Net wor k Wor ki ng Group S. Hol | enbeck
Request for Comments: 5730 Veri Sign, Inc.
STD: 69 August 2009
Obsol etes: 4930

Cat egory: Standards Track

Ext ensi bl e Provi si oni ng Protocol (EPP)
Abst r act

Thi s docunent describes an application-layer client-server protocol
for the provisioning and managenent of objects stored in a shared
central repository. Specified in XM, the protocol defines generic
obj ect nmanagement operations and an extensible framework that maps
protocol operations to objects. This docunent includes a protoco
specification, an object mapping tenplate, and an XM. nedi a type
registration. This docunment obsol etes RFC 4930.

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents in effect on the date of
publication of this docunment (http://trustee.ietf.org/license-info).
Pl ease revi ew these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

Hol | enbeck St andards Track [Page 1]

RFC 5730 EPP August 2009

Tabl e of Contents

1. Introducti On ... e 3
1.1. Conventions Used in This Docunent 3

2. Protocol Description 4
2.1. Transport Mapping Considerationsc.uiuiuon.. 7
2.2. Protocol Identification i, 8
2.3. Hello Format e 8
2.4, Geeting FOormat 8
2.5. Command Format e 12
2.6. Response FOrmat 13
2.7. Protocol Extension Frameworkc. ... 16
2.7.1. Protocol Extension 16

2.7.2. Qoject EXtenSi ON ... o 17

2.7.3. Conmmand- Response Extension 18

2.8. oject Identification 18
2.9. Protocol Commands 19
2.9.1. Session Managenent Conmands 19
2.9.1.1. EPP <login> Conmand 20

2.9.1.2. EPP <logout> Command 22

2.9.2. Query Conmmands 23
2.9.2.1. EPP <check> Command 23

2.9.2.2. EPP <info> Conmand 25

2.9.2.3. EPP <poll> Comand 26

2.9.2.4. EPP <transfer> Query Command 30

2.9.3. bject TransformCommands 31
2.9.3.1. EPP <create> Conmand 32

2.9.3.2. EPP <delete> Conmand 33

2.9.3.3. EPP <renew> Cormmand 34

2.9.3.4. EPP <transfer> Command 35

2.9.3.5. EPP <update> Command 38

3. Result Codes e 39
4. Formal SyntaX 45
4.1. Base SChemm e 45
4.2. Shared Structure Schema 56

5. Internationalization Considerations 59
6. TANA Considerati ONS it e e e e 59
7. Security Considerati ONS 60
8. ACKNOW edgemBnt S 61
9. References e 62
9.1. Normative References 62
9.2. Informative References 62
Appendi x A Object Mapping Tenplate, 64
Appendi x B. Media Type Registration: application/epp+xm 66
Appendi x C. Changes fromRFC 4930 67

Hol | enbeck St andards Track [Page 2]

RFC 5730 EPP August 2009

1

1

| ntroducti on

Thi s docunent describes specifications for the Extensible
Provi si oning Protocol (EPP) version 1.0, an XM. text protocol that
permts multiple service providers to perform object-provisioning
operations using a shared central object repository. EPP is

speci fied using the Extensible Markup Language (XM.) 1.0 as descri bed
in [WBC. REC- xnl - 20040204] and XM. Scherma notation as described in

[MBC. REC- xml schena- 1- 20041028] and [WBC. REC- xm schena- 2- 20041028] .
EPP nmeets and exceeds the requirenments for a generic registry

regi strar protocol as described in [RFC3375]. This docunent

obsol etes RFC 4930 [RFC4930] .

EPP content is identified by M ME nedia type application/epp+xm .
Regi stration information for this nmedia type is included in an
appendi x to this document.

EPP is intended for use in diverse operating environnents where
transport and security requirenments vary greatly. It is unlikely
that a single transport or security specification will nmeet the needs
of all anticipated operators, so EPP was designed for use in a

| ayered protocol environment. Bindings to specific transport and
security protocols are outside the scope of this specification

The original nmotivation for this protocol was to provide a standard

I nternet donain nanme registration protocol for use between domain
nane registrars and domain name registries. This protocol provides a
means of interaction between a registrar’s applications and registry
applications. 1t is expected that this protocol will have additiona
uses beyond donmmi n nane registration

XM is case sensitive. Unless stated otherwi se, XM specifications
and exanpl es provided in this document MJST be interpreted in the
character case presented to devel op a conformni ng inpl enentation.

1. Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

In exanples, "C." represents |lines sent by a protocol client and "S:"
represents lines returned by a protocol server. Indentation and
white space in exanples are provided only to illustrate el ement

rel ati onships and are not REQU RED features of this protocol. A
protocol client that is authorized to manage an existing object is
descri bed as a "sponsoring” client throughout this docunent.

Hol | enbeck St andards Track [Page 3]

RFC 5730 EPP August 2009

2.

Pr ot ocol Description

EPP is a stateful XM. protocol that can be |layered over multiple
transport protocols. Protected using |ower-layer security protocols,
clients exchange identification, authentication, and option

i nformation, and then engage in a series of client-initiated command-
response exchanges. All EPP commands are atomc (there is no partia
success or partial failure) and designed so that they can be nade

i denpot ent (executing a command nore than once has the same net

ef fect on system state as successfully executing the command once).

EPP provi des four basic service elenments: service discovery,
conmands, responses, and an extension franework that supports
definition of managed objects and the rel ationship of protoco
requests and responses to those objects.

An EPP server MJST respond to client-initiated comunication (which
can be either a | ower-layer connection request or an EPP service

di scovery nessage) by returning a greeting to a client. A server
MUST pronptly respond to each EPP command with a coordi nated response
that describes the results of processing the command. The follow ng
server state machine diagramillustrates the nessage exchange process
in detail:

Hol | enbeck St andards Track [Page 4]

RFC 5730 EPP August 2009

\%
o e e oo + o e e oo +
| Waiting for | Connect ed | Pr epare
| dient [--------e - >| G eeting |
e R + or <hell o> e R +
" |
| C ose Connection Send
| or ldle Greeting |
I I I I I + V
| End | Ti meout R R +
| Sessi on RS | Waiting for |
R T + | dient |
n n n Send +-------- >| Authentication
| | | Response | L L +
| | | Al + |
| | | | Prepare Fail | | <l ogin>
| | to---- | Response | | Received
| | Send +-------------- + \Y,
| | 2501 A e +
| | Response | | Processing |
| | to---oo--- | <l ogi n> |
| | Auth Fail +----------------- +
| | Ti meout
| L e R + | Auth OK
| | v
| o m e e e + <hello> +------c-ccoo-o- +
| | Pr epare | <---------- | Waiting for
| | G eeting [---------- >| Conmmand or
| e R + Send | <hel | 0> |
| Send x5xx Geeting +----------------- +
| Response +----------------- + Send A
AR | Prepare | Response | | Conmand
| Response [---------- + | Received
o e oo + V
N o e e e e e oo +
Command | | Processi ng |
Processed +---------- | Command
o e e oo +

Figure 1: EPP Server State Machine

EPP conmmands fall into three categories: session nanagenent comrands,
qguery commands, and obj ect transform commands. Sessi on nanagenent
conmands are used to establish and end persistent sessions with an
EPP server. Query commands are used to performread-only object
information retrieval operations. Transform conmands are used to
performread-wite object nanagenent operations.

Hol | enbeck St andards Track [Page 5]

RFC 5730 EPP August 2009

Conmands are processed by a server in the order they are received
froma client. Though an i nmedi ate response confirm ng recei pt and
processi ng of the command is produced by the server, the protoco

i ncludes features that allow for offline review of transform commands
before the requested action is actually conmpleted. 1In such
situations, the response fromthe server MIUST clearly note that the
conmand has been received and processed but that the requested action
is pending. The state of the correspondi ng object MJST clearly

refl ect processing of the pending action. The server MJST al so
notify the client when offline processing of the action has been
conpl eted. (Obj ect mappi ngs SHOULD descri be standard formats for
notices that describe conpletion of offline processing.

EPP uses XM. nanespaces to provide an extensibl e object managenent
framework and to identify schemas required for XM instance parsing
and validation. These nanespaces and schema definitions are used to
identify both the base protocol schema and the schemas for managed

obj ects. The XM. nanespace prefixes used in exanples (such as the
string "foo" in "xmns:foo") are solely for illustrative purposes. A
conform ng inplenmentation MJUST NOT require the use of these or any

ot her specific nanespace prefixes.

Al XM instances SHOULD begin with an <?xm ?> declaration to
identify the version of XML that is being used, optionally identify
use of the character encoding used, and optionally provide a hint to
an XML parser that an external schema file is needed to validate the
XM i nstance. Conformant XM. parsers recogni ze both UTF-8 (defined
in RFC 3629 [RFC3629]) and UTF-16 (defined in RFC 2781 [RFC2781]);
per RFC 2277 [RFC2277], UTF-8 is the RECOMMENDED character encodi ng
for use with EPP

Character encodings other than UTF-8 and UTF-16 are allowed by XM.
UTF-8 is the default encoding assuned by XM_ in the absence of an
"encodi ng" attribute or a byte order mark (BOV; thus, the "encodi ng"
attribute in the XML declaration is OPTIONAL if UTF-8 encoding is
used. EPP clients and servers MJST accept a UTF-8 BOMif present,
though emtting a UTF-8 BOM i s NOT RECOMVENDED.

Exanmpl e XML decl arati ons:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<?xm version="1.0" standal one="no"?>

<?xm version="1.0" encodi ng="UTF-8""?>

<?xnl version="1.0"7?>

Hol | enbeck St andards Track [Page 6]

RFC 5730 EPP August 2009

2.1. Transport Mapping Considerations

As described previously, EPP can be |layered over multiple transport
protocols. There are, however, a common set of considerations that
MJST be addressed by any transport mapping defined for EPP. These
i ncl ude:

- The transport nmappi ng MUST preserve conmand order

- The transport mappi ng MUST address the rel ati onship between
sessions and the client-server connection concept.

- The transport nmappi ng MUST preserve the stateful nature of the
pr ot ocol

- The transport mapping MJIST frane data units.

- The transport mappi ng MUST be onto a transport, such as TCP
[RFCO793] or Stream Control Transm ssion Protocol (SCTP)
[RFC4960], that provides congestion avoi dance that follows RFC
2914 [RFC2914]; or, if it maps onto a protocol such as SMIP
[RFC5321] or Bl ocks Extensible Exchange Protocol (BEEP) [RFC3080],
then the performance i ssues need to take into account issues of
over| oad, server availability, and so forth.

- The transport nmapping MUST ensure reliability.

- The transport mapping MIST explicitly allow or prohibit
pi pel i ni ng.

Pi pelining, also known as command streami ng, is when a client sends
mul tiple commands to a server without waiting for each correspondi ng
response. After sending the conmands, the client waits for the
responses to arrive in the order corresponding to the conpl eted
commands. Perfornmance gains can sonetinmes be realized with

pi pelining, especially with high-latency transports, but there are
addi ti onal considerations associated with defining a transport
mappi ng that supports pipelining:

- Commands MUST be processed i ndependent of each ot her

- Depending on the transport, pipelining MAY be possible in the form
of sending a conplete session in a well-defined "batch".

- The transport mappi ng MUST descri be how an error in processing a
conmand affects continued operation of the session.

Hol | enbeck St andards Track [Page 7]

RFC 5730 EPP August 2009

A transport mappi ng MJST explain how all of these requirenents are
net, given the transport protocol being used to exchange data.

2.2. Protocol ldentification

Al EPP XM. instances MJST begin with an <epp> el enent. This el enent
identifies the start of an EPP protocol elenent and the nanmespace
used within the protocol. The <epp> start elenment and the associ ated
</ epp> endi ng el enent MJST be applied to all structures sent by both
clients and servers.

Exampl e "start" and "end" EPP el enents:

<epp xm ns="urn:ietf:paranms:xm:ns:epp-1.0">
</ epp>

2.3. Hello Fornat

EPP MAY be carried over both connection-oriented and connection-|ess
transport protocols. An EPP client MAY request a <greeting> from an
EPP server at any tinme between a successful <l ogin> command and a

<l ogout > command by sending a <hello> to a server. Use of this
element is essential in a connection-less environment where a server
cannot return a <greeting> in response to a client-initiated
connection. An EPP <hell o> MJST be an enpty elenent with no child
el ement s.

Exanpl e <hel | 0>:
C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">
C. <hello/>
C </ epp>
2.4. Geeting Format
An EPP server responds to a successful connection and <hell o> el enent
by returning a <greeting> elenment to the client. An EPP greeting
contains the followi ng el enents:
- An <svID> elenment that contains the nane of the server.

- An <svDate> el enment that contains the server’s current date and
time in Universal Coordinated Tinme (UTC).

- An <svcMenu> el enment that identifies the services supported by the
server, including:

Hol | enbeck St andards Track [Page 8]

RFC 5730

EPP August 2009

One or nore <version> elenents that identify the protoco
versi ons supported by the server.

One or nore <lang> elenents that contain the identifiers of the
text response | anguages known by the server. Language
identifiers MJST be structured as docunented in [RFC4646].

One or nore <obj URI > el ements that contain namespace URI's
representing the objects that the server is capabl e of

managi ng. A server MAY linit object managerment privileges on a
per-client basis.

An OPTI ONAL <svcExtensi on> el ement that contains one or nore
<ext URI > el ements that contain namespace URI s representing
obj ect extensions supported by the server.

