I nt ernet Engi neering Task Force (1 ETF) M Bj orklund, Ed
Request for Comments: 6020 Tail -f Systens
Cat egory: Standards Track Cct ober 2010
| SSN: 2070-1721

YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)

Abst ract

YANG i s a data nodel i ng | anguage used to nodel configuration and
state data mani pul ated by the Network Configuration Protoco
(NETCONF), NETCONF rempte procedure calls, and NETCONF notifi cations.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further infornmation on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6020.

Copyri ght Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Bj or kl und St andards Track [Page 1]

RFC 6020 YANG Oct ober 2010

Thi s docunent nmay contain material from | ETF Docunents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh.

Tabl e of Contents

1
2.
3.

6.

[Nt roducCti ON ... 8
KeY WO S . . 8
Term Nol OgY . ..o 8
3.1. Mandatory Nodes 10
YANG OVEI Vi BW . o ottt et e e e e e e e e e e e e e 11
4.1. Functional OVervi W e 11
4.2. Language OVEerVi BW . ..ot e e e 13
4.2.1. Modules and Subnodules 13
4.2.2. Data Modeling BasicCS 13
4.2.3. State Data 18
4.2. 4. BUilt-1nNn TYPeS .. i e 18
4.2.5. Derived Types (typedef) 19
4.2.6. Reusable Node Goups (grouping) 20
4.2.7. CNOI CBS ..ttt 21
4.2.8. Extending Data Mddels (augment) 22
4.2.9. RPC Definitions 23
4.2.10. Notification Definitions 24
Language CoNCePt S ... ot e 25
5.1. Mddules and Submodules 25
5.1.1. Inmport and Include by Revision 26
5.1.2. Module Hierarchies 27
5.2. File Layout 28
5. 3. XML NamMBSPACES . ottt it ittt e e e 29
5.3. 1. YANG XMo NamBSPaCEttt e 29
5.4. Resolving Gouping, Type, and ldentity Nanes 29
5.5. Nested Typedefs and G oupings 29
5.6. Conformance 30
5.6.1. Basic Behavior 31
5.6.2. Optional Features 31
5.6.3. Deviations 31
5.6.4. Announci ng Conformance Information in the
<hel | 0> MeSSaget 32
5.7. Data Store Moudification 34
YANG SYNt @X ..ottt e 34

Bj or kl und St andards Track [Page 2]

RFC 6020

6. 1.

7. 2.

7. 3.

7. 4.

7.5.

7.6.

Bj or kl und

YANG Oct ober 2010

Lexical Tokenization 34
6. 1. 1. COMTBNL S ..ottt e 34
6.1.2. TOKENS e 34
6.1.3. QUOLTI NG ...ttt 35
ldentifiers e 36
6.2.1. ldentifiers and Their Namespaces 36
Stat eMBNt S . . . 37
6.3.1. Language EXtensionsiuiiiiiiiinin.n 37
XPath Evaluati ons 38
6.4.1. XPath Contextt 38
Schema Node ldentifier @i 39
St At BIMBNt S . . 39
The modul e Statement e 39
7.1.1. The nodule’'s Substatenents 41
7.1.2. The yang-version Statement 41
7.1.3. The namespace Statement 42
7.1.4. The prefix Statement 42
7.1.5. The inport Statenment 42
7.1.6. The include Statement, 43
7.1.7. The organization Statement 44
7.1.8. The contact Statement i, 44
7.1.9. The revision Statenent 44
7.1.10. Usage Exanple 45
The submpdul e Statement 46
7.2.1. The subnodul e’ s Substatenents 48
7.2.2. The belongs-to Statenent 48
7.2.3. Usage Exanmple 49
The typedef Statement 49
7.3.1. The typedef’s Substatements 50
7.3.2. The typedef’s type Statenment 50
7.3.3. The units Statenment, 50
7.3.4. The typedef’'s default Statement 50
7.3.5. Usage Exanmple 51
The type Statement 51
7.4.1. The type’'s Substatements 51
The container Statement 51
7.5.1. Containers with Presence, 52
7.5.2. The container’s Substatenents 53
7.5.3. The must Statement 53
7.5.4. The nmust’s Substatenents 55
7.5.5. The presence Statenment 56
7.5.6. The container’s Child Node Statements 56
7.5.7. XML Mapping RUles i, 56
7.5.8. NETCONF <edit-config> Operations 56
7.5.9. Usage Exanmple 57
The leaf Statement e 58
7.6.1. The leaf’'s default value 58
7.6.2. The leaf’s Substatenments0... 59

St andards Track [Page 3]

RFC 6020

Bj or kl un

. 10.

.11,

.12,

. 13.

d

YANG Oct ober 2010

7.6.3. The leaf’s type Statenent 59
7.6.4. The leaf’'s default Statenment 59
7.6.5. The leaf’s mandatory Statenment 60
7.6.6. XM_ Mapping Rules 60
7.6.7. NETCONF <edit-config> Qperations 60
7.6.8. Usage Exanmple ... 61
The leaf-list Statement 62
T.7. 1 Ordering ... 62
7.7.2. The leaf-list’s Substatenents 63
7.7.3. The min-elenments Statement 63
7.7.4. The max-elements Statement 63
7.7.5. The ordered-by Statement 64
7.7.6. XM. Mapping RUles i 64
7.7.7. NETCONF <edit-config> Operations 65
7.7.8. Usage Exanmple 66
The [ist Statement e 67
7.8.1. The list’s Substatements 68
7.8.2. The list’s key Statement 68
7.8.3. The list’s unique Statenent 69
7.8.4. The list’s Child Node Statements 70
7.8.5. XM. Mapping Rules 70
7.8.6. NETCONF <edit-config> Qperations 71
7.8.7. Usage Exanple 72
The choice Statement i, 75
7.9.1. The choice’'s Substatements 76
7.9.2. The choice’s case Statement 76
7.9.3. The choice’s default Statement 77
7.9.4. The choice’s mandatory Statement 79
7.9.5. XML Mapping Rules 79
7.9.6. NETCONF <edit-config> Qperations 79
7.9.7. Usage Exanple 79
The anyxml Statement 80
7.10.1. The anyxm’'s Substatenments 81
7.10.2. XML Mapping Rules 81
7.10.3. NETCONF <edit-config> Operations 81
7.10.4. Usage Exanple 82
The grouping Statement 82
7.11.1. The grouping' s Substatenents 83
7.11.2. Usage Exanple 84
The uses Statement 84
7.12.1. The uses’s Substatements 85
7.12.2. The refine Statement 85
7.12.3. XM. Mapping Rules i 86
7.12. 4. Usage Exanple 86
The rpc Statement 87
7.13.1. The rpc’s Substatements 88
7.13.2. The input Statement 88
7.13.3. The output Statement 89

St andards Track [Page 4]

RFC 6020 YANG Oct ober 2010
7.13.4. XM. Mapping Rules i, 90
7.13.5. Usage Exanple 91

7.14. The notification Statenment 91
7.14.1. The notification’s Substatenents 92
7.14.2. XML Mapping Rules 92
7.14.3. Usage Exanple 93

7.15. The augment Statenment 93
7.15.1. The augnent’s Substatements 94
7.15.2. XML Mapping Rules 94
7.15.3. Usage Exanple 95

7.16. The identity Statement 97
7.16.1. The identity’'s Substatements 97
7.16.2. The base Statement i 97
7.16.3. Usage Exanple 98

7.17. The extension Statenment 98
7.17.1. The extension's Substatenents 99
7.17.2. The argument Statement 99
7.17.3. Usage Exanple 100

7.18. Conformance-Related Statenents 100
7.18.1. The feature Statenent 100
7.18.2. The if-feature Statenent 102
7.18.3. The deviation Statement 102

7.19. Common Statements 105
7.19.1. The config Statenment 105
7.19.2. The status Statement 105
7.19.3. The description Statement 106
7.19.4. The reference Statement 106
7.19.5. The when Statenent 107

8. CoNStral NS ... 108

8.1. Constraints on Data i 108

8.2. Hierarchy of Constraints 109

8.3. Constraint Enforcenent Mdel 109
8.3.1. Payload Parsing 109
8.3.2. NETCONF <edit-config> Processing 110
8.3.3. Validation 111

9. BUilt-1N TYPES ..ot 111

9.1. Canonical Representation, 112

9.2. The Integer Built-In Types 112
9.2.1. Lexical Representation 113
9.2.2. Canonical Form 114
9.2.3. Restrictions 114
9.2.4. The range Statement, 114
9.2.5. Usage Exanple 115

9.3. The decimal 64 Built-In Type i 115
9.3.1. Lexical Representation 115
9.3.2. Canonical Form 115
9.3.3. Restrictions 116
9.3.4. The fraction-digits Statement 116

Bj or kl und St andards Track [Page 5]

RFC 6020 YANG Oct ober 2010
9.3.5. Usage Exanple 117

9.4. The string Built-In Type 117
9.4.1. Lexical Representation 117
9.4.2. Canonical Form 117
9.4.3. ReStricCtions 117
9.4.4. The length Statenment 117
9.4.5. Usage Exanple i 118
9.4.6. The pattern Statenment 119
9.4.7. Usage Exanmple 119

9.5. The boolean Built-In Type 120
9.5.1. Lexical Representation 120
9.5.2. Canonical Form.......... 120
9.5.3. ResStricCtions, 120

9.6. The enumeration Built-In Type 120
9.6.1. Lexical Representation 120
9.6.2. Canonical Form 120
9.6.3. ReStricCtions 120
9.6.4. The enum Statement 120
9.6.5. Usage Exanple i 121

9.7. The bits Built-In Type 122
9.7.1. Restrictions i 122
9.7.2. Lexical Representation 122
9.7.3. Canonical Form.......... 122
9.7.4. The bit Statement 122
9.7.5. Usage Exanple 123

9.8. The binary Built-In Type 123
9.8.1. Restrictions i, 124
9.8.2. Lexical Representation 124
9.8.3. Canonical Form.......... 124

9.9. The leafref Built-In Type 124
9.9.1. ReStriCltions 124
9.9.2. The path Statement 124
9.9.3. Lexical Representation 125
9.9.4. Canonical Form 125
9.9.5. Usage Exanple 126
9.10. The identityref Built-In Type 129
9.10.1. ReStriCtions, 129
9.10.2. The identityref’'s base Statenent 129
9.10.3. Lexical Representation 130
9.10.4. Canonical Form 130
9.10.5. Usage Exanple 130

9.11. The enpty Built-In Type 131
9.11.1. ReStriCltions 131
9.11.2. Lexical Representation 131
9.11.3. Canonical Form 131
9.11.4. Usage Exanple 131
9.12. The union Built-In Type 132
9.12.1. ReStriCltions 132

Bj or kl und St andards Track [Page 6]

RFC 6020 YANG Oct ober 2010

10.
11.

12.
13.

14.

15.
16.
17.
18.

9.12.2. Lexical Representation 132
9.12.3. Canonical Form 133
9.13. The instance-identifier Built-In Type 133
9.13. 1. ReStriCltions 134
9.13.2. The require-instance Statement 134
9.13.3. Lexical Representation 134
9.13.4. Canonical FOrm i, 134
9.13.5. Usage Exanple 134
Updating a Modul e 135
YN 137
11.1. Formal YIN Definition 137
11. 1. 1. Usage Exanmpl e i 141
YANG ABNF GralmmmBr e e e 143
Error Responses for YANG Related Errors 165
13.1. Error Message for Data That Violates a unique

Stat ement 165

13.2. Error Message for Data That Viol ates a
max-el ements Statement 165

13.3. Error Message for Data That Violates a
mn-elements Statenment 165

13.4. Error Message for Data That Violates a nmust Statement ...166
13.5. Error Message for Data That Viol ates a

require-instance Statement, 166
13.6. Error Message for Data That Does Not Match a
leafref Type 166
13.7. Error Message for Data That Viol ates a nmandatory
choice Statement 166
13.8. Error Message for the "insert" Operation 167
[ANA Considerati ONS e 167
14.1. Media type application/yangc. .. 168
14.2. Media type application/yin+xm 169
Security Considerations 170
CoNntri bUt Or S 171
Acknow edgenmBnt S 171
Ref er ences 171
18.1. Normative References 171
18.2. Informative References 172

Bj or kl und St andards Track [Page 7]

RFC 6020 YANG Oct ober 2010

1

| ntroducti on

YANG i s a data nodel i ng | anguage used to nodel configuration and
state data mani pul ated by the Network Configuration Protoco
(NETCONF), NETCONF rempte procedure calls, and NETCONF notifications.
YANG i s used to nodel the operations and content |ayers of NETCONF
(see the NETCONF Configuration Protocol [RFC4741], Section 1.1).

Thi s docunent describes the syntax and semantics of the YANG

| anguage, how the data nodel defined in a YANG nodule is represented
in the Extensible Markup Language (XM.), and how NETCONF operati ons
are used to nmanipul ate the data.

Keywor ds

The keywords "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14, [RFC2119].

Ter m nol ogy
o anyxm: A data node that can contain an unknown chunk of XM dat a.

o augrent: Adds new schena nodes to a previously defined schema
node.

o base type: The type from which a derived type was derived, which
may be either a built-in type or another derived type.

o built-in type: A YANG data type defined in the YANG | anguage, such
as uint32 or string.

o choice: A schema node where only one of a number of identified
alternatives is valid.

o configuration data: The set of witable data that is required to
transforma systemfromits initial default state into its current
state [RFC4A741].

o conformance: A nmeasure of how accurately a device follows a data
nodel .

0o container: An interior data node that exists in at nost one
instance in the data tree. A container has no value, but rather a
set of child nodes.

Bj or kl und St andards Track [Page 8]

RFC 6020 YANG Oct ober 2010

o data definition statement: A statenent that defines new data
nodes. One of container, leaf, leaf-list, |list, choice, case,
augnent, uses, and anyxm .

o data nodel: A data nodel describes how data is represented and
accessed.

o data node: A node in the schema tree that can be instantiated in a
data tree. One of container, leaf, leaf-list, list, and anyxmi .

o data tree: The instantiated tree of configuration and state data
on a devi ce.

o derived type: Atype that is derived froma built-in type (such as
ui nt32), or another derived type.

o device deviation: A failure of the device to inplenent the nodul e
faithfully.

o extension: An extension attaches non- YANG semantics to statenments.
The extension statenent defines new statements to express these
semanti cs.

o feature: A nmechanismfor narking a portion of the nodel as
optional. Definitions can be tagged with a feature nane and are
only valid on devices that support that feature.

0 grouping: A reusable set of schema nodes, which may be used
locally in the nodule, in nodules that include it, and by ot her
nodul es that inport fromit. The grouping statenent is not a data
definition statenent and, as such, does not define any nodes in
the schema tree.

o identifier: Used to identify different kinds of YANG itens by
name.

o instance identifier: A nmechanismfor identifying a particular node
in a data tree.

o interior node: Nodes within a hierarchy that are not |eaf nodes.

o leaf: A data node that exists in at npbst one instance in the data
tree. A |leaf has a value but no child nodes.

o leaf-list: Like the | eaf node but defines a set of uniquely

identifiable nodes rather than a single node. Each node has a
val ue but no child nodes.

Bj or kl und St andards Track [Page 9]

RFC 6020 YANG Oct ober 2010

o

3. 1.

list: An interior data node that may exist in nultiple instances
in the data tree. A list has no value, but rather a set of child
nodes.

nmodul e: A YANG nodul e defines a hierarchy of nodes that can be
used for NETCONF-based operations. Wth its definitions and the
definitions it inports or includes fromelsewhere, a nodule is
sel f-contained and "conpil abl e".

RPC. A Renote Procedure Call, as used within the NETCONF protocol

RPC operation: A specific Renpote Procedure Call, as used within
the NETCONF protocol. It is also called a protocol operation

scherma node: A node in the schema tree. One of container, |eaf,
leaf-list, list, choice, case, rpc, input, output, notification
and anyxm .

schema node identifier: A mechanismfor identifying a particular
node in the schenma tree.

schema tree: The definition hierarchy specified within a nodul e.

state data: The additional data on a systemthat is not
configuration data such as read-only status informati on and
col lected statistics [RFCA741].

subnmodul e: A partial nodule definition that contributes derived
types, groupings, data nodes, RPCs, and notifications to a nodul e.
A YANG nodul e can be constructed froma nunber of subnodul es.

top-1evel data node: A data node where there is no other data node
between it and a nodul e or subnodul e statenent.

uses: The "uses" statenment is used to instantiate the set of
schema nodes defined in a grouping statenent. The instantiated
nodes nmay be refined and augnented to tailor themto any specific
needs.

Mandat ory Nodes

A mandatory node i s one of:

o

A leaf, choice, or anyxml node with a "mandatory" statenent with
the value "true".

Alist or leaf-list node with a "mn-el enents" statenent with a
val ue greater than zero.

Bj or kl und St andards Track [Page 10]

RFC 6020 YANG Oct ober 2010

o A container node without a "presence" statenent, which has at
| east one nandatory node as a child.

4. YANG Overvi ew
4.1. Functional Overview

YANG i s a | anguage used to nodel data for the NETCONF protocol. A
YANG nodul e defines a hierarchy of data that can be used for NETCONF-
based operations, including configuration, state data, Renote
Procedure Calls (RPCs), and notifications. This allows a conplete
description of all data sent between a NETCONF client and server.

YANG nodel s the hierarchical organization of data as a tree in which
each node has a nanme, and either a value or a set of child nodes.
YANG provi des cl ear and conci se descriptions of the nodes, as well as
the interacti on between those nodes.

YANG structures data nodels into nodul es and subnodul es. A nodul e
can inport data from other external nopdules, and include data from
submodul es. The hi erarchy can be augnented, allow ng one nodule to
add data nodes to the hierarchy defined in another nodule. This
augnent ati on can be conditional, with new nodes appearing only if
certain conditions are net.

YANG nodel s can descri be constraints to be enforced on the data,
restricting the appearance or val ue of nodes based on the presence or
val ue of other nodes in the hierarchy. These constraints are
enforceable by either the client or the server, and valid content
MUST abi de by them

YANG defines a set of built-in types, and has a type nechani sm

t hrough which additional types may be defined. Derived types can
restrict their base type's set of valid val ues using mechani sns |ike
range or pattern restrictions that can be enforced by clients or
servers. They can al so define usage conventions for use of the
derived type, such as a string-based type that contains a host nane.

YANG permits the definition of reusable groupings of nodes. The
instantiation of these groupings can refine or augnent the nodes,
allowing it to tailor the nodes to its particular needs. Derived
types and groupi ngs can be defined in one nodul e or subnodul e and
used in either that location or in another nodul e or subnodul e that
i mports or includes it.

Bj or kl und St andards Track [Page 11]

RFC 6020 YANG Oct ober 2010

YANG data hierarchy constructs include defining |ists where |ist
entries are identified by keys that distinguish themfrom each other.
Such lists may be defined as either sorted by user or automatically
sorted by the system For user-sorted lists, operations are defined
for mani pulating the order of the list entries.

YANG nodul es can be translated into an equival ent XM. syntax call ed
YANG | ndependent Notation (YIN) (Section 11), allow ng applications
using XML parsers and Extensi ble Styl esheet Language Transformations
(XSLT) scripts to operate on the nodels. The conversion from YANG to
YINis |l ossless, so content in YIN can be round-tripped back into
YANG.

YANG strikes a bal ance between hi gh-1evel data nodeling and | ow 1 evel
bits-on-the-wire encoding. The reader of a YANG nodul e can see the
hi gh-1 evel view of the data nodel while understandi ng how the data
wi Il be encoded in NETCONF operations.

YANG i s an extensible | anguage, allow ng extension statenents to be
defined by standards bodi es, vendors, and individuals. The statenent
syntax allows these extensions to coexist with standard YANG
statenments in a natural way, while extensions in a YANG nodul e stand
out sufficiently for the reader to notice them

YANG resists the tendency to solve all possible problens, limting
the probl em space to all ow expression of NETCONF data nodel s, not
arbitrary XML documents or arbitrary data nodels. The data nodel s
descri bed by YANG are designed to be easily operated upon by NETCONF
operations.

To the extent possible, YANG nmaintains conpatibility with Sinple

Net wor k Managenent Protocol’'s (SNW's) SMv2 (Structure of Managenent
I nformation version 2 [RFC2578], [RFC2579]). SMv2-based M B nodul es
can be automatically translated into YANG nodul es for read-only
access. However, YANG is not concerned with reverse translation from
YANG to SMv2.

Li ke NETCONF, YANG targets snpoth integration with the device’'s
nati ve managenment infrastructure. This allows inplenentations to
| everage their existing access control nechanisns to protect or
expose el ements of the data nodel.

Bj or kl und St andards Track [Page 12]

RFC 6020 YANG Oct ober 2010

4.2. Language Overview

This section introduces some inportant constructs used in YANG t hat
will aid in the understandi ng of the | anguage specifics in |later
sections. This progressive approach handles the inter-related nature
of YANG concepts and statenments. A detailed description of YANG
statenments and syntax begins in Section 7.

4.2.1. Mdul es and Subrodul es

A nmodul e contains three types of statenents: nodul e- header
statenments, revision statenents, and definition statements. The
nodul e header statenents describe the nodul e and give information
about the nodule itself, the revision statenents give information
about the history of the nodule, and the definition statenents are
the body of the nodul e where the data nmodel is defined.

A NETCONF server may inplenent a nunber of nodules, allowing nultiple
views of the same data, or nultiple views of disjoint subsections of

the device's data. Alternatively, the server may inplenment only one

nodul e that defines all avail abl e data.

A nmodul e may be divided into subnodul es, based on the needs of the
nodul e owner. The external view renmins that of a single nodule,
regardl ess of the presence or size of its subnodul es.

The "include" statenent allows a nodule or subnpdule to reference
material in subnodul es, and the "inport" statement all ows references
to material defined in other nodul es.

4.2.2. Data Modeling Basics

YANG defines four types of nodes for data nodeling. In each of the
foll owi ng subsections, the exanmple shows the YANG syntax as well as a
correspondi ng NETCONF XM representation

4.2.2.1. Leaf Nodes

A leaf node contains sinple data |ike an integer or a string. It has
exactly one value of a particular type and no child nodes.

YANG Exanpl e:
| eaf host-nanme {

type string;
description "Hostname for this systent

Bj or kl und St andards Track [Page 13]

RFC 6020 YANG Oct ober 2010

NETCONF XM. Exanpl e:

<host - name>ny. exanpl e. conk/ host - nanme>
The "l eaf" statenent is covered in Section 7.6.

4.2.2.2. Leaf-List Nodes

Aleaf-list is a sequence of |eaf nodes with exactly one value of a
particul ar type per |eaf.

YANG Exanpl e:

| eaf -1i st domai n-search {
type string;
description "List of domain nanes to search”;

}
NETCONF XM. Exanpl e:

<domai n- sear ch>hi gh. exanpl e. conx/ domai n- sear ch>
<domai n- sear ch>l ow. exanpl e. conx/ domai n- sear ch>
<domai n- sear ch>ever ywher e. exanpl e. conk/ domai n- sear ch>

The "leaf-list" statenent is covered in Section 7.7.

4.2.2.3. Contai ner Nodes

A container node is used to group related nodes in a subtree. A
contai ner has only child nodes and no value. A container may contain
any nunber of child nodes of any type (including leafs, lists,
containers, and leaf-lists).

