ed.

0o Extents in the extent |ist MJST be logically contiguous for a
read-only layout. For a read-wite |ayout, the set of witable
extents (i.e., excluding PNFS BLOCK READ DATA extents) MJST be
| ogically contiguous. Every PNFS BLOCK READ DATA extent in a
read-write | ayout MUST be covered by one or nore
PNFS BLOCK | NVALI D DATA extents. This overlap of
PNFS_BLOCK_READ DATA and PNFS BLOCK | NVALI D DATA extents is the
only permitted extent overlap

o Extents MJST be ordered in the list by starting offset, with
PNFS_BLOCK_READ DATA extents precedi ng PNFS_BLOCK | NVALI D_DATA
extents in the case of equal bex file_ offsets.

If the mininumrequested size, loga_mnlength, is zero, this is an
indication to the netadata server that the client desires any |ayout
at offset loga offset or less that the metadata server has "readily
avail able". Readily is subjective, and depends on the | ayout type
and the pNFS server inplenentation. For block |ayout servers,

readi |y avail able SHOULD be interpreted such that readable |ayouts
are always available, even if some extents are in the

PNFS BLOCK_NONE_DATA state. Wen processing requests for witable

| ayouts, a layout is readily available if extents can be returned in
t he PNFS_BLOCK_READ WRI TE_DATA state.

Bl ack, et al. St andards Track [Page 15]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.3.2. Layout Commits

/11 I'* block | ayout specific type for |ou_body */
/1l struct pnfs_bl ock_| ayout updat e4 {

Iy pnfs_bl ock_extent4 blu_commt_|ist<>;

111 /* list of extents which
111 * now contain valid data
111 */

11}

111

The "pnfs_bl ock | ayout update4” structure is used by the client as the
bl ock-protocol specific argunent in a LAYOUTCOW T operation. The
"blu_conmit_list" field is an extent list covering regions of the
file layout that were previously in the PNFS_BLOCK | NVALI D_DATA
state, but have been witten by the client and shoul d now be
considered in the PNFS BLOCK READ WRI TE DATA state. The bex_state
field of each extent in the blu commt |ist MJIST be set to

PNFS BLOCK READ WRI TE_DATA. The extents in the commit |ist MJST be
di sjoint and MJST be sorted by bex file offset. The
bex_storage_offset field is unused. |nplenmentors should be aware
that a server may be unable to commt regions at a granularity

smal ler than a file-system bl ock (typically 4 KB or 8 KB). As noted
above, the bl ock-size that the server uses is available as an NFSv4
attribute, and any extents included in the "blu commt _list" MJST be
aligned to this granularity and have a size that is a nultiple of
this granularity. |If the client believes that its actions have noved
the end-of-file into the mddle of a block being committed, the
client MUST wite zeroes fromthe end-of-file to the end of that

bl ock before commtting the block. Failure to do so may result in
junk (un-initialized data) appearing in that area if the file is
subsequent |y extended by noving the end-of-file.

2.3.3. Layout Returns

The LAYOUTRETURN operation is done without any block | ayout specific
data. Wen the LAYOUTRETURN operation specifies a
LAYOUTRETURNA _FI LE return type, then the layoutreturn file4 data
structure specifies the region of the file layout that is no | onger
needed by the client. The opaque "Irf_body" field of the
"layoutreturn_file4" data structure MIST have |l ength zero. A
LAYOUTRETURN operati on represents an explicit rel ease of resources by
the client, usually done for the purpose of avoidi ng unnecessary
CB_LAYOUTRECALL operations in the future. The client nmay return
disjoint regions of the file by using multiple LAYOUTRETURN
operations within a single COMPOUND operati on.

