I nternet Engi neering Task Force (I ETF) M  Brown

Request for Comments: 5878 RedPhone Security
Updat es: 5246 R Housl ey
Cat egory: Experi nent al Vigil Security
| SSN: 2070-1721 May 2010

Transport Layer Security (TLS) Authorization Extensions
Abst r act

Thi s docunent specifies authorization extensions to the Transport
Layer Security (TLS) Handshake Protocol. Extensions are carried in
the client and server hello nmessages to confirmthat both parties
support the desired authorization data types. Then, if supported by
both the client and the server, authorization information, such as
attribute certificates (ACs) or Security Assertion Markup Language
(SAML) assertions, is exchanged in the suppl enental data handshake
nessage.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenmentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
conmunity. This docunent is a product of the Internet Engi neering
Task Force (IETF). It represents the consensus of the | ETF
comunity. It has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
all documents approved by the | ESG are a candi date for any |evel of
I nternet Standard; see Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc5878

Copyri ght Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Brown & Housl ey Experi nment al [ Page 1]



RFC 5878 TLS Aut hori zati on Extensions May 2010

to this docunent. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

1. Introduction

The Transport Layer Security (TLS) protocol ([TLS1.0], [TLSL.1],
[TLS1.2]) is being used in an increasing variety of operationa
environnents, including ones that were not envisioned at the tinme of
the original design for TLS. The extensions introduced in this
docunent are designed to enable TLS to operate in environments where
aut horization informati on needs to be exchanged between the client
and the server before any protected data is exchanged. The use of
these TLS authorization extensions is especially attractive when nore
than one application protocol can make use of the same authorization
i nf or mati on.

The format and content of the authorization information carried in
these extensions are extensible. This docunment references Security
Assertion Markup Language (SAM.) assertion ([ SAM.1.1], [SAM.2.0]) and
X. 509 attribute certificate (AC) [ATTRCERT] authorization fornats,

but other formats can be used. Future authorization extensions may

i ncl ude any opaque assertion that is digitally signed by a trusted

i ssuer. Recognizing the simlarity to certification path validation
this docunment recomends the use of TLS Alert nessages related to
certificate processing to report authorization informati on processing
failures.

Strai ghtforward binding of identification, authentication, and

aut horization information to an encrypted session i s possible when
all of these are handled within TLS. |If each application requires
uni que aut horization information, then it night best be carried
within the TLS-protected application protocol. However, care nust be
taken to ensure appropriate bindings when identification

aut hentication, and authorization information are handl ed at

di fferent protocol |ayers.

Thi s docunent describes authorization extensions for the TLS
Handshake Protocol in TLS 1.0, TLS 1.1, and TLS 1.2. These

ext ensi ons observe the conventions defined for TLS extensions that
were originally defined in [TLSEXT1] and revised in [ TLSEXT2]; TLS
extensions are now part of TLS 1.2 [TLS1.2]. TLS extensions use
general extension mechanisms for the client hello message and the

Brown & Housl ey Experi ment al [ Page 2]



RFC 5878 TLS Aut hori zati on Extensions May 2010

server hell o nmessage. The extensions described in this docunent
confirmthat both the client and the server support the desired

aut hori zation data types. Then, if supported, authorization
information i s exchanged in the suppl emental data handshake nessage
[ TLSSUPP] .

The aut horization extensions may be used in conjunction with TLS 1.0,
TLS 1.1, and TLS 1.2. The extensions are designed to be backwards
conpati bl e, neaning that the handshake protocol suppl enental data
nmessages will only contain authorization information of a particul ar
type if the client indicates support for themin the client hello
nmessage and the server indicates support for themin the server hello
nmessage.

Clients typically know the context of the TLS session that is being
set up; thus, the client can use the authorization extensi ons when
they are needed. Servers nust accept extended client hello nessages,
even if the server does not "understand" all of the |listed

ext ensions. However, the server will not indicate support for these
"not understood" extensions. Then, clients nmay reject conmunications
with servers that do not support the authorization extensions.

1.1. Conventions

The syntax for the authorization nmessages is defined using the TLS
Presentati on Language, which is specified in Section 4 of [TLS1.O0].

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [ STDWORDS] .

1.2. Overview

Figure 1 illustrates the placenment of the authorization extensions
and suppl enental data nessages in the full TLS handshake.