A <dcp> (data collection policy) elenment that contains child
el ements used to describe the server’s privacy policy for data
col l ection and nanagenent. Policy inplications usually extend
beyond the client-server relationship. Both clients and
servers can have rel ationships with other entities that need to
know t he server operator’s data collection policy to make

i nfornmed provisioning decisions. Policy informtion MJST be
di scl osed to provisioning entities, though the nethod of

di scl osing policy data outside of direct protocol interaction
is beyond the scope of this specification. Child elenments

i ncl ude the foll ow ng:

* An <access> el ement that describes the access provided by
the server to the client on behalf of the originating data
source. The <access> el ement MUST contain one of the
followi ng child el enments:

+ <all/> Access is given to all identified data.
+ <none/>: No access is provided to identified data.

+ <null/>: Data is not persistent, so no access is
possi bl e.

+ <personal/>: Access is given to identified data relating
to individuals and organi zational entities.

+ <personal AndQt her/>: Access is given to identified data
relating to individuals, organizational entities, and
ot her data of a non-personal nature.

Hol | enbeck St andards Track [Page 9]

RFC 5730

Hol | enbeck

EPP August 2009

+ <other/>: Access is given to other identified data of a
non- personal nature

One or nore <statenent> el enments that describe data

col l ection purposes, data recipients, and data retention
Each <statenment> el enment MJUST contain a <purpose> el enent, a
<recipient> el enent, and a <retention> elenent. The

<pur pose> el ement MJST contain one or nore of the follow ng
child elenents that describe the purposes for which data is
col |l ected:

+ <admin/> Adnministrative purposes. Information can be
used for administrative and technical support of the
provi si oni ng system

+ <contact/>: Contact for marketing purposes. Informtion
can be used to contact individuals, through a
conmuni cati ons channel other than the protocol, for the
pronmoti on of a product or service.

+ <prov/>: Object-provisioning purposes. Information can
be used to identify objects and inter-object
rel ati onshi ps.

+ <other/>. Qther purposes. Information nmay be used in
ot her ways not captured by the above definitions.

The <recipient> el enent MJIST contain one or nmore of the
following child el enments that describes the recipients of
coll ected data

+ <other/>: Oher entities follow ng unknown practices.

+ <ours>: Server operator and/or entities acting as agents
or entities for whomthe server operator is acting as an
agent. An agent in this instance is defined as a third
party that processes data only on behal f of the service
provider for the conpletion of the stated purposes. The
<ours> el enent contains an OPTI ONAL <recDesc> el enent
that can be used to describe the recipient.

+ <public/>: Public foruns.

+ <sane/> Oher entities follow ng server practices.

+ <unrelated/>: Unrelated third parties.

St andards Track [Page 10]

RFC 5730

EPP August 2009

The <retention> el enent MJST contain one of the follow ng
child elenents that describes data retention practices:

+

+

+

<busi ness/>: Data persists per business practices.
<indefinite/> Data persists indefinitely.

<l egal />: Data persists per |egal requirenents.

<none/>: Data is not persistent and is not retained for
nore than a brief period of time necessary to make use of

it during the course of a single online interaction

<stated/>:. Data persists to neet the stated purpose.

An OPTI ONAL <expiry> el enent that describes the lifetinme of
the policy. The <expiry> el enent MJST contain one of the
following child el enments:

+

<absolute/>: The policy is valid fromthe current date
and time until it expires on the specified date and tine.

<relative/> The policy is valid fromthe current date
and time until the end of the specified duration

Data collection policy el enents are based on work described in the
World Wde Wb Consortiunmis Platformfor Privacy Preferences
[WVBC. REC- P3P-20020416] specification.

Exanpl e greeting:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S:<epp xm ns="urn:ietf:parans: xm : ns: epp-1.0">

PRRRRRRRRDRLW®W

Hol | enbeck

<greeti ng>
<svl D>Exanpl e EPP server epp. exanpl e. conk/svl D>
<svDat e>2000- 06- 08T22: 00: 00. 0Z</ svDat e>
<svcMenu>
<versi on>1. 0</versi on>
<l ang>en</ | ang>
<l ang>fr</I| ang>
<obj URI >urn:ietf: params: xm : ns: obj 1</ obj URl >
<obj URI >urn:ietf: parans: xm : ns: obj 2</ obj URI >
<obj URI >urn:ietf: parans: xm : ns: obj 3</ obj URI >
<svcExt ensi on>
<ext URI >htt p://cust onf obj 1ext - 1. 0</ ext URI >
</ svcExt ensi on>
</ svcMenu>
<dcp>

St andards Track [Page 11]

RFC 5730 EPP August 2009

<access><al | / ></ access>
<st at enent >
<pur pose><adm n/ ><pr ov/ ></ pur pose>
<r eci pi ent ><our s/ ><publ i ¢/ ></ reci pi ent >
<retention><stated/ ></retention>
</ st at enent >
</ dcp>
</ greeting>
: </ epp>

VULV ww

2.5. Command For mat

An EPP client interacts with an EPP server by sending a conmand to

the server and receiving a response fromthe server. |In addition to
the standard EPP el ements, an EPP command contains the foll ow ng
el ement s:

- A commuand el enent whose tag corresponds to one of the valid EPP
comands described in this docunent. The command el ement MAY
contain either protocol-specified or object-specified child
el ement s.

- An OPTI ONAL <extension> el enent that MAY be used for server-
def i ned conmand ext ensi ons.

- An OPTIONAL <cl TRID> (client transaction identifier) elenent that
MAY be used to uniquely identify the conmand to the client.
Clients are responsible for maintaining their own transaction
identifier space to ensure uni queness.

Exanpl e command with object-specified child el enents:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">

C. <conmmand>

C <i nf o>

C <obj:info xmns:obj="urn:ietf:parans: xm :ns:obj">
C <obj : nane>exanpl e</ obj : nane>

C </ obj : i nf o>

C </info>

C <cl TRI D>ABC- 12345</ cl TRI D>

C. </command>

C. </ epp>

Hol | enbeck St andards Track [Page 12]

RFC 5730 EPP August 2009

2.6. Response Format

An EPP server responds to a client conmand by returning a response to
the client. EPP conmands are atomic, so a cormand will either
succeed conpletely or fail conpletely. Success and failure results
MUST NOT be mixed. In addition to the standard EPP el enents, an EPP
response contains the follow ng el enents:

- One or nore <result> elenents that document the success or failure
of command execution. |f the command was processed successfully,
only one <result> el ement MJST be returned. |If the conmmand was
not processed successfully, nmultiple <result> el enents MAY be
returned to docunent failure conditions. Each <result> el enent
contains the following attribute and child el enents:

o A "code" attribute whose value is a four-digit, deciml nunber
that describes the success or failure of the conmmand.

o A <msg> el enment containing a human-readabl e description of the
response code. The |anguage of the response is identified via
an OPTIONAL "lang" attribute. If not specified, the default
attribute value MJUST be "en" (English).

0o Zero or nore OPTIONAL <val ue> el enents that identify a client-
provi ded el ement (including XM. tag and val ue) or ot her
i nformati on that caused a server error condition

0 Zero or nore OPTIONAL <extVal ue> el ements that can be used to
provi de additional error diagnostic information, including:

* A <value> elenent that identifies a client-provided el enent
(including XM tag and val ue) that caused a server error
condi ti on.

* A <reason> el enent containing a human-readabl e nessage that

describes the reason for the error. The | anguage of the

response is identified via an OPTIONAL "l ang" attribute. |If
not specified, the default attribute value MJST be "en"

(English).

- An OPTIONAL <nmsg(@Q> el enent that describes nmessages queued for
client retrieval. A <nsgQ@ el ement MJUST NOT be present if there
are no nessages queued for client retrieval. A <nsg@ el enent MAY
be present in responses to EPP commands ot her than the <poll>
conmand i f messages are queued for retrieval. A <msgQ el enent
MJST be present in responses to the EPP <poll> command if messages
are queued for retrieval. The <nmsgQ el enent contains the
followi ng attributes:

Hol | enbeck St andards Track [Page 13]

RFC 5730 EPP August 2009

o A "count" attribute that describes the nunber of nessages that
exi st in the queue.

0 An "id" attribute used to uniquely identify the nessage at the
head of the queue.

The <nmsgQ> el enent contains the following OPTIONAL child el enents
that MUST be returned in response to a <poll> request command and
MUST NOT be returned in response to any other command, including a
<pol | > acknowl edgenent :

o0 A <gDate> elenent that contains the date and tinme that the
nmessage was enqueued.

o A <msg> el ement containing a human-readabl e nessage. The
| anguage of the response is identified via an OPTIONAL "I ang"
attribute. |If not specified, the default attribute val ue MJST
be "en" (English). This elenent MAY contain XM. content for
formatting purposes, but the XML content is not specified by
the protocol and will thus not be processed for validity.

- An OPTIONAL <resData> (response data) elenment that contains child
el ements specific to the command and associ at ed object.

- An OPTI ONAL <extension> el ement that MAY be used for server-
defined response extensions.

- A<trID> (transaction identifier) element containing the
transaction identifier assigned by the server to the command for
whi ch the response is being returned. The transaction identifier
is formed using the <cl TRID> associated with the comand if
supplied by the client and a <svTRI D> (server transaction
identifier) that is assigned by and unique to the server.

Transaction identifiers provide comuand-response synchroni zati on
integrity. They SHOULD be | ogged, retained, and protected to ensure
that both the client and the server have consistent tenporal and

st at e- managenent records.

Exampl e response without <value> or <resData>:
S: <?xm version="1.0" encodi ng="UTF- 8" standal one="no"?>

S: <epp xm ns="urn:ietf:paranms: xm :ns:epp-1.0">
S: <response>

S <result code="1000">

S: <msg | ang="en">Conmmand conpl et ed successful |l y</ msg>
S </resul t>

S <trl D>

Hol | enbeck St andards Track [Page 14]

RFC 5730

EPP

S <cl TRI D>ABC- 12345</ c| TRI D>
S: <sVTRI D>54321- XYZ</ svTRI D>
S </trl|D>

S: </response>

S: </ epp>

Exanmpl e response with <resDat a>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S <r esDat a>

S: <obj:creData xm ns:obj ="urn:ietf:params: xm :ns: obj
S: <obj : nane>exanpl e</ obj : nane>

S: </ obj : creDat a>

S: </ resDat a>

S: <trl D>

S: <cl TRI D>ABC- 12345</ cl TRI D>

S <svTRI D>54321- XYZ</ svTRI D>

S: </tr|D>

S: </response>

S: </ epp>

Exanpl e response with error value el enents:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">

S: <response>
S: <result code="2004">
S: <msg>Par anet er val ue range error</nsg>
S: <val ue xm ns:obj="urn:ietf:parans: xm :ns:obj">
S: <obj : el emL>2525</ obj : el eml>
S: </val ue>
S: </result>
S: <result code="2005">
S: <msg>Par anet er val ue syntax error</nmsg>
S: <val ue xm ns:obj="urn:ietf:parans: xm :ns:obj">
S: <obj : el em2>ex(anpl e</ obj : el en2>
S: </val ue>
S <ext Val ue>
S: <val ue xm ns:obj="urn:ietf:parans: xm :ns:obj">
S: <obj : el enB>abc. ex(anpl e</ obj : el enB>
S: </val ue>
S: <reason>l nval i d character found.</reason>
S: </ ext Val ue>
Hol | enbeck St andards Track

August 2009

"

[Page 15]

RFC 5730 EPP August 2009

S </result>

S <trl D>

S: <cl TRI D>ABC- 12345</ cl TRI D>
S: <svTRI D>54321- XYZ</ svTRI D>
S </[tr|D>

S: </response>

S: </ epp>

Exanpl e response with notice of waiting server nessages:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful |l y</ nmsg>
S: </result>

S: <msgQ count="5" jd="12345"/>
S: <trl D>

S: <cl TRI D>ABC- 12345</ cl TRI D>
S <sVTRI D>54321- XYZ</ svTRI D>
S </trlD>

S: </response>

S: </ epp>

Conmand success or failure MJUST NOT be assuned if no response is
returned or if a returned response is mal forned. Protoco

i dempot ency ensures the safety of retrying a conmand i n cases of
response-delivery failure.

2.7. Protocol Extension Franmework

EPP provides an extension framework that allows features to be added
at the protocol, object, and conmand-response | evels.

2.7.1. Protocol Extension

The EPP extension framework allows for definition of new protoco

el ements identified using XM. namespace notation with a reference to
an XML scherma that defines the nanespace. The <epp> el enent that
identifies the beginning of a protocol instance includes multiple
child el enent choices, one of which is an <extension> el ement whose
children define the extension. For exanple, a protocol extension

el ement woul d be described in generic terns as follows:

C:. <epp>

C. <extension>

C. <!-- One or nore extension elenents. -->

C <ext:foo xmns:ext="urn:ietf:parans:xn :ns:ext">

Hol | enbeck St andards Track [Page 16]

RFC 5730 EPP August 2009

C <l-- One or nore extension child el enents. -->
C </ ext:foo>

C. </extension>

C:. </ epp>

Thi s docunent does not define mappings for specific extensions.
Ext ensi on specifications MJST be described in separate docunents that
define the objects and operati ons subject to the extension

2.7.2. nject Extension

EPP provi des an extensi bl e object nanagenent franmework that defines
the syntax and semantics of protocol operations applied to a nanaged
object. This framework pushes the definition of each protoco
operation into the context of a specific object, providing the
ability to add mappi ngs for new objects without having to nodify the
base protocol

Protocol elenents that contain data specific to objects are
identified using XML nanespace notation with a reference to an XM
schema that defines the namespace. The schema for EPP supports use
of dynam c object schemas on a per-command and per-response basis.