Bl ack, et al. St andards Track [Page 16]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Not e that the bl ock/volunme |ayout supports unilateral |ayout
revocation. Wen a layout is unilaterally revoked by the server,
usually due to the client’s lease tine expiring, or a delegation
being recalled, or the client failing to return a layout in a tinmely
manner, it is inportant for the sake of correctness that any in-
flight 1/0Cs that the client issued before the |ayout was revoked are
rejected at the storage. For the bl ock/volune protocol, this is
possi ble by fencing a client with an expired layout tiner fromthe
physi cal storage. Note, however, that the granularity of this
operation can only be at the host/logical-unit level. Thus, if one
of a client’s layouts is unilaterally revoked by the server, it wll
ef fectively render useless *all* of the client’s layouts for files

| ocated on the storage units conprising the |ogical volune. This may
render useless the client’s layouts for files in other file systens.

2.3.4. dient Copy-on-Wite Processing

Copy-on-wite is a mechanismused to support file and/or file system
snapshots. Wen witing to unaligned regions, or to regions smaller
than a file system block, the witer nust copy the portions of the
original file data to a new |l ocation on disk. This behavior can
either be inplenented on the client or the server. The paragraphs
bel ow descri be how a pNFS bl ock | ayout client inplenments access to a
file that requires copy-on-wite senmantics.

Di stingui shing the PNFS_BLOCK READ WRI TE_DATA and
PNFS_BLOCK_READ DATA extent types in conbination with the allowed
overl ap of PNFS_BLOCK READ DATA extents wi th PNFS _BLOCK | NVALI D _DATA
extents all ows copy-on-wite processing to be done by pNFS clients.
In classic NFS, this operation would be done by the server. Since
pPNFS enables clients to do direct block access, it is useful for
clients to participate in copy-on-wite operations. All block/vol une
pNFS clients MJST support this copy-on-wite processing.

VWen a client wishes to wite data covered by a PNFS_BLOCK READ DATA
extent, it MJST have requested a witable |layout fromthe server

that layout will contain PNFS BLOCK | NVALI D DATA extents to cover al
the data ranges of that |ayout’s PNFS BLOCK READ DATA extents. More
precisely, for any bex file_offset range covered by one or nore

PNFS BLOCK_READ DATA extents in a witable layout, the server MJST

i ncl ude one or nore PNFS_BLOCK | NVALI D DATA extents in the |ayout
that cover the sanme bex file offset range. When performng a wite
to such an area of a layout, the client MJST effectively copy the
data fromthe PNFS BLOCK READ DATA extent for any partial blocks of
bex file_offset and range, nmerge in the changes to be witten, and
wite the result to the PNFS BLOCK | NVALI D DATA extent for the bl ocks
for that bex file_offset and range. That is, if entire bl ocks of
data are to be overwitten by an operation, the correspondi ng

Bl ack, et al. St andards Track [Page 17]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

PNFS BLOCK READ DATA bl ocks need not be fetched, but any partial -

bl ock wites nust be nerged with data fetched via
PNFS_BLOCK_READ_DATA extents before storing the result via

PNFS BLOCK | NVALI D _DATA extents. For the purposes of this

di scussion, "entire bl ocks" and "partial blocks" refer to the
server’'s file-systemblock size. Storing of data in a

PNFS BLOCK | NVALI D _DATA extent converts the written portion of the
PNFS_BLOCK | NVALI D_DATA extent to a PNFS_BLOCK READ WRI TE_DATA
extent; all subsequent reads MJST be perforned fromthis extent; the
correspondi ng portion of the PNFS BLOCK READ DATA extent MJST NOT be
used after storing data in a PNFS BLOCK | NVALI D DATA extent. If a
client wites only a portion of an extent, the extent nay be split at
bl ock al i gned boundari es.

When a client wishes to wite data to a PNFS_BLOCK | NVALI D_DATA
extent that is not covered by a PNFS BLOCK READ DATA extent, it MJST
treat this wite identically to a wite to a file not involved with
copy-on-wite semantics. Thus, data nust be witten in at |east

bl ock-si zed increments, aligned to multiples of block-sized offsets,
and unwitten portions of blocks nust be zero filled.