The ClientHell o nessage includes an indication of the client

aut hori zation data formats that are supported and an indication of
the server authorization data formats that are supported. The
ServerHel | o nessage contains sinilar indications, but any

aut horization data formats that are not supported by the server are
not included. Both the client and the server MJST indicate support
for the authorization data types. |If the list of nutually supported
aut horization data formats is enpty, then the ServerHell o nessage
MUST NOT carry the affected extension at all

Successful session resunption uses the sane authorization information
as the original session.

Brown & Housl ey Experi ment al [ Page 3]



RFC 5878 TLS Aut hori zati on Extensions May 2010

2.

dient Server

ClientHello (W extensions) -------- >

ServerHell o (W extensions)
Suppl erent al Dat a*
Certificate*

Ser ver KeyExchange*
CertificateRequest*

S Server Hel | oDone
Suppl erent al Dat a*
Certificate*
Cl i ent KeyExchange
CertificateVerify*
[ ChangeCi pher Spec]
Finished ae-a-a-- >
[ ChangeCi pher Spec]
<omm-- - Fi ni shed
Application Data S > Application Data

* Indicates optional or situation-dependent nessages that
are not al ways sent.

[T I'ndicates that ChangeC pherSpec is an i ndependent TLS
protocol content type; it is not actually a TLS
handshake nessage.

Figure 1. Authorization Data Exchange in Full TLS Handshake
Aut hori zati on Extension Types

The general extension nechanisns enable clients and servers to

negoti ate whet her to use specific extensions, and how to use specific
extensions. As specified in [TLSL1.2], the extension format used in
the extended client hello nessage and extended server hello nessage
is repeated here for convenience:

struct {
Ext ensi onType ext ensi on_type;
opaque extensi on_dat a<0..2"16- 1>;
} Extension;

The extension_type identifies a particular extension type, and the
ext ension_data contains information specific to the particul ar
extension type. This docunment specifies the use of two new extension
types: client_authz and server_authz. These extension types are
described in Section 2.1 and Section 2.2, respectively. This
specification adds two new types to ExtensionType:

Brown & Housl ey Experi ment al [ Page 4]



RFC 5878 TLS Aut hori zati on Extensions May 2010

enum {
client _authz(7), server_authz(8), (65535)
} Ext ensi onType;

The aut horization extensions are rel evant when a session is initiated
and on any subsequent session resunption. However, a client that
requests resunption of a session does not know whet her the server
will have all of the context necessary to accept this request, and
therefore the client SHOULD send an extended client hell o nessage
that includes the extension types associated with the authorization
extensions. This way, if the resunption request is denied, then the
aut hori zation extensions will be negotiated as nor nal

When a session is resunmed, ClientHello is foll owed i medi ately by
ChangeCi pher Spec, which does not provide an opportunity for different
aut horization informati on can be exchanged. Successful session
resunpti on MJST use the sane authorization information as the
original session.

2.1. The client_authz Extension Type

Clients MJST include the client_authz extension type in the extended
client hello nmessage to indicate their desire to send authorization
data to the server. The extension data field indicates the format of
the authorization data that will be sent in the supplenental data
handshake nessage. The syntax of the client_authz extension_data
field is described in Section 2.3.

Servers that receive an extended client hell o nessage containing the
client_authz extension MJIST respond with the same client_authz
extension in the extended server hello nmessage if the server is
willing to receive authorization data in the indicated fornmat. Any
unacceptabl e formats must be renmoved fromthe |ist provided by the
client. The client_authz extension MJST be onitted fromthe extended
server hello nmessage if the server is not willing to receive

aut horization data in any of the indicated fornmats.

2.2. The server_authz Extension Type

Clients MJST include the server_authz extension type in the extended
client hello message to indicate their desire to receive

aut hori zation data fromthe server. The extension data field
indicates the format of the authorization data that will be sent in
the suppl emental data handshake nessage. The syntax of the
server_authz extension_data field is described in Section 2.3.

Brown & Housl ey Experi ment al [ Page 5]



RFC 5878 TLS Aut hori zati on Extensions May 2010

Servers that receive an extended client hell o nessage containing the
server_aut hz extension MJST respond with the same server_authz
extension in the extended server hello nessage if the server is
willing to provide authorization data in the requested format. Any
unacceptabl e formats nmust be renpved fromthe |list provided by the
client. The server_authz extension MIST be omtted fromthe extended
server hello nmessage if the server is not able to provide

aut horization data in any of the indicated fornats.