YANG Exanpl e:

contai ner system/{
container login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session”;

Bj or kl und St andards Track [Page 14]

RFC 6020 YANG Oct ober 2010

NETCONF XM. Exanpl e:

<systenp
<l ogi n>
<message>CGood nor ni ng</ nessage>
</l ogi n>
</ systenp

The "container" statenent is covered in Section 7.5.

4.2.2.4. List Nodes

A list defines a sequence of |list entries. Each entry is like a
structure or a record instance, and is uniquely identified by the
values of its key leafs. A list can define multiple key leafs and

may contain any nunber of child nodes of any type (including |eafs,
lists, containers etc.).

YANG Exanpl e:

list user {
key "name";
| eaf name {
type string;

| eaf full-name {
type string;

| eaf class {
type string;

Bj or kl und St andards Track [Page 15]

RFC 6020 YANG Oct ober 2010

NETCONF XM. Exanpl e:

<user >
<nane>gl ocks</ name>
<full -name>Col di e Locks</full -nanme>
<cl ass>i ntruder </ cl ass>

</ user >

<user >
<nane>snowey</ name>
<ful | -nanme>Snow Wi t e</ful | - nane>
<cl ass>free-| oader </ cl ass>

</ user >

<user >
<nane>r zel | </ nane>
<full - name>Rapun Zel | </full -nanme>
<cl ass>t ower </ cl ass>

</ user>

The "list" statenment is covered in Section 7.8.
4.2.2.5. Exanple Mdul e

These statenents are conbined to define the nodul e:

Bj or kl und St andards Track [Page 16]

RFC 6020 YANG Oct ober 2010

/1 Contents of "acne-system yang"

nodul e acre-system {
nanespace "http://acne. exanpl e. com syst ent
prefix "acne";

organi zation "ACME Inc.";
contact "joe@cne. exanpl e.coni;
description
"The nodule for entities inplenenting the ACME system";

revi sion 2007-06-09 {
description "lnitial revision.";
}

cont ai ner system {
| eaf host-name {
type string;
description "Hostnanme for this systent

}
| eaf -1i st domai n-search {

type string;

description "List of domain nanes to search”;
}

container login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session”;

}

list user {
key "name";
| eaf name {
type string;

| eaf full-name {
type string;

| eaf class {
type string;
}

Bj or kl und St andards Track [Page 17]

RFC 6020 YANG Oct ober 2010

4.2.3. State Data

YANG can npdel state data, as well as configuration data, based on
the "config" statenent. Wen a node is tagged with "config fal se"
its subhierarchy is flagged as state data, to be reported using
NETCONF' s <get > operation, not the <get-config> operation. Parent
containers, lists, and key leafs are reported also, giving the
context for the state data.

In this exanple, two | eafs are defined for each interface, a
configured speed and an observed speed. The observed speed is not
configuration, so it can be returned with NETCONF <get> operati ons,
but not with <get-config> operations. The observed speed is not
configuration data, and it cannot be mani pul ated using <edit-config>.

list interface {

key "name";
| eaf nane {
type string;

}
| eaf speed {
type enuneration {
enum 10m
enum 100m
enum aut o;

}

| eaf observed-speed {
type uint 32;
config fal se

}
4.2.4. Built-In Types
YANG has a set of built-in types, sinmlar to those of many
progranm ng | anguages, but with sonme di fferences due to specia

requi renents fromthe managenent domain. The followi ng table
summari zes the built-in types discussed in Section 9:

Bj or kl und St andards Track [Page 18]

RFC 6020 YANG Oct ober 2010

e R +
| Nane | Description

T e +
binary	Any binary data
bits	A set of bits or flags
bool ean	"true" or "false"
deci nal 64	64-bit signed decimal nunber

| enmpty | A leaf that does not have any val ue

| enuneration | Enurerated strings |
| identityref | A reference to an abstract identity |
| instance-identifier | References a data tree node

| int8 | 8-bit signed integer

| intl6 | 16-bit signed integer

| int32 | 32-bit signed integer

| int64 | 64-bit signed integer

| leafref | Areference to a | eaf instance |
| string | Human-readabl e string

| uint8 | 8-bit unsigned integer

| uintl6 | 16-bit unsigned integer

| uint32 | 32-bit unsigned integer

| uint64 | 64-bit unsigned integer

| union | Choice of menber types
T o e m e e e e e e e e e e e e e e am o - +

The "type" statenment is covered in Section 7.4.
4.2.5. Derived Types (typedef)
YANG can define derived types from base types using the "typedef"
statenent. A base type can be either a built-in type or a derived
type, allowi ng a hierarchy of derived types.
A derived type can be used as the argunment for the "type" statenent.
YANG Exanpl e:
typedef percent {
type uint8 {
range "0 .. 100";
}

descri pti on "Percent age";

}

| eaf conpleted {
type percent;
}

Bj or kl und St andards Track [Page 19]

RFC 6020 YANG Oct ober 2010

NETCONF XM. Exanpl e:
<conpl et ed>20</ conpl et ed>
The "typedef" statenent is covered in Section 7.3.
4.2.6. Reusabl e Node Groups (grouping)

G oups of nodes can be assenbled into reusable collections using the
"groupi ng" statement. A grouping defines a set of nodes that are
instantiated with the "uses" statenent:

groupi ng target {
| eaf address {
type inet:ip-address;
description "Target |IP address”;

| eaf port {
type inet: port-nunber;
description "Target port nunber";

}

cont ai ner peer {
cont ai ner destination {
uses target;
}

}
NETCONF XML Exanpl e:

<peer >
<desti nati on>
<addr ess>192. 0. 2. 1</ addr ess>
<port >830</ port >
</ destinati on>

</ peer >
The grouping can be refined as it is used, allow ng certain
statenments to be overridden. In this exanple, the description is
refined:

Bj or kl und St andards Track [Page 20]

RFC 6020 YANG Oct ober 2010

cont ai ner connection {
cont ai ner source {
uses target {
refine "address" {
description "Source |IP address”;
}

refine "port" {
descripti on "Source port numnber";
}

}
}
cont ai ner destination {
uses target {
refine "address" {
description "Destination |IP address”;
}

refine "port" {
description "Destination port nunber";
}

}

The "groupi ng" statenment is covered in Section 7.11
.2.7. Choices

YANG al | ows the data nodel to segregate inconpatible nodes into

di stinct choices using the "choice" and "case" statements. The
"choi ce" statenment contains a set of "case" statenents that define
sets of schema nodes that cannot appear together. Each "case" my
contain nmultiple nodes, but each node nmay appear in only one "case"
under a "choice".

VWhen an el enent fromone case is created, all elenments fromall other
cases are inplicitly deleted. The device handl es the enforcenent of
the constraint, preventing inconpatibilities fromexisting in the
configurati on.

The choi ce and case nodes appear only in the schema tree, not in the
data tree or NETCONF nmessages. The additional |evels of hierarchy
are not needed beyond the conceptual schena.

Bj or kl und St andards Track [Page 21]

RFC 6020 YANG Oct ober 2010

YANG Exanpl e:

cont ai ner food {
choi ce snack {
case sports-arena {
| eaf pretzel {

type enpty;

| eaf beer {
type enpty;

}

case | ate-night {
| eaf chocol ate {
type enuneration {

enum dar k;
enum m | k;
enum first-avail abl e;
}
}
}
}
}
NETCONF XM. Exanpl e:
<f ood>
<pretzel/>
<beer/ >
</ f ood>

The "choice" statenent is covered in Section 7.9.
4.2.8. Extending Data Mdel s (augnent)

YANG al l ows a nodule to insert additional nodes into data nodel s,

i ncluding both the current nodule (and its subnodul es) or an externa
nodule. This is useful for exanple for vendors to add vendor -
specific paraneters to standard data nodels in an interoperable way.

The "augment" statenent defines the |ocation in the data node

hi erarchy where new nodes are inserted, and the "when" statenent
defines the conditions when the new nodes are valid.

Bj or kl und St andards Track [Page 22]

RFC 6020 YANG Oct ober 2010

YANG Exanpl e:
augnment /system | ogi n/user {
when "class != "wheel ' ";
leaf uid {

type uint16 {
range "1000 .. 30000";
}

}

Thi s exanple defines a "uid" node that only is valid when the user’s
"class" is not "wheel".

I f a nodul e augnents anot her nodule, the XM representation of the
data will reflect the prefix of the augmenting nodule. For exanple,
if the above augnmentation were in a nodule with prefix "other", the
XML woul d | ook |ike:

NETCONF XML Exanpl e:

<user >
<nane>al i cew</ nanme>
<full-name>Alice N. Wnderl and</ful | - name>
<cl ass>dr op- out </ cl ass>
<ot her: ui d>1024</ ot her: ui d>
</ user >

The "augnment" statenent is covered in Section 7.15.
4.2.9. RPC Definitions
YANG al | ows the definition of NETCONF RPCs. The operations’ nanes,

i nput paraneters, and output paranmeters are nodel ed usi ng YANG dat a
definition statenents.

Bj or kl und St andards Track [Page 23]

RFC 6020 YANG Oct ober 2010

YANG Exanpl e:

rpc activate-software-inage {
i nput {
| eaf image-nane {
type string;
}

out put {
| eaf status {
type string;

}
NETCONF XML Exanpl e:

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<activate-software-image xm ns="http://acne. exanpl e. com systeni >
<i mage- nane>acnef w 2. 3</i nage- nane>
</ activat e-sof t war e-i nmage>
</rpc>

<rpc-reply nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<status xm ns="http://acne. exanpl e. conf syst eni' >
The image acnefw 2.3 is being install ed.
</ st atus>
</rpc-reply>

The "rpc" statenment is covered in Section 7.13.
4.2.10. Notification Definitions
YANG al l ows the definition of notifications suitable for NETCONF.

YANG data definition statenents are used to npdel the content of the
notification.

Bj or kl und St andards Track [Page 24]

RFC 6020 YANG Oct ober 2010

YANG Exanpl e:

notification link-failure {
description "A link failure has been detected"
| eaf if-nane {
type leafref {
path "/interface/ name";
}
}

| eaf if-adm n-status {
type admi n- st at us;

| eaf if-oper-status {
type oper-status;

}
NETCONF XML Exanpl e:

<notification
xm ns="urn:ietf:parans: netconf:capability:notification:1. 0">
<event Ti me>2007- 09- 01T10: 00: 00Z</ event Ti me>
<link-failure xm ns="http://acne. exanpl e. com systent' >
<i f-nane>so-1/2/3.0</if-name>
<i f-adm n-status>up</if-adm n-status>
<i f-oper-status>down</if-oper-status>
</link-failure>
</notification>

The "notification"” statenent is covered in Section 7.14.
5. Language Concepts
5.1. Mbdul es and Subnodul es

The nodul e is the base unit of definition in YANG A nodul e defines
a single data nodel. A nodule can define a conplete, cohesive nodel,
or augment an existing data nodel with additional nodes.

Subrnodul es are partial nodules that contribute definitions to a
nodul e. A nmodul e may include any nunber of subnodul es, but each
subnodul e may bel ong to only one nodul e.

The nanes of all standard nodul es and subnodul es MJUST be uni que.
Devel opers of enterprise nmodul es are RECOMMENDED to choose names for
their nmodules that will have a |l ow probability of colliding with
standard or other enterprise nodules, e.g., by using the enterprise
or organi zation name as a prefix for the nodul e nane.

Bj or kl und St andards Track [Page 25]

RFC 6020 YANG Oct ober 2010

A nodul e uses the "include" statenent to include its subnpodul es, and
the "inmport" statement to reference external nodules. Sinmlarly, a
subnmodul e uses the "inmport" statement to reference other nodul es, and
uses the "include" statenent to reference other subnmbdules withinits
nodul e. A nodul e or subnpdul e MUST NOT i ncl ude subnpdul es from ot her
nodul es, and a subnbdul e MUST NOT inport its own nodul e.

The inmport and include statements are used to nmake definitions
avai l abl e to ot her nodul es and subnodul es:

o For a npdule or subnmpbdule to reference definitions in an externa
nodul e, the external nodul e MUST be inported.

o For a module to reference definitions in one of its subnpdul es,
t he nodul e MUST include the subnodul e.

o For a subnpdule to reference definitions in a second subnodul e of
the sane nodul e, the first subnodul e MJUST include the second
subnodul e.

There MUST NOT be any circul ar chains of inports or includes. For
exanpl e, if subnodule "a" includes subnodule "b", "b" cannot include

a .

When a definition in an external nodule is referenced, a locally
defined prefix MJST be used, followed by ":", and then the externa
identifier. References to definitions in the |ocal nodule MAY use
the prefix notation. Since built-in data types do not belong to any
nodul e and have no prefix, references to built-in data types (e.g.

i nt32) cannot use the prefix notation

5.1.1. Inport and Include by Revision

Publ i shed nodul es evol ve i ndependently over time. |In order to allow
for this evolution, nodules need to be inported using specific
revisions. Wwen a nodule is witten, it uses the current revisions
of other nodul es, based on what is available at the tine. As future
revi sions of the inported nodul es are published, the inporting nodul e
is unaffected and its contents are unchanged. Wen the author of the
nmodul e is prepared to nove to the nost recently published revision of
an inported nodule, the nodule is republished with an updated
"inport" statement. By republishing with the new revision, the
authors explicitly indicate their acceptance of any changes in the

i mported nodul e.

Bj or kl und St andards Track [Page 26]

RFC 6020 YANG Oct ober 2010

For subnodul es, the issue is related but sinmpler. A nodule or
subnmodul e that includes subnodul es needs to specify the revision of
the included subnodules. |[|f a subnodul e changes, any nodul e or
subnmodul e that includes it needs to be updated.

For exanple, nodule "b" inmports nodule "a".
nodul e a {
revi sion 2008-01-01 { ... }
groupi ng a {
leaf enh { }
}
}
nmodul e b {
i mport a {
prefix p;
revi si on-date 2008-01-01;
}
cont ai ner bee {
uses p: a;
}
}
When the author of "a" publishes a new revision, the changes may not
be acceptable to the author of "b". |If the newrevision is

acceptabl e, the author of "b" can republish with an updated revision
in the "inmport" statenent.

5.1.2. Mbdul e Hierarchies

YANG al | ows nodeling of data in nultiple hierarchies, where data my
have nore than one top-level node. Mdels that have multiple top-
| evel nodes are sonetinmes convenient, and are supported by YANG

NETCONF i s capabl e of carrying any XM. content as the payload in the
<confi g> and <data> el enents. The top-level nodes of YANG nodul es
are encoded as child elenments, in any order, within these el enents.
Thi s encapsul ati on guarantees that the correspondi ng NETCONF nessages
are always well-formed XML docunents.

Bj or kl und St andards Track [Page 27]

RFC 6020 YANG Oct ober 2010

For exanpl e:

nodul e ny-config {
nanespace "http://exanpl e. conl schema/ config";
prefix "co";

contai ner system{ ... }
container routing { ... }

}
coul d be encoded i n NETCONF as:

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<!-- systemdata here -->
</ syst enp
<routing xm ns="http://exanpl e.conf schema/ config">
<l-- routing data here -->
</routing>
</ config>
</ edit-config>
</rpc>

5.2. File Layout

YANG nodul es and subnmodul es are typically stored in files, one nodul e
or subrnodul e per file. The nane of the file SHOULD be of the form

nodul e- or - subnodul e-nanme [' @ revision-date] ('.yang [/ '.yin)

YANG compilers can find inported nodul es and i ncl uded subnodul es via
this convention. While the YANG | anguage defines nodul es, tools my
conpi | e subnodul es i ndependently for perfornmance and manageability
reasons. FErrors and warnings that cannot be detected during
subnodul e conpil ation nay be delayed until the subnodul es are |inked
into a cohesive nodul e.

Bj or kl und St andards Track [Page 28]

RFC 6020 YANG Oct ober 2010

5.3. XM. Nanespaces

Al'l YANG definitions are specified within a nmodule that is bound to a
particul ar XML namespace [XM.- NAMES], which is a globally unique UR

[RFC3986]. A NETCONF client or server uses the namespace during XM
encodi ng of data.

Nanmespaces for nodul es published in RFC streans [RFC4844] MJST be
assigned by | ANA, see Section 14.

Nanespaces for private nodul es are assigned by the organization
owni ng the nodule without a central registry. Nanmespace URIs MJIST be
chosen so they cannot collide with standard or other enterprise
nanespaces, for exanple by using the enterprise or organization nane
in the namespace

The "namespace" statenment is covered in Section 7.1.3.
5.3.1. YANG XM. Namespace

YANG defines an XM. nanespace for NETCONF <edit-config> operations
and <error-info> content. The nane of this nanespace is
"urn:ietf:paranms: xnm :ns:yang: 1".

5.4. Resolving Gouping, Type, and ldentity Nanmes

Groupi ng, type, and identity nanes are resolved in the context in

whi ch they are defined, rather than the context in which they are
used. Users of groupings, typedefs, and identities are not required
to inport nmodul es or include subnobdules to satisfy all references
nmade by the original definition. This behaves |ike static scoping in
a conventional programmi ng | anguage.

For exanple, if a nodule defines a grouping in which a type is

ref erenced, when the grouping is used in a second nodule, the type is
resolved in the context of the original nodule, not the second
nodule. There is no worry over conflicts if both nodul es define the
type, since there is no anbiguity.

5.5. Nested Typedefs and G oupi ngs

Typedefs and groupi ngs nmay appear nested under nmany YANG st atenents,
allowing these to be lexically scoped by the hierarchy under which
they appear. This allows types and groupings to be defined near
where they are used, rather than placing themat the top level of the
hi erarchy. The close proximty increases readability.

Bj or kl und St andards Track [Page 29]

RFC 6020 YANG Oct ober 2010

Scoping also allows types to be defined wi thout concern for nam ng
conflicts between types in different subnodul es. Type nanmes can be
speci fied without adding | eading strings designed to prevent nane
collisions within |arge nodul es.

Finally, scoping allows the nodul e author to keep types and groupi ngs
private to their nmodul e or subnodul e, preventing their reuse. Since
only top-level types and groupings (i.e., those appearing as
substatenments to a nodul e or subnodul e statenment) can be used outside
the nmodul e or submodul e, the devel oper has nmore control over what

pi eces of their nmodule are presented to the outside world, supporting
the need to hide internal information and nai ntai ning a boundary

bet ween what is shared with the outside world and what is kept
private.

Scoped definitions MJUST NOT shadow definitions at a higher scope. A
type or grouping cannot be defined if a higher level in the schema
hi erarchy has a definition with a matching identifier
A reference to an unprefixed type or grouping, or one which uses the
prefix of the current nodule, is resolved by |ocating the closest
mat chi ng "typedef" or "grouping" statement anong the i medi ate
subst atements of each ancestor statement.

5.6. Conformance
Conformance is a neasure of how accurately a device follows the
nodel . General |y speaking, devices are responsible for inplementing
the nmodel faithfully, allow ng applications to treat devices which
i npl enent the nodel identically. Deviations fromthe nodel can
reduce the utility of the nbdel and increase fragility of
applications that use it.
YANG nodel ers have three nechani sns for conformance:
0o the basic behavior of the nodel
o optional features that are part of the node
o deviations fromthe node

We will consider each of these in sequence.

Bj or kl und St andards Track [Page 30]

RFC 6020 YANG Oct ober 2010

5.6.1. Basic Behavior

The nodel defines a contract between the NETCONF client and server,
whi ch allows both parties to have faith the other knows the syntax
and semantics behind the nodel ed data. The strength of YANG lies in
the strength of this contract.

5.6.2. Optional Features

In many nodels, the nodeler will allow sections of the nodel to be
conditional. The device controls whether these conditional portions
of the npbdel are supported or valid for that particul ar device.

For exanple, a syslog data nodel may choose to include the ability to
save logs locally, but the nodeler will realize that this is only
possible if the device has local storage. |If there is no |oca
storage, an application should not tell the device to save | ogs.

YANG supports this conditional nechani smusing a construct called
"feature". Features give the nodel er a mechani smfor naking portions
of the nodule conditional in a nmanner that is controlled by the
device. The nodel can express constructs that are not universally
present in all devices. These features are included in the node
definition, allowing a consistent view and allow ng applications to

| earn which features are supported and tailor their behavior to the
devi ce.

A nmodul e may decl are any nunber of features, identified by sinmple
strings, and may nake portions of the nodul e optional based on those
features. |If the device supports a feature, then the corresponding
portions of the nmodule are valid for that device. |f the device
doesn’t support the feature, those parts of the nodule are not valid,
and applications shoul d behave accordingly.

Features are defined using the "feature"” statement. Definitions in
the nodule that are conditional to the feature are noted by the
"if-feature" statement with the nane of the feature as its argunent.
Further details are available in Section 7.18.1.

5.6.3. Deviations
In an ideal world, all devices would be required to inplenent the
nodel exactly as defined, and deviations fromthe nodel would not be

allowed. But in the real world, devices are often not able or
designed to inmplenent the nodel as witten. For YANG based

Bj or kl und St andards Track [Page 31]

RFC 6020 YANG Oct ober 2010

automation to deal with these device deviations, a nechani sm nust
exi st for devices to informapplications of the specifics of such
devi ati ons.

For exanple, a BGP nodul e may all ow any nunber of BGP peers, but a
particul ar device nay only support 16 BGP peers. Any application
configuring the 17th peer will receive an error. Wile an error may
suffice to let the application know it cannot add another peer, it
woul d be far better if the application had prior know edge of this
[imtation and could prevent the user fromstarting down the path
that coul d not succeed.

Devi ce devi ations are declared using the "deviation" statenment, which
takes as its argunment a string that identifies a node in the schenma
tree. The contents of the statenment details the nmanner in which the
devi ce inmplenentation deviates fromthe contract as defined in the
nodul e.

Further details are available in Section 7.18. 3.

.6.4. Announci ng Conformance Information in the <hell o> Message

The nanespace URI MJST be advertised as a capability in the NETCONF
<hel | 0> nessage to indicate support for the YANG nodul e by a NETCONF
server. The capability URI advertised MJST be of the form

capabi lity-string = nanespace-uri [paraneter-list]
paraneter-1|i st = "?" paranmeter *("&" paraneter)

par anet er = revi sion-paraneter /
nodul e- par aneter /

f eat ur e- paraneter /

devi ati on- par anet er

"revision=" revision-date

"modul e=" nodul e- nanme

"features=" feature *("," feature)
"devi ati ons="

revi si on- par anet er
nodul e- par anet er
f eat ur e- par amet er
devi at i on- par anet er

deviation *("," deviation)

Where "revision-date" is the revision of the nbodule (see

Section 7.1.9) that the NETCONF server inplenments, "nodul e-name" is
the nane of nodule as it appears in the "nodul e" statement (see
Section 7.1), "nanespace-uri" is the namespace URI for the nodule as
it appears in the "namespace" statenment (see Section 7.1.3),
"feature" is the nanme of an optional feature inplenented by the
device (see Section 7.18.1), and "deviation" is the nane of a nodul e
defining device deviations (see Section 7.18.3).

In the paraneter |list, each named parameter MJST occur at npst once.