In the LAYQUTCOW T operation that normally sends updated | ayout

i nformati on back to the server, for witable data, some

PNFS BLOCK | NVALI D DATA extents nmay be conmmtted as

PNFS BLOCK READ WRI TE_DATA extents, signifying that the storage at
the correspondi ng bex_storage_ of fset val ues has been stored into and
is nowto be considered as valid data to be read.

PNFS BLOCK READ DATA extents are not committed to the server. For
extents that the client receives via LAYOQUTGET as

PNFS_BLOCK | NVALI D_DATA and returns via LAYOUTCOWM T as

PNFS BLOCK READ WRI TE_DATA, the server will understand that the
PNFS_BLOCK_READ DATA mappi ng for that extent is no longer valid or
necessary for that file.

2.3.5. Extents are Perm ssions

Layout extents returned to pNFS clients grant perm ssion to read or
wite; PNFS_BLOCK READ DATA and PNFS_BLOCK _NONE_DATA are read-only
(PNFS_BLOCK_NONE_DATA reads as zeroes), PNFS_BLOCK_READ WRI TE DATA
and PNFS BLOCK | NVALI D DATA are read/wite, (PNFS_BLOCK | NVALI D DATA
reads as zeros, any wite converts it to PNFS_BLOCK READ WRI TE _DATA) .
This is the only nmeans a client has of obtaining permission to
performdirect I/Oto storage devices; a pNFS client MJST NOT perform
direct 1/O operations that are not permtted by an extent held by the
client. dient adherence to this rule places the pNFS server in
control of potentially conflicting storage device operations,
enabling the server to determ ne what does conflict and how to avoid
conflicts by granting and recalling extents to/fromclients.

Bl ack, et al. St andards Track [Page 18]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Bl ock/ vol une cl ass storage devices are not required to performread
and wite operations atomically. Overlapping concurrent read and
wite operations to the sane data nay cause the read to return a

m xture of before-wite and after-wite data. Overlapping wite
operations can be worse, as the result could be a mxture of data
fromthe two wite operations; data corruption can occur if the
underlying storage is striped and the operations conplete in
different orders on different stripes. Wen there are multiple
clients who wi sh to access the sane data, a pNFS server can avoid
these conflicts by inplenenting a concurrency control policy of
single witer XOR multiple readers. This policy MJST be inpl emented
when storage devices do not provide atomicity for concurrent

read/ wite and wite/wite operations to the sane data.

If a client makes a |l ayout request that conflicts with an existing

| ayout del egation, the request will be rejected with the error
NFSAERR_LAYOUTTRYLATER. This client is then expected to retry the
request after a short interval. During this interval, the server

SHOULD recall the conflicting portion of the |ayout del egation from
the client that currently holds it. This reject-and-retry approach
does not prevent client starvation when there is contention for the
| ayout of a particular file. For this reason, a pNFS server SHOULD
i mpl enent a mechanismto prevent starvation. One possibility is that
the server can maintain a queue of rejected |ayout requests. Each
new | ayout request can be checked to see if it conflicts with a
previous rejected request, and if so, the newer request can be
rejected. Once the original requesting client retries its request,
its entry in the rejected request queue can be cleared, or the entry
in the rejected request queue can be renpved when it reaches a
certain age.

NFSv4 supports nmandatory | ocks and share reservations. These are
mechani sns that clients can use to restrict the set of 1/0O operations
that are permissible to other clients. Since all 1/O operations
ultimately arrive at the NFSv4 server for processing, the server is
in a position to enforce these restrictions. However, with pNFS

| ayouts, 1/0s will be issued fromthe clients that hold the | ayouts
directly to the storage devices that host the data. These devices
have no know edge of files, nandatory |ocks, or share reservations,
and are not in a position to enforce such restrictions. For this
reason the NFSv4 server MJST NOT grant |ayouts that conflict with
mandatory | ocks or share reservations. Further, if a conflicting
mandatory | ock request or a conflicting open request arrives at the
server, the server MUST recall the part of the layout in conflict
with the request before granting the request.