2.3. Aut hzDat aFormat Type

The Aut hzDataFormat type is used in both the client_authz and the
server_authz extensions. It indicates the format of the

aut horization data that will be transferred. The AuthzDataFornmats
type definition is:

enum {
x509 attr_cert(0), sam _assertion(1l), x509 attr_cert _url(2),
saml _assertion_url (3), (255)

} Aut hzDat aFor mat ;

Aut hzDat aFormats authz format |ist<l..2/"8-1>;

When the x509 attr _cert value is present, the authorization data is
an X. 509 attribute certificate (AC) that conforns to the profile in
RFC 5755 [ ATTRCERT] .

VWhen the sanl _assertion value is present, the authorization data is
an assertion conposed using the Security Assertion Markup Language
(SAML) ([SAM.1.1], [SAML2.0]).

When the x509_attr_cert_url value is present, the authorization data
is an X.509 AC that conforns to the profile in RFC 5755 [ ATTRCERT];
however, the ACis fetched with the supplied URL. A one-way hash
value is provided to ensure that the intended AC i s obtained.

When the sanl _assertion_url value is present, the authorization data
is a SAML assertion; however, the SAM. assertion is fetched with the
supplied URL. A one-way hash value is provided to ensure that the

i ntended SAM. assertion is obtained.

| mpl ement ati ons that support either x509 attr_cert_url or

saml _assertion_url MJST support URLs that enploy the http schene
[HTTP]. These inplenentations MJST confirmthat the hash val ue
conputed on the fetched authorizati on natches the one received in the
handshake. M smatch of the hash val ues SHOULD be treated as though
the aut horization was not provided, which will result in a

bad certificate _hash value alert (see Section 4). |Inplenentations

Brown & Housl ey Experi ment al [ Page 6]



RFC 5878 TLS Aut hori zati on Extensions May 2010

MUST deny access if the authorization cannot be obtained fromthe
provided URL, by sending a certificate unobtainable alert (see
Section 4).

3. Suppl enental Data Handshake Message Usage

As shown in Figure 1, supplenental data can be exchanged in two

pl aces in the handshake protocol. The client_authz extension

det ermi nes what aut horization data formats are acceptable for
transfer fromthe client to the server, and the server_authz

ext ensi on determ nes what authorization data formats are acceptable
for transfer fromthe server to the client. In both cases, the
syntax specified in [ TLSSUPP] is used along with the authz_data type
defined in this document.

enum {
aut hz_dat a(16386), (65535)
} Suppl enent al Dat aType;

struct {
Suppl errent al Dat aType suppl emrent al _dat a_t ype;
sel ect (Suppl erment al Dat aType) {
case authz_data: AuthorizationData;

}
} Suppl enent al Dat a
3.1. dient Authorization Data

The Suppl ement al Dat a message sent fromthe client to the server
contains authorization data associated with the TLS client.

Foll owing the principle of |least privilege, the client ought to send
the mininmal set of authorization information necessary to acconplish
the task at hand. That is, only those authorizations that are
expected to be required by the server in order to gain access to the
needed server resources ought to be included. The format of the

aut hori zation data depends on the format negotiated in the

client _authz hello nmessage extension. The AuthorizationData
structure is described in Section 3.3.

In some systens, clients present authorization information to the
server, and then the server provides new authorization information
This type of transaction is not supported by Suppl enental Dat a
nessages. |n cases where the client intends to request the TLS
server to perform authorization translation or expansion services,
such translation services ought to occur within the ApplicationData
messages, and not within the TLS Handshake Protocol

Brown & Housl ey Experi ment al [ Page 7]



RFC 5878 TLS Aut hori zati on Extensions May 2010

3.

3.

2. Server Authorization Data

The Suppl erment al Dat a nmessage sent fromthe server to the client
contai ns authorization data associated with the TLS server. This

aut horization information is expected to include statenents about the
server’'s qualifications, reputation, accreditation, and so on

Wher ever possible, authorizations that can be m sappropriated for
fraudul ent use ought to be avoided. The format of the authorization
dat a depends on the format negotiated in the server_authz hello
nmessage extensions. The AuthorizationData structure is described in
Section 3.3, and the following fictitious exanple of a single 5-octet
SAML. assertion illustrates its use:

17 # Handshake. nmsg_type == suppl enent al _dat a(23)
00 00 11 # Handshake.length = 17
00 00 Oe # length of Suppl ement al Dat a. supp_data = 14
40 02 # Suppl enent al Dat aEntry. supp_data_type = 16386
00 Oa # Suppl enent al Dat aEntry. supp_data | ength = 10
00 08 # length of AuthorizationData.authz data |list = 8
01 # authz_format = sanl _assertion(1)
00 05 # length of SAM_Assertion
#

aa aa aa aa aa SAM_ assertion (fictitious: "aa aa aa aa aa"

3. AuthorizationbData Type

The Aut horizationData structure carries authorization information for
either the client or the server. The AuthzDataFormat specified in
Section 2.3 for use in the hello extensions is also used in this
structure.