Bj or kl und St andards Track [Page 32]

RFC 6020 YANG Oct ober 2010

5.6.4.1. Modul es

Servers indicate the nanmes of supported nodul es via the <hell o>
nmessage. Mdul e namespaces are encoded as the base URI in the
capability string, and the nodul e nane is encoded as the "nodul e”
paraneter to the base URI

A server MUST advertise all revisions of all nodules it inplenents.
For exanple, this <hell o> nessage adverti ses one nodul e "sysl og"

<hell o xm ns="urn:ietf:paranms: xnl : ns: net conf: base: 1. 0" >
<capability>
http://exanpl e. com sysl og?nodul e=sys| og&anp; r evi si on=2008- 04- 01
</ capability>
</ hel | 0>

5.6.4. 2. Feat ur es

Servers indicate the nanmes of supported features via the <hell o>
message. In <hell o> nessages, the features are encoded in the
"features" paraneter within the URI. The value of this parameter is
a conma-separated |ist of feature names that the device supports for
the specific nodul e.

For exanple, this <hell o> nessage adverti ses one nodul e, informng
the client that it supports the "local -storage" feature of nodul e
"sysl og".

<hell o xm ns="urn:ietf:parans: xn : ns: net conf : base: 1. 0" >
<capability>

http://exanpl e. com sysl og?nodul e=sysl| og&anp; f eat ur es=I ocal - st or age

</ capability>

</ hel | 0>

5.6.4.3. Deviations
Devi ce devi ations are announced via the "deviations" paraneter. The
val ue of the "deviations" paraneter is a conma-separated |ist of
nodul es contai ning deviations fromthe capability’ s nodul e.
For exanple, this <hell o> nessage advertises two nodul es, inform ng

the client that it deviates from nodule "syslog" according to the
deviations listed in the nodule "ny-devs".

Bj or kl und St andards Track [Page 33]

RFC 6020 YANG Oct ober 2010

<hell o xm ns="urn:ietf:paranms: xnl : ns: net conf: base: 1. 0" >
<capabi lity>
http:// exanpl e. com sysl og?nodul e=sysl og&anp; devi ati ons=ny- devs
</ capability>
<capability>
http://exanpl e. com ny-devi ati ons?nmodul e=ny- devs
</ capability>
</ hel | o>

5.7. Data Store Mdification

Data nobdels may allow the server to alter the configuration data
store in ways not explicitly directed via NETCONF protocol nessages.
For exanple, a data nodel may define |leafs that are assigned system
generated val ues when the client does not provide one. A form
mechani sm for specifying the circunstances where these changes are
allowed is out of scope for this specification

6. YANG Synt ax

The YANG syntax is similar to that of SMng [RFC3780] and programr ng
| anguages like C and C++. This Clike syntax was chosen specifically
for its readability, since YANG values the tine and effort of the
readers of nodels above those of modul es witers and YANG t ool -chain
devel opers. This section introduces the YANG synt ax.

YANG nodul es use the UTF-8 [RFC3629] character encodi ng.
6.1. Lexical Tokenization

YANG nodul es are parsed as a series of tokens. This section details
the rules for recognizing tokens froman input stream YANG

tokeni zation rules are both sinple and powerful. The sinplicity is
driven by a need to keep the parsers easy to inplenment, while the
power is driven by the fact that nodel ers need to express their
nodel s in readabl e fornmats.

6.1.1. Comments
Comments are C++ style. A single line conment starts with "//" and
ends at the end of the line. A block comment is enclosed within "/*"
and "*/*".

6.1.2. Tokens
A token in YANG is either a keyword, a string, a semcolon (";"), or

braces ("{" or "}"). A string can be quoted or unquoted. A keyword
is either one of the YANG keywords defined in this docunent, or a

Bj or kl und St andards Track [Page 34]

RFC 6020 YANG Oct ober 2010

prefix identifier, followed by ":", followed by a | anguage extension
keyword. Keywords are case sensitive. See Section 6.2 for a form
definition of identifiers.

6.1.3. Quoting

If a string contains any space or tab characters, a semicolon (";"),
braces ("{" or "}"), or conmment sequences ("//", "/*", or "*/"), then
it MJUST be encl osed within double or single quotes.

If the doubl e-quoted string contains a line break foll owed by space
or tab characters that are used to indent the text according to the
layout in the YANG file, this |eading whitespace is stripped fromthe
string, up to and including the colum of the double quote character,
or to the first non-whitespace character, whichever occurs first. In
this process, a tab character is treated as 8 space characters.

If the doubl e-quoted string contains space or tab characters before a
line break, this trailing whitespace is stripped fromthe string.

A single-quoted string (enclosed within ' ') preserves each character
within the quotes. A single quote character cannot occur in a
singl e-quoted string, even when preceded by a backsl ash.

Wthin a double-quoted string (enclosed within " "), a backsl ash
character introduces a special character, which depends on the
character that imediately foll ows the backsl ash:

\n new | ine

\t a tab character

\ " a doubl e quote

\\ a single backsl ash

If a quoted string is followed by a plus character ("+"), foll owed by

anot her quoted string, the two strings are concatenated into one
string, allowing nultiple concatenations to build one string.

Wi t espace trimmng and substitution of backsl ash-escaped characters
in doubl e-quoted strings is done before concatenation

6.1.3.1. Quoting Exanpl es

The followi ng strings are equival ent:

hel |l o
"hel | 0"
"hel | 0’

Ilhel n + II| O
"hel” + "lo

Bj or kl und St andards Track [Page 35]

RFC 6020 YANG Oct ober 2010

The foll owi ng exanpl es show sone special strings:

"\"" - string containing a double quote
T - string containing a double quote
"\n" - string containing a new |line character
"\n" - string containing a backslash foll owed

by the character n

The foll owi ng exanpl es show sone illegal strings:
B a single-quoted string cannot contain single quotes
- a doubl e quote nust be escaped in a doubl e-quoted string

The following strings are equival ent:

"first line
second |ine"

"first line\n" + " second |line"
6. 2. Identifiers

Identifiers are used to identify different kinds of YANG itens by
nane. Each identifier starts with an uppercase or |owercase ASCl

| etter or an underscore character, followed by zero or nore ASCI
letters, digits, underscore characters, hyphens, and dots.

| mpl ement ati ons MUST support identifiers up to 64 characters in
length. ldentifiers are case sensitive. The identifier syntax is
formally defined by the rule "identifier"” in Section 12. ldentifiers
can be specified as quoted or unquoted strings.

6.2.1. ldentifiers and Their Namespaces
Each identifier is valid in a namespace that depends on the type of
the YANG item being defined. Al identifiers defined in a nanespace
MUST be uni que.

o Al nodule and subnodul e nanes share the sane gl obal nodul e
i dentifier nanespace.

o Al extension nanes defined in a nbpdule and its subnodul es share
the sanme extension identifier nanespace.

o All feature nanmes defined in a nodule and its subnpodul es share the
sane feature identifier nanespace

o Al identity names defined in a nodule and its subnodul es share
the sanme identity identifier nanespace.

Bj or kl und St andards Track [Page 36]

RFC 6020 YANG Oct ober 2010

o Al derived type nanes defined within a parent node or at the top
| evel of the nodule or its subnodul es share the sane type
identifier nanespace. This namespace is scoped to all descendant
nodes of the parent node or nodule. This neans that any
descendent node may use that typedef, and it MJST NOT define a
typedef with the sane nane.

o All grouping nanes defined within a parent node or at the top
[evel of the module or its subnodul es share the same grouping
identifier nanmespace. This namespace is scoped to all descendant
nodes of the parent node or nodule. This neans that any
descendent node may use that grouping, and it MJUST NOT define a
groupi ng with the sane nane.

o Al leafs, leaf-lists, lists, containers, choices, rpcs,
notifications, and anyxm s defined (directly or through a uses
statenment) within a parent node or at the top |evel of the nodule
or its subnodul es share the sane identifier nanespace. This
nanespace is scoped to the parent node or nodul e, unless the
parent node is a case node. In that case, the nanespace is scoped
to the closest ancestor node that is not a case or choice node.

o Al cases within a choice share the sane case identifier
nanespace. This nanmespace is scoped to the parent choi ce node.

Forward references are allowed in YANG
6. 3. St at errent s

A YANG nodul e contains a sequence of statenents. Each statenent

starts with a keyword, followed by zero or one argunent, followed
either by a semicolon (";") or a block of substatenents encl osed

within braces ("{ }"):

statement = keyword [argunent] (";" / "{" *statenent "}")
The argument is a string, as defined in Section 6.1.2.
6.3.1. Language Extensions

A nmodul e can introduce YANG extensions by using the "extension"”
keyword (see Section 7.17). The extensions can be inported by other
nodul es with the "inport" statenent (see Section 7.1.5). Wen an

i nported extension is used, the extension’s keyword MJUST be qualified
using the prefix with which the extension’s nodule was inported. |If
an extension is used in the nodule where it is defined, the
extension’s keyword MJST be qualified with the nmodule’ s prefix.

Bj or kl und St andards Track [Page 37]

RFC 6020 YANG Oct ober 2010

Si nce subnodul es cannot include the parent nodul e, any extensions in
the nodul e that need to be exposed to subnodul es MJST be defined in a
submodul e. Submodul es can then include this subnodule to find the
definition of the extension.

If a YANG conpil er does not support a particular extension, which
appears in a YANG nodul e as an unknown- st atenent (see Section 12),
the entire unknown-statement MAY be ignored by the conpiler.

6.4. XPath Eval uati ons

YANG relies on XML Path Language (XPath) 1.0 [XPATH] as a notation
for specifying many inter-node references and dependenci es. NETCONF
clients and servers are not required to inplenment an XPath
interpreter, but MJST ensure that the requirenments encoded in the
data nmodel are enforced. The manner of enforcement is an

i mpl enent ati on deci sion. The XPath expressions MJST be syntactically
correct, and all prefixes used MIST be present in the XPath context
(see Section 6.4.1). An inplenentation may choose to inplenent them
by hand, rather than using the XPath expression directly.

The data npdel used in the XPath expressions is the same as that used
in XPath 1.0 [XPATH], with the same extension for root node children
as used by XSLT 1.0 [XSLT] (Section 3.1). Specifically, it neans
that the root node may have any nunber of el enent nodes as its
chi l dren.

6.4.1. XPath Context

Al'l YANG XPat h expressions share the foll owi ng XPath cont ext
definition:

o The set of nanmespace declarations is the set of all "inport"
statements’ prefix and namespace pairs in the nmodul e where the
XPat h expression is specified, and the "prefix" statenent’s prefix
for the "nanespace" statenment’s URI

o Names without a nanmespace prefix belong to the same nanespace as
the identifier of the current node. |Inside a grouping, that
nanespace is affected by where the grouping is used (see
Section 7.12).

o The function library is the core function library defined in
[XPATH], and a function "current()" that returns a node set with
the initial context node.

o0 The set of variable bindings is enpty.

Bj or kl und St andards Track [Page 38]

RFC 6020 YANG Oct ober 2010

The nmechani sm for handling unprefixed nanes is adopted from XPath 2.0
[XPATH2. 0], and hel ps sinplify XPath expressions in YANG No

anbi guity may ever arise because YANG node identifiers are always
qualified nanes with a non-null namespace URI.

The context node varies with the YANG XPath expression, and is
specified where the YANG statenent with the XPath expression is
def i ned.

6.5. Schema Node ldentifier

A schema node identifier is a string that identifies a node in the

scherma tree. It has two forms, "absolute" and "descendant", defined
by the rul es "absol ut e- schenma-nodei d" and "descendant - schenma- nodei d"
in Section 12, respectively. A schenma node identifier consists of a

path of identifiers, separated by slashes ("/"). 1In an absolute
schema node identifier, the first identifier after the |eading slash
is any top-level schema node in the local nodule or in all inported
nodul es.

References to identifiers defined in external nodul es MJST be
qualified with appropriate prefixes, and references to identifiers
defined in the current nodule and its subnodul es MAY use a prefix.

For exanple, to identify the child node "b" of top-level node "a",
the string "/a/b" can be used.

7. YANG St atenents
The foll owi ng sections describe all of the YANG statenents.

Note that even a statenent that does not have any substatenents
defined i n YANG can have vendor-specific extensi ons as substatenents.
For exanple, the "description" statenent does not have any
substatenments defined in YANG but the following is |egal

description "sone text" {
acne: docunent ation-fl ag 5;
}

7.1. The nodul e Statement

The "nodul e" statenent defines the nobdul e’ s nanme, and groups al
statenents that belong to the nodul e together. The "nodul e"
statenment’s argunment is the nane of the nodule, followed by a bl ock
of substatenents that hold detail ed nodule information. The nodul e
nane follows the rules for identifiers in Section 6.2.

Bj or kl und St andards Track [Page 39]

RFC 6020 YANG Oct ober 2010

Nanes of nodul es published in RFC streans [RFC4844] MJUST be assi gned
by |1 ANA, see Section 14.

Private nodul e names are assigned by the organi zati on owning the
nodul e without a central registry. It is RECOWENDED to choose
nodul e nanmes that will have a | ow probability of colliding with
standard or other enterprise nodul es and subnodul es, e.g., by using
the enterprise or organization nane as a prefix for the nodul e nane.

A nmodul e typically has the follow ng | ayout:
nodul e <nodul e- name> {

/1 header information
<yang- versi on statenent>
<nanespace st atenent >
<prefix statement>

/1 linkage statenents
<i nport statenents>
<i ncl ude statenment s>

/1 meta information
<organi zati on statenent>
<contact statenent>
<descri ption statenent>
<reference statenment>

/1 revision history
<revi si on st at enents>

/! nodul e definitions
<ot her st atenents>

Bj or kl und St andards Track [Page 40]

RFC 6020 YANG Oct ober 2010

7.1.1. The nodul e’ s Substatenents

. S . +
| substatement | section | cardinality |
oo SR S +
anyxm	7.10	0..n
augnent	7.15	0..n
choice	7.9	0..n
contact	7.1.8	0..1

container	7.5	0..n
description	7.19.3	0..1
deviation	7.18.3	0..n
extension	7.17	0..n
feature	7.18.1	0..n
grouping	7.11	0..n
identity	7.16	0..n

inport	7.1.5	0..n	
include	7.1.6	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
namespace	7.1.3	1	
notification	7.14	0..n	
organization	7.1.7	0..1	
prefix	7.1.4	1	
reference	7.19.4	0..1	
revision	7.1.9	0..n	
rpc	7.13	0..n	
typedef	7.3	0..n	
uses	7.12	0..n	
yang-version	7.1.2	0..1	
. S TR . +

7.1.2. The yang-version Statenent

The optional "yang-version" statenment specifies which version of the
YANG | anguage was used in devel oping the nodule. The statenent’s
argunent is a string. |If present, it MJST contain the value "1",
which is the current YANG version and the default val ue.

Handl i ng of the "yang-version" statenent for versions other than "1"
(the version defined here) is out of scope for this specification
Any docunent that defines a higher version will need to define the
backward conpatibility of such a higher version

Bj or kl und St andards Track [Page 41]

RFC 6020 YANG Oct ober 2010

7.1.3. The nanespace Statenent

The "namespace" statenment defines the XML nanmespace that al
identifiers defined by the nodule are qualified by, with the
exception of data node identifiers defined inside a grouping (see
Section 7.12 for details). The argunent to the "nanespace" statenent
is the URI of the nanespace.

See al so Section 5.3.
7.1.4. The prefix Statenent

The "prefix" statement is used to define the prefix associated with
the nodul e and its nanespace. The "prefix" statenent’s argunent is
the prefix string that is used as a prefix to access a nodule. The
prefix string MAY be used to refer to definitions contained in the
nodule, e.g., "if:ifName". A prefix follows the sanme rules as an
identifier (see Section 6.2).

When used inside the "nodul e" statement, the "prefix" statenent
defines the prefix to be used when this nmodule is inported. To

i nprove readability of the NETCONF XM., a NETCONF client or server
that generates XM. or XPath that use prefixes SHOULD use the prefix
defined by the nodule, unless there is a conflict.

When used inside the "inport" statement, the "prefix" statenent
defines the prefix to be used when accessing definitions inside the

i nported nodule. Wen a reference to an identifier fromthe inported
nmodul e is used, the prefix string for the inported nodule is used in
conbination with a colon (":") and the identifier, e.g., "if:
iflndex". To inprove readability of YANG nodules, the prefix defined
by a nodul e SHOULD be used when the nodule is inported, unless there
is aconflict. |If thereis a conflict, i.e., tw different nodul es
that both have defined the sane prefix are inported, at |east one of
them MUST be inported with a different prefix.

Al prefixes, including the prefix for the nodule itself MJST be
uni que within the nodul e or subnodul e.

7.1.5. The inport Statenent

The "inport" statenent nmmkes definitions fromone nodul e avail abl e

i nsi de anot her nodul e or subnodul e. The argunent is the nane of the
nodule to inport, and the statenent is followed by a bl ock of
substatenments that holds detailed inport information. Wen a nodul e
is inmported, the inporting nmodul e nay:

Bj or kl und St andards Track [Page 42]

RFC 6020 YANG Oct ober 2010

0 use any grouping and typedef defined at the top level in the
i mported nodul e or its subnodul es.

0 use any extension, feature, and identity defined in the inported
nodul e or its subnodul es.

0o use any node in the inported nodule’'s schema tree in "nust",
"path", and "when" statenents, or as the target node in "augnment"
and "devi ation" statenents.

The mandatory "prefix" substatenent assigns a prefix for the inported
nodul e that is scoped to the inmporting nodule or subnbdule. Miltiple
"inport" statenments nay be specified to inport fromdifferent

nodul es.

VWen the optional "revision-date" substatenent is present, any
typedef, grouping, extension, feature, and identity referenced by
definitions in the local nodule are taken fromthe specified revision
of the inported nodule. It is an error if the specified revision of
the inported nodul e does not exist. |If no "revision-date"
substatenment is present, it is undefined from which revision of the
nodul e they are taken

Mul tiple revisions of the sane nodul e MJUST NOT be inported.

The inmport’s Substatenents

S B R S +
| substatement | section | cardinality |
R S T +
| prefix | 7.1.4 | 1 |
| revision-date | 7.1.5.1] 0..1 |
Fommm e e aaaaa - B - +

7.1.5.1. The inport’s revision-date Statenent

The inmport’s "revision-date" statenment is used to specify the exact
version of the nodule to inport. The "revision-date" statement MJST
match the nost recent "revision" statenment in the inported nodul e.

7.1.6. The include Statenent
The "include" statenent is used to nake content from a subnodul e
avai l abl e to that subnodul e’ s parent nodule, or to another subnodul e

of that parent nodule. The argunment is an identifier that is the
nane of the subnodule to include. Mdules are only allowed to

Bj or kl und St andards Track [Page 43]

RFC 6020 YANG Oct ober 2010

i ncl ude subnodul es that belong to that nodule, as defined by the
"bel ongs-to" statement (see Section 7.2.2). Subnodules are only
al l owed to include other subnodul es bel onging to the same nodul e.

VWhen a nodul e includes a subnodule, it incorporates the contents of
the subnodul e into the node hierarchy of the nodule. When a
subnodul e i ncl udes anot her subnodul e, the target subnodul e’s
definitions are nade available to the current subnodul e.

When the optional "revision-date" substatenent is present, the
specified revision of the subnmodule is included in the nodule. It is
an error if the specified revision of the subnpbdul e does not exist.

If no "revision-date" substatement is present, it is undefined which
revision of the subnodule is included.

Mul tiple revisions of the sane subnodul e MJUST NOT be i ncl uded.

The includes’s Substatenents

oo Fomm e Fom e +
| substatement | section | cardinality |
Fom e e e e oo - S Fom e e e e oo - +
| revision-date | 7.1.5.1 | 0..1 |
Fom e e e oo oo - R S +

7.1.7. The organization Statenent

The "organi zation" statenent defines the party responsible for this
nodul e. The argunment is a string that is used to specify a textua
description of the organization(s) under whose auspices this nodule
was devel oped.

7.1.8. The contact Statenent

The "contact" statenent provides contact information for the nodul e.
The argument is a string that is used to specify contact infornmation
for the person or persons to whomtechnical queries concerning this

nodul e shoul d be sent, such as their nane, postal address, telephone
nunber, and electronic nmail address.

7.1.9. The revision Statenent

The "revision" statenment specifies the editorial revision history of
the nodule, including the initial revision. A series of revision
statenments detail the changes in the nodule’'s definition. The
argunent is a date string in the format "YYYY-MM DD', followed by a
bl ock of substatenments that holds detailed revision information. A
nodul e SHOULD have at |east one initial "revision" statenent. For

Bj or kl und St andards Track [Page 44]

RFC 6020 YANG Oct ober 2010

every published editorial change, a new one SHOULD be added in front
of the revisions sequence, so that all revisions are in reverse
chronol ogi cal order

7.1.9.1. The revision s Substatement

oo . U +
| substatenment | section | cardinality |
o e o R R +
| description | 7.19.3 | 0..1 |
| reference | 7.19.4 | 0..1 |
R R S +

7.1.10. Usage Exanpl e
nmodul e acme- system {
nanespace "http://acne. exanpl e. com systent;
prefix "acne";
i mport ietf-yang-types {
prefix "yang";
}

i ncl ude acne-types;

organi zation "ACME Inc.";

cont act
"Joe L. User
ACME, | nc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
EMai | : j oe@cne. exanpl e. conf

description
"The nodule for entities inplenmenting the ACVE protocol.";

revi sion "2007-06-09" {
description "lInitial revision.";
}

/] definitions follow ..

Bj or kl und St andards Track [Page 45]

RFC 6020 YANG Oct ober 2010

7.2. The subnpdul e St atenent

VWhile the primary unit in YANGis a nodule, a YANG nodul e can itself
be constructed out of several subnodul es. Subnodul es allow a nodul e
designer to split a conplex nodel into several pieces where all the
subnodul es contribute to a single nanmespace, which is defined by the
nodul e that includes the subnodul es.

The "subnodul e" statenment defines the subnodul e’ s name, and groups
all statenents that belong to the subnodul e together. The
"subnodul e" statenent’s argunent is the name of the subnodul e,

foll owed by a bl ock of substatenents that hold detail ed subnodul e
information. The submodul e name follows the rules for identifiers in
Section 6. 2.

Nanes of subrmodul es published in RFC streans [RFC4844] MUST be
assigned by | ANA, see Section 14.

Private subnodul e nanes are assigned by the organi zati on owning the
subnmodul e without a central registry. It is RECOMVENDED to choose
submodul e nanes that will have a | ow probability of colliding with
standard or other enterprise nodul es and subnodul es, e.g., by using
the enterprise or organization nanme as a prefix for the subnodul e
name.

Bj or kl und St andards Track [Page 46]

RFC 6020 YANG Oct ober 2010

A subnodul e typically has the follow ng | ayout:
subnmodul e <nodul e- name> {
<yang- versi on st atenent >

/1 nodule identification
<bel ongs-to st at enent >

/1 linkage statenents
<i nport statements>
<i ncl ude statenents>

/1 meta information
<organi zati on statenent>
<cont act statenent>
<descri pti on statement>
<reference statenent>

/1 revision history
<revi si on statenents>

/1 modul e definitions
<ot her st atenents>

Bj or kl und St andards Track [Page 47]

RFC 6020 YANG Oct ober 2010

7.2.1. The subnodul e’ s Subst atenents

. S . +
| substatement | section | cardinality |
oo SR S +
anyxm	7.10	0..n	
augnent	7.15	0..n	
belongs-to	7.2.2	1	
choice	7.9	0..n	
contact	7.1.8	0..1	
container	7.5	0..n	
description	7.19.3	0..1	
deviation	7.18.3	0..n	
extension	7.17	0..n	
feature	7.18.1	0..n	
grouping	7.11	0..n	
identity	7.16	0..n	
inmport	7.1.5	0..n	
include	7.1.6	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
notification	7.14	0..n	
organization	7.1.7	0..1	
reference	7.19.4	0..1	
revision	7.1.9	0..n	
rpc	7.13	0..n	
typedef	7.3	0..n	
uses	7.12	0..n	
yang-version	7.1.2	0..1	
. STy . +

7.2.2. The belongs-to Statenent

The "bel ongs-to" statenent specifies the nmodule to which the
subnodul e bel ongs. The argunent is an identifier that is the name of
t he nodul e.