Bl ack, et al. St andards Track [Page 19]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

2.3.6. End-of-file Processing

The end-of-file location can be changed in two ways: inplicitly as
the result of a WRITE or LAYOUTCOM T beyond the current end-of-file,
or explicitly as the result of a SETATTR request. Typically, when a
file is truncated by an NFSv4 client via the SETATTR call, the server
frees any disk blocks belonging to the file that are beyond the new
end-of -file byte, and MUST wite zeros to the portion of the new
end-of -file bl ock beyond the new end-of-file byte. These actions
render any pNFS | ayouts that refer to the bl ocks that are freed or
witten semantically invalid. Therefore, the server MIST recall from
clients the portions of any pNFS | ayouts that refer to bl ocks that
will be freed or witten by the server before processing the truncate
request. These recalls may take time to conplete; as explained in
[NFSv4.1], if the server cannot respond to the client SETATTR request
in a reasonable amount of tine, it SHOULD reply to the client with
the error NFS4ERR _DELAY.

Bl ocks in the PNFS BLOCK | NVALI D DATA state that |ie beyond the new
end-of -file block present a special case. The server has reserved
these bl ocks for use by a pNFS client with a witable layout for the
file, but the client has yet to commt the blocks, and they are not
yet a part of the file mapping on disk. The server MAY free these
bl ocks whil e processing the SETATTR request. |f so, the server MJST
recall any layouts frompNFS clients that refer to the bl ocks before
processing the truncate. |If the server does not free the
PNFS_BLOCK_| NVALI D_DATA bl ocks whil e processing the SETATTR request,
it need not recall layouts that refer only to the PNFS BLOCK | NVALI D
DATA bl ocks.

When a file is extended inplicitly by a WRITE or LAYOUTCOW T beyond
the current end-of-file, or extended explicitly by a SETATTR request,
the server need not recall any portions of any pNFS | ayouts.

2.3.7. Layout Hints

The SETATTR operation supports a layout hint attribute [NFSv4.1].
When the client sets a layout hint (data type layouthint4) with a

| ayout type of LAYOUT4 BLOCK VOLUME (the |oh_type field), the

| oh_body field contains a value of data type pnfs_bl ock_| ayout hi nt 4.

/11 I* block | ayout specific type for |oh_body */
/1l struct pnfs_bl ock | ayouthint4 {

/11 uint64 t blh nmaximumio tine; /* naximumi/o time in seconds
11 */

11}

111

Bl ack, et al. St andards Track [Page 20]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

The bl ock layout client uses the |ayout hint data structure to
conmuni cate to the server the maximumtinme that it nay take an 1/Oto
execute on the client. dients using block | ayouts MJST set the

l ayout hint attribute before using LAYOUTGET operations.

2.3.8. dient Fencing

The pNFS bl ock protocol nust handle situations in which a system
failure, typically a network connectivity issue, requires the server
to unilaterally revoke extents fromone client in order to transfer
the extents to another client. The pNFS server inplenentati on MJUST
ensure that when resources are transferred to another client, they
are not used by the client originally owing them and this nust be
ensured agai nst any possi bl e conbination of partitions and del ays
among all of the participants to the protocol (server, storage and
client). Two approaches to guaranteeing this isolation are possible
and are di scussed bel ow.

One inpl enentation choice for fencing the block client fromthe bl ock
storage is the use of LUN masking or mapping at the storage systens
or storage area network to disable access by the client to be
isolated. This requires server access to a nanagenent interface for
the storage system and authorization to perform LUN nmaski ng and
nmanagenent operations. For exanple, the Storage Managenent
Initiative Specification (SM-S) [SMS] provides a neans to discover
and mask LUNs, including a neans of associating clients with the
necessary Wrld Wde Nanes or Initiator names to be nmasked.