Al of the entries in the authz _data |ist MJST enpl oy authorization
data formats that were negotiated in the relevant hell o nessage
ext ensi on.

The HashAl gorithmtype is taken from[TLS1. 2], which all ows
addi ti onal one-way hash functions to be registered in the | ANA TLS
HashAl gorithmregistry in the future

Brown & Housl ey Experi ment al [ Page 8]



RFC 5878

struct{

Aut hori zationDat aEntry authz _data |ist<l..2"16-1>;

TLS Aut hori zati on Extensions

} Aut horizati onDat a;

struct {

Aut hzDat aFor mat aut hz_f or mat ;
sel ect (AuthzDataFormat) ({

case
case
case
case

x509 attr_cert: X509AttrCert;
sam _assertion: SAM_Assertion
x509 attr _cert _url: URLandHash;
sam _assertion_url: URLandHash;

} Aut horizationbDataEntry;

enum {

May 2010

x509_attr_cert(0), sam _assertion(1l), x509 attr_cert_url(2),
sam _assertion_url (3), (255)

} Aut hzDat aFor mat ;

opaque X509AttrCert<1..2"16-1>;

opaque SAMLAssertion<l..2"16-1>;

struct {

opaque url <1..2"16-1>;
HashAl gorithm hash_al g;
sel ect (hash_alg) {

case
case
case
case
case
case
} hash;

nd5:
shal:

sha224:
sha256:
sha384:
shab512:

} URLandHash;

enum {

none(0),
sha512(6),

md5( 1),
(255)

} HashAl gorithm

Brown & Housl ey

MD5Hash;
SHA1Hash;
SHA224Hash;
SHA256Hash;
SHA384Hash;
SHA512Hash;

shal(2), sha224(3), sha256(4), sha384(5),

Experi ment al

[ Page 9]



RFC 5878 TLS Aut hori zati on Extensions May 2010

opaque NMD5Hash[ 16];
opaque SHAlHash[ 20];
opaque SHA224Hash[ 28] ;
opaque SHA256Hash[ 32] ;
opaque SHA384Hashl[ 48] ;
opaque SHA512Hashl[ 64] ;
3.3.1. X 509 Attribute Certificate

When X509AttrCert is used, the field contains an ASN. 1 Di sti ngui shed
Encodi ng Rul es (DER)-encoded X. 509 attribute certificate (AC) that
follows the profile in RFC 5755 [ATTRCERT]. An ACis a structure
simlar to a public key certificate (PKC) [PKIX1]; the main
difference is that the AC contains no public key. An AC may contain
attributes that specify group nenmbership, role, security clearance,
or other authorization information associated with the AC hol der

VWhen maki ng an aut horizati on decision based on an AC, proper |inkage
bet ween the AC holder and the public key certificate that is
transferred in the TLS Certificate nmessage is needed. The AC hol der
field provides this linkage. The holder field is a SEQUENCE al | owi ng
three different (optional) syntaxes: baseCertificatelD, entityNamne,
and objectDigestinfo. 1In the TLS authorization context, the hol der
field MIUST use either the baseCertificatelD or entityNane. 1In the
baseCertificatel D case, the baseCertificatelD field MIST match the

i ssuer and serial Nunber fields in the certificate. In the entityNane
case, the entityName MJST be the sanme as the subject field in the
certificate or one of the subjectAltNane extension values in the
certificate. Note that [PKIX1l] mandates that the subjectAltNane
extension be present if the subject field contains an enpty

di sti ngui shed nane.