A subnodul e MJUST only be included by the nodule to which it bel ongs,
or by anot her subnodul e that belongs to that nodul e.

The mandatory "prefix" substatenent assigns a prefix for the nodul e
to which the subnbdul e belongs. All definitions in the |oca
subnmodul e and any included subnodul es can be accessed by using the
prefix.

Bj or kl und St andards Track [Page 48]

RFC 6020 YANG Oct ober 2010

The bel ongs-to’s Substatenents

. S . +
| substatement | section | cardinality |
oo SR S +
| prefix | 7.1.4 | 1 |
. STy . +

7.2.3. Usage Exanple
subnmodul e acne-types {

bel ongs-to "acme-system' {
prefix "acne";

}
i mport ietf-yang-types {
prefix "yang";
}
organi zation "ACME Inc.";
cont act
"Joe L. User
ACME, I nc.

42 Anywhere Drive
Nowher e, CA 95134
USA

Phone: +1 800 555 0100
EMai | : j oe@cne. exanpl e. coni';

description
"Thi s subnodul e defi nes common ACME types.";

revi sion "2007-06-09" {
description "lnitial revision.";
}

/1l definitions follows...
7.3. The typedef Statenent
The "typedef" statenent defines a new type that nay be used locally

in the nodul e, in nodul es or subnmodul es which include it, and by
ot her nodul es that inport fromit, according to the rules in

Bj or kl und St andards Track [Page 49]

RFC 6020 YANG Oct ober 2010

Section 5.5. The new type is called the "derived type", and the type
fromwhich it was derived is called the "base type". Al derived
types can be traced back to a YANG built-in type.

The "typedef" statenent’s argunent is an identifier that is the nane
of the type to be defined, and MJUST be followed by a bl ock of
substatenments that holds detail ed typedef infornation.

The nane of the type MJUST NOT be one of the YANG built-in types. |If
the typedef is defined at the top | evel of a YANG nodul e or
subnmodul e, the nanme of the type to be defined MJST be unique within
t he nodul e.

7.3.1. The typedef’s Substatenents

| default | 7
| description | 7
| reference | 7
| status | 7.
| type | 7
| units | 7

7.3.2. The typedef’s type Statenent

The "type" statenment, which MJST be present, defines the base type
fromwhich this type is derived. See Section 7.4 for details.

7.3.3. The units Statenent
The "units" statenent, which is optional, takes as an argunment a
string that contains a textual definition of the units associated
with the type.

7.3.4. The typedef’'s default Statenent

The "default" statenent takes as an argunent a string that contains a
default value for the new type.

The val ue of the "default" statenent MJST be valid according to the
type specified in the "type" statenent.

If the base type has a default value, and the new derived type does

not specify a new default value, the base type’'s default value is
al so the default value of the new derived type.

Bj or kl und St andards Track [Page 50]

RFC 6020 YANG Oct ober 2010

7.

7

7.

7.

If the type's default value is not valid according to the new
restrictions specified in a derived type or leaf definition, the
derived type or leaf definition MJUST specify a new default val ue
conpatible with the restrictions.

3.5. Usage Exanple
typedef |isten-ipv4-address {

type inet:ipv4-address;
default "0.0.0.0";

.4. The type Statenent

The "type" statenent takes as an argunent a string that is the nane
of a YANG built-in type (see Section 9) or a derived type (see
Section 7.3), followed by an optional block of substatements that are
used to put further restrictions on the type.

The restrictions that can be applied depend on the type being
restricted. The restriction statenents for all built-in types are
described in the subsections of Section 9.

4.1. The type’'s Substatenents

|
enum
l ength |
pat h |
pattern |
range |
require-instance

type |

I n I
I n I
I 1 I
| 0..1 I
| 0..n I
I 1 I
I 1 I
I n I

5. The contai ner Statement

The "container"” statement is used to define an interior data node in
the schema tree. It takes one argunment, which is an identifier

foll owed by a bl ock of substatenents that hol ds detail ed container

i nfornati on.

A cont ai ner node does not have a value, but it has a list of child
nodes in the data tree. The child nodes are defined in the
contai ner’s subst atenents.

Bj or kl und St andards Track [Page 51]

RFC 6020 YANG Oct ober 2010

7.5.1. Containers with Presence

YANG supports two styles of containers, those that exist only for
organi zing the hierarchy of data nodes, and those whose presence in
the configuration has an explicit neaning.

In the first style, the container has no nmeaning of its own, existing
only to contain child nodes. This is the default style.

For exanple, the set of scranbling options for Synchronous Optica

Net wor k (SONET) interfaces may be placed inside a "scranbling”

contai ner to enhance the organization of the configuration hierarchy,
and to keep these nodes together. The "scranbling" node itself has
no meani ng, so renoving the node when it beconmes enpty relieves the
user fromperformng this task.

In the second style, the presence of the container itself is
configuration data, representing a single bit of configuration data.
The container acts as both a configuration knob and a neans of
organi zing rel ated configuration. These containers are explicitly
created and del et ed.

YANG calls this style a "presence container” and it is indicated
using the "presence" statenent, which takes as its argunent a text
string indicating what the presence of the node neans.

For exanple, an "ssh" container may turn on the ability to log into
the device using ssh, but can al so contain any ssh-rel ated
configuration knobs, such as connection rates or retry limts.

The "presence" statement (see Section 7.5.5) is used to give
semantics to the exi stence of the container in the data tree.

Bj or kl und St andards Track [Page 52]

RFC 6020 YANG Oct ober 2010

7.

7.

5.

5.

2. The container’s Substatenents

. S . +
| substatement | section | cardinality |
oo SR S +
anyxm	7.10	0..n	
choice	7.9	0..n	
config	7.19.1	0..1	
container	7.5	0..n	
description	7.19.3	0..1	
grouping	7.11	0..n	
if-feature	7.18.2	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
rust	7.5.3	0..n	
presence	7.5.5	0..1	
reference	7.19.4	0..1	
status	7.19.2	0..1	

typedef	7.3	0..n
uses	7.12	0..n
when	7.19.5	0..1
oo SR S +

3. The nust Statenent

The "must" statenment, which is optional, takes as an argunment a
string that contains an XPath expression (see Section 6.4). It is
used to formally declare a constraint on valid data. The constraint
is enforced according to the rules in Section 8.

When a datastore is validated, all "nust" constraints are
conceptual | y eval uated once for each data node in the data tree, and
for all leafs with default values in use (see Section 7.6.1). If a

data node does not exist in the data tree, and it does not have a
default value, its "nust" statenents are not eval uated

Al'l such constraints MJST evaluate to true for the data to be valid.

The XPath expression is conceptually evaluated in the follow ng
context, in addition to the definition in Section 6.4.1

o The context node is the node in the data tree for which the "nust"
statenent is defined.

0 The accessible tree is made up of all nodes in the data tree, and
all leafs with default values in use (see Section 7.6.1).

Bj or kl und St andards Track [Page 53]

RFC 6020 YANG Oct ober 2010

The accessible tree depends on the context node:

o |If the context node represents configuration, the tree is the data
in the NETCONF dat astore where the context node exists. The XPath
root node has all top-level configuration data nodes in al
nmodul es as chil dren.

o |If the context node represents state data, the tree is all state
data on the device, and the <running/> datastore. The XPath root
node has all top-level data nodes in all nodules as children

o If the context node represents notification content, the tree is
the notification XM instance document. The XPath root node has
the elenment representing the notification being defined as the
only child.

o If the context node represents RPC input paraneters, the tree is
the RPC XM instance docunent. The XPath root node has the
el ement representing the RPC operation being defined as the only
child.

o If the context node represents RPC output paraneters, the tree is
the RPC reply instance docunent. The XPath root node has the
el ements representing the RPC output paranmeters as children

The result of the XPath expression is converted to a bool ean val ue
using the standard XPath rul es.

Note that since all |leaf values in the data tree are conceptually
stored in their canonical form (see Sections 7.6 and 7.7), any XPath
conpari sons are done on the canonical val ue.

Al so note that the XPath expression is conceptually evaluated. This
nmeans that an inplementati on does not have to use an XPath eval uat or
on the device. How the evaluation is done in practice is an

i mpl enent ati on deci sion.

Bj or kl und St andards Track [Page 54]

RFC 6020 YANG Oct ober 2010

7.5.4. The mnmust’s Substatenments

. S . +
| substatement | section | cardinality |
Fom e e e oo - SR S +
description	7.19.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
reference	7.19.4	0..1
Fom e e e e oo - S Fom e e e e oo - +

7.5.4.1. The error-nessage Statenent

The "error-nessage" statenment, which is optional, takes a string as
an argunent. |If the constraint evaluates to false, the string is
passed as <error-message> in the <rpc-error>.

7.5.4.2. The error-app-tag Statenent

The "error-app-tag" statement, which is optional, takes a string as
an argunent. |If the constraint evaluates to false, the string is
passed as <error-app-tag> in the <rpc-error>.

7.5.4.3. Usage Exanple of nust and error-nessage

contai ner interface {
[eaf ifType {
type enuneration {
enum et her net ;
enum at m

}
[eaf ifMIU {
type uint32;

nmust "ifType != "ethernet’ or " +
"(ifType = "ethernet’ and i f MU = 1500)" {
error-nmessage "An ethernet MIU nust be 1500";

must "ifType !'="atm or " +
"(ifType "atm and i fMIU <= 17966 and i fMIU >= 64)" {
error-message "An atm MIU nust be 64 .. 17966";

Bj or kl und St andards Track [Page 55]

RFC 6020 YANG Oct ober 2010

7.5.5. The presence Statenent

The "presence" statement assigns a neaning to the presence of a
container in the data tree. It takes as an argunent a string that
contains a textual description of what the node’ s presence neans.

If a container has the "presence" statenent, the container’s
existence in the data tree carries sonme nmeaning. Oherw se, the
container is used to give sone structure to the data, and it carries
no meani ng by itself.

See Section 7.5.1 for additional information.
7.5.6. The container’'s Child Node Statenents

Wthin a container, the "container", "leaf", "list", "leaf-list",
"uses", "choice", and "anyxm " statenments can be used to define child
nodes to the contai ner

7.5.7. XM Mapping Rul es

A contai ner node is encoded as an XM. elenent. The elenent’s |oca
nane is the container’s identifier, and its nanespace is the nodule’s
XM. nanespace (see Section 7.1.3).

The container’s child nodes are encoded as subel ements to the
container element. |If the container defines RPC input or output
parameters, these subelements are encoded in the same order as they
are defined within the "container" statement. Oherw se, the

subel enents are encoded in any order

A NETCONF server that replies to a <get> or <get-config> request MY
choose not to send a container elenent if the container node does not
have the "presence" statement and no child nodes exist. Thus, a
client that receives an <rpc-reply> for a <get> or <get-config>
request, must be prepared to handle the case that a contai ner node

wi thout a "presence" statenent is not present in the XM.

7.5.8. NETCONF <edit-config> Operations
Cont ai ners can be created, deleted, replaced, and nodified through
<edit-config> by using the "operation" attribute (see [RFC4741],
Section 7.2) in the container’s XM el enent.

If a container does not have a "presence" statenent and the | ast
child node is deleted, the NETCONF server MAY del ete the container

Bj or kl und St andards Track [Page 56]

RFC 6020 YANG Oct ober 2010

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the contai ner node are:

If the operation is "nerge" or "replace", the node is created if
it does not exist.

If the operation is "create", the node is created if it does not
exist. |If the node already exists, a "data-exists" error is
returned.

If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing" error is returned.

7.5.9. Usage Exanple
G ven the follow ng container definition:

contai ner system/{
description "Contai ns various system paraneters”;
cont ai ner services {
description "Configure externally avail abl e services";
cont ai ner "ssh" {
presence "Enabl es SSH';
description "SSH service specific configuration”;
/1 nmore |eafs, containers and stuff here..

}
A correspondi ng XM i nstance exanpl e:
<syst enp
<servi ces>
<ssh/ >
</ servi ces>
</ systenp
Since the <ssh> elenment is present, ssh is enabl ed.

To delete a container with an <edit-config>:

Bj or kl und St andards Track [Page 57]

RFC 6020 YANG Oct ober 2010

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<config>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh nc:operation="del ete"/>
</ services>
</ syst enp
</ config>
</edit-config>
</rpc>

.6. The | eaf Statenent

The "leaf" statenment is used to define a | eaf node in the schemn
tree. It takes one argunent, which is an identifier, followed by a
bl ock of substatenents that holds detailed | eaf information

A | eaf node has a value, but no child nodes in the data tree.
Conceptually, the value in the data tree is always in the canonica
form (see Section 9.1).

A leaf node exists in zero or one instances in the data tree.

The "leaf" statenment is used to define a scalar variable of a
particular built-in or derived type.

.6.1. The leaf’'s default val ue

The default value of a leaf is the value that the server uses if the
| eaf does not exist in the data tree. The usage of the default val ue
depends on the leaf’s closest ancestor node in the schena tree that
is not a non-presence contai ner

o |If no such ancestor exists in the schemn tree, the default val ue
MUST be used.

0 Oherwise, if this ancestor is a case node, the default value MJST
be used if any node fromthe case exists in the data tree, or if
the case node is the choice’ s default case, and no nodes from any
ot her case exist in the data tree.

Bj or kl und St andards Track [Page 58]

RFC 6020 YANG Oct ober 2010

7.

7.

6.

6.

0 Oherwi se, the default value MJST be used if the ancestor node
exists in the data tree.

In these cases, the default value is said to be in use.

When the default value is in use, the server MJST operationally
behave as if the leaf was present in the data tree with the default
val ue as its val ue.

If a leaf has a "default" statenent, the leaf’s default value is the
val ue of the "default"” statement. Oherwise, if the leaf’s type has
a default value, and the leaf is not mandatory, then the leaf’s
default value is the type's default value. 1In all other cases, the
| eaf does not have a default val ue.

2. The leaf’s Substatenents

R R S +
| substatement | section | cardinality |
oo S oo oo +
config	7.19.1	0..1
default	7.6.4	0..1
description	7.19.3	0..1
if-feature	7.18.2	0..n
mandatory	7.6.5	0..1
rmust	7.5.3	0..n
reference	7.19.4	0..1
status	7.19.2	0..1

type	7.6.3	1
units	7.3.3	0..1
when	7.19.5	0..1
oo S e +

3. The leaf’s type Statenent

The "type" statenent, which MJST be present, takes as an argunent the
nane of an existing built-in or derived type. The optiona
substatenments specify restrictions on this type. See Section 7.4 for
details.

7.6.4. The leaf’s default Statenent

The "default" statenent, which is optional, takes as an argunment a
string that contains a default value for the |eaf.

The val ue of the "default" statenent MJST be valid according to the
type specified in the leaf’s "type" statenent.

Bj or kl und St andards Track [Page 59]

RFC 6020 YANG Oct ober 2010

The "default" statenent MJUST NOT be present on nodes where
"mandatory" is true

7.6.5. The leaf’s mandatory Statenent

The "mandatory" statement, which is optional, takes as an argunent
the string "true" or "false", and puts a constraint on valid data.
If not specified, the default is "fal se"

If "mandatory" is "true", the behavior of the constraint depends on
the type of the leaf’s closest ancestor node in the schema tree that
is not a non-presence container (see Section 7.5.1):

o |If no such ancestor exists in the schema tree, the |eaf MJST
exi st.

0 Oherwise, if this ancestor is a case node, the | eaf MJST exist if
any node fromthe case exists in the data tree.

0 Oherwise, the |eaf MJST exist if the ancestor node exists in the
data tree.

This constraint is enforced according to the rules in Section 8.
7.6.6. XM Mapping Rul es

A leaf node is encoded as an XM. elenment. The elenment’s |ocal nane

is the leaf's identifier, and its nanespace is the nodule’ s XM

nanespace (see Section 7.1.3).

The val ue of the |eaf node is encoded to XM. according to the type,
and sent as character data in the el ement.

A NETCONF server that replies to a <get> or <get-config> request MAY
choose not to send the leaf elenment if its value is the default

val ue. Thus, a client that receives an <rpc-reply> for a <get> or
<get-confi g> request, MJST be prepared to handl e the case that a | eaf
node with a default value is not present in the XM.. In this case,
the val ue used by the server is known to be the default val ue.

See Section 7.6.8 for an exanpl e.
7.6.7. NETCONF <edit-config> Operations

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the | eaf node are:

Bj or kl und St andards Track [Page 60]

RFC 6020 YANG Oct ober 2010

If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the value found in the

XML RPC dat a

If the operation is "create", the node is created if it does not
exist. |If the node already exists, a "data-exists" error is
returned.

If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing" error is returned.

7.6.8. Usage Exanple

Gven the following "leaf" statement, placed in the previously
defined "ssh" container (see Section 7.5.9):

| eaf port {
type inet: port-nunber;
default 22;
description "The port to which the SSH server |istens"

}

A correspondi ng XM i nstance exanpl e:
<port >2022</ port >
To set the value of a leaf with an <edit-config>:

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh>
<port >2022</ port >
</ ssh>
</ services>
</ syst enp
</config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 61]

RFC 6020 YANG Oct ober 2010

7.7. The leaf-list Statenent

Where the "leaf" statement is used to define a sinple scalar variable
of a particular type, the "leaf-list" statenent is used to define an
array of a particular type. The "leaf-list" statenment takes one
argunent, which is an identifier, followed by a bl ock of
substatenments that holds detailed leaf-1ist information.

The values in a leaf-1ist MJST be uni que.

Conceptual ly, the values in the data tree are always in the canonica
form (see Section 9.1).

If the type referenced by the leaf-list has a default value, it has
no effect in the leaf-1list.

7.7.1. Odering

YANG supports two styles for ordering the entries within lists and
leaf-1ists. In many lists, the order of list entries does not inpact
the inplementation of the list’'s configuration, and the device is
free to sort the list entries in any reasonable order. The
"description” string for the list may suggest an order to the device
i mpl enentor. YANG calls this style of |ist "systemordered" and they
are indicated with the statenent "ordered-by systent

For exanple, a list of valid users would typically be sorted
al phabetically, since the order in which the users appeared in the
configuration would not inpact the creation of those users’ accounts.

In the other style of lists, the order of list entries natters for
the inplenentation of the list's configuration and the user is
responsi ble for ordering the entries, while the device naintains that
order. YANG calls this style of list "user ordered" and they are
indicated with the statement "ordered-by user”.

For exanple, the order in which firewall filters entries are applied
to incoming traffic may affect how that traffic is filtered. The
user would need to decide if the filter entry that discards all TCP
traffic should be applied before or after the filter entry that
allows all traffic fromtrusted interfaces. The choice of order
woul d be crucial.

YANG provides a rich set of facilities within NETCONF' s <edit-config>
operation that allows the order of list entries in user-ordered lists
to be controlled. List entries may be inserted or rearranged,
positioned as the first or last entry in the list, or positioned
before or after another specific entry.

Bj or kl und St andards Track [Page 62]

RFC 6020 YANG Oct ober 2010

7.

7.

7

7.

The "ordered-by" statenent is covered in Section 7.7.5.

.2. The leaf-list’'s Substatenents

config
description
if-feature
max- el enent s
m n-el ement s
must

or der ed- by
reference
st at us

type

units

when

3. The mn-el ements Statenent

The "m n-el ements" statenent, which is optional, takes as an argunent
a non-negative integer that puts a constraint on valid list entries.
Avalid leaf-list or list MIUST have at |east nin-elenents entries.

If no "mn-elenents" statenment is present, it defaults to zero.

The behavi or of the constraint depends on the type of the leaf-list’s
or list's closest ancestor node in the schenma tree that is not a non-
presence contai ner (see Section 7.5.1):

o If this ancestor is a case node, the constraint is enforced if any
ot her node fromthe case exists.

o Oherwise, it is enforced if the ancestor node exists.

The constraint is further enforced according to the rules in
Section 8.

7.7.4. The max-el enents Statenment

The "max-el ements" statenent, which is optional, takes as an argunent
a positive integer or the string "unbounded", which puts a constraint
on valid list entries. Awvalid leaf-list or list always has at nost
max- el enents entries.

Bj or kl und St andards Track [Page 63]

RFC 6020 YANG Oct ober 2010

If no "max-el enents" statenment is present, it defaults to
"unbounded".

The "max-el ements" constraint is enforced according to the rules in
Section 8.

7.7.5. The ordered-by Statenent

The "ordered-by" statenent defines whether the order of entries
within a list are determ ned by the user or the system The argunent
is one of the strings "systenmt or "user". |f not present, order
defaults to "systent.

This statenment is ignored if the Iist represents state data, RPC
out put paraneters, or notification content.

See Section 7.7.1 for additional information
7.7.5.1. ordered-by system

The entries in the list are sorted according to an unspecified order
Thus, an inplenentation is free to sort the entries in the nopst
appropriate order. An inplenentation SHOULD use the same order for
the sanme data, regardl ess of how the data were created. Using a
determnistic order will nake conparisons possible using sinple tools
like "diff".

This is the default order.

7.7.5.2. ordered-by user
The entries in the list are sorted according to an order defined by
the user. This order is controlled by using special XM attributes
in the <edit-config> request. See Section 7.7.7 for details.

7.7.6. XM Mapping Rul es
A leaf-list node is encoded as a series of XM. el enents. Each
element’s local name is the leaf-list’s identifier, and its nanespace

is the nodul e s XML nanespace (see Section 7.1.3).

The val ue of each leaf-list entry is encoded to XML according to the
type, and sent as character data in the el enent.

The XML el enents representing leaf-list entries MJUST appear in the

order specified by the user if the leaf-list is "ordered-by user”;
ot herwi se, the order is inplenmentation-dependent. The XM el enents

Bj or kl und St andards Track [Page 64]

RFC 6020 YANG Oct ober 2010

representing leaf-list entries MAY be interleaved with other sibling
el ements, unless the leaf-1ist defines RPC input or output
par anmet ers.

See Section 7.7.8 for an exanpl e.
7.7.7. NETCONF <edit-config> Operations

Leaf-1ist entries can be created and del eted, but not nodified,
through <edit-config>, by using the "operation" attribute in the
leaf-list entry’s XM el enent .

In an "ordered-by user" leaf-list, the attributes "insert" and
"value" in the YANG XML nanmespace (Section 5.3.1) can be used to
control where in the leaf-list the entry is inserted. These can be
used during "create" operations to insert a new leaf-list entry, or
during "merge" or "replace" operations to insert a new |leaf-I|ist
entry or nove an exi sting one.

The "insert" attribute can take the values "first", "last", "before"
and "after". |If the value is "before" or "after", the "val ue"
attribute MIUST al so be used to specify an existing entry in the | eaf-
list.

If no "insert" attribute is present in the "create" operation, it
defaults to "last".

If several entries in an "ordered-by user"” leaf-list are nodified in
the sanme <edit-config> request, the entries are nodified one at the
time, in the order of the XML elenents in the request.

In a <copy-config> or an <edit-config> with a "replace" operation
that covers the entire leaf-list, the leaf-list order is the same as
the order of the XML el enents in the request.