In the absence of support for LUN masking, the server has to rely on
the clients to inplenment a tined-lease I/0O fencing nechani sm

Because clients do not know if the server is using LUN masking, in
all cases, the client MJST inplenment tinmed-lease fencing. In tined-

| ease fencing, we define two tine periods, the first, "lease_time" is
the length of a | ease as defined by the server’s lease_time attribute
(see [NFSv4.1]), and the second, "blh_nmaximum.io_ tine" is the maxi mum
time it can take for a client 1/Oto the storage systemto either
conplete or fail; this value is often 30 seconds or 60 seconds, but
may be |longer in some environments. |f the maximumclient /O tine
cannot be bounded, the client MJST use a value of all 1s as the

bl h_maxi mum.io_tine.

After a newclient IDis established, the client MUST use SETATTR
with a layout hint of type LAYOUT4 BLOCK VOLUME to informthe server
of its maximumI/Otime prior to issuing the first LAYOUTGET
operation. Wiile the maximumI/Otinme hint is a per-file attribute,
it is actually a per-client characteristic. Thus, the server MJST
maintain the last maximum 1/O time hint sent separately for each
client. Each tinme the maximum 1/ O tinme changes, the server MJST

Bl ack, et al. St andards Track [Page 21]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

apply it to all files for which the client has a layout. |If the
client does not specify this attribute on a file for which a bl ock

l ayout is requested, the server SHOULD use the npbst recent val ue
provided by the sane client for any file; if that client has not
provided a value for this attribute, the server SHOULD reject the

| ayout request with the error NFS4ERR LAYOUTUNAVAI LABLE. The client
SHOULD NOT send a SETATTR of the |ayout hint with every LAYOUTGET. A
server that inplenents fencing via LUN maski ng SHOULD accept any
maximum /O time value froma client. A server that does not

i mpl enent fencing may return an error NFS4ERR INVAL to the SETATTR
operation. Such a server SHOULD return NFS4ERR | NVAL when a client
sends an unbounded maximumI/O time (all 1s), or when the maxi mum I/ O
time is significantly greater than that of other clients using bl ock

| ayouts with pNFS.

VWen a client receives the error NFS4ERR I NVAL in response to the
SETATTR operation for a layout hint, the client MJST NOT use the
LAYOQUTGET operation. After responding with NFS4ERR I NVAL to the
SETATTR for |ayout hint, the server MJST return the error

NFSAERR LAYOUTUNAVAI LABLE to all subsequent LAYOUTGET operations from
that client. Thus, the server, by returning either NFS4ERR | NVAL or
NFS4_OK deternmi nes whether or not a client with a large, or an
unbounded- maxi mum 1/ O time may use pNFS.

Using the lease tine and the maximum /O tinme val ues, we specify the
behavi or of the client and server as follows.

When a client receives layout information via a LAYOUTGET operation
those layouts are valid for at nost "lease_tine" seconds from when
the server granted them A layout is renewed by any successfu
SEQUENCE operation, or whenever a new stateid is created or updated
(see the section "Lease Renewal " of [NFSv4.1]). |If the |ayout |ease
is not renewed prior to expiration, the client MJST cease to use the
| ayout after "lease_time" seconds fromwhen it either sent the
original LAYOUTGET command or sent the |ast operation renew ng the

| ease. In other words, the client may not issue any I/O to bl ocks
specified by an expired layout. |In the presence of |arge

conmuni cati on del ays between the client and server, it is even
possible for the lease to expire prior to the server response
arriving at the client. In such a situation, the client MJST NOT use
the expired layouts, and SHOULD revert to using standard NFSv4l READ
and WRI TE operations. Furthernore, the client nmust be configured
such that 1/0O operations conplete within the "blh_maxi mumio tinme"
even in the presence of multipath drivers that will retry I/Cs via
mul ti pl e paths.