For exanple, the start of an object-specific conmand el ement woul d be
described in generic terns as foll ows:

C. <EPPCommrandNane>

C. <object:command xm ns:object="urn:ietf:paramnms: xm :ns:object">
C <l-- One or nore object-specific comand el enents. -->

C. </ object: conmand>

C. </ EPPCommandNanme>

An obj ect-specific response el enent would be described simlarly:

S: <resDat a>

S: <object:resData xm ns:object="urn:ietf:paranms: xm :ns:object">
S: <l-- One or nore object-specific response elenents. -->

S: </ object:resDat a>

S: </ resDat a>

Thi s docunent does not define mappings for specific objects. The
mappi ng of EPP to an object MJST be described in separate docunents
that specifically address each command and response in the context of
the object. A suggested object napping outline is included as an
appendi x to this docunent.

Hol | enbeck St andards Track [Page 17]

RFC 5730 EPP August 2009

2.7.3. Command- Response Extension

EPP provides a facility for protocol command and response extensions.
Prot ocol commands and responses MAY be extended by an <extension>

el ement that contains additional el enents whose syntax and semantics
are not explicitly defined by EPP or an EPP object mapping. This
element is OPTIONAL. Extensions are typically defined by agreenent
bet ween client and server and MAY be used to extend EPP for unique
operational needs. A server-extended comand el enent woul d be
described in generic terns as foll ows:

C. <command>

<!-- EPPConmandNane can be "create", "update", etc. -->
<EPPCommuandNamnme>
<obj ect: command xm ns: obj ect="urn:ietf:paranms: xm : ns: obj ect">
<l-- One or nore object-specific comand el enents. -->

</ obj ect : command>
</ EPPConmandNanme>
<ext ensi on>
<l-- One or nore server-defined el enents. -->
</ ext ensi on>
. </ command>

server - ext ended response el enent woul d be described simlarly:

. <r esponse>
<result code="1000">
<msg | ang="en">Conmmand conpl et ed successful |l y</ msg>
</result>
<ext ensi on>
<l-- One or nore server-defined el enents. -->
</ ext ensi on>
<trl| D>
<cl TRI D>ABC- 12345</ cl TRI D>
<svTRI D>54321- XYZ</ svTRI D>
</trl D>
S: </ response>

PRLLLLLLLLY > 0000000000

Thi s docunent does not define any specific server extensions. The
mappi ng of server extensions to EPP MJST be described in separate
docunents that specifically address extended commands and responses
in the server’s operational context.

2.8. (Object ldentification
Sone objects, such as nanme servers and contacts, can have utility in

multiple repositories. However, maintaining disjoint copies of
object information in nultiple repositories can lead to

Hol | enbeck St andards Track [Page 18]

RFC 5730 EPP August 2009

i nconsi stenci es that have adverse consequences for the Internet. For
exanpl e, changi ng the name of a nane server in one repository but not
in a second repository that refers to the server for donmain nane

del egati on can produce unexpected DNS query results.

G obally unique identifiers can help facilitate object-information
sharing between repositories. A globally unique identifier MJST be
assigned to every object when the object is created; the identifier
MUST be returned to the client as part of any request to retrieve the
detailed attributes of an object. Specific identifier values are a
matter of repository policy, but they SHOULD be constructed according
to the follow ng algorithm

a. Divide the provisioning repository world into a nunber of object
repository cl asses.

b. Each repository within a class is assigned an identifier that is
mai nt ai ned by | ANA

c. FEach repository is responsible for assigning a unique |oca
identifier for each object within the repository.

d. The globally unique identifier is a concatenation of the |oca
identifier, followed by a hyphen ("-", ASCII| val ue 0x002D)
followed by the repository identifier

2.9. Protocol Commands

EPP provi des conmands to manage sessions, retrieve object

i nformation, and performtransformati on operations on objects. Al
EPP conmands are atomi ¢ and designed so that they can be nade

i dempotent, either succeeding conpletely or failing conpletely and
produci ng predictable results in case of repeated executions. This
section describes each EPP comand, including exanples with
representati ve server responses.

2.9.1. Session Managenent Conmands

EPP provi des two commands for session managenent: <login> to
establish a session with a server and <logout> to end a session with
a server. The <l ogin> conmand establishes an ongoi ng server session
that preserves client identity and authorization infornmation during
the duration of the session

Hol | enbeck St andards Track [Page 19]

RFC 5730 EPP August 2009

2.9.1.1. EPP <l ogi n> Comand

The EPP <l ogi n> command is used to establish a session with an EPP
server in response to a greeting issued by the server. A <login>
conmand MJST be sent to a server before any other EPP command to
establ i sh an ongoi ng session. A server operator MAY limt the nunber
of failed login attenpts N, 1 <= N<=infinity, after which a login
failure results in the connection to the server (if a connection

exi sts) being closed.

Aclient identifier and initial password MJST be created on the
server before a client can successfully conplete a <l ogi n> command.
The client identifier and initial password MJUST be delivered to the
client using an out-of-band nethod that protects the identifier and
password from i nadvertent disclosure.

In addition to the standard EPP conmand el ements, the <l ogi n> command
contains the following child el ements:

- A<clID> elenent that contains the client identifier assigned to
the client by the server.

- A <pw> element that contains the client’s plain text password.
The value of this elenent is case sensitive.

- An OPTI ONAL <newPWs el ement that contains a new plain text
password to be assigned to the client for use with subsequent
<l ogi n> commands. The value of this element is case sensitive.

- An <options> elenment that contains the following child el enents:

- A <version> elenment that contains the protocol version to be
used for the comrand or ongoi ng server session

- A <lang> elenent that contains the text response | anguage to be
used for the command or ongoi ng server session commands.

The val ues of the <version> and <l ang> el ements MJUST exactly natch
one of the values presented in the EPP greeting.

- A <svcs> el enent that contains one or nore <obj URl > el ements that
contai n namespace URIs representing the objects to be nanaged
during the session. The <svcs> el enent MAY contain an OPTI ONAL
<svcExt ensi on> el ement that contains one or nore <extURl > el enents
that identify object extensions to be used during the session

Hol | enbeck St andards Track [Page 20]

RFC 5730 EPP August 2009

The PLAIN Sinpl e Authentication and Security Layer (SASL) mechani sm
presented in [RFC4616] describes a format for providing a user
identifier, an authorization identifier, and a password as part of a
single plain-text string. The EPP authentication mechanismis
simlar, though EPP does not require a session-level authorization
identifier and the user identifier and password are separated into
distinct XM. elements. Additional identification and authorization
schenes MJUST be provided at other protocol l|ayers to provide nore
robust security services.

Exampl e <l ogi n> conmand

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">

C. <conmand>

C <l ogi n>

C <cl 1 D>dient X</cl | D>

C <pw>f 00- BAR2</ pw>

C <newPWtbar - FOO2</ newPWs

C <opti ons>

04 <versi on>1. 0</versi on>

C <l ang>en</| ang>

C </ opti ons>

cC <svcs>

C <obj URI >urn:ietf: parans: xm : ns: obj 1</ obj URI >

C <obj URI >urn:ietf: parans: xm : ns: obj 2</ obj URI >

C <obj URI >urn:ietf: parans: xm : ns: obj 3</ obj URI >

C <svcExt ensi on>

C <ext URI >htt p:// cust on obj lext - 1. 0</ ext URI >

C </ svcExt ensi on>

C </ svcs>

C </l ogi n>

C <cl TRI D>ABC- 12345</ cl TRI D>

C. </ comand>

C. </ epp>

When a <l ogi n> conmand has been processed successfully, a server MJST
respond with an EPP response with no <resData> elenment. |If
successful, the server will respond by creating and maintaining a new

session that SHOULD be term nated by a future <l ogout> command.
Exanpl e <l ogi n> response:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>

Hol | enbeck St andards Track [Page 21]

RFC 5730 EPP August 2009

S </result>

S <trl D>

S: <cl TRI D>ABC- 12345</ cl TRI D>
S: <svTRI D>54321- XYZ</ svTRI D>
S </[tr|D>

S: </response>

S: </ epp>

The EPP <l ogin> command is used to establish a session with an EPP
server. A <login> command MJST be rejected if received within the
bounds of an existing session. This conmand MJST be avail able to al
clients.

2.9.1.2. EPP <l ogout> Command

The EPP <l ogout> conmmand is used to end a session with an EPP server.
The <l ogout> command MJUST be represented as an enpty elenent with no
child el ements.

A server MAY end a session due to client inactivity or excessive
client-session longevity. The paraneters for determn ning excessive
client inactivity or session longevity are a matter of server policy
and are not specified by this protocol

Transport mappi ngs MUST explicitly describe any connection-oriented
processing that takes place after processing a <l ogout> command and
endi ng a sessi on.

Exampl e <l ogout > command:
C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

C <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">
C. <conmand>

cC <l ogout / >

C <cl TRI D>ABC- 12345</ cl TRI D>
C. </command>

C. </ epp>

When a <l ogout > command has been processed successfully, a server
MUST respond with an EPP response with no <resData> elenent. |If
successful, the server MJST al so end the current session

Exanpl e <l ogout > response:
S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">

S: <response>
S: <result code="1500">

Hol | enbeck St andards Track [Page 22]

RFC 5730 EPP August 2009

S <msg>Conmand conpl et ed successfully; endi ng sessi on</ nsg>
S </result>

S <trl D>

S: <cl TRI D>ABC- 12345</ cl TRI D>

S: <svTRI D>54321- XYZ</ svTRI D>

S </[tr|D>

S: </response>

S: </ epp>

The EPP <l ogout> conmmand is used to end a session with an EPP server.
A <l ogout > conmand MJST be rejected if the command has not been
preceded by a successful <login> command. This command MJST be

avail able to all clients.

2.9.2. Qery Commands
2.9.2.1. EPP <check> Comand

The EPP <check> command is used to determine if an object can be
provisioned within a repository. It provides a hint that allows a
client to anticipate the success or failure of provisioning an object
usi ng the <create> comrand as obj ect-provisioning requirenents are
ultimately a matter of server policy.

The el ements needed to identify an object are object-specific, so the
child elenments of the <check> command are specified using the EPP
extension framework. In addition to the standard EPP comrand

el ements, the <check> command contains the followi ng child el enents:

- An object-specific <obj:check> elenent that identifies the objects
to be queried. Miltiple objects of the sane type MAY be queried
within a single <check> conmmand.

Exanmpl e <check> conmmand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">

C. <conmmand>

C <check>

C <obj : check xm ns:obj="urn:ietf:parans: xm : ns: obj ">
C <obj : nane>exanpl el</ obj : name>
C <obj : nane>exanpl e2</ obj : nane>
C <obj : nane>exanpl e3</ obj : nane>
C </ obj : check>

C </ check>

C <cl TRI D>ABC- 12346</ cl TRI D>

C. </ command>

C. </ epp>

Hol | enbeck St andards Track [Page 23]

RFC 5730 EPP August 2009

When a <check> conmmand has been processed successfully, a server MJST
respond with an EPP <resData> el emrent that MJST contain a child

el ement that identifies the object namespace. The child elements of
the <resData> el ement are object-specific, though the EPP <resDat a>
el ement MJST contain a child <obj:chkData> el enent that contains one
or nore <obj:cd> (check data) el enents. Each <obj:cd> el enent
contains the following child el ements:

- An object-specific element that identifies the queried object.
This el ement MJUST contain an "avail" attribute whose val ue
i ndi cates object availability (can it be provisioned or not) at
the nonent the <check> conmand was conpleted. A value of "1" or
"true" neans that the object can be provisioned. A value of "0"
or "false" means that the object cannot be provisioned.

- An OPTI ONAL <obj:reason> el enent that MAY be provi ded when an
obj ect cannot be provisioned. |If present, this el enent contains
server-specific text to help explain why the object cannot be
provi sioned. This text MJST be represented in the response
| anguage previously negotiated with the client; an OPTIONAL "l ang"
attribute MAY be present to identify the |language if the
negoti ated value is something other than the default val ue of
(English).

en

Exanmpl e <check> response

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S <r esDat a>

S: <obj : chkData xm ns: obj ="urn:ietf:parans: xm : ns: obj ">
S: <obj : cd>

S: <obj : nane avail =" 1" >exanpl el</ obj : nane>
S: </ obj : cd>

S: <obj : cd>

S: <obj : nane avail =" 0" >exanpl e2</ obj : name>
S: <obj : reason>l n use</obj:reason>

S: </ obj : cd>

S: <obj : cd>

S: <obj : nane avail =" 1" >exanpl e3</ obj : nane>
S: </ obj : cd>

S: </ obj : chkDat a>

S </ resDat a>

S: <trl D>

S: <cl TRI D>ABC- 12346</ cl TRI D>

Hol | enbeck St andards Track [Page 24]

RFC 5730 EPP August 2009

S: <sVTRI D>54322- XYZ</ svTRI D>
S: </tr|D>

S: </response>

S: </ epp>

The EPP <check> command is used to determne if an object can be
provisioned within a repository. This action MJST be open to al
aut horized clients.

2.9.2.2. EPP <info> Command

The EPP <info> command is used to retrieve information associ ated
with an existing object. The elenents needed to identify an object
and the type of information associated with an object are both

obj ect-specific, so the child elenents of the <info> command are
speci fied using the EPP extension franmework. 1In addition to the
standard EPP command el enents, the <info> commuand contains the
following child el enments:

- An object-specific <obj:info> element that identifies the object
to be queried.