3.3.2. SAM. Assertion

VWhen SAMLAssertion is used, the field MJST contain well-formed XM

[ XML1.0] and MUST use either UTF-8 [UTF-8] or UTF-16 [ UTF-16]
character encoding. UTF-8 is the preferred character encoding. The
XM. text declaration MJST be foll owed by an <Assertion> el ement using
the AssertionType conplex type as defined in [ SAML1. 1] and [ SAM.2.0].
The XML text MJST also follow the rules of [XM.1.0] for including the
Byte Order Mark (BOM in encoded entities. SAM. is an XM.-based
framewor k for exchanging security information. This security
information is expressed in the formof assertions about subjects,

Brown & Housl ey Experi ment al [ Page 10]



RFC 5878 TLS Aut hori zati on Extensions May 2010

where a subject is either human or conputer with an identity. In
this context, the SAML assertions are nost likely to convey

aut hentication or attribute statenents to be used as input to

aut horization policy governi ng whether subjects are allowed to access
certain resources. Assertions are issued by SAML authorities.

When nmaki ng an aut horization decision based on a SAML assertion
proper |inkage between the SAM. assertion and the public key
certificate that is transferred in the TLS Certificate nmessage may be
needed. A "Hol der of Key" subject confirmation method in the SAML
assertion can provide this linkage. |In other scenarios, it may be
acceptable to use alternate confirmati on nethods that do not provide
a strong binding, such as a bearer nechanism SAM. assertion
reci pi ents MJST deci de which subject confirmation nmethods are
accept abl e; such deci sions MAY be specific to the SAML assertion
contents and the TLS session context.

There is no general requirenent that the subject of the SAM.
assertion correspond directly to the subject of the certificate.
They may represent the sanme or different entities. Wen they are
different, SAML al so provides a mechani sm by which the certificate
subj ect can be identified separately fromthe subject in the SAM.
assertion subject confirmation nethod.

Since the SAM. assertion is being provided at a part of the TLS
handshake that is unencrypted, an eavesdropper could replay the sane
SAM. assertion when they establish their owm TLS session. This is
especially inportant when a bearer nechanismis enployed; the

reci pient of the SAML assertion assunes that the sender is an
acceptable attesting entity for the SAM. assertion. Sonme constraints
may be included to Ilint the context where the bearer mechanismwll
be accepted. For exanple, the period of tinme that the SAM. assertion
can be short-lived (often minutes), the source address can be
constrained, or the destination endpoint can be identified. Also,
bearer assertions are often checked against a cache of SAM. assertion
unique identifiers that were recently received, in order to detect
replay. This is an appropriate counterneasure if the bearer
assertion is intended to be used just once. Section 6 provides a way
to protect authorization information when necessary.

3.3.3. URL and Hash

Since the X. 509 AC and SAM. assertion can be large, alternatives
provide a URL to obtain the ASN. 1 DER-encoded X 509 AC or SAML
assertion. To ensure that the intended object is obtained, a one-way
hash val ue of the object is also included. Integrity of this one-way
hash value is provided by the TLS Fi ni shed nmessage.

Brown & Housl ey Experi ment al [ Page 11]



RFC 5878 TLS Aut hori zati on Extensions May 2010

| mpl ement ati ons that support either x509 attr_cert_url or

sam _assertion_url MJST support URLs that enploy the HTTP schene.

O her schenes may al so be supported. Wen dereferencing these URLs,
circul ar dependenci es MJST be avoi ded. Avoiding TLS when
dereferencing these URLs is one way to avoid circul ar dependenci es.
Therefore, clients using the HTTP scheme MJUST NOT use these TLS
extensions if UPGRADE in HTTP [ UPGRADE] is used. For other schenes,
simlar care nmust be taken to avoid using these TLS extensions.

| mpl ement ati ons that support either x509_attr_cert_url or

sam _assertion_url MUST support both SHA-1 [ SHS] and SHA-256 [ SHS] as
one-way hash functions. Oher one-way hash functions nmay al so be
supported. Additional one-way hash functions can be added to the

| ANA TLS HashAl gorithmregistry in the future

| mpl ement ati ons that support x509 attr_cert_url MJST support
responses that enploy the "application/pkix-attr-cert” Multipurpose
Internet Mail Extension (M ME) nedia type as defined in [ ACTYPE].

| mpl ement ati ons that support sam _assertion_url MJST support
responses that enploy the "application/sam assertion+txm" M ME type
as defined in Appendix A of [SAM.BI ND .

TLS aut hori zati ons SHOULD fol |l ow the additional guidance provided in
Section 3.3 of [TLSEXT2] regarding client certificate URLs.

4. Alert Messages

Thi s docunent specifies the reuse of TLS Alert nessages related to
public key certificate processing for any errors that arise during
aut hori zation processing, while preserving the AlertlLevels as
authoritatively defined in [TLS1.2] or [TLSEXT2]. Al alerts used in
aut hori zation processing are fatal.