Bl ack, et al. St andards Track [Page 22]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

As stated in the "Dealing with Lease Expiration on the Cient"
section of [NFSv4.1], if any SEQUENCE operation is successful, but
sr_status_flag has SEQ4_STATUS_EXPI RED_ALL_STATE REVOKED,
SEQ4_STATUS_EXPI RED_SOVE_STATE_REVCKED, or
SEQ4_STATUS_ADM N_STATE _REVCKED is set, the client MJST i mredi ately
cease to use all |ayouts and device ID to device address mappi ngs
associ ated with the correspondi ng server.

In the absence of known two-way communi cation between the client and
the server on the fore channel, the server nmust wait for at |east the
time period "lease tine" plus "bl h_maxi num.io_time" before
transferring layouts fromthe original client to any other client.
The server, like the client, nust take a conservative approach, and
start the |lease expiration timer fromthe tinme that it received the
operation that last renewed the |ease.

2.4. Crash Recovery Issues

A critical requirenment in crash recovery is that both the client and
the server know when the other has failed. Additionally, it is
required that a client sees a consistent view of data across server
restarts. These requirements and a full discussion of crash recovery
i ssues are covered in the "Crash Recovery" section of the NFSv4l
specification [NFSv4.1]. This docunent contains additional crash
recovery material specific only to the bl ock/vol une | ayout.

When the server crashes while the client holds a witable Iayout, and
the client has witten data to bl ocks covered by the [ayout, and the

bl ocks are still in the PNFS BLOCK | NVALI D DATA state, the client has
two options for recovery. |If the data that has been witten to these
bl ocks is still cached by the client, the client can sinply re-wite

the data via NFSv4, once the server has come back online. However,

if the data is no longer in the client’s cache, the client MJST NOT
attenpt to source the data fromthe data servers. Instead, it should
attenpt to commit the blocks in question to the server during the
server’'s recovery grace period, by sending a LAYQUTCOWM T with the
"loca_reclaint flag set to true. This process is described in detai
in Section 18.42.4 of [NFSv4.1].

2.5. Recalling Resources: CB RECALL_ANY
The server may decide that it cannot hold all of the state for
| ayouts without running out of resources. |n such a case, it is free

to recall individual |ayouts using CB LAYOUTRECALL to reduce the
load, or it may choose to request that the client return any |ayout.

Bl ack, et al. St andards Track [Page 23]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

The NFSv4.1 spec [NFSv4. 1] defines the follow ng types:
const RCA4_TYPE MASK BLK LAYQUT = 4;

struct CB_RECALL_ANY4args {
ui nt 32_t craa_objects _to_keep
bi t map4 craa_type_mask;

b

VWhen the server sends a CB RECALL_ANY request to a client specifying
the RCAA_TYPE_MASK BLK LAYQUT bit in craa_type_nask, the client
shoul d i medi ately respond with NFS4 _OK, and then asynchronously
return conplete file layouts until the nunber of files with |ayouts
cached on the client is |less than craa_object_to_keep

2.6. Transient and Pernmanent Errors

The server may respond to LAYOUTGET with a variety of error statuses.
These errors can convey transient conditions or nore pernanent
conditions that are unlikely to be resol ved soon

The transient errors, NFS4ERR RECALLCONFLI CT and NFS4ERR TRYLATER
are used to indicate that the server cannot imediately grant the

| ayout to the client. 1In the fornmer case, this is because the server
has recently issued a CB LAYOUTRECALL to the requesting client,
whereas in the case of NFSAERR TRYLATER, the server cannot grant the
request possibly due to sharing conflicts with other clients. In

ei ther case, a reasonable approach for the client is to wait severa
mlliseconds and retry the request. The client SHOULD track the
nunber of retries, and if forward progress is not nmade, the client
SHOULD send the READ or WRI TE operation directly to the server.