Exampl e <i nfo> command

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">

C. <conmand>

C <i nf o>

C <obj:info xmns:obj="urn:ietf:paranms: xm : ns:obj">
C <I-- (nject-specific elenents. -->

C </ obj :info>

C </info>

C <cl TRI D>ABC- 12346</ cl TRI D>

C. </ comand>

C. </ epp>

When an <i nfo> conmmand has been processed successfully, a server MJST
respond with an EPP <resData> el emrent that MJST contain a child

el ement that identifies the object nanmespace and the Repository
nject IDentifier (ROD) that was assigned to the object when the
object was created. Oher child elements of the <resData> el enent
are object-specific.

Exanpl e <i nfo> response
S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

S:<epp xm ns="urn:ietf:paranms: xm : ns: epp-1.0">
S. <response>

Hol | enbeck St andards Track [Page 25]

RFC 5730 EPP August 2009

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S <r esDat a>

S: <obj :infData xm ns: obj ="urn:ietf:parans: xm : ns: obj ">
S: <obj : r oi d>EXAMPLEL- REP</ obj : r oi d>

S: <I-- (nject-specific elenents. -->

S: </ obj : i nf Dat a>

S: </ resDat a>

S <trl D>

S: <cl TRI D>ABC- 12346</ cl TRI D>

S: <sVTRI D>54322- XYZ</ svTRI D>

S: </tr| D>

S: </response>

S: </ epp>

The EPP <info> conmand is used to retrieve information associ ated
with an existing object. This action SHOULD be limted to authorized
clients; restricting this action to the sponsoring client is
RECOWMMVENDED

2.9.2.3. EPP <poll> Conmand

The EPP <pol | > command is used to discover and retrieve service
nessages queued by a server for individual clients. |f the nessage
gueue is not enpty, a successful response to a <poll> command MJST
return the first message fromthe nessage queue. Each response
returned fromthe server includes a server-uni que nmessage identifier
that MJUST be provided to acknow edge recei pt of the nmessage, and a
counter that indicates the nunber of nessages in the queue. After a
nessage has been received by the client, the client MIST respond to
the nessage with an explicit acknow edgenment to confirmthat the
nmessage has been received. A server MJST dequeue the nessage and
decrement the queue counter after receiving acknow edgenent fromthe
client, making the next nmessage in the queue (if any) available for
retrieval

Servers can occasionally perform actions on objects that are not in
direct response to a client request, or an action taken by one client
can indirectly involve a second client. Exanmples of such actions

i ncl ude del eti on upon expiration, automatic renewal upon expiration
and transfer coordination; other types of service information MAY be
defined as a matter of server policy. Service nessages SHOULD be
created for passive clients affected by an action on an object.
Servi ce nmessages MAY al so be created for active clients that request
an action on an object, though such nessages MJST NOT repl ace the
normal protocol response to the request. For exanple, <transfer>
actions SHOULD be reported to the client that has the authority to

Hol | enbeck St andards Track [Page 26]

RFC 5730 EPP August 2009

approve or reject a transfer request. Oher nmethods of server-client
action notification, such as offline reporting, are al so possible and
are beyond the scope of this specification

Message queues can consume server resources if clients do not
retrieve and acknowl edge nessages on a regul ar basis. Servers MNAY

i mpl enent ot her mechani snms to dequeue and deliver nmessages if queue
mai nt enance needs exceed server resource consunption limts. Server
operators SHOULD consider tine-sensitivity and resource nanagenent
factors when selecting a delivery nethod for service information
because sone nessage types can be reasonably delivered using non-
protocol methods that require fewer server resources.

Some of the information returned in response to a <poll> conmand can
be object-specific, so some child elements of the <poll> response MAY
be specified using the EPP extension framework. The <poll> conmmand
MJST be represented as an enpty elenment with no child elenents. An
"op" attribute with value "req" is REQURED to retrieve the first
nessage fromthe server nmessage queue. An "op" attribute (with value
"ack") and a "nmsgl D' attribute (whose value corresponds to the val ue
of the "id" attribute copied fromthe <nsg> el ement in the nessage
bei ng acknow edged) are REQUI RED to acknow edge recei pt of a message.

Exanmpl e <pol | > command:
C. <?xm version="1.0" encodi ng="UTF- 8" standal one="no"?>

C <epp xm ns="urn:ietf:parans: xm : ns: epp-1.0">
C. <conmand>

C <pol | op="req"/>

C <cl TRI D>ABC- 12345</ c| TRI D>
C. </ conmand>

C </ epp>

The returned result code notes that a message has been dequeued and
returned in response to a <poll> comuand.

Exanmpl e <pol | > response with object-specific information:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">
<r esponse>
<result code="1301">
<msg>Conmand conpl et ed successfully; ack to dequeue</nsg>
</result>
<msgQ count ="5" i d="12345">
<gDat e>2000- 06- 08T22: 00: 00. 0Z</ gDat e>
<msg>Transfer requested. </ nmsg>

</ msgQ>

CRORORORORORON)

Hol | enbeck St andards Track [Page 27]

RFC 5730 EPP August 2009

S <r esDat a>

S: <obj:trnData

S xm ns:obj ="urn:ietf:paranms: xm :ns:obj-1.0">

S: <obj : nane>exanpl e. conx/ obj : name>

S: <obj : tr St at us>pendi ng</obj : tr St at us>

S: <obj :rel D>C i ent X</ obj : rel D>

S: <obj : r eDat €>2000- 06- 08T22: 00: 00. 0Z</ obj : r eDat e>
S: <obj : acl D>Cl i ent Y</ obj : acl D>

S: <obj : acDat e>2000- 06- 13T22: 00: 00. 0Z</ obj : acDat e>
S: <obj : exDat e>2002- 09- 08T22: 00: 00. 0Z</ obj : exDat e>
S: </ obj : trnDat a>

S: </ resDat a>

S <trl D>

S <cl TRI b>ABC- 12345</ ¢l TRI D>

S: <svTRI D>54321- XYZ</ svTRI D>

S </trlD>

S: </response>

S: </ epp>

A client MJUST acknow edge each response to dequeue the nessage and
make subsequent nessages available for retrieval.

Exampl e <pol | > acknow edgenent conmmand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">
C

<conmand>
C <pol | op="ack" nsgl D="12345"/>
C <cl TRI D>ABC- 12346</ cl TRI D>
C. </command>
C. </ epp>

A <pol | > acknow edgenent response notes the ID of the message that
has been acknow edged and the number of messages remaining in the
queue.

Exanmpl e <pol | > acknow edgenent response:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">

<cl TRI D>ABC- 12346</ cl TRI D>
<svTRI D>54322- XYZ</ svTRI D>

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S: <msgQ count ="4" | d="12345"/>

S <trl D>

S

S

Hol | enbeck St andards Track [Page 28]

RFC 5730 EPP August 2009

S: </tr| D>
S: </response>
S: </ epp>

Servi ce messages can al so be returned wi thout object information

Exanmpl e <pol | > response with nm xed nessage content and wi t hout
obj ect-specific information:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:paranms: xm : ns: epp-1.0">

S. <response>

S: <result code="1301">

S: <msg>Conmand conpl et ed successfully; ack to dequeue</nsg>
S: </result>

S: <msgQ count ="4" | d="12346">

S: <gDat e>2000- 06- 08T22: 10: 00. 0Z</ gDat e>
S: <nmsg | ang="en">Credit bal ance | ow.

S: <limt>100</1im t ><bal >5</ bal >

S </ nsg>

S: </ msgQ>

S <trl D>

S: <cl TRI D>ABC- 12346</ cl TRI D>

S: <sVTRI D>54321- XYZ</ svTRI D>

S: </tr| D>

S: </response>

S: </ epp>

The returned result code and nmessage is used to note an enpty server
nessage queue.

Exanpl e <pol | > response to note an enpty nessage queue:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S:<epp xm ns="urn:ietf:paranms: xm : ns: epp-1.0">
<r esponse>
<result code="1300">
<msg>Conmand conpl et ed successfully; no nessages</ nsg>
</result>
<trl D>
<cl TRI D>ABC- 12346</ cl TRI D>
<sVTRI D>54321- XYZ</ svTRI D>
</tr| D>
</ response>
: </ epp>

VRVLVLLLL®

Hol | enbeck St andards Track [Page 29]

RFC 5730 EPP August 2009

The EPP <pol |l > conmand is used to discover and retrieve client
service nmessages froma server. This action SHOULD be linmited to
aut horized clients; queuing service nessages and limting queue
access on a per-client basis is RECOWENDED

2.9.2.4. EPP <transfer> Query Command

The EPP <transfer> comand provides a query operation that allows a
client to deternine real-tinme status of pending and conpl et ed
transfer requests. The elenments needed to identify an object that is
the subject of a transfer request are object-specific, so the child
el ements of the <transfer> query command are specified using the EPP
extension framework. In addition to the standard EPP comrand

el enents, the <transfer> conmand contains an "op" attribute with

val ue "query" and the following child el enents:

- An object-specific <obj:transfer> elenment that identifies the
obj ect whose transfer status is requested.

Transfer status is typically considered sensitive information by the
clients involved in the operation. Object mappi ngs MJST provide
features to restrict transfer queries to authorized clients, such as
by requiring authorization information as part of the request.

Exampl e <transfer> query comand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">
<comand>
<transfer op="query">
<obj:transfer xm ns:obj="urn:ietf:parans: xn :ns: obj">
<l-- nject-specific elenments. -->
</ obj:transfer>
</transfer>
<cl TRI D>ABC- 12346</ cl TRI D>
</ comrand>
C. </ epp>

OO0000000

When a <transfer> query command has been processed successfully, a
server MJST respond with an EPP <resData> el enent that MJST contain a
child elenent that identifies the object nanespace. The child

el ements of the <resData> el enent are object-specific, but they MJST
i nclude elenments that identify the object, the status of the
transfer, the identifier of the client that requested the transfer,
the date and time that the request was made, the identifier of the
client that is authorized to act on the request, the date and tine by

Hol | enbeck St andards Track [Page 30]

RFC 5730 EPP August 2009

which an action is expected, and an OPTI ONAL date and tinme noting
changes in the object’'s validity period (if applicable) that occur as
a result of the transfer.

Exampl e <transfer> query response:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:parans: xm :ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful |l y</ nmsg>

S: </result>

S: <r esDat a>

S: <obj:trnData xm ns:obj ="urn:ietf:parans: xn :ns:obj">
S: <obj : nane>exanpl e</ obj : nane>

S: <obj : tr St at us>pendi ng</ obj : tr St at us>

S: <obj :rel D>Cl i ent X</ obj : rel D>

S: <obj : r eDat €>2000- 06- 08T22: 00: 00. 0Z</ obj : r eDat e>
S: <obj : acl D>Cl i ent Y</ obj : acl D>

S: <obj : acDat e>2000- 06- 13T22: 00: 00. 0Z</ obj : acDat e>
S: <obj : exDat e>2002- 09- 08T22: 00: 00. 0Z</ obj : exDat e>
S: </ obj : trnDat a>

S: </ resDat a>

S: <trl D>

S: <cl TRI D>ABC- 12346</ cl TRI D>

S <sVTRI D>54322- XYZ</ svTRI D>

S </[trl|D>

S: </response>

S: </ epp>

The EPP <transfer> comand provides a query operation that allows a
client to deternine real-tinme status of pending and conpl et ed
transfer requests. This action SHOULD be limted to authorized
clients; restricting queries to the requesting and responding clients
i's RECOWENDED. (bject transfer MAY be unavailable or limted by

obj ect-specific policies.

2.9.3. ject Transform Conmands

EPP provides five commands to transform objects: <create> to create
an instance of an object with a server, <delete> to renove an

i nstance of an object froma server, <renew> to extend the validity
peri od of an object, <transfer> to manage changes in client
sponsorship of an object, and <update> to change infornmation

associ ated with an object.

Hol | enbeck St andards Track [Page 31]

RFC 5730 EPP August 2009

2.9.3.1. EPP <create> Command

The EPP <create> command is used to create an instance of an object.
An obj ect can be created for an indefinite period of tine, or an
object can be created for a specific validity period. The EPP
mappi ng for an object MJUST describe the status of an object with
respect to tine in order to include expected client and server
behavior if a validity period is used.

The el ements needed to identify an object and associated attributes
are object-specific, so the child el enments of the <create> conmand
are specified using the EPP extension framework. 1|In addition to the
standard EPP command el ements, the <create> command contains the
follow ng child el enments:

- An object-specific <obj:create> elenment that identifies the object
to be created and the elements that are required to create the
obj ect.

Exanpl e <creat e> comand

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xm : ns: epp-1.0">
<comrand>
<create>
<obj:create xm ns:obj ="urn:ietf:paranms: xm :ns:obj">
<l-- vject-specific elements. -->
</ obj : creat e>
</create>
<cl TRI D>ABC- 12345</ c| TRI D>
</ comand>
C </ epp>

00000000

When a <create> command has been processed successfully, a server MAY
respond with an EPP <resData> el erent that MJST contain a child

el ement that identifies the object namespace. The child elenents of
the <resData> el enent are object-specific.

Exanpl e <create> response w th <resbDat a>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">
<response>
<result code="1000">
<msg>Conmand conpl et ed successful |l y</ nmsg>
</result>
<r esDat a>
<obj:creData xm ns:obj ="urn:ietf:parans: xn :ns:obj">

(ZRCRORORON)

Hol | enbeck St andards Track [Page 32]

RFC 5730 EPP August 2009

<I-- nject-specific elenents. -->
</ obj : crebat a>
</ resDat a>
<trl D>
<cl TRI D>ABC- 12345</ cl TRI D>
<sVTRI D>54321- XYZ</ svTRI D>
</tr| D>
</ response>
S: </ epp>

(CRORORORORONON

The EPP <create> command is used to create an instance of an object.
This action SHOULD be linmted to authorized clients and MAY be
restricted on a per-client basis.