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for a leaf-list node are:

If the operation is "nerge" or "replace", the leaf-list entry is
created if it does not exist.

If the operation is "create", the leaf-list entry is created if it
does not exist. |If the leaf-list entry already exists, a
"data-exi sts" error is returned.

If the operation is "delete", the entry is deleted fromthe |eaf-

list if it exists. |If the leaf-list entry does not exist, a
"data-m ssing" error is returned.

Bj or kl und St andards Track [Page 65]

RFC 6020 YANG Oct ober 2010

7.7.8. Usage Exanple

leaf-1ist allowuser {
type string;
description "A list of user nane patterns to all ow'

}
A correspondi ng XM i nstance exanpl e:

<al | ow user>al i ce</ al | ow user >
<al | ow user >bob</ al | ow user >

To create a new elenent in this list, using the default <edit-config>
operation "nerge":

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh>
<al | ow user>eric</al |l ow user>
</ ssh>
</ servi ces>
</ systenp
</ config>
</edit-config>
</rpc>

G ven the foll owi ng ordered-by user leaf-1list:

| eaf-1ist cipher {
type string;
or der ed- by user;
description "A list of ciphers”;

}

The foll owing woul d be used to insert a new ci pher "blowfish-chc"
after "3des-chc":

Bj or kl und St andards Track [Page 66]

RFC 6020 YANG Oct ober 2010

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf:base: 1. 0"
xm ns: nc="urn:ietf:paramns: xm : ns: net conf: base: 1. 0"
xm ns: yang="urn:ietf:parans: xm:ns:yang: 1">
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh>
<ci pher nc: operation="create"
yang:insert="after"
yang: val ue="3des-cbc" >bl owf i sh- cbc</ ci pher >
</ ssh>
</ services>
</ systenp
</ config>
</edit-config>
</rpc>

7.8. The list Statenent

The "list" statement is used to define an interior data node in the
schema tree. A list node may exist in multiple instances in the data
tree. Each such instance is known as a list entry. The "list"

statenment takes one argunent, which is an identifier, followed by a
bl ock of substatements that holds detailed list information

Alist entry is uniquely identified by the values of the list’'s keys,
i f defined.

Bj or kl und St andards Track [Page 67]

RFC 6020 YANG Oct ober 2010

7.8.1. The list’s Substatenments

. S . +
| substatement | section | cardinality |
oo SR S +
anyxm	7.10	0..n	
choice	7.9	0..n	
config	7.19.1	0..1	
container	7.5	0..n	
description	7.19.3	0..1	
grouping	7.11	0..n	
if-feature	7.18.2	0..n	
key	7.8.2	0..1	
	eaf	7.6	0..n
leaf-1ist	7.7	0..n	
list	7.8	0..n	
max-elements	7.7.4	0..1	
mn-elenents	7.7.3	0..1	
rust	7.5.3	0..n	
ordered-by	7.7.5	0..1	
reference	7.19.4	0..1	
status	7.19.2	0..1	

typedef	7.3	0..n
unique	7.8.3	0..n
uses	7.12	0..n
when	7.19.5	0..1
. T . +

7.8.2. The list’s key Statenent

The "key" statenment, which MJUST be present if the list represents
configuration, and MAY be present otherw se, takes as an argunent a
string that specifies a space-separated list of |leaf identifiers of
this list. A leaf identifier MJST NOT appear nore than once in the
key. Each such leaf identifier MIJST refer to a child leaf of the
list. The leafs can be defined directly in substatenents to the
list, or in groupings used in the list.

The conbi ned values of all the leafs specified in the key are used to
uniquely identify alist entry. Al key |leafs MJST be given val ues
when a list entry is created. Thus, any default values in the key
leafs or their types are ignored. It also inplies that any nandatory
statenent in the key leafs are ignored.

A leaf that is part of the key can be of any built-in or derived
type, except it MJIST NOT be the built-in type "enpty".

Bj or kl und St andards Track [Page 68]

RFC 6020 YANG Oct ober 2010

Al key leafs in a list MIUST have the sanme value for their "config"
as the list itself.

The key string syntax is formally defined by the rule "key-arg" in
Section 12.

7.8.3. The list’'s unique Statenent

The "uni que" statenent is used to put constraints on valid |ist
entries. It takes as an argument a string that contains a space-
separated list of schema node identifiers, which MJST be given in the
descendant form (see the rul e "descendant - schena-nodei d" in

Section 12). Each such schena node identifier MJST refer to a |eaf.

If one of the referenced | eafs represents configuration data, then
all of the referenced | eafs MJST represent configuration data.

The "uni que" constraint specifies that the conbined values of all the
| eaf instances specified in the argunent string, including leafs with
default val ues, MJST be unique within all list entry instances in
which all referenced leafs exist. The constraint is enforced
according to the rules in Section 8.

The unique string syntax is fornmally defined by the rule "uni que-arg"
in Section 12.

7.8.3.1. Usage Exanple
Wth the following list:
list server {
key "name";
uni que "ip port";
| eaf name {
type string;

}
leaf ip {
type inet:ip-address;

| eaf port {
type inet: port-nunber;

Bj or kl und St andards Track [Page 69]

RFC 6020 YANG Oct ober 2010

The foll owi ng configuration is not valid:

<server>
<nane>snt p</ name>
<i p>192.0. 2. 1</ i p>
<port >25</port>

</ server >

<server>
<name>ht t p</ nanme>
<i p>192.0. 2. 1</i p>
<port >25</port >
</server>

The following configuration is valid, since the "http" and "ftp" |i st
entries do not have a value for all referenced | eafs, and are thus
not taken into account when the "uni que" constraint is enforced:

<server>
<nane>snt p</ nanme>
<i p>192.0. 2. 1</i p>
<port >25</port>
</server>

<server>
<nane>ht t p</ nane>
<i p>192.0. 2. 1</i p>
</server>

<server>
<nane>ft p</ nane>
<i p>192.0. 2. 1</i p>
</ server>

7.8.4. The list’s Child Node Statenents
Wthin a list, the "container", "leaf", "list", "leaf-list", "uses",
"“choi ce", and "anyxm " statenents can be used to define child nodes
to the list.

7.8.5. XM Mapping Rul es
Alist is encoded as a series of XM. el enents, one for each entry in

the list. Each elenent’s local nane is the list's identifier, and
its namespace is the nodule’s XM. nanespace (see Section 7.1.3).

Bj or kl und St andards Track [Page 70]

RFC 6020 YANG Oct ober 2010

The list’s key nodes are encoded as subelenents to the list’'s
identifier element, in the same order as they are defined within the
"key" statemnent.

The rest of the list’s child nodes are encoded as subel ements to the

list element, after the keys. |If the list defines RPC input or
out put paraneters, the subel enents are encoded in the sane order as
they are defined within the "list" statenent. Oherw se, the

subel enents are encoded in any order

The XML el enents representing list entries MJST appear in the order
specified by the user if the list is "ordered-by user", otherw se the
order is inplenmentation-dependent. The XM. el ements representing
list entries MAY be interleaved with other sibling el enents, unless
the list defines RPC input or output paraneters.

7.8.6. NETCONF <edit-config> Operations

List entries can be created, deleted, replaced, and nodified through
<edit-config> by using the "operation" attribute in the list’s XM
element. 1In each case, the values of all keys are used to uniquely
identify a list entry. |If all keys are not specified for a |ist
entry, a "mssing-element” error is returned.

In an "ordered-by user" list, the attributes "insert" and "key" in
the YANG XML nanespace (Section 5.3.1) can be used to control where
inthe list the entry is inserted. These can be used during "create"
operations to insert a newlist entry, or during "merge" or "repl ace"
operations to insert a newlist entry or nove an existing one.

The "insert" attribute can take the values "first", "last", "before"
and "after". If the value is "before" or "after", the "key"
attribute MIUST al so be used, to specify an existing element in the
list. The value of the "key" attribute is the key predicates of the
full instance identifier (see Section 9.13) for the list entry.

If no "insert" attribute is present in the "create" operation, it
defaults to "last".

If several entries in an "ordered-by user" list are nodified in the
same <edit-config> request, the entries are nodified one at the tine,
in the order of the XM. elenents in the request.

In a <copy-config>, or an <edit-config> with a "replace" operation

that covers the entire list, the list entry order is the same as the
order of the XML el enents in the request.

Bj or kl und St andards Track [Page 71]

RFC 6020 YANG Oct ober 2010

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for a |ist node are:

If the operation is "nerge" or "replace", the list entry is
created if it does not exist. |If the list entry already exists
and the "insert" and "key" attributes are present, the list entry
is moved according to the values of the "insert" and "key"
attributes. |If the list entry exists and the "insert" and "key"
attributes are not present, the list entry is not noved.

If the operation is "create", the list entry is created if it does
not exist. |If the list entry already exists, a "data-exists"
error is returned.

If the operation is "delete", the entry is deleted fromthe |i st
if it exists. |If the list entry does not exist, a "data-m ssing"
error is returned.

7.8.7. Usage Exanple
Gven the following list:

[ist user {
key "name";
config true
description "This is a list of users in the system";

| eaf name {
type string;

}
| eaf type {
type string;

| eaf full-name {
type string;

}
A correspondi ng XM i nstance exanpl e:

<user >

<name>f r ed</ name>

<t ype>admi n</type>

<full-name>Fred Flintstone</full-name>
</ user >

Bj or kl und St andards Track [Page 72]

RFC 6020 YANG Oct ober 2010

To create a new user "barney":

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<config>
<system xm ns="http://exanpl e. com schena/ confi g">
<user nc:operation="create">
<nane>bar ney</ nane>
<t ype>admi n</type>
<ful | - name>Bar ney Rubbl e</full - name>
</ user >
</ syst enp
</ config>
</edit-config>
</rpc>

To change the type of "fred" to "superuser":

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0"
xm ns: nc="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<user >
<nane>f r ed</ nanme>
<t ype>superuser</type>
</ user>
</ syst enp
</config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 73]

RFC 6020 YANG Oct ober 2010

G ven the foll ow ng ordered-by user list:

list user {
description "This is a list of users in the system";
or der ed- by user;
config true

key "name";
| eaf name {
type string;

}
| eaf type {
type string;

| eaf full-name {
type string;

}

The foll owing would be used to insert a new user "barney" after the
user "fred":

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0"
xm ns: nc="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0"
xm ns:yang="urn:ietf:params: xm:ns:yang:1">
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g"
xm ns: ex="http://exanmpl e. conf schema/ config">
<user nc:operation="create"
yang:insert="after"
yang: key="[ex: nane="fred']">
<nane>bar ney</ name>
<type>admi n</type>
<ful | - name>Bar ney Rubbl e</ful | -name>
</ user >
</ systenp
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 74]

RFC 6020 YANG Oct ober 2010

The foll owi ng woul d be used to nove the user "barney" before the user
"fred":

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: netconf: base: 1. 0"
xm ns:yang="urn:ietf:parans: xm:ns:yang: 1">
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http:// exanpl e. com schena/ confi g"
xm ns: ex="http://exanpl e. conl schenma/ config">
<user nc:operation="nerge"
yang: i nsert="bef ore"
yang: key="[ex: nane="fred]">
<nane>bar ney</ nane>
</ user>
</ syst enp
</ config>
</ edit-config>
</rpc>

7.9. The choice Statenent

The "choi ce" statenment defines a set of alternatives, only one of
whi ch may exi st at any one tine. The argunent is an identifier
foll owed by a bl ock of substatenents that holds detail ed choice
information. The identifier is used to identify the choice node in
the schema tree. A choice node does not exist in the data tree.

A choi ce consists of a nunber of branches, defined with the "case"
substatenment. Each branch contains a number of child nodes. The
nodes from at nost one of the choice s branches exist at the sane
tinme.

See Section 8.3.2 for additional information

Bj or kl und St andards Track [Page 75]

RFC 6020 YANG Oct ober 2010

7.

7.

9.1. The choice’s Substatenments

. S . +
| substatement | section | cardinality |
oo SR S +
anyxm	7.10	0..n	
case	7.9.2	0..n	
config	7.19.1	0..1	
container	7.5	0..n	
default	7.9.3	0..1	
description	7.19.3	0..1	
if-feature	7.18.2	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
mandatory	7.9.4	0..1	
reference	7.19.4	0..1	
status	7.19.2	0..1	

| when | 7.19.5 | 0..1 |
. S TR . +

9.2. The choice's case Statenent

The "case" statenent is used to define branches of the choice. It
takes as an argunent an identifier, followed by a bl ock of
substatenents that holds detail ed case i nformation

The identifier is used to identify the case node in the schema tree.
A case node does not exist in the data tree.

Wthin a "case" statenent, the "anyxm ", "choice", "container",
"leaf", "list", "leaf-list", and "uses" statenents can be used to
define child nodes to the case node. The identifiers of all these
child nodes MUST be unique within all cases in a choice. For

exanple, the following is illegal
choice interface-type { /1 This exanple is illegal YANG
case a {
| eaf ethernet { ... }
case b {
contai ner ethernet { ...}
}
}

Bj or kl und St andards Track [Page 76]

RFC 6020 YANG Oct ober 2010

As a shorthand, the "case" statenent can be omtted if the branch

contains a single "anyxnm", "container", "leaf", "list", or
"leaf-list" statenment. 1In this case, the identifier of the case node
is the same as the identifier in the branch statenent. The follow ng
exanpl e:

choice interface-type {
container ethernet { ... }
}
is equivalent to:
choice interface-type {

case et hernet {
container ethernet { ... }
}

}

The case identifier MJST be unique within a choice.

7.9.2.1. The case's Substatenents

oo SR S +
| substatement | section | cardinality |
. STy . +
anyxm	7.10	0..n	
choice	7.9	0..n	
container	7.5	0..n	
description	7.19.3	0..1	
if-feature	7.18.2	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
reference	7.19.4	0..1	
status	7.19.2	0..1	

| uses | 7.12 | 0..n |
| when | 7.19.5 | 0..1 |
. S TR . +

7.9.3. The choice’'s default Statement

The "default" statement indicates if a case should be considered as
the default if no child nodes fromany of the choice’'s cases exist.
The argunment is the identifier of the "case" statenent. |f the
"default" statenent is missing, there is no default case.

The "default" statenent MJST NOT be present on choi ces where
"mandatory" is true

Bj or kl und St andards Track [Page 77]

RFC 6020 YANG Oct ober 2010

The default case is only inmportant when considering the default

val ues of nodes under the cases. The default values for nodes under
the default case are used if none of the nodes under any of the cases
are present.

There MUST NOT be any nandatory nodes (Section 3.1) directly under
the default case.

Default values for child nodes under a case are only used if one of
the nodes under that case is present, or if that case is the default
case. |If none of the nodes under a case are present and the case is
not the default case, the default values of the cases’ child nodes
are ignored.

In this exanple, the choice defaults to "interval", and the default
value will be used if none of "daily", "tine-of-day", or "nmanual" are
present. If "daily" is present, the default value for "time-of-day"
wi |l be used.

contai ner transfer {
choi ce how {
default interval;
case interval {
| eaf interval {

type uint 16;
default 30;
units mnutes;

}

case daily {
| eaf daily {

type enpty;

| eaf time-of-day {
type string;
units 24-hour-cl ock
default lam
}
}
case manual {
| eaf manual {
type enpty;
}

Bj or kl und St andards Track [Page 78]

RFC 6020 YANG Oct ober 2010

7.9.4. The choice’'s nandatory Statenent
The "mandatory" statement, which is optional, takes as an argunent
the string "true" or "false", and puts a constraint on valid data.
If "mandatory” is "true", at |east one node fromexactly one of the
choi ce’ s case branches MJST exi st.
If not specified, the default is "fal se"
The behavi or of the constraint depends on the type of the choice’'s
cl osest ancestor node in the schema tree which is not a non-presence
contai ner (see Section 7.5.1):

o If this ancestor is a case node, the constraint is enforced if any
ot her node fromthe case exists.

o0 Oherwise, it is enforced if the ancestor node exists.

The constraint is further enforced according to the rules in
Section 8.

7.9.5. XM Mapping Rul es
The choi ce and case nodes are not visible in XM.
The child nodes of the selected "case" statenment MJUST be encoded in
the same order as they are defined in the "case" statement if they
are part of an RPC input or output parameter definition. O herw se,
the subel emrents are encoded in any order

7.9.6. NETCONF <edit-config> Operations
Since only one of the choice's cases can be valid at any tine, the
creation of a node fromone case inplicitly deletes all nodes from
all other cases. |If an <edit-config> operation creates a node froma
case, the NETCONF server will delete any existing nodes that are
defined in other cases inside the chaice.

7.9.7. Usage Exanple

G ven the foll ow ng choi ce:

Bj or kl und St andards Track [Page 79]

RFC 6020 YANG Oct ober 2010

contai ner protocol {
choi ce nane {
case a {
| eaf udp {

type enpty;

case b {
leaf tcp {

type enpty;

}

A correspondi ng XM i nstance exanpl e:

<pr ot ocol >
<tcp/>
</ pr ot ocol >

To change the protocol fromtcp to udp:

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0"
xm ns: nc="urn:ietf:paramnms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<pr ot ocol >
<udp nc:operation="create"/>
</ pr ot ocol >
</ systenp
</ config>
</edit-config>
</rpc>

7.10. The anyxnl Statenent
The "anyxml " statenent defines an interior node in the schena tree.

It takes one argunent, which is an identifier, followed by a bl ock of
substatenents that holds detailed anyxm information.

Bj or kl und St andards Track [Page 80]

RFC 6020 YANG Oct ober 2010

The "anyxml " statenent is used to represent an unknown chunk of XM..
No restrictions are placed on the XM.. This can be useful, for
exanple, in RPC replies. An exanple is the <filter> paranmeter in the
<get-confi g> operation.

An anyxm node cannot be augnmented (see Section 7.15).

Since the use of anyxml limts the manipulation of the content, it is
RECOMMVENDED t hat the "anyxml" statement not be used to represent
configuration data.

An anyxm node exists in zero or one instances in the data tree.

7.10.1. The anyxm’'s Substatenents

Fomm oo o - S Fom e e e e oo - +
| substatenment | section | cardinality |
R R S +
config	7.19.1	0..1
description	7.19.3	0..1
if-feature	7.18.2	0..n
mandatory	7.6.5	0..1
rmust	7.5.3	0..n
reference	7.19.4	0..1
status	7.19.2	0..1

| when | 7.19.5 | 0..1 |
. T . +

7.10.2. XM Mapping Rul es

An anyxml node is encoded as an XM. elenent. The elenent’s |oca
name is the anyxm’'s identifier, and its nanespace is the nodule’'s
XML nanespace (see Section 7.1.3). The value of the anyxml node is
encoded as XML content of this el ement.

Note that any prefixes used in the encoding are |local to each
i nstance encoding. This nmeans that the sane XML may be encoded
differently by different inplenentations.

7.10.3. NETCONF <edit-config> Operations

An anyxml node is treated as an opaque chunk of data. This data can
be nodified inits entirety only.

Any "operation" attributes present on subel ements of an anyxm node
are ignored by the NETCONF server.

Bj or kl und St andards Track [Page 81]

RFC 6020 YANG Oct ober 2010

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the anyxm node are:

If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the XM. content of the
anyxm node found in the XM. RPC dat a.

If the operation is "create", the node is created if it does not
exist, and its value is set to the XM. content of the anyxm node
found in the XM. RPC data. |If the node already exists, a
"data-exists" error is returned.

If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing" error is returned.

7.10.4. Usage Exampl e
G ven the foll owi ng "anyxm " statenent:
anyxm dat a;
The following are two valid encodi ngs of the same anyxm val ue:

<data xmns:if="http://exanple.conins/interface">
<if:interface>
<if:iflndex>1</if:iflndex>
</if:interface>
</ dat a>

<dat a>
<interface xm ns="http://exanpl e.comns/interface">
<i fl ndex>1</i f | ndex>
</interface>
</ dat a>

7.11. The groupi ng Statenent

The "grouping" statenent is used to define a reusable block of nodes,
whi ch may be used locally in the nodule, in nmodules that include it,
and by other mpdules that inport fromit, according to the rules in
Section 5.5. It takes one argunment, which is an identifier, foll owed
by a bl ock of substatenents that holds detail ed grouping information.

The "grouping" statenment is not a data definition statement and, as
such, does not define any nodes in the schena tree.

A grouping is like a "structure” or a "record" in conventiona
progranm ng | anguages.

Bj or kl und St andards Track [Page 82]

RFC 6020 YANG Oct ober 2010

Once a grouping is defined, it can be referenced in a "uses"
statenment (see Section 7.12). A grouping MJST NOT reference itself,
neither directly nor indirectly through a chain of other groupings.

I[f the grouping is defined at the top | evel of a YANG nodul e or
subnodul e, the grouping's identifier MJUST be unique within the
nmodul e.

A grouping is nmore than just a mechanismfor textual substitution

but defines a collection of nodes. |Identifiers appearing inside the
grouping are resolved relative to the scope in which the grouping is
defined, not where it is used. Prefix mappings, type nanes, grouping
nanes, and extension usage are evaluated in the hierarchy where the
"groupi ng" statenent appears. For extensions, this neans that
extensions are applied to the groupi ng node, not the uses node.

7.11.1. The grouping s Substatenents

S S e S +
| substatenment | section | cardinality |
. T . +
anyxm	7.10	0..n	
choice	7.9	0..n	
container	7.5	0..n	
description	7.19.3	0..1	
grouping	7.11	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
reference	7.19.4	0..1	
status	7.19.2	0..1	

| typedef | 7.3 | 0..n |
| uses | 7.12 | 0..n |
Fomm oo o - S Fom e e e e oo - +

Bj or kl und St andards Track [Page 83]

RFC 6020 YANG Oct ober 2010

7.11.2. Usage Exanpl e

i mport ietf-inet-types {
prefix "inet";
}

groupi ng endpoi nt {
description "A reusabl e endpoi nt group.";
leaf ip {
type inet:ip-address;

| eaf port {
type inet: port-nunber;
}

7.12. The uses Statenent

The "uses" statenment is used to reference a "grouping" definition
It takes one argunent, which is the name of the grouping.

The effect of a "uses" reference to a grouping is that the nodes
defined by the grouping are copied into the current schema tree, and
then updated according to the "refine" and "augnent" statenents.

The identifiers defined in the grouping are not bound to a nanespace
until the contents of the grouping are added to the schema tree via a
"uses" statenent that does not appear inside a "grouping" statenent,
at which point they are bound to the namespace of the current nodul e.

Bj or kl und St andards Track [Page 84]

RFC 6020 YANG Oct ober 2010

7.12.1. The uses’s Substatenents

. S . +
| substatement | section | cardinality |
oo SR S +
augnent	7.15	0..1
description	7.19.3	0..1
if-feature	7.18.2	0..n
refine	7.12.2	0..1
reference	7.19.4	0..1
status	7.19.2	0..1

| when | 7.19.5 | 0..1 |
. STy . +

7.12.2. The refine Statenent
Sone of the properties of each node in the grouping can be refined
with the "refine" statement. The argunent is a string that
identifies a node in the grouping. This node is called the refine’'s
target node. If a node in the grouping is not present as a target
node of a "refine" statenent, it is not refined, and thus used
exactly as it was defined in the grouping.

The argument string is a descendant schena node identifier (see
Section 6.5).

The foll owing refinenments can be done:

o A leaf or choice node may get a default value, or a new default
value if it already had one.