The error NFS4ERR_LAYOUTUNAVAI LABLE may be returned by the server if

| ayouts are not supported for the requested file or its containing
file system The server may also return this error code if the
server is the progress of mgrating the file fromsecondary storage,
or for any other reason that causes the server to be unable to supply
the layout. As a result of receiving NFS4AERR LAYOUTUNAVAI LABLE, the
client SHOULD send future READ and WRI TE requests directly to the
server. It is expected that a client will not cache the file's

| ayout unavail abl e state forever, particular if the file is closed,
and thus eventually, the client MAY rei ssue a LAYOUTGET operation

3. Security Considerations
Typi cal ly, SAN di sk arrays and SAN protocols provi de access contro

mechani sns (e.g., LUN mapping and/or masking) that operate at the
granul arity of individual hosts. The functionality provided by such

Bl ack, et al. St andards Track [Page 24]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

nmechani sns nmakes it possible for the server to "fence" individua
client nmachines fromcertain physical disks -- that is to say, to
prevent individual client machines fromreading or witing to certain
physi cal disks. Finer-grained access control methods are not
general |y available. For this reason, certain security
responsibilities are delegated to pNFS clients for block/vol une

| ayouts. Bl ock/volunme storage systens generally control access at a
vol ume granularity, and hence pNFS clients have to be trusted to only
perform accesses all owed by the | ayout extents they currently hold
(e.g., and not access storage for files on which a | ayout extent is
not held). |In general, the server will not be able to prevent a
client that holds a |layout for a file fromaccessing parts of the
physi cal disk not covered by the layout. Simlarly, the server wll
not be able to prevent a client fromaccessing bl ocks covered by a
layout that it has already returned. This bl ock-based | evel of
protection must be provided by the client software.

An alternative method of bl ock/volume protocol use is for the storage
devices to export virtualized bl ock addresses, which do reflect the
files to which blocks belong. These virtual block addresses are
exported to pNFS clients via layouts. This allows the storage device
to nake appropriate access checks, while mapping virtual bl ock
addresses to physical block addresses. |In environments where the
security requirenents are such that client-side protection from
access to storage outside of the authorized | ayout extents is not
sufficient, pNFS bl ock/vol une storage | ayouts SHOULD NOT be used

unl ess the storage device is able to inplenment the appropriate access
checks, via use of virtualized bl ock addresses or other neans. |In
contrast, an environnent where client-side protection may suffice
consists of co-located clients, server and storage systens in a data
center with a physically isolated SAN under control of a single
system administrator or snmall group of system adm nistrators.

This also has inmplications for some NFSv4 functionality outside pNFS.
For instance, if a file is covered by a mandatory read-only |ock, the
server can ensure that only readable |layouts for the file are granted
to pNFS clients. However, it is up to each pNFS client to ensure
that the readable layout is used only to service read requests, and
not to allow wites to the existing parts of the file. Simlarly,

bl ock/ vol une storage devices are unable to validate NFS Access
Control Lists (ACLs) and file open nodes, so the client nust enforce
the policies before sending a READ or WRI TE request to the storage
device. Since block/volune storage systens are generally not capabl e
of enforcing such file-based security, in environnents where pNFS
clients cannot be trusted to enforce such policies, pNFS bl ock/vol une
storage | ayouts SHOULD NOT be used.

Bl ack, et al. St andards Track [Page 25]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Access to block/volune storage is logically at a | ower |ayer of the
I/ O stack than NFSv4, and hence NFSv4 security is not directly
applicable to protocols that access such storage directly. Depending
on the protocol, some of the security nechani sns provided by NFSv4
(e.g., encryption, cryptographic integrity) may not be avail able or
may be provided via different nmeans. At one extrene, pNFS with

bl ock/ vol une storage can be used with storage access protocols (e.g.
paral l el SCSI) that provide essentially no security functionality.