The foll owi ng updated definitions for the Alert nessages are used to
describe errors that arise while processing authorizations. For ease
of conparison, we reproduce the Alert nessage definition from
Section 7.2 of [TLS1.2], augnented with two val ues defined in

[ TLSEXT2] :

Brown & Housl ey Experi ment al [ Page 12]



RFC 5878 TLS Aut hori zati on Extensions May 2010

enum { warning(1l), fatal (2), (255) } AertlLevel;

enum {
cl ose_notify(0),
unexpect ed_message( 10),
bad record_nac(20),
decryption_fail ed RESERVED(21),
record_overfl ow 22),
deconpression_fail ure(30),
handshake_fail ure(40),
no_certificate_ RESERVED(41),
bad certificate(42),
unsupported certificate(43),
certificate revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paranmeter(47),
unknown_ca(48),
access_deni ed(49),
decode_error(50),
decrypt _error(51),
export_restriction_RESERVED( 60),
pr ot ocol _version(70),
i nsufficient_security(71),
i nternal _error(80),
user _cancel ed(90),
no_renegoti ati on(100),
unsupport ed_ext ensi on(110),
certificate_unobtainabl e(111),
bad certificate_hash_val ue(114),
(255)

} AlertDescription;

struct {

Al ertLevel |evel;

Al ertDescription description;
} Aert;

TLS processing of alerts includes some anbiguity because the nessage
does not indicate which certificate in a certification path gave rise
to the error. This problemis made slightly worse in this extended
use of alerts, as the alert could be the result of an error in
processing of either a certificate or an authorization

| mpl enent ati ons that support these extensions should be aware of this
i mpreci si on.

Brown & Housl ey Experi ment al [ Page 13]



RFC 5878 TLS Aut hori zati on Extensions May 2010

The Al ertDescription values are used as follows to report errors in
aut hori zati ons processing:

bad certificate
In certificate processing, bad certificate indicates that a
certificate was corrupt, contained signatures that did not
verify correctly, and so on. Simlarly, in authorization
processing, bad _certificate indicates that an authorization was
corrupt, contained signatures that did not verify correctly,
and so on. In authorization processing, bad certificate can
al so indicate that the handshake established that an
Aut hzDat aFormat was to be provided, but no AuthorizationData of
the expected fornmat was provided in Suppl enent al Dat a.

unsupported_certificate
In certificate processing, unsupported certificate indicates
that a certificate was of an unsupported type. Simlarly, in
aut hori zation processing, unsupported certificate indicates
that AuthorizationData uses a version or format unsupported by
the inplenmentation.

certificate_revoked
In certificate processing, certificate_revoked indicates that a
certificate was revoked by its issuer. Simlarly, in
aut hori zation processing, certificate_revoked indicates that
aut hori zati on was revoked by its issuer, or a certificate that
was needed to validate the signature on the authorization was
revoked by its issuer

certificate _expired
In certificate processing, certificate expired indicates that a
certificate has expired or is not currently valid. Simlarly,
in authorization processing, certificate_expired indicates that
an aut horization has expired or is not currently valid.

certificate_unknown
In certificate processing, certificate_unknown indicates that
some other (unspecified) issue arose while processing the
certificate, rendering it unacceptable. Simlarly, in
aut hori zation processing, certificate_unknown indicates that
processi ng of AuthorizationData failed because of other
(unspecified) issues, including AuthzDataFormat parse errors.

unknown_ca
In certificate processing, unknown_ca indicates that a valid
certification path or partial certification path was received,
but the certificate was not accepted because the certification
authority (CA) certificate could not be located or could not be

Brown & Housl ey Experi ment al [ Page 14]



RFC 5878 TLS Aut hori zati on Extensions May 2010

5.

matched with a known, trusted CA. Simlarly, in authorization
processi ng, unknown_ca indicates that the authorization issuer
is not known and trusted.

access_deni ed
In certificate processing, access _denied indicates that a valid
certificate was received, but when access control was applied,
the sender decided not to proceed with negotiation. Simlarly,
in authorization processing, access_denied indicates that the
aut horization was not sufficient to grant access.

certificate_unobtainable
The client _certificate_ url extension defined in RFC 4366
[ TLSEXT2] specifies that downl oad errors lead to a
certificate_unobtainable alert. Simlarly, in authorization
processing, certificate_unobtainable indicates that a URL does
not result in an authorization. While certificate processing
does not require this alert to be fatal, this is a fatal alert
i n authorization processing.

bad_certificate_hash_val ue
In certificate processing, bad certificate_hash_val ue indicates
that a downl oaded certificate does not match the expected hash.
Simlarly, in authorization processing,
bad certificate _hash value indicates that a downl oaded
aut hori zati on does not match the expected hash.

| ANA Consi der ati ons

Thi s docunent defines two TLS extensions: client_authz(7) and
server _authz(8). These extension type values are assigned fromthe
TLS Extension Type registry defined in [ TLSEXT2].