0 Any node nay get a specialized "description" string.
0 Any node nmay get a specialized "reference" string.
o Any node may get a different "config" statenent.

o A leaf, anyxnl, or choice node may get a different "nmandatory"
st at enent .

o A container node nay get a "presence" statenent.

o Aleaf, leaf-list, list, container, or anyxml node nay get
additional "must" expressions.

o Aleaf-list or list node may get a different "nin-elenents" or
"max- el ements" statenent.

Bj or kl und St andards Track [Page 85]

RFC 6020 YANG Oct ober 2010

7.12.3. XM. Mapping Rul es
Each node in the grouping is encoded as if it was defined inline,
even if it is inported from another nodule with another XM
nanespace

7.12. 4. Usage Exanpl e

To use the "endpoint" grouping defined in Section 7.11.2 in a
definition of an HITP server in some other nodule, we can do:

i mport acme-system {
prefix "acne";

}
cont ai ner http-server {
| eaf name {
type string;
uses acne: endpoi nt;
}

A correspondi ng XM i nstance exanpl e:

<htt p-server>
<nane>ext er n- web</ name>
<i p>192. 0. 2. 1</ i p>
<port >80</ port >

</ http-server>

If port 80 should be the default for the HTTP server, default can be
added:

cont ai ner http-server {
| eaf name {
type string;
uses acne: endpoi nt {

refine port {
defaul t 80;
}

}

If we want to define a list of servers, and each server has the ip
and port as keys, we can do:

Bj or kl und St andards Track [Page 86]

RFC 6020 YANG Oct ober 2010

list server {

key "ip port";
| eaf nanme {
type string;

uses acne: endpoi nt;

}

The following is an error:

cont ai ner http-server {
uses acne: endpoi nt;
leaf ip { /1 illegal - same identifier "ip" used tw ce
type string;

7.13. The rpc Statenent

The "rpc" statement is used to define a NETCONF RPC operation. It
takes one argument, which is an identifier, followed by a bl ock of
substatements that holds detailed rpc information. This argunent is
the nanme of the RPC, and is used as the el ement nane directly under
the <rpc> el enent, as designated by the substitution group
"rpcOperation"” in [RFC4741].

The "rpc" statement defines an rpc node in the schema tree. Under
the rpc node, a schema node with the name "input", and a schema node
with the nane "output” are also defined. The nodes "input" and
"output" are defined in the nodul e s nanespace.

Bj or kl und St andards Track [Page 87]

RFC 6020 YANG Oct ober 2010

7.13.1. The rpc’s Substatenents

. S . +
| substatement | section | cardinality |
oo SR S +
description	7.19.3	0..1
grouping	7.11	0..n
if-feature	7.18.2	0..n
input	7.13.2	0..1
out put	7.13.3	0..1
reference	7.19.4	0..1
status	7.19.2	0..1

| typedef | 7.3 | 0..n |
. S TR . +

7.13.2. The input Statenent

The "input" statenent, which is optional, is used to define input
paranmeters to the RPC operation. It does not take an argunment. The
substatenents to "input" define nodes under the RPC s input node.

If aleaf in the input tree has a "mandatory" statement with the
val ue "true", the |leaf MJST be present in a NETCONF RPC invocation
O herwi se, the server MJST return a "m ssing-element" error

If aleaf in the input tree has a default value, the NETCONF server
MUST use this value in the same cases as described in Section 7.6.1.
In these cases, the server MJST operationally behave as if the |eaf
was present in the NETCONF RPC i nvocation with the default value as
its val ue.

If a "config" statenent is present for any node in the input tree,
the "config" statement is ignored.

If any node has a "when" statement that would evaluate to false, then
this node MUST NOT be present in the input tree.

Bj or kl und St andards Track [Page 88]

RFC 6020 YANG Oct ober 2010

7.13.2.1. The input’s Substatenents

anyxm |
choi ce |
cont ai ner |
groupi ng |
| eaf |
|
|
|
|

=

| eaf -1i st
list

t ypedef
uses

n I
n I
n I
.n |
.n |
n I
n I
n I
n I

7.13.3. The output Statenent

The "output" statenment, which is optional, is used to define output
paranmeters to the RPC operation. It does not take an argunment. The
substaterments to "output” define nodes under the RPC s output node.

If aleaf in the output tree has a "mandatory" statenent with the
val ue "true", the leaf MJUST be present in a NETCONF RPC reply.

If aleaf in the output tree has a default value, the NETCONF client
MUST use this value in the same cases as described in Section 7.6.1.
In these cases, the client MJST operationally behave as if the |eaf
was present in the NETCONF RPC reply with the default value as its
val ue.

If a "config" statenent is present for any node in the output tree,
the "config" statement is ignored.

If any node has a "when" statement that would evaluate to false, then
this node MUST NOT be present in the output tree.

Bj or kl und St andards Track [Page 89]

RFC 6020 YANG Oct ober 2010

7.13.3.1. The output’s Substatenents

anyxm |
choi ce |
cont ai ner |
groupi ng |
| eaf |
|
|
|
|

=

| eaf -1i st
list

t ypedef
uses

n I
n I
n I
.n |
.n |
n I
n I
n I
n I

7.13.4. XM Mapping Rul es

An rpc node is encoded as a child XM. elenent to the <rpc> el enent
defined in [RFC4741]. The elenent’s local nanme is the rpc’s
identifier, and its namespace is the nmodule’s XM. nanespace (see
Section 7.1.3).

| nput paraneters are encoded as child XM. el enents to the rpc node’s
XM. el enment, in the sane order as they are defined within the "input"
st at enent .

If the RPC operation invocation succeeded, and no output paraneters
are returned, the <rpc-reply> contains a single <ok/> el enent defined
in [RFC4741]. |If output paranmeters are returned, they are encoded as
child elenents to the <rpc-reply> elenment defined in [RFC4741], in
the same order as they are defined within the "output" statenent.

Bj or kl und St andards Track [Page 90]

RFC 6020 YANG Oct ober 2010

7.13.5. Usage Exanpl e
The foll owi ng exanpl e defines an RPC operation:

nmodul e rock {
nanespace "http://exanpl e. net/rock";
prefix "rock";

rpc rock-the-house {
i nput {
| eaf zip-code {
type string;

}

A correspondi ng XM i nstance exanple of the conplete rpc and rpc-
reply:

<rpc mnessage-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0" >
<rock-t he-house xm ns="http://exanpl e. net/rock">
<zi p- code>27606- 0100</ zi p- code>
</ rock-t he- house>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<ok/ >
</rpc-reply>

7.14. The notification Statenent

The "notification" statenent is used to define a NETCONF
notification. It takes one argunent, which is an identifier

foll owed by a bl ock of substatenents that hol ds detail ed notification
information. The "notification" statenment defines a notification
node in the schema tree.

If aleaf in the notification tree has a "nandatory” statenent with
the value "true", the | eaf MJUST be present in a NETCONF notification

If aleaf in the notification tree has a default val ue, the NETCONF
client MJST use this value in the same cases as described in

Section 7.6.1. In these cases, the client MJST operationally behave
as if the leaf was present in the NETCONF notification with the
default value as its val ue.

Bj or kl und St andards Track [Page 91]

RFC 6020

YANG

Cct ober 2010

If a "config" statenent is present for any node in the notification

tree, the "config" statene

nt is ignored.

7.14.1. The notification's Substatenents

cont ai ner
descriptio
groupi ng
if-feature
| eaf

| eaf -1i st
list

ref erence
st at us

t ypedef
uses

7.14.2. XM. Mapping Rul es
A notification node is enc
[RFC5277]. The element’s

Section 7.1.3).

Bj or kl und

n

’ |
! |
! |
! |
7 |
7. |
7.6 |
! |
! |
! |
7 |
7 |
7 |

oded as a child XM. elenent to the
<notification> element defined in NETCONF Event Notifications

| ocal nane is the notification's
identifier, and its nanmespace is the nmodul e’s XM. nanespace (see

St andards Track

[Page 92]

RFC 6020 YANG Oct ober 2010

7.14.3. Usage Exanpl e
The foll owi ng exanpl e defines a notification:
nodul e event {

nanespace "http://exanpl e. com event"
prefix "

ev";

notification event {
| eaf event-class {
type string;

anyxm reporting-entity;
| eaf severity {

type string;
}

}

A correspondi ng XM i nstance exanple of the conplete notification

<notification
xm ns="urn:ietf:parans: xm :ns:netconf:notification:1. 0">
<event Ti me>2008- 07- 08T00: 01: 00Z</ event Ti me>
<event xm ns="http://exanple.conlevent">
<event - cl ass>f aul t </ event - cl ass>
<reporting-entity>
<car d>Et her net 0</ car d>
</reporting-entity>
<severity>mgj or</severity>
</ event >
</notification>

7.15. The augnent Statenent

The "augrment" statenent allows a nodul e or subnmodule to add to the
scherma tree defined in an external nodule, or the current nodul e and
its subnodul es, and to add to the nodes froma grouping in a "uses"
statement. The argument is a string that identifies a node in the
schema tree. This node is called the augment’s target node. The
target node MJST be either a container, list, choice, case, input,
output, or notification node. It is augnmented with the nodes defined
in the substatenents that follow the "augnent" statenent.

The argument string is a schema node identifier (see Section 6.5).

If the "augnent" statement is on the top level in a nodule or
subnodul e, the absolute form (defined by the rule

Bj or kl und St andards Track [Page 93]

RFC 6020 YANG Oct ober 2010

"absol ut e- schema- nodei d" in Section 12) of a schena node identifier
MJUST be used. |If the "augnent" statement is a substatenment to the
"uses" statement, the descendant form (defined by the rule
"descendant - schema- nodei d" in Section 12) MJST be used.

If the target node is a container, list, case, input, output, or
notification node, the "container", "leaf", "list", "leaf-list",
"uses", and "choice" statenments can be used within the "augnent"
st at enent .

If the target node is a choice node, the "case" statenent, or a case
short hand statenent (see Section 7.9.2) can be used within the
"augnment" statenent.

If the target node is in another nodule, then nodes added by the
augnment ati on MJST NOT be nandatory nodes (see Section 3.1).

The "augment" statenent MJST NOT add nultiple nodes with the sane
nane fromthe sanme nodule to the target node.

7.15.1. The augment’s Substatenents

oo SR S +
| substatement | section | cardinality |
. STy . +
anyxm	7.10	0..n	
case	7.9.2	0..n	
choice	7.9	0..n	
container	7.5	0..n	
description	7.19.3	0..1	
if-feature	7.18.2	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
reference	7.19.4	0..1	
status	7.19.2	0..1	

| uses | 7.12 | 0..n |
| when | 7.19.5 | 0..1 |
. T . +

7.15.2. XM Mapping Rul es
Al'l data nodes defined in the "augnent" statenent are defined as XM
elenents in the XML nanespace of the nodul e where the "augnent” is
speci fi ed.

VWhen a node is augnented, the augnenting child nodes are encoded as
subel enents to the augnented node, in any order

Bj or kl und St andards Track [Page 94]

RFC 6020 YANG

7.15.3. Usage Exanpl e
I n namespace http://exanpl e.conl schema/interfaces,
contai ner interfaces {
list ifEntry {
key "iflndex";

| eaf iflndex {
type uint32;

}
| eaf ifDescr {
type string;

}
[eaf ifType {
type iana:lfType

}
leaf ifMu {
type int32;

}

Cct ober 2010

we have:

Then, in nanespace http://exanple.con schema/ dsO, we have

i mport interface-nodul e {
prefix "if";

augnment "/if:interfaces/if:ifEntry" {
when "if:ifType="ds0 ";
| eaf dsOChannel Nurmber {
type Channel Nunber ;

Bj or kl und St andards Track

[Page 95]

RFC 6020 YANG Oct ober 2010

A correspondi ng XM i nstance exanpl e:

<interfaces xm ns="http://exanpl e.conl schema/interfaces"
xm ns: dsO="htt p://exanpl e. com schema/ ds0" >
<ifEntry>
<i fl ndex>1</ifl ndex>
<i f Descr>Fl i ntstone Inc Ethernet A562</ifDescr>
<i f Type>et her net Csmacd</i f Type>
<i f Mu>1500</if M u>
</[ifEntry>
<ifEntry>
<i fl ndex>2</ifl ndex>
<i f Descr>Fl i ntstone I nc DSO</ifDescr>
<i f Type>dsO</if Type>
<dsO0: dsOChannel Nunber >1</ ds0: dsOChannel Nunber >
</[ifEntry>
</interfaces>

As anot her exanpl e, suppose we have the choice defined in
Section 7.9.7. The followi ng construct can be used to extend the
protocol definition

augnment /ex:system ex: protocol /ex: nane {
case c {
| eaf snmp {

type enpty;

}

A correspondi ng XM i nstance exanpl e:

<ex: systenp
<ex: pr ot ocol >
<ex:tcp/>
</ ex: prot ocol >
</ ex: systenp

or

<ex: systenp
<ex: pr ot ocol >
<ot her: snt p/ >
</ ex: prot ocol >
</ ex: systenp

Bj or kl und St andards Track [Page 96]

RFC 6020 YANG Oct ober 2010

7.16. The identity Statenent

The "identity" statement is used to define a new globally unique,
abstract, and untyped identity. |Its only purpose is to denote its
nane, semantics, and existence. An identity can either be defined
fromscratch or derived froma base identity. The identity’'s
argunent is an identifier that is the nane of the identity. It is
foll owed by a block of substatenents that holds detailed identity
i nf ormati on.

The built-in datatype "identityref" (see Section 9.10) can be used to
reference identities within a data nodel .

7.16.1. The identity's Substatenents

B B R S +
| substatenment | section | cardinality |
R S T +
base	7.16.2	0..1
description	7.19.3	0..1
reference	7.19.4	0..1
status	7.19.2	0..1

R TS T +

7.16.2. The base Statenent

The "base" statenment, which is optional, takes as an argunment a
string that is the name of an existing identity, from which the new
identity is derived. |If no "base" statement is present, the identity
is defined from scratch.

If a prefix is present on the base nane, it refers to an identity
defined in the nodule that was inmported with that prefix, or the

| ocal module if the prefix matches the |ocal module’ s prefix.

O herwi se, an identity with the matchi ng nane MJST be defined in the
current nmodul e or an included subnodul e.

Si nce subnodul es cannot include the parent nodule, any identities in
the nodul e that need to be exposed to subnodul es MJST be defined in a
subnmodul e. Submodul es can then include this subnodule to find the
definition of the identity.

An identity MJUST NOT reference itself, neither directly nor
indirectly through a chain of other identities.

Bj or kl und St andards Track [Page 97]

RFC 6020 YANG Oct ober 2010

7.16.3. Usage Exanpl e

nodul e crypto-base {
nanespace "http://exanpl e. com crypt o- base”
prefix "crypto";

identity crypto-alg {
description
"Base identity fromwhich all crypto algorithms
are derived.";

}

nodul e des {
nanespace "http://exanpl e.com des”;
prefix "des";

i mport "crypto-base" {
prefix "crypto";
}

identity des {
base "crypto: crypto-al g*;
description "DES crypto al gorithnt
}

identity des3 {
base "crypto:crypto-al g*;
description "Triple DES crypto al gorithnt

7.17. The extension Statenent

The "extension" statenent allows the definition of new statenents
within the YANG | anguage. This new statenent definition can be
i nported and used by other nodul es.

The statenment’s argunent is an identifier that is the new keyword for
the extension and nmust be foll owed by a bl ock of substatenments that
hol ds detail ed extension information. The purpose of the "extension"
statenent is to define a keyword, so that it can be inported and used
by ot her nodul es.

The extension can be used like a normal YANG statenent, with the
statement name followed by an argurment if one is defined by the
ext ension, and an optional block of substatements. The statenent’s
nane is created by conbining the prefix of the nodule in which the

Bj or kl und St andards Track [Page 98]

RFC 6020 YANG Oct ober 2010

ext ension was defined, a colon (":"), and the extension' s keyword,
with no interleaving whitespace. The substatenments of an extension
are defined by the extension, using sone nechani smoutside the scope
of this specification. Syntactically, the substatenents MJST be YANG
statenents, or also defined using "extension" statements. YANG
statenments in extensions MJST foll ow the syntactical rules in

Section 12.

7.17.1. The extension' s Substatements

oo SR S +
| substatement | section | cardinality |
oo . U +
argument	7.17.2	0..1
description	7.19.3	0..1
reference	7.19.4	0..1
status	7.19.2	0..1

R R S +

7.17.2. The argunent Statenent

The "argunent" statement, which is optional, takes as an argunent a

string that is the name of the argunent to the keyword. [If no
argunent statenment is present, the keyword expects no argument when
it is used.

The argurment’s nane is used in the YIN mapping, where it is used as
an XML attribute or elenment nane, depending on the argunment’s "yin-
el ement” statenent.

7.17.2.1. The argunment’s Substatenents

. . . +
| substaterment | section | cardinality |
oo TSR S +
| yin-elenent | 7.17.2.2 | 0..1

. S Ry . +

7.17.2.2. The yin-elenment Statemnent
The "yin-element” statement, which is optional, takes as an argunent
the string "true" or "false". This statenent indicates if the
argunent is nmapped to an XM. elenment in YIN or to an XM attribute
(see Section 11).

If no "yin-elenent" statement is present, it defaults to "fal se"

Bj or kl und St andards Track [Page 99]

RFC 6020 YANG Oct ober 2010

7.17.3. Usage Exanpl e
To define an extension:

nodul e ny- extensi ons {

extensi on c-define {
description
"Takes as argument a nane string.
Makes the code generator use the given nanme in the
#define.";
argunment "nane",
}
}

To use the extension:
nodul e ny-interfaces {

iﬁﬁort ny- ext ensi ons {
prefix "nmyext";
}

contai ner interfaces {

myext : c- def i ne "MY_| NTERFACES" :
}
}

7.18. Conformance-Rel ated Statenents

This section defines statenents related to confornmance, as descri bed
in Section 5.6.

7.18.1. The feature Statenent

The "feature" statement is used to define a mechani sm by which
portions of the schema are marked as conditional. A feature nane is
defined that can | ater be referenced using the "if-feature" statenent
(see Section 7.18.2). Schema nodes tagged with a feature are ignored
by the device unless the device supports the given feature. This

all ows portions of the YANG nodul e to be conditional based on
conditions on the device. The nodel can represent the abilities of
the device within the nmodel, giving a richer nodel that allows for
differing device abilities and roles.

Bj or kl und St andards Track [Page 100]

RFC 6020 YANG Oct ober 2010

The argurment to the "feature" statenent is the name of the new
feature, and follows the rules for identifiers in Section 6.2. This
nane is used by the "if-feature" statement to tie the schema nodes to
the feature.

In this exanple, a feature called "l ocal -storage" represents the
ability for a device to store syslog nessages on | ocal storage of
sonme sort. This feature is used to nmake the "l ocal -storage-limt"
| eaf conditional on the presence of some sort of |ocal storage. |If
the device does not report that it supports this feature, the

"l ocal -storage-limt" node is not supported.

nodul e sysl og {

feature | ocal -storage {
description
"This feature nmeans the device supports |oca
storage (nenory, flash or disk) that can be used to
store syslog nmessages.";

}

cont ai ner syslog {
| eaf | ocal-storage-limt {
if-feature | ocal -storage;
type uint 64;
units "Kkil obyte";
config fal se
description
"The amount of |ocal storage that can be
used to hold syslog nessages.";

}

The "if-feature"” statenent can be used in many places within the YANG
syntax. Definitions tagged with "if-feature" are ignored when the
devi ce does not support that feature.

A feature MJUST NOT reference itself, neither directly nor indirectly
through a chain of other features.

In order for a device to inplenent a feature that is dependent on any
other features (i.e., the feature has one or nore "if-feature" sub-
statenments), the device MUST also inplenment all the dependant
features.

Bj or kl und St andards Track [Page 101]

RFC 6020 YANG Oct ober 2010

7.18.1.1. The feature’'s Substatements

. S . +
| substatement | section | cardinality |
oo SR S +
| description | 7.19.3 | 0..1 |
| if-feature | 7.18.2 | 0..n |
| status | 7.19.2 | 0..1

| reference | 7.19.4 | 0..1 |
Fomm oo o - S Fom e e e e oo - +

7.18.2. The if-feature Statenent

The "if-feature" statenent nakes its parent statenment conditi onal

The argunent is the nane of a feature, as defined by a "feature"
statenment. The parent statement is inplemented by servers that
support this feature. |If a prefix is present on the feature nane, it
refers to a feature defined in the nodule that was inported with that
prefix, or the local nodule if the prefix natches the |local nodule’'s
prefix. Oherwi se, a feature with the nmatching name MJST be defined
in the current nodul e or an included subnodul e.

Si nce subnodul es cannot include the parent nodule, any features in
the nodul e that need to be exposed to subnodul es MJST be defined in a
submodul e. Submodul es can then include this subrmodule to find the
definition of the feature.

7.18.3. The devi ati on Statement

The "devi ation" statement defines a hierarchy of a nodule that the
devi ce does not inplenent faithfully. The argunment is a string that
identifies the node in the schena tree where a deviation fromthe
nodul e occurs. This node is called the deviation's target node. The
contents of the "deviation" statenent give details about the

devi ati on.

The argunment string is an absolute schema node identifier (see
Section 6.5).

Devi ati ons define the way a device or class of devices deviate froma
standard. This nmeans that deviations MJST never be part of a
publ i shed standard, since they are the nechani smfor |earning how

i mpl enentations vary fromthe standards.

Bj or kl und St andards Track [Page 102]

RFC 6020 YANG Oct ober 2010

Devi ce devi ations are strongly di scouraged and MJUST only be used as a
last resort. Telling the application how a device fails to follow a
standard is no substitute for inplenenting the standard correctly. A
device that deviates froma nodule is not fully conmpliant with the
nodul e.

However, in sone cases, a particular device may not have the hardware
or software ability to support parts of a standard nodule. Wen this
occurs, the device makes a choice either to treat attenpts to
configure unsupported parts of the nodule as an error that is
reported back to the unsuspecting application or ignore those

i ncom ng requests. Neither choice is acceptable.

I nst ead, YANG al | ows devices to docunment portions of a base nodul e
that are not supported or supported but with different syntax, by
using the "deviation" statenent.

7.18.3.1. The deviation's Substatenents

o e ok S Fom e +
| substaterment | section | cardinality |
Fomm oo o - Fomm oo - Fom e e e e oo - +
description	7.19.3	0..1
deviate	7.18.3.2	1..n
reference	7.19.4	0..1
o e ok S Fom e +

7.18.3.2. The deviate Statement

The "devi ate" statenent defines how the device's inplenmentation of
the target node deviates fromits original definition. The argunent
is one of the strings "not-supported", "add", "replace", or "delete".

The argument "not-supported” indicates that the target node is not
i mpl enented by this device.

The argurment "add" adds properties to the target node. The
properties to add are identified by substatenents to the "deviate"
statenment. |If a property can only appear once, the property MJST NOT
exi st in the target node.

The argurment "replace" replaces properties of the target node. The
properties to replace are identified by substatenents to the
"deviate" statenent. The properties to replace MJST exist in the
target node.

Bj or kl und St andards Track [Page 103]

RFC 6020 YANG Oct ober 2010

The argurment "del ete" del etes properties fromthe target node. The
properties to delete are identified by substatenents to the "del ete"
statenment. The substatenent’s keyword MJUST match a correspondi ng
keyword in the target node, and the argument’s string MJST be equa
to the correspondi ng keyword s argument string in the target node.