2.9.3.2. EPP <del et e> Command
The EPP <del ete> conmand is used to renmpbve an instance of an existing

object. The elenents needed to identify an object are object-
specific, so the child elenments of the <del ete> command are specified

using the EPP extension framework. In addition to the standard EPP
comand el enents, the <del ete> conmmand contains the followi ng child
el ement s:

- An object-specific <obj:delete> elenent that identifies the object
to be del eted.

Exanpl e <del et e> comand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">

C. <command>

C <del et e>

C <obj : del ete xm ns: obj ="urn:ietf:paramnms: xm : ns: obj">
C <l-- bject-specific elements. -->

C </ obj : del et e>

C </ del et e>

C <cl TRI D>ABC- 12346</ cl TRI D>

C. </comrand>

C </ epp>

VWhen a <del ete> command has been processed successfully, a server MAY
respond with an EPP <resData> el emrent that MJST contain a child

el ement that identifies the object namespace. The child elenents of
the <resData> el enent are object-specific.

Hol | enbeck St andards Track [Page 33]

RFC 5730 EPP August 2009

Exanpl e <del et e> response wi t hout <resbData>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">
<r esponse>
<result code="1000">
<msg>Conmand conpl et ed successful | y</ nsg>
</result>
<trl D>
<cl TRI D>ABC- 12346</ cl TRI D>
<svTRI D>54322- XYZ</ svTRI D>
</[tr|D>
</ response>
S: </ epp>

(CRORORORORORORON

The EPP <del ete> conmand is used to renmpbve an instance of an existing
object. This action SHOULD be limted to authorized clients;
restricting this action to the sponsoring client is RECOMVENDED.

2.9.3.3. EPP <renew> Command

The EPP <renew> command is used to extend the validity period of an
exi sting object. The elenents needed to identify and extend the
validity period of an object are object-specific, so the child

el ements of the <renew> command are specified using the EPP extension
framework. In addition to the standard EPP comrand el enents, the
<renew> comand contains the following child el enents:

- An object-specific <obj:renew> elenent that identifies the object
to be renewed and the elenents that are required to extend the
validity period of the object.

Exanpl e <renew> conmmand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xnm :ns: epp-1.0">
<comrand>
<r enew>
<obj : renew xm ns: obj ="urn:ietf:parans: xm : ns: obj ">
<l-- bject-specific elements. -->
</ obj : renew>
</ renew>
<cl TRI D>ABC- 12346</ cl TRI D>
</ comand>
. </ epp>

000000000

Hol | enbeck St andards Track [Page 34]

RFC 5730 EPP August 2009

When a <renew> conmand has been processed successfully, a server MY
respond with an EPP <resData> el emrent that MJST contain a child

el ement that identifies the object namespace. The child elements of
the <resData> el ement are object-specific.

Exanpl e <renew> response with <resDat a>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S: <epp xm ns="urn:ietf:parans: xm : ns: epp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S: <r esDat a>

S: <obj :renData xm ns:obj ="urn:ietf:paranms:xm :ns:obj">
S: <l-- bject-specific elements. -->

S: </ obj : renDat a>

S: </ resDat a>

S <trl D>

S <cl TRI D>ABC- 12346</ cl TRI D>

S: <svTRI D>54322- XYZ</ svTRI D>

S </trlD>

S: </response>

S: </ epp>

The EPP <renew> command is used to extend the validity period of an
exi sting object. This action SHOULD be linted to authorized
clients; restricting this action to the sponsoring client is
RECOMVENDED. (hj ect renewal MAY be unavailable or limted by object-
specific policies.

2.9.3.4. EPP <transfer> Command

The EPP <transfer> comand is used to manage changes in client
sponsorship of an existing object. Cients can initiate a transfer
request, cancel a transfer request, approve a transfer request, and
reject a transfer request using the "op" comand attribute.

A client who wi shes to assunme sponsorship of a known object from
anot her client uses the <transfer> command with the value of the "op"

attribute set to "request”. Once a transfer has been requested, the
sanme client can cancel the request using a <transfer> command wth
the value of the "op" attribute set to "cancel"”. A request to cance

the transfer MUST be sent to the server before the current sponsoring
client either approves or rejects the transfer request and before the
server automatically processes the request due to responding client
inactivity.

Hol | enbeck St andards Track [Page 35]

RFC 5730 EPP August 2009

Once a transfer request has been received by the server, the server
MUST notify the current sponsoring client of the requested transfer
ei t her by queuing a service nessage for retrieval via the <poll>
conmand or by using an out-of-band nechanismto informthe client of
the request. The current status of a pending <transfer> command for
any object can be found using the <transfer> query comuand. Transfer
servi ce nmessages MJST include the object-specific el enents specified
for <transfer> command responses.

The current sponsoring client MAY explicitly approve or reject the
transfer request. The client can approve the request using a
<transfer> command with the value of the "op" attribute set to
"approve". The client can reject the request using a <transfer>
command with the value of the "op" attribute set to "reject”

A server MAY automatically approve or reject all transfer requests
that are not explicitly approved or rejected by the current
sponsoring client within a fixed amount of tinme. The anmount of tine
to wait for explicit action and the default server behavior are |oca
matters not specified by EPP, but they SHOULD be docunented in a
server-specific profile docunment that describes default server
behavi or for client informtion

ojects eligible for transfer MJUST have associ ated aut hori zation

i nformati on that MJST be provided to conplete a <transfer> comuand.
The type of authorization information required is object-specific;
passwords or nore conpl ex nechani sns based on public key cryptography
are typical

The el ements needed to identify and conplete the transfer of an

obj ect are object-specific, so the child el enents of the <transfer>
conmand are specified using the EPP extension franework. |n addition
to the standard EPP command el enents, the <transfer> conmand contai ns
the following child el ements:

- An object-specific <obj:transfer> elenment that identifies the
object to be transferred and the el enents that are required to
process the transfer command.

Exampl e <transfer> comrand:

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:paranms: xm :ns: epp-1.0">
<conmmand>
<transfer op="request">
<obj:transfer xm ns:obj="urn:ietf:parans: xm : ns: obj ">
<I-- bject-specific elements. -->
</ obj:transfer>

00000

Hol | enbeck St andards Track [Page 36]

RFC 5730 EPP August 2009

C </transfer>

C <cl TRl D>ABC- 12346</ cl TRI D>
C. </ command>

C:. </ epp>

When a <transfer> command has been processed successfully, a server
MUST respond with an EPP <resData> el erent that MJST contain a child
el emrent that identifies the object namespace. The child elenments of
the <resData> el ement are object-specific, but they MJST include
elements that identify the object, the status of the transfer, the
identifier of the client that requested the transfer, the date and
time that the request was nade, the identifier of the client that is
aut horized to act on the request, the date and tine by which an
action is expected, and an OPTIONAL date and tine noting changes in
the object’s validity period (if applicable) that occur as a result
of the transfer.

Exampl e <transfer> response with <resDat a>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S:<epp xm ns="urn:ietf:parans: xm : ns: epp-1.0">

S: <response>

S: <result code="1001">

S: <msg>Conmand conpl et ed successful ly; action pendi ng</ nsg>
S: </result>

S: <r esDat a>

S: <obj:trnData xm ns:obj="urn:ietf:paranms:xm :ns:obj">
S: <obj : nane>exanpl e</ obj : name>

S: <obj : tr St at us>pendi ng</obj : tr St at us>

S: <obj :rel D>C i ent X</ obj : rel D>

S: <obj : r eDat €>2000- 06- 08T22: 00: 00. 0Z</ obj : r eDat e>
S: <obj :acl D>Cl i ent Y</ obj : acl D>

S: <obj : acDat e>2000- 06- 13T22: 00: 00. 0Z</ obj : acDat e>
S: <obj : exDat e>2002- 09- 08T22: 00: 00. 0Z</ obj : exDat e>
S: </ obj : trnDat a>

S: </ resDat a>

S <trl D>

S <cl TRI D>ABC- 12346</ ¢l TRI D>

S: <svTRI D>54322- XYZ</ svTRI D>

S </trlD>

S: </response>

S: </ epp>

The EPP <transfer> comand is used to nmanage changes in client
sponsorship of an existing object. This action SHOULD be limted to
aut horized clients; restricting <transfer> requests to a client other
than the current sponsoring client, <transfer> approval requests to

Hol | enbeck St andards Track [Page 37]

RFC 5730 EPP August 2009

the current sponsoring client, and <transfer> cancellation requests
to the original requesting client is RECOUWENDED. bject transfer
MAY be unavailable or linmted by object-specific policies.

2.9.3.5. EPP <update> Conmand

The EPP <update> command is used to change infornmation associated
with an existing object. The elenents needed to identify and nodify
an object are object-specific, so the child elenments of the <update>
conmand are specified using the EPP extension framework. |In addition
to the standard EPP command el enents, the <update> comrand contai ns
the following child el ements:

- An object-specific <obj:update> elenent that identifies the object
to be updated and the elements that are required to nodify the
object. Object-specific elenents MIST identify values to be
added, values to be renmoved, or values to be changed.

Exanpl e <updat e> command

C. <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
C. <epp xm ns="urn:ietf:params: xm :ns: epp-1.0">
<comand>
<updat e>
<obj : update xm ns:obj="urn:ietf:parans: xm :ns:obj">
<l-- nject-specific elenments. -->
</ obj : updat e>
</ updat e>
<cl TRI D>ABC- 12346</ cl TRI D>
</ comrand>
C. </ epp>

OO0000000

When an <updat e> conmand has been processed successfully, a server
MAY respond with an EPP <resData> el enent that MJST contain a child
el ement that identifies the object namespace. The child elements of
the <resData> el enent are object-specific.

Exanpl e <updat e> response wi t hout <resbData>:

S: <?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
S:<epp xm ns="urn:ietf:paranms: xm : ns: epp-1.0">

<cl TRI D>ABC- 12346</ cl TRI D>
<svTRI D>54322- XYZ</ svTRI D>

S. <response>

S <result code="1000">

S: <msg>Conmand conpl et ed successful | y</ nsg>
S: </result>

S <trl D>

S

S

Hol | enbeck St andards Track [Page 38]

RFC 5730 EPP August 2009

S: </tr| D>
S: </response>
S: </ epp>

The EPP <update> conmand is used to change information associated
with an existing object. This action SHOULD be Ilimted to authorized
clients; restricting this action to the sponsoring client is
RECOMVENDED.

3. Result Codes

EPP result codes are based on the theory of reply codes described in
section 4.2.1 of [RFC5321]. EPP uses four decimal digits to describe
the success or failure of each EPP conmand. Each of the digits of
the reply have special significance.

The first digit denotes command success or failure. The second digit
denotes the response category, such as command syntax or security.
The third and fourth digits provide explicit response detail within
each response category.

There are two values for the first digit of the reply code:

lyzz Positive conpletion reply. The conmand was accepted and
processed by the systemwi t hout error

2yzz Negative conpletion reply. The command was not accepted, and
the requested action did not occur

The second digit groups responses into one of six specific
cat egori es:

x0zz Pr ot ocol Synt ax
x1lzz | mpl ement ati on-specific Rul es
X222 Security

x3zz Dat a Managenent

x4zz Server System

x5zz Connecti on Managenent

The third and fourth digits provide response detail within the
categories defined by the first and second digits. The conplete Iist

of valid result codes is enunmerated below and in the normative
schema.

Hol | enbeck St andards Track [Page 39]

RFC 5730 EPP August 2009

Every EPP response MJST include a result code and a hunan-readabl e
description of the result code. The |anguage used to represent the
description MAY be identified using an instance of the "l ang"
attribute within the <nsg> elenent. |If not specified, the default

| anguage is English, identified as "en". A description of the
structure of valid values for the "lang" attribute is described in
[RFC4646] .

Response text MAY be translated into other |anguages, though the
transl ati on MJST preserve the meaning of the code as described here.
Response code val ues MJUST NOT be changed when translating text.

Response text in the table belowis enclosed in quotes to clearly
mark the beginning and ending of each response string. Quotes MJST
NOT be used to delimit these strings when returning response text via
the protocol

Successful conmmand conpl eti on responses:

Code Response text in English

1000 "Command conpl et ed successful | y"

This is the usual response code for a successfully
conpl eted conmand that is not addressed by any ot her
1xxx-series response code.

1001 "Command conpl et ed successfully; action pendi ng"
Thi s response code MUST be returned when responding to a
command that requires offline activity before the
requested action can be conpleted. See Section 2 for a
description of other processing requirenents.

1300 "Command conpl et ed successfully; no nessages"”

Thi s response code MUST be returned when responding to a
<pol | > request conmmand and the server nessage queue is

enpty.
1301 "Command conpl et ed successfully; ack to dequeue"
Thi s response code MUST be returned when responding to a

<pol | > request conmmand and a nmessage has been retrieved
fromthe server nessage queue.

Hol | enbeck St andards Track [Page 40]

RFC 5730

1500

Command

Code

EPP August 2009

"Command conpl et ed successfully; ending session"

Thi s response code MUST be returned when responding to a
successful <l ogout> conmand.

error responses:

Response text in English

2000

2001

2002

2003

2004

2005

Hol | enbeck

"Unknown command"

Thi s response code MJST be returned when a server receives
a command el enent that is not defined by EPP

"Command syntax error”

Thi s response code MUST be returned when a server receives
an inproperly fornmed conmand el enent .