Thi s docunent defines one TLS suppl emental data type:
aut hz_dat a(16386). This supplemental data type is assigned fromthe
TLS Suppl enental Data Type registry defined in [ TLSSUPP] .

Thi s docunent establishes a new registry, to be maintai ned by | ANA,
for TLS Authorization Data Formats. The first four entries in the
registry are x509_attr_cert(0), sanm _assertion(1l),
x509_attr_cert_url(2), and sam _assertion_url(3). TLS Authorization
Data Format identifiers with values in the inclusive range 0-63
(decimal) are assigned via RFC 5226 [| ANA] | ETF Review. Values from
the inclusive range 64-223 (decinal) are assigned via RFC 5226

Speci fication Required. Values fromthe inclusive range 224-255
(decimal) are reserved for RFC 5226 Private Use.

Brown & Housl ey Experi ment al [ Page 15]



RFC 5878 TLS Aut hori zati on Extensions May 2010

6.

Security Considerations

A TLS server can support nore than one application, and each
application may include several features, each of which requires
separate authorization checks. This is the reason that nore than one
pi ece of authorization information can be provided.

A TLS server that requires different authorization information for

di fferent applications or different application features nay find
that a client has provided sufficient authorization information to
grant access to a subset of these offerings. 1In this situation, the
TLS Handshake Protocol w Il conplete successfully; however, the
server must ensure that the client will only be able to use the
appropriate applications and application features. That is, the TLS
server must deny access to the applications and application features
for which authorization has not been confirmed.

In cases where the authorization information itself is sensitive, the
doubl e handshake techni que can be used to provide protection for the
aut horization information. Figure 2 illustrates the double
handshake, where the initial handshake does not include any

aut horization extensions, but it does result in protected
conmuni cati ons. Then, a second handshake that includes the

aut horization information is performed using the protected

conmuni cations. In Figure 2, the nunber on the right side indicates
the anmobunt of protection for the TLS nessage on that line. A zero
(0) indicates that there is no conmunication protection; a one (1)

i ndicates that protection is provided by the first TLS session; and a
two (2) indicates that protection is provided by both TLS sessions.

The pl acenent of the Suppl enental Data nessage in the TLS handshake
results in the server providing its authorization information before

the client is authenticated. |In many situations, servers wll not
want to provide authorization information until the client is
aut henticated. The doubl e handshake illustrated in Figure 2 provides

a technique to ensure that the parties are nutual ly authenticated
before either party provides authorization information.

The use of bearer SAML assertions allows an eavesdropper or a nman-in-
the-m ddle to capture the SAML assertion and try to reuse it in

anot her context. The constraints discussed in Section 3.3.2 m ght be
ef fective agai nst an eavesdropper, but they are less likely to be

ef fective against a nan-in-the-mddle. Authentication of both
parties in the TLS session, which involves the use of client

aut hentication, will prevent an undetected nman-in-the-niddle, and the
use of the doubl e handshake illustrated in Figure 2 will prevent the
di scl osure of the bearer SAM. assertion to any party other than the
TLS peer.

Brown & Housl ey Experi ment al [ Page 16]



RFC 5878 TLS Aut hori zati on Extensions May 2010

Aut hzDat aFormat s that point to authorization data, such as

x509 attr_cert _url and sam _assertion_url, rather than sinply

i ncluding the authorization data in the handshake, may be exploited
by an attacker. |Inplenentations that accept pointers to

aut horization data SHOULD adopt a policy of least privil ege that
limts the acceptable references that they will attenpt to use. For
nore i nformation, see Section 6.3 of [TLSEXT2].

dient Server

ClientHell o (no extensions) -------- >
ServerHell o (no extensions)
Certificate*
Ser ver KeyExchange*
CertificateRequest™*

<-------- Server Hel | oDone
Certificate*
Cl i ent KeyExchange
CertificateVerify*
[ ChangeCi pher Spec]
Finished  aaaa---- >

[ ChangeCi pher Spec]