The devi ates’ s Subst at enents

I

I
nmandat ory
max- el ements |
m n-el ements |
nmust |
type I
uni que |
units |

1 I
1 I
1 I
1 |
1 |
n I
1 I
n I
1 I

7.18.3.3. Usage Exanple

In this exanple, the device is informng client applications that it
does not support the "daytinme" service in the style of RFC 867.

devi ati on /base: systemn base: dayti ne {
devi at e not - support ed;
}

The foll owi ng exanpl e sets a device-specific default value to a | eaf
that does not have a default val ue defined:

devi ation /base: systen base: user/ base: type {

devi ate add {
default "admin"; // new users are 'admin’ by default
}

}
In this exanple, the device limts the nunber of name servers to 3:
devi ati on / base: syst en base: nane- server {

devi ate replace {
max- el enents 3;
}

Bj or kl und St andards Track [Page 104]

RFC 6020 YANG Oct ober 2010

If the original definition is:

cont ai ner system {
nmust "daytime or time";

}
a device might renove this nust constraint by doing:

devi ation "/base: system' {
deviate delete {
nust "daytinme or tinme";
}

7.109. Common St at emrent s

This section defines substatenents commpn to several other
st at enent s.

7.19.1. The config Statenent

The "config" statenment takes as an argunment the string "true" or
"false". If "config" is "true", the definition represents
configuration. Data nodes representing configuration will be part of
the reply to a <get-config> request, and can be sent in a
<copy-config> or <edit-config> request.

If "config" is "false"”, the definition represents state data. Data
nodes representing state data will be part of the reply to a <get>,
but not to a <get-config> request, and cannot be sent in a
<copy-config> or <edit-config> request.

If "config" is not specified, the default is the same as the parent
schema node’s "config" value. |If the parent node is a "case" node,
the value is the sanme as the "case" node’s parent "choice" node.

If the top node does not specify a "config" statement, the default is
"true".

If a node has "config" set to "false", no node underneath it can have
"config" set to "true".

7.19.2. The status Statenent

The "status" statenment takes as an argument one of the strings
"current", "deprecated", or "obsol ete".

Bj or kl und St andards Track [Page 105]

RFC 6020 YANG Oct ober 2010

o "current" neans that the definition is current and valid.

0o "deprecated" indicates an obsolete definition, but it permits new
continued inplenentation in order to foster interoperability with
ol der/exi sting inplenentations.

0 "obsolete" neans the definition is obsolete and SHOULD NOT be
i mpl ement ed and/ or can be renoved from i npl enentati ons.

If no status is specified, the default is "current".

If a definitionis "current", it MJST NOT reference a "deprecated" or
"obsol ete" definition within the sane nodul e.

If a definition is "deprecated", it MJST NOT reference an "obsol ete"
definition within the sane nodul e.

For exanple, the following is illegal

typedef ny-type {
st atus deprecated,;
type int32;

| eaf ny-leaf {
status current;

type ny-type; // illegal, since ny-type is deprecated

7.19.3. The description Statenent

The "description" statenment takes as an argunent a string that
contai ns a human-readabl e textual description of this definition

The text is provided in a | anguage (or |anguages) chosen by the
nodul e devel oper; for the sake of interoperability, it is RECOMVENDED
to choose a |l anguage that is wi dely understood anong the community of
networ k admi ni strators who will use the nodul e.

7.19.4. The reference Statement

The "reference" statenment takes as an argunent a string that is used
to specify a textual cross-reference to an external docunent, either
anot her nodul e that defines rel ated managenent information, or a
docunent that provides additional information relevant to this
definition.

Bj or kl und St andards Track [Page 106]

RFC 6020 YANG Oct ober 2010

For exanple, a typedef for a "uri" data type could |ook like:
typedef uri {
type string;
reference
"RFC 3986: Uniform Resource ldentifier (URI): Generic Syntax";

}
7.19.5. The when Statement

The "when" statenent makes its parent data definition statenent
conditional. The node defined by the parent data definition
statement is only valid when the condition specified by the "when"
statement is satisfied. The statenent’s argument is an XPath
expression (see Section 6.4), which is used to formally specify this
condition. |If the XPath expression conceptually evaluates to "true"
for a particular instance, then the node defined by the parent data
definition statement is valid; otherwise, it is not.

See Section 8.3.2 for additional information.

The XPath expression is conceptually evaluated in the follow ng
context, in addition to the definition in Section 6.4.1

o I|If the "when" statenent is a child of an "augnent" statenent, then
the context node is the augnent’s target node in the data tree, if
the target node is a data node. Oherw se, the context node is
the cl osest ancestor node to the target node that is also a data

node.

o |If the "when" statenent is a child of a "uses", "choice", or
"case" statement, then the context node is the cl osest ancestor
node to the "uses", "choice", or "case" node that is also a data
node.

o If the "when" statenent is a child of any other data definition
statenent, the context node is the data definition's node in the
data tree.

0 The accessible tree is made up of all nodes in the data tree, and
all leafs with default values in use (see Section 7.6.1).

Bj or kl und St andards Track [Page 107]

RFC 6020 YANG Oct ober 2010

8.

8.

The accessible tree depends on the context node:

o |If the context node represents configuration, the tree is the data
in the NETCONF dat astore where the context node exists. The XPath
root node has all top-level configuration data nodes in al
nmodul es as chil dren.

o |If the context node represents state data, the tree is all state
data on the device, and the <running/> datastore. The XPath root
node has all top-level data nodes in all nodules as children

o If the context node represents notification content, the tree is
the notification XM instance document. The XPath root node has
the elenment representing the notification being defined as the
only child.

o If the context node represents RPC input paraneters, the tree is
the RPC XM instance docunent. The XPath root node has the
el ement representing the RPC operation being defined as the only
child.

o If the context node represents RPC output paraneters, the tree is
the RPC reply instance docunent. The XPath root node has the
el ements representing the RPC output paranmeters as children

The result of the XPath expression is converted to a bool ean val ue
using the standard XPath rul es.

Note that the XPath expression is conceptually evaluated. This neans
that an inplenentation does not have to use an XPath eval uator on the
device. The "when" statenent can very well be inplemented with
specially witten code.

Constraints
1. Constraints on Data

Several YANG statements define constraints on valid data. These
constraints are enforced in different ways, depending on what type of

data the statenent defines.

o If the constraint is defined on configuration data, it MJST be
true in a valid configuration data tree.

o If the constraint is defined on state data, it MJUST be true in a
reply to a <get> operation without a filter.

Bj or kl und St andards Track [Page 108]

RFC 6020 YANG Oct ober 2010

8.

8.

8.

o |If the constraint is defined on notification content, it MJST be
true in any notification instance.

o If the constraint is defined on RPC i nput parameters, it MJST be
true in an invocation of the RPC operation

o If the constraint is defined on RPC out put paraneters, it MJIST be
true in the RPC reply.

2. Herarchy of Constraints

Condi tions on parent nodes affect constraints on child nodes as a
natural consequence of the hierarchy of nodes. "nmust", "mandatory",
"mn-elements", and "max-el enents" constraints are not enforced if
the parent node has a "when" or "if-feature" property that is not
satisfied on the current device.

In this exanple, the "mandatory" constraint on the "longitude" |eaf
are not enforced on devices that |ack the "has-gps" feature:

cont ai ner | ocation {
i f-feature has-gps;

| eaf |ongitude {
mandat ory true

}

3. Constraint Enforcenent Mbde

For configuration data, there are three wi ndows when constraints MJST
be enforced:

o during parsing of RPC payl oads

o during processing of NETCONF operations

o during validation

Each of these scenarios is considered in the foll ow ng sections.
3.1. Payload Parsing

When content arrives in RPC payloads, it MJST be well-formed XM,

following the hierarchy and content rules defined by the set of
nodel s the device inpl enents.

Bj or kl und St andards Track [Page 109]

RFC 6020 YANG Oct ober 2010

o

8. 3.

If a leaf data value does not match the type constraints for the

| eaf, including those defined in the type's "range", "length", and
"pattern" properties, the server MIUST reply with an
"invalid-value" error-tag in the rpc-error, and with the error-
app-tag and error-nmessage associated with the constraint, if any
exi st.

If all keys of a list entry are not present, the server MJST reply
with a "m ssing-elenment” error-tag in the rpc-error

If data for nore than one case branch of a choice is present, the
server MJUST reply with a "bad-elenment” in the rpc-error

If data for a node tagged with "if-feature" is present, and the
feature is not supported by the device, the server MJST reply with
an "unknown-el enent" error-tag in the rpc-error

If data for a node tagged with "when" is present, and the "when"
condition evaluates to "false", the server MIUST reply with an
"unknown- el enent" error-tag in the rpc-error

For insert handling, if the value for the attributes "before" and
"after" are not valid for the type of the appropriate key |eafs,
the server MUST reply with a "bad-attribute" error-tag in the rpc-
error.

If the attributes "before" and "after" appears in any el ement that
is not a list whose "ordered-by" property is "user", the server
MUST reply with an "unknown-attribute" error-tag in the rpc-error

NETCONF <edit-config> Processing

After the incomng data is parsed, the NETCONF server perforns the
<edit-config> operation by applying the data to the configuration
datastore. During this processing, the follow ng errors MJST be

det ect ed:

o Delete requests for non-existent data.

o Create requests for existent data.

o Insert requests with "before" or "after" paraneters that do not

exi st.

Bj or kl und St andards Track [Page 110]

RFC 6020 YANG Oct ober 2010

8.

3.

During <edit-config> processing:

o |If the NETCONF operation creates data nodes under a "choice", any
exi sting nodes from other "case" branches are deleted by the
server.

o |If the NETCONF operation nodifies a data node such that any node’s
"when" expression becones false, then the node with the "when"
expression is deleted by the server.

3. Validation

When datastore processing is conplete, the final contents MJUST obey
all validation constraints. This validation processing is perforned

at differing tines according to the datastore. |If the datastore is
<runni ng/ > or <startup/>, these constraints MJST be enforced at the
end of the <edit-config> or <copy-config> operation. |If the

datastore is <candidate/>, the constraint enforcenent is del ayed
until a <commit> or <validate> operation

o0 Any "must" constraints MJST evaluate to "true"

o Any referential integrity constraints defined via the "path"
statenment MJST be satisfied.

o Any "unique" constraints on lists MJST be satisfied.

o The "m n-elenments" and "max-el enents” constraints are enforced for
lists and leaf-1lists.

Built-1n Types

YANG has a set of built-in types, sinmlar to those of many
programm ng | anguages, but with sonme di fferences due to specia
requi renents fromthe managenent information nodel

Addi tional types may be defined, derived fromthose built-in types or
fromother derived types. Derived types may use subtyping to
formally restrict the set of possible val ues.

The different built-in types and their derived types allow different
ki nds of subtyping, nanmely length and regul ar expression restrictions
of strings (Sections 9.4.4 and 9.4.6) and range restrictions of
nuneric types (Section 9.2.4).

The | exical representation of a value of a certain type is used in
the NETCONF nessages and when specifying default values and nunerica
ranges i n YANG nodul es.

Bj or kl und St andards Track [Page 111]

RFC 6020 YANG Oct ober 2010

9.1. Canonical Representation
For nost types, there is a single canonical representation of the
type's values. Sone types allow rmultiple |exical representations of
the sanme value, for exanple, the positive integer "17" can be

represented as "+17" or "17". Inplenentati ons MJST support al
| exi cal representations specified in this docunent.

When a NETCONF server sends data, it MJUST be in the canonical form
Sone types have a |l exical representation that depends on the XM
context in which they occur. These types do not have a canonica
form

9.2. The Integer Built-In Types
The integer built-in types are int8, intl1l6, int32, int64, uint8,
uint16, uint32, and uint64. They represent signed and unsi gned
i ntegers of different sizes:
int8 represents integer values between -128 and 127, inclusively.

intlé represents integer values between -32768 and 32767,
i ncl usively.

int32 represents integer values between -2147483648 and 2147483647,
i ncl usively.

int64 represents integer values between -9223372036854775808 and
9223372036854775807, inclusively.

uint8 represents integer values between 0 and 255, inclusively.
uint16 represents integer val ues between 0 and 65535, inclusively.

uint32 represents integer val ues between 0 and 4294967295,
i ncl usively.

uint64 represents integer val ues between 0 and 18446744073709551615,
i ncl usively.

Bj or kl und St andards Track [Page 112]

RFC 6020 YANG Oct ober 2010

9.2.1. Lexical Representation

An integer value is lexically represented as an optional sign ("+" or
"-"), followed by a sequence of decimal digits. |If no signis
specified, "+" is assuned.

For conveni ence, when specifying a default value for an integer in a
YANG nodul e, an alternative |exical representation can be used, which
represents the value in a hexadecimal or octal notation. The
hexadeci mal notation consists of an optional sign ("+" or "-"), the
characters "0Ox" followed a nunber of hexadecimal digits, where
letters may be uppercase or | owercase. The octal notation consists
of an optional sign ("+" or "-"), the character "0" followed a nunber
of octal digits.

Note that if a default value in a YANG nodul e has a | eading zero
("0"), it is interpreted as an octal nunmber. In the XM instance
docunents, an integer is always interpreted as a decimal nunber, and
| eadi ng zeros are all owed.

Exanpl es:
/1 legal val ues
+4711 /1 legal positive value
4711 /1 legal positive value
-123 /1 legal negative val ue
Oxf 0Of /1 legal positive hexadeci mal val ue
- Oxf /1 legal negative hexadeci mal val ue
052 /1 legal positive octal value
/1 illegal values
-1 /1 illegal internediate space

Bj or kl und St andards Track [Page 113]

RFC 6020 YANG Oct ober 2010

9.2.2. Canonical Form

The canonical formof a positive integer does not include the sign
"+". Leading zeros are prohibited. The value zero is represented as
"o

9.2.3. Restrictions

Al'l integer types can be restricted with the "range" statemnent
(Section 9.2.4).

9.2.4. The range Statenent

The "range" statenent, which is an optional substatement to the
"type" statenent, takes as an argument a range expression string. It
is used to restrict integer and decimal built-in types, or types
derived fromthose

A range consists of an explicit value, or a |ower-inclusive bound,
two consecutive dots "..", and an upper-inclusive bound. Miltiple
val ues or ranges can be given, separated by "|". If multiple values
or ranges are given, they all MJST be disjoint and MIUST be in
ascending order. |If a range restriction is applied to an already
range-restricted type, the newrestriction MJST be equal or nore
limting, that is raising the | ower bounds, reducing the upper
bounds, renoving explicit values or ranges, or splitting ranges into
mul tiple ranges with internedi ate gaps. Each explicit value and
range boundary val ue given in the range expression MJST match the
type being restricted, or be one of the special values "mn" or
"max". "mn" and "max" mean the m ni rum and nmaxi num val ue accepted
for the type being restricted, respectively.

The range expression syntax is formally defined by the rule
"range-arg" in Section 12.

9.2.4.1. The range’s Substatenents

oo Fomm e Fom e +
| substatement | section | cardinality |
Fom e e e e oo - S Fom e e e e oo - +
description	7.19.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
reference	7.19.4	0..1
oo R R +

Bj or kl und St andards Track [Page 114]

RFC 6020 YANG Oct ober 2010

9.2.5. Usage Exanple

typedef ny-base-int32-type {
type int32 {
range "1..4 | 10..20";
}

}

typedef ny-typel {
type ny-base-int32-type {
/1 legal range restriction
range "11..max"; // 11..20

}

typedef ny-type2 {
type ny-base-int32-type {
/1 illegal range restriction
range "11..100";

9.3. The decimal 64 Built-1n Type

The deci mal 64 type represents a subset of the real nunbers, which can
be represented by decinmal nunerals. The value space of decinal 64 is
the set of nunbers that can be obtained by nultiplying a 64-bit
signed integer by a negative power of ten, i.e., expressible as

"i x 10"-n" where i is an integer64 and n is an integer between 1 and
18, inclusively.

9.3.1. Lexical Representation

A decimal 64 value is lexically represented as an optional sign ("+"

or "-"), followed by a sequence of decimal digits, optionally
followed by a period ('.’) as a decimal indicator and a sequence of
decimal digits. |If no sign is specified, "+" is assuned.

9.3.2. Canonical Form

The canonical form of a positive deci nal 64 does not include the sign
"+". The decimal point is required. Leading and trailing zeros are
prohi bited, subject to the rule that there MJST be at |east one digit
before and after the decimal point. The value zero is represented as
"0.0".

Bj or kl und St andards Track [Page 115]

RFC 6020

9.

9.3. 4.

3.

3. Restrictions

YANG

Cct ober

A deci mal 64 type can be restricted with the "range" statenent

(Section 9.2.4).

The "fraction-digits"
MJST be present

"type" statenent,
takes as an argunent

The fraction-digits Statenent

st at enent,

an integer

which is a substatenent to the
if the type is "decimal 64".
between 1 and 18,

It

inclusively. It

controls the size of the mninmumdifference between val ues of a

deci mal 64 type,
expressi bl e as

by restricting the val ue space to nunbers that are
i x 10n-n" where n is the fraction-digits argunent.

The following table lists the m ni num and maxi num val ue for each

fraction-digit val ue:

Bj or kl und

-922337203685477580. 8
-92233720368547758. 08
-9223372036854775. 808
-922337203685477. 5808
-92233720368547. 75808
-9223372036854. 775808
-922337203685. 4775808
-92233720368. 54775808
-9223372036. 854775808
-922337203. 6854775808
-92233720. 36854775808
-9223372. 036854775808
-922337. 2036854775808
-92233. 72036854775808
-9223. 372036854775808
-922. 3372036854775808
-92.23372036854775808
-9.223372036854775808

St andards Track

922337203685477580. 7
92233720368547758. 07
9223372036854775. 807
922337203685477. 5807
92233720368547. 75807
9223372036854. 775807
922337203685. 4775807
92233720368. 54775807
9223372036. 854775807
922337203. 6854775807
92233720. 36854775807
9223372. 036854775807
922337. 2036854775807
92233. 72036854775807
9223. 372036854775807
922. 3372036854775807
92.23372036854775807
9. 223372036854775807

[Page 116]

2010

RFC 6020 YANG Oct ober 2010

9.3.5. Usage Exanple

typedef ny-decimal ({
type deci mal 64 {
fraction-digits 2;
range "1 .. 3.14 | 10 | 20..nax";

9.4. The string Built-In Type

The string built-in type represents human-readabl e strings in YANG
Legal characters are tab, carriage return, line feed, and the | ega
characters of Unicode and | SO | EC 10646 [SO 10646] :

;; any Uni code character, excluding the surrogate bl ocks,
;; FFFE, and FFFF.
string = *char
char = %9 / WA /| %D/ %20-D7FF / % EO000- FFFD /
% 10000- 10FFFF
9.4.1. Lexical Representation

A string value is lexically represented as character data in the XM
i nstance docunents.

9.4.2. Canonical Form

The canonical formis the same as the |l exical representation. No
Uni code normalization is perforned of string val ues.

9.4.3. Restrictions

A string can be restricted with the "l ength" (Section 9.4.4) and
"pattern” (Section 9.4.6) statenments.

9.4.4. The length Statenent
The "length" statenent, which is an optional substatement to the
"type" statenent, takes as an argument a | ength expression string.
It is used to restrict the built-in type "string", or types derived
from"string".

A "length" statenent restricts the nunber of Unicode characters in
the string.

Bj or kl und St andards Track [Page 117]

RFC 6020 YANG Oct ober 2010

A length range consists of an explicit value, or a | ower bound, two
consecutive dots "..", and an upper bound. Miltiple values or ranges
can be given, separated by "|". Length-restricting values MJST NOT
be negative. If multiple values or ranges are given, they all MJST
be disjoint and MUST be in ascending order. |If a length restriction
is applied to an already length-restricted type, the newrestriction
MUST be equal or nore limting, that is, raising the | ower bounds,
reduci ng the upper bounds, renpving explicit |ength values or ranges,
or splitting ranges into nultiple ranges with internediate gaps. A

l ength value is a non-negative integer, or one of the special values
"mn" or "max". "mn" and "max" mean the m ni mum and maxi mum | engt h
accepted for the type being restricted, respectively. An

i npl enentation is not required to support a |ength value |arger than
18446744073709551615.

The I ength expression syntax is fornmally defined by the rule
"l ength-arg" in Section 12.

9.4.4.1. The length's Substatenents

. S . +
| substatement | section | cardinality |
Fom e e e oo - SR S +
description	7.19.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
reference	7.19.4	0..1
Fom e e e e oo - S Fom e e e e oo - +

9.4.5. Usage Exanple

typedef ny-base-str-type {

type string {
length "1..255";
}

}

type ny-base-str-type {
/1 legal length refinement
length "11 | 42..max"; [/ 11 | 42..255

}

type ny-base-str-type {
/1 illegal length refinenent
length "1..999";

}

Bj or kl und St andards Track [Page 118]

RFC 6020 YANG Oct ober 2010

9.4.6. The pattern Statenent

The "pattern" statement, which is an optional substatenent to the
"type" statenent, takes as an argument a regul ar expression string,

as defined in [XSD-TYPES]. It is used to restrict the built-in type
"string", or types derived from"string", to values that natch the
pattern.

If the type has nultiple "pattern" statenments, the expressions are
ANDed together, i.e., all such expressions have to match.

If a pattern restriction is applied to an already pattern-restricted
type, values nust match all patterns in the base type, in addition to
the new patterns.

9.4.6.1. The pattern’ s Substatenents

Fom e e e oo oo - R S +
| substatement | section | cardinality |
oo Fomm e Fom e +
description	7.19.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1	0..1
reference	7.19.4	0..1
o . U +

9.4.7. Usage Exanple

Wth the foll ow ng type

type string {
l ength "0..4";

pattern "[0-9a-fA-F]*";

}

the follow ng strings match:
AB /1 |egal
9A00 /1 1egal

and the follow ng strings do not natch:

00ABAB /1 illegal, too |ong
xx00 /1 illegal, bad characters

Bj or kl und St andards Track [Page 119]

RFC 6020 YANG Oct ober 2010

9.5. The boolean Built-In Type
The bool ean built-in type represents a bool ean val ue.
9.5.1. Lexical Representation

The | exical representation of a boolean value is a string with a
val ue of "true" or "false". These values MJST be in | owercase.

9.5.2. Canonical Form

The canonical formis the same as the | exical representation
9.5.3. Restrictions

A bool ean cannot be restricted.
9.6. The enuneration Built-In Type

The enuneration built-in type represents values froma set of
assi gned narnes.

9.6.1. Lexical Representation

The | exical representation of an enuneration value is the assigned
name string

9.6.2. Canonical Form
The canonical formis the assigned name string.

9.6.3. Restrictions
An enuneration cannot be restricted.

9.6.4. The enum Stat enent
The "enum' statenent, which is a substatenment to the "type"
statenment, MJUST be present if the type is "enuneration". It is
repeatedly used to specify each assigned name of an enuneration type.
It takes as an argunent a string which is the assigned nane. The
string MJUST NOT be enpty and MJUST NOT have any |leading or trailing
whi t espace characters. The use of Unicode control codes SHOULD be
avoi ded.

The statenent is optionally followed by a block of substatenents that
hol ds detail ed enum i nformation

Bj or kl und St andards Track [Page 120]

RFC 6020 YANG Oct ober 2010

Al'l assigned names in an enuneration MUST be uni que.