At the other extrene, pNFS may be used with storage protocols such as
i SCSI that can provide significant security functionality. It is the
responsi bility of those admi nistering and depl oying pNFS with a

bl ock/ vol une storage access protocol to ensure that appropriate
protection is provided to that protocol (physical security is a
conmon neans for protocols not based on IP). 1In environnents where
the security requirements for the storage protocol cannot be net,
pNFS bl ock/vol une storage | ayouts SHOULD NOT be used.

When security is available for a storage protocol, it is generally at
a different granularity and with a different notion of identity than
NFSv4 (e.g., NFSv4 controls user access to files, iSCSI controls
initiator access to volunmes). The responsibility for enforcing
appropriate correspondences between these security layers is placed
upon the pNFS client. As with the issues in the first paragraph of
this section, in environnents where the security requirenents are
such that client-side protection fromaccess to storage outside of
the layout is not sufficient, pNFS bl ock/volune storage |ayouts
SHOULD NOT be used.

4. Concl usi ons

Thi s docunent specifies the bl ock/volune | ayout type for pNFS and
associ ated functionality.

5. | ANA Consi der ati ons

There are no | ANA considerations in this docunent. Al pNFS | ANA
Consi derations are covered in [NFSv4.1].

6. Acknow edgnents

Thi s docunent draws extensively on the authors’ famliarity with the
mappi ng functionality and protocol in EMCs Milti-Path File System
(MPFS) (previously nanmed H ghRoad) system [MPFS]. The protocol used
by MPFS is called FMP (File Mapping Protocol); it is an add-on
protocol that runs in parallel with file system protocols such as
NFSv3 to provide pNFS-1like functionality for bl ock/vol ume storage.
VWil e drawing on FMP, the data structures and functiona
considerations in this docunent differ in significant ways, based on

Bl ack, et al. St andards Track [Page 26]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

7.

7.

7.

| essons | earned and the opportunity to take advantage of NFSv4
features such as COMPOUND operations. The design to support pNFS
client participation in copy-on-wite is based on text and ideas
contributed by Craig Everhart.

Andy Adanson, Ben Canpbell, Richard Chandl er, Benny Hal evy, Fredric
| sanman, and Mario Wirzl all helped to review versions of this
speci fication.

Ref er ences
1. Normative References
[LEGAL] | ETF Trust, "Legal Provisions Relating to | ETF Docunents",
http://trustee.ietf.org/docs/|ETF- Trust-License-Policy. pdf,
Novenber 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[NFSv4. 1] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
Protocol ", RFC 5661, January 2010.

[XDR] Eisler, M, Ed., "XDR External Data Representation
St andard", STD 67, RFC 4506, May 2006.
2. Informative References

[MPES] EMC Corporation, "EMC Celerra Miulti-Path File System
(MPFS)", EMC Data Sheet,
http://ww. ent. com col | at eral / sof t war e/ dat a- sheet/
h2006- cel err a- npf s- npf si . pdf.

[SM §] SNI A, "Storage Managenent Initiative Specification (SM-S)
vl1l.4", http://ww.snia.org/tech _activities/standards/
curr_standards/smi/SM -S Technical Position_vi.4.0r4. zip.

Bl ack, et al. St andards Track [Page 27]

RFC 5663 pNFS Bl ock/ Vol une Layout January 2010

Aut hors’ Addr esses

David L. Bl ack

EMC Cor poration

176 South Street
Hopki nton, MA 01748

Phone: +1 (508) 293-7953
EMai | : bl ack_davi d@nt. com

St ephen Fridella
Nasuni | nc

313 Speen St
Natick MA 01760

EMai | : stevef @asuni . com
Jason d asgow

CGoogl e

5 Canbridge Center

Canbri dge, MA 02142

Phone: +1 (617) 575 1599
EMai | : j gl asgow@ya. yal e. edu

Bl ack, et al. St andards Track [Page 28]