"Conmand use error"”

Thi s response code MUST be returned when a server receives
a properly formed command el enent but the conmand cannot
be executed due to a sequencing or context error. For
exanpl e, a <l ogout> conmand cannot be executed wi thout
havi ng first conpleted a <l ogi n> comuand.

"Requi red paraneter nm ssing"

This response code MJST be returned when a server receives
a command for which a required paraneter val ue has not
been provi ded.

"Paranet er val ue range error"

Thi s response code MUST be returned when a server receives
a conmmand paraneter whose value is outside the range of
val ues specified by the protocol. The error value SHOULD
be returned via a <value> elenment in the EPP response.

"Paramet er val ue syntax error"
Thi s response code MUST be returned when a server receives
a conmmand cont ai ning a paraneter whose value is inproperly

formed. The error value SHOULD be returned via a <val ue>
el ement in the EPP response.

St andards Track [Page 41]

RFC 5730

2100

2101

2102

2103

2104

2105

2106

2200

Hol | enbeck

EPP August 2009

“Uni npl enent ed protocol version"

Thi s response code MUST be returned when a server receives
a conmand el ement specifying a protocol version that is
not inplenmented by the server.

“Uni npl enent ed command”

Thi s response code MUST be returned when a server receives
a valid EPP command el enent that is not inplenmented by the
server. For exanple, a <transfer> conmmand can be

uni npl enented for certain object types.

" Uni mpl ement ed option"

Thi s response code MUST be returned when a server receives
a valid EPP command el enent that contains a protoco

option that is not inplenented by the server.
“Uni npl ement ed ext ensi on"

Thi s response code MUST be returned when a server receives
a valid EPP command el enent that contains a protoco
conmand extension that is not inplenented by the server.
"Billing failure"

Thi s response code MUST be returned when a server attenpts
to execute a billable operation and the conmand cannot be
conpleted due to a client-billing failure.

"Cbject is not eligible for renewal"

Thi s response code MUST be returned when a client attenpts
to <renew> an object that is not eligible for renewal in
accordance with server policy.

"Cbject is not eligible for transfer"

Thi s response code MUST be returned when a client attenpts
to <transfer> an object that is not eligible for transfer
in accordance with server policy.

"Aut hentication error"

Thi s response code MUST be returned when a server notes an
error when validating client credentials.

St andards Track [Page 42]

RFC 5730

2201

2202

2300

2301

2302

2303

2304

Hol | enbeck

EPP August 2009

"Aut hori zation error"”

Thi s response code MUST be returned when a server notes a
client-authorization error when executing a conmand. This
error is used to note that a client lacks privileges to
execute the requested command.

"I nvalid authorization information"

Thi s response code MUST be returned when a server receives
i nvalid command aut horization information when attenpting
to confirmauthorization to execute a conmand. This error
is used to note that a client has the privileges required
to execute the requested conmand, but the authorization

i nformation provided by the client does not match the

aut horization information archived by the server.

"Cbj ect pending transfer"

Thi s response code MUST be returned when a server receives
a command to transfer of an object that is pending
transfer due to an earlier transfer request.

"(Cbj ect not pending transfer™

Thi s response code MUST be returned when a server receives
a command to confirm reject, or cancel the transfer of an
obj ect when no command has been made to transfer the

obj ect .

"(Cbj ect exists"

Thi s response code MUST be returned when a server receives
a command to create an object that already exists in the
repository.

"Cbj ect does not exist"

Thi s response code MUST be returned when a server receives
a conmmand to query or transform an object that does not
exist in the repository.

"Cbj ect status prohibits operation”

Thi s response code MUST be returned when a server receives
a conmmand to transform an object that cannot be conpl eted

due to server policy or business practices. For example,
a server can disallow <transfer> commands under termnms and

St andards Track [Page 43]

RFC 5730

2305

2306

2307

2308

2400

Hol | enbeck

EPP August 2009

conditions that are natters of |ocal policy, or the server
m ght have received a <del ete> command for an obj ect whose
status prohi bits del etion.

"Cbj ect associ ation prohibits operation®

Thi s response code MUST be returned when a server receives
a command to transform an object that cannot be conpl eted
due to dependenci es on other objects that are associ ated
with the target object. For exanple, a server can

di sal | ow <del et e> commands whil e an obj ect has active
associ ations with other objects.

"Parameter value policy error"

Thi s response code MUST be returned when a server receives
a conmmand contai ning a paraneter value that is
syntactically valid but semantically invalid due to | oca
policy. For example, the server can support a subset of a
range of valid protocol paraneter values. The error value
SHOULD be returned via a <value> element in the EPP
response.

“Uni npl enent ed obj ect service"

This response code MJST be returned when a server receives
a command to operate on an object service that is not
supported by the server.

"Data managenent policy violation"

Thi s response code MUST be returned when a server receives
a command whose execution results in a violation of server
dat a managenent policies. For exanple, renoving al
attribute values or object associations froman object

m ght be a violation of a server’s data managenent
pol i ci es.

"Conmand fail ed"

Thi s response code MJST be returned when a server is
unabl e to execute a comand due to an internal server
error that is not related to the protocol. The failure
can be transient. The server MJST keep any ongoi ng
session active.

St andards Track [Page 44]

RFC 5730 EPP August 2009

4.

4.

2500 "Command fail ed; server closing connection"

Thi s response code MUST be returned when a server receives
a conmand that cannot be conpleted due to an interna

server error that is not related to the protocol. The
failure is not transient and will cause other commands to
fail as well. The server MJUST end the active session and

cl ose the existing connection
2501 "Aut hentication error; server closing connection”

Thi s response code MUST be returned when a server notes an
error when validating client credentials and a
server-defined linit on the nunber of allowable failures
has been exceeded. The server MJST cl ose the existing
connecti on.

2502 "Session limt exceeded; server closing connection"

Thi s response code MUST be returned when a server receives
a <l ogi n> command and the comrand cannot be conpl eted
because the client has exceeded a systemdefined limt on
the nunber of sessions that the client can establish. It
m ght be possible to establish a session by ending

exi sting unused sessions and cl osing inactive connections.

Formal Synt ax

EPP is specified in XM_ Schema notation. The formal syntax presented
here is a conplete schena representati on of EPP suitable for
automated validation of EPP XM i nstances.

Two schemas are presented here. The first schema is the base EPP
schema. The second schena defines elements and structures that can
be used by both the base EPP schema and object mappi ng schema. The
BEA N and END tags are not part of the schemm; they are used to note
the begi nning and ending of the schema for UR registration purposes.

Base Schenmmn

Copyright (c) 2009 I ETF Trust and the persons identified as authors
of the code. Al rights reserved.

Redi stri bution and use in source and binary forns, with or without
nodi fication, are pernitted provided that the follow ng conditions
are met:

Hol | enbeck St andards Track [Page 45]

RFC 5730 EPP August 2009

0 Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclaimer.

0 Redistributions in binary form must reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in
the docunentation and/or other materials provided with the
di stribution.

o Neither the nane of Internet Society, |IETF or |IETF Trust, nor the
nanes of specific contributors, may be used to endorse or pronpote
products derived fromthis software wi thout specific prior witten
per m ssi on.

THI' S SOFTWARE | S PROVI DED BY THE COPYRI GHAT HOLDERS AND CONTRI BUTORS
"AS |'S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT
LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR
A PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT
OMER OR CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG BUT NOT
LIMTED TO PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE
DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY
THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OQUT OF THE USE
OF TH'S SOFTWARE, EVEN I F ADVI SED OF THE PCSSI Bl LI TY OF SUCH DAMAGE

BEA N
<?xm version="1.0" encodi ng="UTF-8""?>

<schemn t ar get Nanespace="urn:ietf: parans: xm : ns: epp-1. 0"
xm ns: epp="urn:ietf:parans: xm : ns: epp-1. 0"
xm ns: eppcon¥"urn:ietf:parans: xnm : ns: eppcom 1. 0"
xm ns="http://ww.w3. org/ 2001/ XM_Scherma"
el ement For nDef aul t =" qual i fi ed" >

<l--
| nport conmon el enent types.
-->
<i nport nanespace="urn:ietf:parans: xm :ns:eppcom1l.0"/>

<annot at i on>
<docunent ati on>
Ext ensi bl e Provi sioning Protocol v1.0 schenn.
</ docunent ati on>
</ annot ati on>

<I--

Every EPP XM. instance nust begin with this el enment.
-->

Hol | enbeck St andards Track [Page 46]

RFC 5730 EPP August 2009

<el enent nanme="epp" type="epp: eppType"/>

<l--
An EPP XM instance nmust contain a greeting, hello, command,
response, or extension.
-->
<conpl exType nane="eppType" >
<choi ce>
<el enent name="greeting" type="epp: greeti ngType"/>
<el enent name="hel | 0"/ >
<el enent nanme="command" type="epp: conmandType"/ >
<el enent nanme="response" type="epp:responseType"/>
<el enent nanme="extensi on" type="epp: ext AnyType"/>
</ choi ce>
</ conpl exType>

<l--
A greeting is sent by a server in response to a client connection
or <hell o>.
-->
<conpl exType nane="greeti ngType" >
<sequence>
<el enent nanme="svID' type="epp: sl DType"/ >
<el enent nane="svDate" type="dateTinme"/>
<el enent nanme="svcMenu" type="epp: svcMenuType"/ >
<el enent nanme="dcp" type="epp: dcpType"/>
</ sequence>
</ conpl exType>

<l--
Server IDs are strings with mnimumand maxi mum | ength restrictions.
-->
<si npl eType name="sl DType" >
<restriction base="normalizedString">
<m nLength val ue="3"/>
<maxLength val ue="64"/>
</restriction>
</ si npl eType>

<I--
A server greeting identifies avail able object services.
-->

<conpl exType nane="svcMenuType">

<sequence>
<el enent nanme="version" type="epp:versionType"
maxQOccur s="unbounded"/ >
<el enent nanme="I| ang" type="| anguage”
maxQccur s="unbounded"/ >

Hol | enbeck St andards Track [Page 47]

RFC 5730 EPP August 2009

<el enent nanme="obj URI" type="anyURl"
maxQccur s="unbounded"/ >
<el enent name="svcExt ensi on" type="epp: ext URl Type"
m nCccurs="0"/>
</ sequence>
</ conpl exType>

<l--
Data Col | ection Policy types.
-

<conpl exType nane="dcpType" >

<sequence>
<el enent nanme="access" type="epp: dcpAccessType"/>
<el enent nanme="statenent" type="epp: dcpSt at enent Type"
maxQccur s="unbounded"/ >
<el enent name="expiry" type="epp: dcpExpi ryType"
m nOccur s="0"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="dcpAccessType" >
<choi ce>
<el enent nanme="all"/>
<el ement nane="none"/>
<el ement nanme="nul | "/ >
<el enent nanme="ot her"/>
<el ement nane="personal "/ >
<el enent name="per sonal AndQt her"/ >
</ choi ce>
</ conpl exType>

<conpl exType nane="dcpSt at enent Type" >
<sequence>
<el enent name="purpose" type="epp: dcpPur poseType"/ >
<el enent nanme="reci pient" type="epp: dcpReci pi ent Type"/>
<el enent nane="retention" type="epp: dcpRetenti onType"/>
</ sequence>
</ conpl exType>

<conpl exType nane="dcpPur poseType" >
<sequence>
<el enent nanme="adm n"
m nCccur s="0"/ >
<el enent nane="contact"
m nCccurs="0"/>
<el enent nane="ot her"
m nCccurs="0"/>
<el enent nane="prov"

Hol | enbeck St andards Track [Page 48]

RFC 5730 EPP August 2009

m nCccur s="0"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="dcpReci pi ent Type" >
<sequence>
<el enent nane="ot her"
m nCccurs="0"/>
<el enent name="ours" type="epp: dcpQursType"
m nCccur s="0" maxQccur s="unbounded"/ >
<el enent name="public"
m nCccur s="0"/ >
<el enent nanme="sane"
m nCccurs="0"/>
<el enent nanme="unr el at ed"
m nCccur s="0"/>
</ sequence>
</ conpl exType>

<conpl exType nane="dcpQursType" >
<sequence>
<el enent name="recDesc" type="epp: dcpRecDescType"
m nOccur s="0"/ >
</ sequence>
</ conpl exType>

<si npl eType name="dcpRecDescType" >
<restriction base="token">
<m nLength val ue="1"/>
<maxLengt h val ue="255"/>
</restriction>
</ si npl eType>

<conpl exType nane="dcpRet enti onType" >
<choi ce>
<el enent nanme="busi ness"/>
<el enent nanme="indefinite"/>
<el enent nanme="I| egal "/ >
<el enent nane="none"/ >
<el ement name="stated"/>
</ choi ce>
</ conpl exType>

<conpl exType nane="dcpExpiryType">
<choi ce>
<el enent name="absol ute" type="dateTi me"/>
<el enent nanme="rel ative" type="duration"/>
</ choi ce>

Hol | enbeck St andards Track [Page 49]

RFC 5730

</ conpl exType>

<I--

EPP

Ext ensi on franmework types.

-->

<conpl exType nane="ext AnyType" >

<sequence>

<any nanespace="##ot her"
maxQccur s="unbounded"/ >

</ sequence>

</ conpl exType>

<conpl exType nane="ext URl Type" >

<sequence>

<el ement nane="extURl " type="anyURl "
maxQCccur s="unbounded"/ >

</ sequence>

</ conpl exType>

<I--

An EPP version nunmber is a dotted pair of decimal nunbers.