<m------- Fi ni shed

ClientHello (W extensions) -------- >

ServerHell o (W extensions)
Suppl emrental Data (W authz data)*
Certificate*
Ser ver KeyExchange*
CertificateRequest*
<omm-- - Server Hel | oDone
Suppl erental Data (W authz data)*
Certificate*
d i ent KeyExchange
CertificateVerify*
[ ChangeCi pher Spec]

NNRNRRPRRPRRPRRRPRRPRPRRPRRPRPRPORPROOO0OO0OOO0OO0OOOO

Finished -------- >
[ ChangeCi pher Spec]
Cemmmmm - Fi ni shed
Application Data <------- > Application Data

Figure 2. Doubl e Handshake To Protect Authorization Data
7. Acknow edgenent

The aut hors thank Scott Cantor for his assistance with the SAM.
assertion portion of the documnent.

Brown & Housl ey Experi ment al [ Page 17]



RFC 5878

8. References

TLS Aut hori zati on Extensions May 2010

8.1. Nornmtive References

[ ACTYPE]

[ ATTRCERT]

[HTTP]

[ 1 ANA]

[ PKI X1]

[ SAML1. 1]

[ SAML2. 0]

[ SAMLBI ND]

[ SHS]

[ STDWORDS]

[ TLS1. 0]

[ TLSL. 1]

Brown & Housl ey

Housl ey, R, "The application/pkix-attr-cert Media Type
for Attribute Certificates", RFC 5877, May 2010.

Farrell, S., Housley, R, and S. Turner, "An Internet
Attribute Certificate Profile for Authorization",
RFC 5755, January 2010.

Fielding, R, Gettys, J., Mgul, J., Frystyk, H
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Narten, T. and H Alvestrand, "CGuidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S
Housl ey, R, and W Polk, "Internet X 509 Public Ke
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, My 2008.

OASI S Security Services Technical Committee, "Security
Assertion Markup Language (SAM.) Version 1.1
Speci fication Set", Septenber 2003.

OASI S Security Services Technical Commttee, "Security
Assertion Markup Language (SAM.) Version 2.0
Specification Set", March 2005.

OASI S Security Services Technical Committee, "Bindings
for the OASIS Security Assertion Markup Language (SAM.)
V2.0", March 2005.

National Institute of Standards and Technol ogy (NI ST),
FI PS PUB 180-3, Secure Hash Standard (SHS), October 2008.

Bradner, S., "Key words for use in RFCs to | ndicate
Requi renment Level s", BCP 14, RFC 2119, WMarch 1997.

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.

Experi ment al [ Page 18]



RFC 5878 TLS Aut hori zati on Extensions May 2010

[ TLSI. 2] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[ TLSEXT2] Bl ake-WIson, S., Nystrom M, Hopwood, D.
M kkel sen, J., and T. Wight, "Transport Layer Security
(TLS) Extensions", RFC 4366, April 2006.

[ TLSSUPP] Sant esson, S., "TLS Handshake Message for Suppl enenta
Data", RFC 4680, October 2006.

[ UPGRADE] Khare, R and S. Lawence, "Upgrading to TLS Wthin
HTTP/1.1", RFC 2817, May 2000.

[ UTF- 8] Yergeau, F., "UTF-8, a transformation format of
| SO 10646", STD 63, RFC 3629, Novenber 2003.

[ UTF- 16] Hof f man, P. and F. Yergeau, "UTF-16, an encodi ng of
| SO 10646", RFC 2781, February 2000.

[ XML1. 0] Bray, T., J. Paoli, C. M Sperberg-MQeen, E. Miler, and
F. Yergeau, "Extensible Markup Language (XM.) 1.0 (Fifth
Edition)", http://ww. wW3.org/ TR/ xm /, Novemnber 2008.

8.2. Informative References

[ TLSEXT1] Bl ake-WIson, S., Nystrom M, Hopwood, D.
M kkel sen, J., and T. Wight, "Transport Layer Security
(TLS) Extensions", RFC 3546, June 2003.

Aut hors’ Addr esses

Mar k Br own

RedPhone Security

1199 Falls View Court

Mendot a Hei ghts, MN 55118

USA

EMai | : mar k@ edphonesecurity. com

Russel | Housl ey

Vigil Security, LLC

918 Spring Knoll Drive

Her ndon, VA 20170

USA

EMai | : housl ey@i gi | sec. com

Brown & Housl ey Experi ment al [ Page 19]