-->

<si npl eType nanme="versi onType" >
<restriction base="token">
<pattern value="[1-9]+\.[0-9]+"/>
<enuneration val ue="1.0"/>
</restriction>

</ si npl eType>

<l --

Conmand types.
-->

<conpl exType nane="commandType" >

<sequence>
<choi ce>
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
</ choi ce>

nane="check" type="epp:readWiteType"/>
nane="create" type="epp:readWiteType"/>
nane="del ete" type="epp:readWiteType"/>
nanme="i nfo" type="epp:readWiteType"/>
nanme="1ogi n" type="epp: | ogi nType"/>
nane="1 ogout "/ >

nanme="pol | " type="epp: pol | Type"/>
nane="renew' type="epp:readWiteType"/>
nane="transfer" type="epp:transferType"/>
nane="update" type="epp:readWiteType"/>

<el enent nanme="extensi on" type="epp: ext AnyType"
m nCccurs="0"/>

Hol | enbeck

St andards Track

August 2009

[Page 50]

RFC 5730 EPP August 2009

<el enent name="cl TRID' type="epp:trlIDStringType"
m nCccur s="0"/ >
</ sequence>
</ conpl exType>

<l--
The <l ogi n> command.
-->
<conpl exType nane="1| ogi nType" >

<sequence>
<el enent nanme="cl I D' type="eppcom cl | DType"/>
<el enent nanme="pw' type="epp: pwlype"/ >
<el enent nanme="newPW type="epp: pwlype"

m nCccur s="0"/ >
<el enent name="options" type="epp: credsOpti onsType"/>
<el enent name="svcs" type="epp: | ogi nSvcType"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="credsOpti onsType" >
<sequence>
<el enent nanme="version" type="epp:versi onType"/>
<el enent nanme="I| ang" type="| anguage"/ >
</ sequence>
</ conpl exType>

<si npl eType name="pwlype" >
<restriction base="token">
<m nLengt h val ue="6"/>
<maxLength val ue="16"/>
</restriction>
</ si npl eType>

<conpl exType nane="| ogi nSvcType" >
<sequence>
<el enent name="obj URI" type="anyURl"
maxQccur s="unbounded"/ >
<el enent nanme="svcExt ension" type="epp: ext URl Type"
m nCccur s="0"/ >
</ sequence>
</ conpl exType>

<l--
The <pol | > comand.
-->
<conpl exType nane="pol | Type">
<attribute name="op" type="epp: poll OpType"
use="required"/>

Hol | enbeck St andards Track [Page 51]

RFC 5730 EPP August 2009

<attribute name="nsgl D' type="token"/>
</ conpl exType>

<si npl eType nanme="pol | OpType" >
<restriction base="token">
<enuneration val ue="ack"/ >
<enuneration val ue="req"/>
</restriction>
</ si npl eType>

<l--
The <transfer> conmand. This is object-specific, and uses attributes
to identify the requested operation
-->
<conpl exType nane="transfer Type" >
<sequence>
<any nanespace="##ot her"/>
</ sequence>
<attribute name="op" type="epp:transferpType"
use="required"/ >
</ conpl exType>

<si npl eType name="transfer OpType" >
<restriction base="token">
<enuner ati on val ue="approve"/ >
<enumer ation val ue="cancel "/ >
<enuner ation val ue="query"/ >
<enumeration value="reject"/>
<enuner ati on val ue="request"/>
</restriction>
</ si npl eType>

<l--
Al'l other object-centric commands. EPP doesn’t specify the syntax or
semantics of object-centric conmand el enents. The el ements MJST be

described in detail in another schema specific to the object.
-->
<conpl exType nane="readWiteType">
<sequence>

<any nanespace="##ot her"/>
</ sequence>
</ conpl exType>

<conpl exType nane="tr| DType" >
<sequence>
<el enent name="cl TRID' type="epp:trlIDStringType"
m nOccur s="0"/ >
<el enent name="svTRI D' type="epp:trIDStringType"/>

Hol | enbeck St andards Track [Page 52]

RFC 5730 EPP August 2009

</ sequence>
</ conpl exType>

<si npl eType name="tr|DStri ngType">
<restriction base="token">
<m nLength val ue="3"/>
<maxLength val ue="64"/>
</restriction>
</ si npl eType>

<I--
Response types.
-->
<conpl exType nane="responseType" >

<sequence>
<el enent name="result" type="epp:resultType"
maxQOccur s="unbounded”/ >
<el enent nanme="nsgQ' type="epp: nsgQlype"
m nCccur s="0"/ >

<el enent nanme="resData" type="epp: ext AnyType"
m nOccur s="0"/ >
<el enent nanme="extensi on" type="epp: ext AnyType"
m nCccurs="0"/ >
<el enent name="tr|I D' type="epp:trlDlype"/>
</ sequence>
</ conpl exType>

<conpl exType nane="result Type">
<sequence>
<el enent nanme="nsg" type="epp: nsgType"/>
<choi ce m nCccurs="0" maxCccur s="unbounded" >
<el enent nanme="val ue" type="epp: errVal ueType"/>
<el enent name="ext Val ue" type="epp: ext ErrVal ueType"/ >
</ choi ce>
</ sequence>
<attribute nane="code" type="epp:resultCodeType"
use="required"/ >
</ conpl exType>

<conpl exType nane="err Val ueType" m xed="true">
<sequence>
<any nanespace="##any" processContents="skip"/>
</ sequence>
<anyAttribute namespace="##any" processContents="skip"/>
</ conpl exType>

Hol | enbeck St andards Track [Page 53]

RFC 5730 EPP August

<conpl exType nane="ext Err Val ueType" >
<sequence>
<el enent name="val ue" type="epp: errVal ueType"/>
<el enent name="reason" type="epp: nsgType"/ >
</ sequence>
</ conpl exType>

<conpl exType nanme="nmsgQlype" >
<sequence>
<el enent nanme="qDat e" type="dateTi me"
m nOccur s="0"/ >
<el enent nanme="nsg" type="epp: m xedMsgType"
m nCccur s="0"/ >
</ sequence>
<attribute name="count" type="unsi gnedLong"
use="required"/>
<attribute name="id" type="eppcom m nTokenType"
use="required"/>
</ conpl exType>

<conpl exType nane="m xedMsgType" m xed="true">
<sequence>
<any processCont ent s="ski p"
m nCccur s="0" maxOccur s="unbounded"/ >
</ sequence>
<attribute name="I| ang" type="I|anguage"
defaul t="en"/ >
</ conpl exType>

<l --

2009

Human-r eadabl e text may be expressed in | anguages ot her than Engli sh.

-->
<conpl exType nane="nmsgType" >
<si nmpl eCont ent >
<ext ensi on base="normal i zedString">
<attribute name="I| ang" type="I|anguage"
defaul t="en"/ >
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

<l--
EPP result codes.
-->
<si npl eType name="resul t CodeType" >
<restriction base="unsi gnedShort">
<enuner ati on val ue="1000"/>
<enuneration val ue="1001"/>

Hol | enbeck St andards Track [Page 54]

RFC 5730 EPP August 2009

<enuner ati on val ue="1300"/>
<enuner ati on val ue="1301"/>
<enuner ati on val ue="1500"/>
<enuner ati on val ue="2000"/>
<enuner ati on val ue="2001"/>
<enuner ati on val ue="2002"/>
<enuner ati on val ue="2003"/>
<enuner ati on val ue="2004"/>
<enuner ati on val ue="2005"/>
<enuner ati on val ue="2100"/>
<enuner ati on val ue="2101"/>
<enuner ati on val ue="2102"/>
<enuner ati on val ue="2103"/>
<enuner ati on val ue="2104"/>
<enuner ation val ue="2105"/>
<enuner ati on val ue="2106"/>
<enuner ati on val ue="2200"/>
<enuner ati on val ue="2201"/>
<enuner ati on val ue="2202"/>
<enuner ati on val ue="2300"/>
<enuner ati on val ue="2301"/>
<enuner ati on val ue="2302"/>
<enuner ati on val ue="2303"/>
<enuner ati on val ue="2304"/>
<enuner ati on val ue="2305"/>
<enuner ati on val ue="2306"/>
<enuner ation val ue="2307"/>
<enuner ati on val ue="2308"/>
<enuner ati on val ue="2400"/>
<enuner ati on val ue="2500"/>
<enuner ati on val ue="2501"/>
<enuner ati on val ue="2502"/>
</restriction>
</ si npl eType>

<l--

End of schemm.
-->

</ schema>

END

Hol | enbeck St andards Track [Page 55]

RFC 5730 EPP August 2009

4.2. Shared Structure Schema

Copyright (c) 2009 | ETF Trust and the persons identified as authors
of the code. Al rights reserved.

Redi stri bution and use in source and binary forns, with or without
nodi fication, are pernmtted provided that the follow ng conditions
are met:

0 Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclai ner.

0 Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainmer in
the docunentati on and/or other materials provided with the
di stribution.

o Neither the nane of Internet Society, |IETF or |IETF Trust, nor the
nanes of specific contributors, may be used to endorse or pronote
products derived fromthis software w thout specific prior witten
per ni ssi on.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS
"AS I'S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT
LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR
A PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT
OMER OR CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT
LIMTED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LCSS OF USE
DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWNEVER CAUSED AND ON ANY
THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY OQUT OF THE USE
OF TH S SOFTWARE, EVEN | F ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGE

BEG N
<?xm version="1.0" encodi ng="UTF-8"7?>

<schema t ar get Nanmespace="urn:ietf:parans: xm : ns: eppcom 1. 0"
xm ns: eppcon¥"urn:ietf:parans: xm : ns: eppcom 1. 0"
xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t ="qual i fi ed" >

<annot at i on>
<docunent ati on>
Ext ensi bl e Provi si oning Protocol v1.0
shared structures schema
</ document ati on>
</ annot ati on>

Hol | enbeck St andards Track [Page 56]

RFC 5730 EPP August 2009

<l--
Obj ect authorization information types.
-->
<conpl exType nane="pwAut hl nf oType" >
<si npl eCont ent >
<ext ensi on base="nornalizedString">
<attribute name="roi d" type="eppcomroidType"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

<conpl exType nane="ext Aut hl nf oType" >
<sequence>
<any nanespace="##ot her"/>
</ sequence>
</ conpl exType>

<l--
<check> response types.
-->
<conpl exType nane="reasonType" >
<si nmpl eCont ent >
<ext ensi on base="eppcom r easonBaseType" >
<attribute name="I| ang" type="language"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

<si npl eType name="r easonBaseType" >
<restriction base="token">
<m nLength val ue="1"/>
<maxLengt h val ue="32"/>
</restriction>
</ si npl eType>

<l--
Abstract client and object identifier type.
-->
<si npl eType nanme="cl | DType" >
<restriction base="token">
<m nLength val ue="3"/>
<maxLength val ue="16"/>
</restriction>
</ si npl eType>

<I--

DNS | abel type.
-->

Hol | enbeck St andards Track [Page 57]

RFC 5730

<si npl eType nane=

EPP

"l abel Type" >

<restriction base="token">
<mi nLength val ue="1"/>
<maxLengt h val ue="255"/>

</restriction>
</ si npl eType>

<I--

Non-empty token type.

-->

<si npl eType nane=

"m nTokenType" >

<restriction base="token">
<m nLength val ue="1"/>

</restriction>
</ si npl eType>

<l--
Repository nhject
-->

<si npl eType nane=

| Dentifier type.

"roi dType" >

<restriction base="token">
<pattern value="(\w _){1,80}-\w{1,8}"/>

</restriction>
</ si npl eType>

<I--

Transfer status identifiers.

-->

<si npl eType nanme="tr St at usType" >
<restriction base="token">

<enuner ati on
<enuneration
<enuner ati on
<enuner ati on
<enuner ati on
<enuner ati on
</restriction>
</ si npl eType>

<l--

End of schemm.
-->

</ schema>

END

Hol | enbeck

val ue="cl i ent Approved"/ >
val ue="cl i ent Cancel | ed"/ >
val ue="cl i ent Rej ected"/ >
val ue="pendi ng"/ >

val ue="server Approved"/ >
val ue="server Cancel | ed"/ >

St andards Track

August 2009

[Page 58]

RFC 5730 EPP August 2009

5.

I nternationalization Considerations

EPP is represented in XM., which provides native support for encoding
i nformati on using the Unicode character set and its nore conpact
representations including UTF-8. Conformant XM processors recogni ze
both UTF-8 and UTF-16. Though XM includes provisions to identify
and use other character encodings through use of an "encodi ng"
attribute in an <?xm ?> declaration, use of UTF-8 is RECOMMENDED in
envi ronnent s where parser-encodi ng-support inconpatibility exists.

EPP includes a provision for returning a human-readabl e nessage with
every result code. This docunent describes result codes in English,
but the actual text returned with a result MAY be provided in a

| anguage negotiated when a session is established. Languages other
than Engli sh MUST be noted through specification of a "l ang"
attribute for each message. Valid values for the "lang" attribute
and "l ang" negotiation elements are described in [RFC4646].

Al date-tine values presented via EPP MJUST be expressed in Universa
Coordi nated Tinme using the Gregorian calendar. XM Schenma all ows use
of time zone identifiers to indicate offsets fromthe zero neridian
but this option MJST NOT be used with EPP. The extended date-tine
formusing upper case "T" and "Z" characters defined in

[WBC. REC- xml schema- 2- 20041028] MUST be used to represent date-tine
val ues, as XML Schenma does not support truncated date-tinme forms or

| ower case "T" and "Z" characters.

| ANA Consi derations
Thi s docunent uses URNs to describe XM. nanespaces and XM. schenas
conforming to a registry nechani smdescribed in [RFC3688]. Four UR
assi gnments have been registered by the | ANA
Regi stration request for the EPP namespace:

URI: urn:ietf:parans:xm:ns:epp-1.0

Regi strant Contact: See the "Author’s Address" section of this
docunent .

XM.: None. Nanespace URIs do not represent an XML specification
Regi stration request for the EPP XM. schena:
URI: urn:ietf:parans:xm:schema: epp-1.0

Regi strant Contact: See the "Author’s Address" section of this
docunent .

Hol | enbeck St andards Track [Page 59]

RFC 5730 EPP August 2009

XM.: See the "Base Schema" section of this document.
Regi stration request for the EPP shared structure nanespace:
URI: urn:ietf:parans: xm :ns: eppcom 1.0

Regi strant Contact: See the "Author’s Address" section of this
docunent .

XM.: None. Nanespace URIs do not represent an XM. specification
Regi stration request for the EPP shared structure XM. schenm:
URI: urn:ietf:parans:xm:schema: eppcom 1.0

Regi strant Contact: See the "Author’s Address" section of this
docunent .

XM.: See the "Shared Structure Schena" section of this docunent.
A MM nedia type registration tenplate is included in Appendi x B
7. Security Considerations

EPP provides only sinple client-authentication services. A passive
attack is sufficient to recover client identifiers and passwords,
allowing trivial command forgery. Protection against npst comon
attacks and nore robust security services MJST be provided by other
protocol l|ayers. Specifically, EPP instances MJST be protected using
a transport nechani smor application protocol that provides
integrity, confidentiality, and nutual, strong client-server

aut henti cati on.

EPP uses a variant of the PLAIN SASL mechani sm described in [RFC4616]
to provide a sinple application-layer authentication service that
augnents or supplements authentication and identification services
that m ght be available at other protocol |ayers. Were the PLAIN
SASL nmechani sm specifies provision of an authorization identifier

aut hentication identifier, and password as a single string separated
by ASCII NUL characters, EPP specifies use of a conbined

aut horization and authentication identifier and a password provi ded
as distinct XM el enents.

Repeat ed password guessing attenpts can be discouraged by liniting
the nunber of <login> attenpts that can be attenpted on an open
connection. A server MAY cl ose an open connection if nultiple
<l ogin> attenpts are made with either an invalid client identifier

Hol | enbeck St andards Track [Page 60]

RFC 5730 EPP August 2009

an invalid password, or both an invalid client identifier and an
i nval i d password.

EPP uses authentication information associated with objects to
confirmobject-transfer authority. Authentication informtion
exchanged between EPP clients and third-party entities MJST be
exchanged using a facility that provides privacy and integrity
services to protect agai nst unintended disclosure and nodification
while in transit.

EPP i nstances SHOULD be protected using a transport nechani sm or
application protocol that provides anti-replay protection. EPP
provi des some protection against replay attacks through comrand

i dempotency and client-initiated transaction identification
Consecutive command replays will not change the state of an object in
any way. There is, however, a chance of unintended or malicious
consequence if a command is replayed after intervening comrands have
changed the object state and client identifiers are not used to
detect replays. For exanple, a replayed <create> comrand t hat

foll ows a <del ete> command mi ght succeed w thout additiona
facilities to prevent or detect the replay.

As described in Section 2, EPP includes features that allow for

of fline review of transform commands before the requested action is
actually conpleted. The server is required to notify the client when
of fl i ne processing of the action has been conpleted. Notifications
can be sent using an out-of-band nechanismthat is not protected by
the mechani smused to provide EPP transport security. Notifications
sent without EPP s transport-security services should be protected
usi ng anot her nechani smthat provides an appropriate |evel of
protection for the notification

8. Acknow edgenents

RFC 3730 is a product of the PROVREG worki ng group, which suggested
i nprovenents and provi ded nany inval uabl e comments. The aut hor

wi shes to acknow edge the efforts of WG chairs Edward Lewis and Jaap
Akkerhuis for their process and editorial contributions. RFC 4930
and this docunment are individual subm ssions, based on the work done
in RFC 3730.

Speci fic suggestions that have been incorporated into this docunent
were provided by Chris Bason, Eric Brunner-WIIlianms, Jordyn Buchanan
Roger Castillo Cortazar, Dave Crocker, Ayesha Damaraju, Sheer

El - Showk, Patrik Faltstrom James Goul d, John | nmordi no, Dan Kohn
Hong Liu, Klaus Malorny, Dan Manl ey, Mchael Mealling, Patrick
Mevzek, Andrew Newton, Budi Rahardjo, Asbjorn Steira, Rick Wsson
and Jay Westerdal

Hol | enbeck St andards Track [Page 61]

RFC 5730

9. References

EPP August 2009

9.1. Nornmtive References

[RFC2119]

[RFC2277]

[RFC2914]

[RFC3629]

[RFC3688]

[RFC4646]

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Al vestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

Fl oyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, Septenber 2000.

Yergeau, F., "UTF-8, a transformation format of | SO
10646", STD 63, RFC 3629, Noverber 2003.

Meal ling, M, "The IETF XM Registry", BCP 81, RFC 3688,
January 2004.

Phillips, A and M Davis, "Tags for ldentifying
Languages", BCP 47, RFC 4646, Septenber 2006.

[WVBC. REC- xni - 20040204]

Sper ber g- McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
and T. Bray, "Extensible Markup Language (XM.) 1.0 (Third
Edition)", Wrld Wde Wb Consortium FirstEdition REC xm -
20040204, February 2004,
<http://ww. w3. org/ TR 2004/ REC- xm - 20040204>.

[WVBC. REC- xm schenm- 1- 20041028]

Mal oney, M, Thonmpson, H., Mendel sohn, N., and D. Beech
"XM. Schema Part 1: Structures Second Edition", Wrld Wde
Web Consortium Recomendati on REC- xm schema- 1- 20041028,

Cct ober 2004,

<http://ww. w3. or g/ TR/ 2004/ REC- xm schema- 1- 20041028>.

[VBC. REC- xml schenma- 2- 20041028]

Mal hotra, A. and P. Biron, "XM. Schena Part 2: Datatypes
Second Edition", Wrld Wde Wb Consortium
Recomrendat i on REC- xml schema- 2- 20041028, COctober 2004,
<http://ww. w3. or g/ TR/ 2004/ REC- xm schema- 2- 20041028>.

9.2. Informative References

[RFC0793]

Hol | enbeck

Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septemnber 1981.

St andards Track [Page 62]

RFC 5730 EPP August 2009

[RFC2781] Hoffman, P. and F. Yergeau, "UTF-16, an encodi ng of 1SO
10646", RFC 2781, February 2000.

[RFC3023] Mirata, M, St. Laurent, S., and D. Kohn, "XM. Media
Types", RFC 3023, January 2001.

[RFC3080] Rose, M, "The Bl ocks Extensible Exchange Protocol Core",
RFC 3080, March 2001.

[RFC3375] Hol Il enbeck, S., "Generic Registry-Registrar Protocol
Requi renents", RFC 3375, Septenber 2002.

[RFC4616] Zeilenga, K., "The PLAIN Sinple Authentication and
Security Layer (SASL) Mechanisni', RFC 4616, August 2006.

[RFC4930] Hol Il enbeck, S., "Extensible Provisioning Protocol (EPP)",
RFC 4930, May 2007.

[RFC4960] Stewart, R, "Stream Control Transm ssion Protocol",
RFC 4960, Septenber 2007.

[RFC5321] Klensin, J., "Sinple Mail Transfer Protocol", RFC 5321,
Oct ober 2008.

[VBC. REC- P3P-20020416]
Marchiori, M, "The Platformfor Privacy Preferences 1.0
(P3P1.0) Specification", Wrld Wde Wb Consortium
Recomendat i on REC- P3P- 20020416, April 2002,
<htt p: // www. w3. or g/ TR/ 2002/ REC- P3P- 20020416>.

Hol | enbeck St andards Track [Page 63]

RFC 5730 EPP August 2009

Appendi x A, Obj ect Mapping Tenpl ate

Thi s appendi x describes a recommended outline for documenting the EPP
mappi ng of an object. Documents that describe EPP object mappings
SHOULD describe the mapping in a format simlar to the one used here.
Addi tional sections are required if the object mapping is witten in
Internet-Draft or RFC fornmat.

1

1.

.1

.1

.1

.1

| nt roducti on

Provide an introduction that describes the object and gives an
overvi ew of the mapping to EPP

hj ect Attributes
Describe the attributes associated with the object, including
references to syntax specifications as appropriate. Exanples of
object attributes include a nane or identifier and dates
associ ated with nodification events.
EPP Command Mappi ng

EPP Query Commands
1. EPP <check> Command
Descri be the object-specific mappings required to inplenent the
EPP <check> command. | nclude both sampl e conmands and sanpl e
responses.
2. EPP <info> Command
Descri be the object-specific mappings required to inplenent the
EPP <info> conmand. Include both sanple comands and sanpl e
responses.
3. EPP <pol | > Command
Descri be the object-specific mappings required to inplenent the
EPP <pol | > conmand. |nclude both sanple comands and sanpl e
responses.
4. EPP <transfer> Commuand
Descri be the object-specific mappings required to inplenent the

EPP <transfer> query conmmand. Include both sanple comrands and
sanmpl e responses.

Hol | enbeck St andards Track [Page 64]

RFC 5730 EPP August 2009

3.

3.

2. EPP Transform Commands
2.1. EPP <create> Command

Descri be the object-specific mappings required to inplenent the
EPP <create> command. Include both sanple commands and sanpl e
responses. Describe the status of the object with respect to
time, including expected client and server behavior if a validity
period is used.

.2.2. EPP <del et e> Conmand

Descri be the object-specific mappings required to inplenent the
EPP <del ete> command. Include both sanpl e commands and sanpl e
responses.

.2.3. EPP <renew> Command

Descri be the object-specific nmappings required to inplenent the
EPP <renew> command. | nclude both sanple conmands and sanpl e
responses.

.2.4. EPP <transfer> Command

Descri be the object-specific nmappings required to inplenent the
EPP <transfer> command. |nclude both sanpl e conmands and sanpl e
responses.

.2.4. EPP <updat e> Commrand

Descri be the object-specific mappings required to inplenent the
EPP <update> command. Include both sanpl e commands and sanpl e
responses.

Formal Synt ax
Provide the XM. schema for the object mapping. An XM. DID MJUST

NOT be used, as DTDs do not provide sufficient support for XM
nanmespaces and strong data typing.

Hol | enbeck St andards Track [Page 65]

RFC 5730 EPP August 2009

Appendi x B. Media Type Registration: application/epp+xn
M ME nedia type nane: application
M ME subt ype nane: epp+xm
Requi red paraneters: none

Optional parameters: Sane as the charset paraneter of application/xn
as specified in [RFC3023].

Encodi ng consi derations: Sane as the encodi ng considerations of
application/xm as specified in [RFC3023].

Security considerations: This type has all of the security

consi derations described in [RFC3023] plus the considerations
specified in the Security Considerations section of this docunent.
Interoperability considerations: XM. has proven to be interoperable
across WAV Di stri buted Authoring and Versioning (WbDAV) clients and
servers, and for inport and export fromnultiple XM authoring tools.
For maxi muminteroperability, validating processors are reconmended.
Al t hough non-val i dating processors can be nore efficient, they are
not required to handle all features of XM.. For further information,

see Section 2.9, "Standal one Docunent Decl aration”, and Section 5,
" Conf ormance", of [WBC. REC xmi -20040204].

Publ i shed specification: This docunent.

Applications that use this nmedia type: EPP is device-, platform, and
vendor-neutral and is supported by multiple service providers.

Addi tional information: If used, magic nunbers, fragment identifiers,
base URI's, and use of the BOM should be as specified in [RFC3023].

Magi ¢ nunber(s): None.
File extension(s): .xnl
Maci ntosh file type code(s): "TEXT"

Person & email address for further information: See the "Author’s
Addr ess" section of this docunent.

I nt ended usage: COVMON

Aut hor/ Change control ler: |ETF

Hol | enbeck St andards Track [Page 66]

RFC 5730 EPP August 2009

Appendi x C. Changes from RFC 4930

1. Changed "This docunent obsol etes RFC 3730" to "This document
obsol etes RFC 4930".

2. Repl aced references to RFC 2595 with references to RFC 4616.

3. Repl aced references to RFC 2821 with references to RFC 5321.

4. Repl aced references to RFC 2960 with references to RFC 4960.

5. Repl aced references to RFC 3066 with references to RFC 4646.

6. Repl aced references to RFC 3730 with references to RFC 4930.

7. Added "A protocol client that is authorized to nanage an
exi sting object is described as a "sponsoring” client throughout
this docunent" in Section 1.1.

8. Changed "This action MJST be open to all authorized clients" to
"This command MJST be available to all clients" in the
descriptions of the <l ogin> and <l ogout> commands.

9. Changed "Specific result codes are listed in the table below' to
"The conplete list of valid result codes is enunerated bel ow and

in the normati ve schema" in Section 3.

10. Added new paragraph to Section 7 to give guidance on the need to
protect offline transaction notices.

11. Added reference to Appendix B in the | ANA Consi derations
secti on.

12. Added BSD license text to XML schema secti on.
Aut hor’ s Addr ess

Scott Hol | enbeck

Veri Sign, Inc.

21345 Ridgetop Circle

Dull es, VA 20166-6503

us

EMai | : shol | enbeck@eri si gn. com

Hol | enbeck St andards Track [Page 67]