9.6.4.1. The enum s Substatenents

oo SR S +
| substatement | section | cardinality |
oo . U +
| description | 7.19.3 | 0..1 |
| reference | 7.19.4 | 0..1 |
| status | 7.19.2 | 0..1

| val ue | 9.6.4.2] 0..1 |
R R S +

9.6.4.2. The value Statenent

The "val ue" statenent, which is optional, is used to associate an

i nteger value with the assigned nane for the enum This integer

val ue MUST be in the range -2147483648 to 2147483647, and it MJST be
unique within the enuneration type. The value is unused by YANG and
the XML encoding, but is carried as a convenience to inplementors.

If a value is not specified, then one will be automatically assigned.
If the "enuni substatement is the first one defined, the assigned
value is zero (0); otherw se, the assigned value is one greater than
the current highest enum val ue.

If the current highest value is equal to 2147483647, then an enum
val ue MJUST be specified for "enunt substatements follow ng the one
with the current highest val ue.

9.6.5. Usage Exanple

Il eaf myenum {
type enuneration {

enum zer o;
enum one
enum seven {
val ue 7;
The | exical representation of the |eaf "nyenunt with val ue "seven"
is:

<nmyenunrseven</ myenune

Bj or kl und St andards Track [Page 121]

RFC 6020 YANG Oct ober 2010

9.7. The bits Built-In Type
The bits built-in type represents a bit set. That is, a bits value
is a set of flags identified by small integer position nunbers
starting at 0. Each bit nunber has an assigned narne.

9.7.1. Restrictions
A bits type cannot be restricted.

9.7.2. Lexical Representation
The | exical representation of the bits type is a space-separated |i st
of the individual bit values that are set. An enpty string thus
represents a value where no bits are set.

9.7.3. Canonical Form
In the canonical form the bit values are separated by a single space
character and they appear ordered by their position (see
Section 9.7.4.2).

9.7.4. The bit Statenent

The "bit" statenment, which is a substatenent to the "type" statenent,

MJUST be present if the type is "bits". It is repeatedly used to
speci fy each assigned naned bit of a bits type. It takes as an
argunent a string that is the assigned nane of the bit. It is

foll owed by a bl ock of substatements that holds detailed bit
informati on. The assigned name follows the sanme syntax rules as an
identifier (see Section 6.2).

Al'l assigned names in a bits type MJST be uni que.

9.7.4.1. The bit’'s Substatements

oo . U +
| substatement | section | cardinality |
o e o R R +
| description | 7.19.3 | 0..1 |
| reference | 7.19.4 | 0..1 |
| status | 7.19.2 | 0..1

| position | 9.7.4.2 | 0..1 |
o e ok Fomm e Fom e +

Bj or kl und St andards Track [Page 122]

RFC 6020 YANG Oct ober 2010

9.7.4.2. The position Statenent

The "position" statement, which is optional, takes as an argunent a
non- negative integer value that specifies the bit's position within a
hypot hetical bit field. The position value MJIST be in the range 0 to
4294967295, and it MJUST be unique within the bits type. The value is
unused by YANG and the NETCONF nessages, but is carried as a

conveni ence to inpl enentors.

If a bit position is not specified, then one will be automatically
assigned. If the "bit" substatenment is the first one defined, the
assigned value is zero (0); otherw se, the assigned value is one
greater than the current highest bit position

If the current highest bit position value is equal to 4294967295,
then a position value MJST be specified for "bit" substatenents
followi ng the one with the current highest position val ue.

9.7.5. Usage Exanple
G ven the follow ng |eaf:
| eaf nybits {
type bits {
bit disable-nagle {
position O;

bit aut o-sense-speed {
position 1;

bit 10-M-only {
position 2;

}
defaul t "auto-sense-speed”;

}

The lexical representation of this leaf with bit val ues disabl e-nagl e
and 10- Mb-only set woul d be:

<nybi t s>di sabl e-nagl e 10- M- onl y</ nmybi t s>
9.8. The binary Built-In Type

The binary built-in type represents any binary data, i.e., a sequence
of octets.

Bj or kl und St andards Track [Page 123]

RFC 6020 YANG Oct ober 2010

9.8.1. Restrictions

A binary can be restricted with the "length" (Section 9.4.4)
statement. The length of a binary value is the nunber of octets it
cont ai ns.

9.8.2. Lexical Representation

Bi nary val ues are encoded with the base64 encodi ng schene (see
[RFC4648], Section 4).

9.8.3. Canonical Form
The canonical formof a binary value follows the rules in [RFC4648].
9.9. The leafref Built-lIn Type

The leafref type is used to reference a particular |eaf instance in
the data tree. The "path" substatenment (Section 9.9.2) selects a set
of leaf instances, and the |leafref value space is the set of values
of these | eaf instances.

If the leaf with the |eafref type represents configuration data, the
leaf it refers to MUST al so represent configuration. Such a |eaf
puts a constraint on valid data. Al |eafref nodes MJIST reference
exi sting leaf instances or leafs with default values in use (see
Section 7.6.1) for the data to be valid. This constraint is enforced
according to the rules in Section 8.

There MUST NOT be any circul ar chains of |eafrefs.
If the leaf that the leafref refers to is conditional based on one or
nore features (see Section 7.18.2), then the leaf with the |eafref
type MUST al so be conditional based on at |east the same set of
features.

9.9.1. Restrictions
A leafref cannot be restricted.

9.9.2. The path Statenent
The "path" statenent, which is a substatenment to the "type"

statement, MUST be present if the type is "leafref". It takes as an
argunent a string that MJUST refer to a |l eaf or leaf-list node.

Bj or kl und St andards Track [Page 124]

RFC 6020 YANG Oct ober 2010

9.

9.

The syntax for a path argument is a subset of the XPath abbreviated
syntax. Predicates are used only for constraining the values for the
key nodes for list entries. Each predicate consists of exactly one
equal ity test per key, and multiple adjacent predicates MAY be
present if a list has multiple keys. The syntax is formally defined
by the rule "path-arg" in Section 12.

The predicates are only used when nore than one key reference is
needed to uniquely identify a leaf instance. This occurs if a l|ist
has multiple keys, or a reference to a | eaf other than the key in a
list is needed. |In these cases, nmultiple leafrefs are typically
specified, and predicates are used to tie themtogether

The "path" expression evaluates to a node set consisting of zero,
one, or nore nodes. |If the leaf with the leafref type represents
configuration data, this node set MJST be non-enpty.

The "path" XPath expression is conceptually evaluated in the
following context, in addition to the definition in Section 6.4.1

0 The context node is the node in the data tree for which the "path"
statement is defined.

The accessible tree depends on the context node:

o |If the context node represents configuration data, the tree is the
data in the NETCONF datastore where the context node exists. The
XPat h root node has all top-level configuration data nodes in al
nodul es as chil dren.

0 Oherwise, the tree is all state data on the device, and the
<runni ng/ > datastore. The XPath root node has all top-level data
nodes in all nodules as children

9.3. Lexical Representation
A leafref value is encoded the sane way as the leaf it references.
9.4. Canonical Form

The canonical formof a leafref is the same as the canonical form of
the leaf it references.

Bj or kl und St andards Track [Page 125]

RFC 6020 YANG

9.9.5. Usage Exanple
Wth the following list:

list interface {

key "name";
| eaf nane {
type string;

| eaf adm n-status {
type admi n- st at us;

list address {
key " i p|I ;
leaf ip {
type yang:i p- address;
}

}

The following leafref refers to an existing interface:

| eaf ngnt-interface {
type leafref {
path "../interfacel/ name";
}

}
An exanpl e of a correspondi ng XML sni ppet:

<interface>
<name>et h0</ nanme>
</interface>
<interface>
<nane>| o</ nane>
</interface>

<nmgnt -i nterface>et hO</ ngm -i nterface>

Bj or kl und St andards Track

Cct ober 2010

[Page 126]

RFC 6020 YANG Oct ober 2010

The following |eafrefs refer to an existing address of an interface:

cont ai ner default-address {
| eaf ifname {
type leafref {
path "../../interface/ name";
}

| eaf address {
type leafref {
path "../../interface[name = current()/../ifnanme]"
+ "/address/ip";

}
An exanpl e of a correspondi ng XML sni ppet:

<interface>
<name>et h0</ nanme>
<admi n- st at us>up</ adm n- st at us>
<addr ess>
<i p>192.0. 2. 1</i p>
</ addr ess>
<addr ess>
<i p>192.0. 2. 2</i p>
</ addr ess>
</interface>
<interface>
<name>| o</ nane>
<admi n- st at us>up</ adni n- st at us>
<addr ess>
<i p>127.0.0. 1</i p>
</ addr ess>
</interface>

<def aul t - addr ess>

<i f name>et hO</i f nane>

<addr ess>192. 0. 2. 2</ addr ess>
</ def aul t - addr ess>

Bj or kl und St andards Track [Page 127]

RFC 6020 YANG

The following list uses a |leafref for one of
simlar to a foreign key in a relational database.

list packet-filter {
key "if-nane filter-id";
| eaf if-nane {
type leafref {
path "/interface/name";
}

}
leaf filter-id {
type uint 32;

}

An exanpl e of a correspondi ng XML sni ppet:

<interface>
<name>et h0</ nanme>
<admi n- st at us>up</ adm n- st at us>
<addr ess>
<i p>192.0. 2. 1</i p>
</ addr ess>
<addr ess>
<i p>192.0. 2. 2</i p>
</ addr ess>
</interface>

<packet-filter>
<i f - name>et hO</i f - name>
<filter-id>1</filter-id>

</ packet-filter>
<packet-filter>
<i f - nane>et hO</i f - name>
<filter-id>2</filter-id>

</ packet-filter>

Bj or kl und St andards Track

its keys.

Cct ober 2010

This is

[Page 128]

RFC 6020 YANG Oct ober 2010

The following notification defines two |leafrefs to refer to an
exi sting adm n-stat us:

notification link-failure {
| eaf if-nane {
type leafref {
path "/interface/ name";
}
}

| eaf adm n-status {
type leafref {
pat h
“linterface[nane = current()/../if-nanme]"
+ "/adm n-status";

}
An exanpl e of a corresponding XM. notification
<notification
xm ns="urn:ietf:parans: xm :ns: netconf:notification:1. 0">
<event Ti me>2008- 04- 01T00: 01: 00Z</ event Ti me>
<link-failure xm ns="http://acne. exanpl e. com syst ent' >
<i f-nane>et hO</i f - name>
<admi n- st at us>up</ admi n- st at us>
</link-failure>
</notification>
9.10. The identityref Built-In Type

The identityref type is used to reference an existing identity (see
Section 7.16).

9.10.1. Restrictions
An identityref cannot be restricted.
9.10.2. The identityref’s base Statenent

The "base" statenent, which is a substatement to the "type"

statenent, MJUST be present if the type is "identityref". The
argunent is the name of an identity, as defined by an "identity"
statement. If a prefix is present on the identity nane, it refers to

an identity defined in the nodule that was inported with that prefix.
O herwi se, an identity with the matchi ng nane MJUST be defined in the
current nodul e or an included subnodul e.

Bj or kl und St andards Track [Page 129]

RFC 6020 YANG Oct ober 2010

Valid values for an identityref are any identities derived fromthe
identityref's base identity. On a particular server, the valid

val ues are further restricted to the set of identities defined in the
nodul es supported by the server.

9.10.3. Lexical Representation

An identityref is encoded as the referred identity's qualified nane
as defined in [XM.-NAMES]. If the prefix is not present, the
nanespace of the identityref is the default nanmespace in effect on
the elenment that contains the identityref val ue.

When an identityref is given a default value using the "default"
statenent, the identity nane in the default value MAY have a prefix.
If a prefix is present on the identity nane, it refers to an identity
defined in the nodule that was inmported with that prefix. O herw se,
an identity with the matchi ng name MJUST be defined in the current
nodul e or an included subnodul e.

9.10.4. Canonical Form

Since the | exical formdepends on the XM. context in which the val ue
occurs, this type does not have a canonical form

9.10.5. Usage Exanmpl e

Wth the identity definitions in Section 7.16.3 and the foll ow ng
nmodul e:

nodul e ny-crypto {

nanespace "http://exanpl e.com ny-crypto";
prefix nt;

i mport "crypto-base" {
prefix "crypto";
}

identity aes {
base "crypto:crypto-al g*;
}

| eaf crypto {
type identityref {
base "crypto:crypto-al g*;
}

Bj or kl und St andards Track [Page 130]

RFC 6020 YANG Oct ober 2010
the leaf "crypto" will be encoded as follows, if the value is the
"des3" identity defined in the "des" nodul e:

<crypto xm ns: des="http://exanpl e. conf des" >des: des3</ crypt 0>
Any prefixes used in the encoding are |l ocal to each instance
encoding. This neans that the sane identityref may be encoded
differently by different inplenentations. For exanple, the follow ng
exanpl e encodes the sane | eaf as above:

<crypto xm ns: x="http://exanpl e. com des" >x: des3</crypt o>

If the "crypto" leaf’'s value instead is "aes" defined in the
"nmy-crypto" nodule, it can be encoded as:

<crypto xm ns:nc="http://exanpl e. com ny-crypt 0" >nt: aes</ crypt o>
or, using the default nanespace:
<crypt o>aes</ crypt o>
9.11. The enpty Built-In Type

The enpty built-in type represents a | eaf that does not have any
val ue, it conveys information by its presence or absence.

An enpty type cannot have a default val ue.
9.11.1. Restrictions

An enpty type cannot be restricted.
9.11.2. Lexical Representation

Not appl i cabl e.
9.11.3. Canonical Form

Not appl i cabl e.
9.11.4. Usage Exampl e

The foll ow ng | eaf

| eaf enabl e-qos {
type enpty;

Bj or kl und St andards Track [Page 131]

RFC 6020 YANG Oct ober 2010

wi || be encoded as
<enabl e- gqos/ >
if it exists.
9.12. The union Built-In Type

The union built-in type represents a value that corresponds to one of
its menmber types.

When the type is "union", the "type" statenent (Section 7.4) MJST be

present. It is used to repeatedly specify each nmenber type of the
union. It takes as an argunment a string that is the nanme of a nenber
t ype.

A menber type can be of any built-in or derived type, except it MJST
NOT be one of the built-in types "enpty" or "leafref".

When a string representing a union data type is validated, the string
is validated agai nst each nenber type, in the order they are
specified in the "type" statement, until a match is found.

Any default value or "units" property defined in the nmenber types is
not inherited by the union type.

Exanpl e:
type union {
type int32;

type enuneration {
enum "unbounded";
}

}
9.12.1. Restrictions

A uni on cannot be restricted. However, each nenber type can be
restricted, based on the rules defined in Section 9.

9.12.2. Lexical Representation

The | exical representation of a union is a value that corresponds to
the representation of any one of the nenber types.

Bj or kl und St andards Track [Page 132]

RFC 6020 YANG Oct ober 2010

9.12.3. Canonical Form

The canonical formof a union value is the sanme as the canonical form
of the nenber type of the val ue.

9.13. The instance-identifier Built-lIn Type

The instance-identifier built-in type is used to uniquely identify a
particul ar i nstance node in the data tree.

The syntax for an instance-identifier is a subset of the XPath
abbrevi ated syntax, formally defined by the rule
"instance-identifier" in Section 12. It is used to uniquely identify
a node in the data tree. Predicates are used only for specifying the
val ues for the key nodes for list entries, a value of a leaf-1list
entry, or a positional index for a list wthout keys. For
identifying list entries with keys, each predicate consists of one
equal ity test per key, and each key MJST have a correspondi ng

pr edi cat e.

If the leaf with the instance-identifier type represents
configuration data, and the "require-instance" property

(Section 9.13.2) is "true", the node it refers to MIJST al so represent
configuration. Such a leaf puts a constraint on valid data. Al

such | eaf nodes MJST reference existing nodes or |eaf nodes with
their default value in use (see Section 7.6.1) for the data to be
valid. This constraint is enforced according to the rules in
Section 8.

The "instance-identifier" XPath expression is conceptually eval uated
in the followi ng context, in addition to the definition in
Section 6.4. 1:

0 The context node is the root node in the accessible tree.

The accessible tree depends on the |leaf with the instance-identifier
type:

o If this leaf represents configuration data, the tree is the data
in the NETCONF datastore where the | eaf exists. The XPath root
node has all top-level configuration data nodes in all nodul es as
children.

0 Oherwise, the tree is all state data on the device, and the

<runni ng/ > datastore. The XPath root node has all top-level data
nodes in all nodules as children

Bj or kl und St andards Track [Page 133]

RFC 6020 YANG Oct ober 2010

9.13.1. Restrictions

An instance-identifier can be restricted with the "require-instance"
statenment (Section 9.13.2).

9.13.2. The require-instance Statenent

The "require-instance" statenment, which is a substatement to the
"type" statenent, MAY be present if the type is

"instance-identifier". It takes as an argunent the string "true" or
"false". If this statenent is not present, it defaults to "true"
If "require-instance" is "true", it means that the instance being

referred MJST exist for the data to be valid. This constraint is
enforced according to the rules in Section 8.

If "require-instance"” is "false", it neans that the instance being
referred MAY exist in valid data.

9.13.3. Lexical Representation
An instance-identifier value is lexically represented as a string.
Al'l node nanes in an instance-identifier value MJST be qualified with
explicit namespace prefixes, and these prefixes MJIST be declared in
the XML nanespace scope in the instance-identifier’'s XM el enent.
Any prefixes used in the encoding are |local to each instance
encoding. This means that the sane instance-identifier may be
encoded differently by different inplenentations.

9.13.4. Canonical Form

Since the | exical formdepends on the XM. context in which the val ue
occurs, this type does not have a canonical form

9.13.5. Usage Exanpl e
The foll owi ng are exanples of instance identifiers:

/* instance-identifier for a container */
[ex: system ex: servi ces/ ex: ssh

/* instance-identifier for a |leaf */
/ ex: syst eni ex: servi ces/ ex: ssh/ ex: port

[* instance-identifier for a list entry */
[ex:systen ex: user[ex: nane="fred’]

Bj or kl und St andards Track [Page 134]

RFC 6020 YANG Oct ober 2010

10.

/* instance-identifier for a leaf in alist entry */
[ex:systen ex: user[ex:nane="fred]/ex:type

/[* instance-identifier for alist entry with two keys */
/ex:system ex:server[ex:ip=192.0.2.1"][ex:port="80"]

/* instance-identifier for a leaf-list entry */
[ex: systent ex: servi ces/ ex: ssh/ ex: ci pher[.="bl owfish-cbc’]

/* instance-identifier for a list entry without keys */
[ex:stats/ex:port][3]

Updating a Modul e

As experience is gained with a nodule, it may be desirable to revise
that nodul e. However, changes are not allowed if they have any
potential to cause interoperability problens between a client using
an original specification and a server using an updated

speci fication.

For any published change, a new "revision" statement (Section 7.1.9)
MJST be included in front of the existing "revision" statements. |f
there are no existing "revision" statements, then one MJST be added
to identify the new revision. Furthernore, any necessary changes
MUST be applied to any neta-data statenents, including the

"organi zation" and "contact" statenents (Sections 7.1.7, 7.1.8).

Note that definitions contained in a nodule are available to be

i mported by any other nodule, and are referenced in "inport”
statenments via the nmodul e name. Thus, a nodul e nane MJUST NOT be
changed. Furthernore, the "nanespace" statenment MJST NOT be changed,
since all XM. el enents are qualified by the nanespace.

bsol ete definitions MJUST NOT be renpved from nodul es since their
identifiers may still be referenced by other nodul es.

A definition may be revised in any of the foll owi ng ways:

0 An "enuneration" type nay have new enuns added, provided the old
enuns’ s val ues do not change.

o A "bits" type may have new bits added, provided the old bit
posi tions do not change.

o A "range", "length", or "pattern" statement may expand the all owed
val ue space.

Bj or kl und St andards Track [Page 135]

RFC 6020 YANG Oct ober 2010

o A "default" statenent nay be added to a | eaf that does not have a
default value (either directly or indirectly through its type).

o A "units" statement may be added.
o A "reference" statenent may be added or updat ed.
o A "must" statenent may be renpved or its constraint relaxed

o A "mandatory" statenent may be renmpved or changed from"true" to
"fal se".

o A "min-elenments" statenent nay be renoved, or changed to require
fewer el enments.

o A "max-elements" statenent may be rempved, or changed to all ow
nore el enents.

o A "description" statenment nmay be added or clarified wthout
changi ng the semantics of the definition

o New typedefs, groupings, rpcs, notifications, extensions,
features, and identities may be added.

o New data definition statenents nmay be added if they do not add
mandat ory nodes (Section 3.1) to existing nodes or at the top
level in a nodule or subnodule, or if they are conditionally
dependent on a new feature (i.e., have an "if-feature" statenent
that refers to a new feature).

o A new "case" statenment may be added.

o0 A node that represented state data nay be changed to represent
configuration, provided it is not mandatory (Section 3.1).

o An "if-feature" statenment nmmy be renoved, provided its node is not
nmandatory (Section 3.1).

o0 A "status" statement may be added, or changed from"current" to
"deprecated" or "obsolete", or from"deprecated" to "obsolete".

o A "type" statenent may be replaced with another "type" statenent
that does not change the syntax or senantics of the type. For
exanple, an inline type definition my be replaced with a typedef,
but an int8 type cannot be replaced by an int16, since the syntax
woul d change.

Bj or kl und St andards Track [Page 136]

RFC 6020 YANG Oct ober 2010

11.

11.

0 Any set of data definition nodes may be replaced with another set
of syntactically and semantically equival ent nodes. For exanple,
a set of leafs nmay be replaced by a uses of a grouping with the
sanme | eafs.

o A nodule may be split into a set of subnodul es, or a subnodul e may
be renoved, provided the definitions in the nodul e do not change
in any other way than allowed here.

o The "prefix" statement may be changed, provided all |ocal uses of
the prefix al so are changed.

QO herwise, if the senantics of any previous definition are changed
(i.e., if a non-editorial change is made to any definition other than
those specifically allowed above), then this MJUST be achi eved by a
new definition with a new identifier.

In statenents that have any data definition statenments as
substatenents, those data definition substatenments MJUST NOT be
r eor der ed.

YI'N

A YANG nodul e can be translated into an alternative XM.-based synt ax
called YIN. The translated module is called a YIN nodule. This
section describes symretric mapping rules between the two fornats.

The YANG and YIN formats contain equivalent information using
different notations. The YIN notation enabl es devel opers to
represent YANG data nodels in XM. and therefore use the rich set of
XM.- based tools for data filtering and validation, autonated
generation of code and docunentation, and other tasks. Tools |ike
XSLT or XML validators can be utilized.

The mappi ng between YANG and YI N does not nodify the informtion
content of the nodel. Comments and whitespace are not preserved.

1. Fornmal YIN Definition

There is a one-to-one correspondence between YANG keywords and YIN
el ements. The local nanme of a YIN elenent is identical to the
correspondi ng YANG keyword. This neans, in particular, that the
docunent el enent (root) of a YIN docunment is always <nodul e> or
<submodul e>.

YI N el ements corresponding to the YANG keywords belong to the
nanespace whose associated URl is
"urn:ietf:parans: xm:ns:yang:yin:1".

Bj or kl und St andards Track [Page 137]

RFC 6020 YANG Oct ober 2010

YI N el ements correspondi ng to extension keywords belong to the
nanmespace of the YANG nodul e where the extension keyword is decl ared
via the "extension" statenent.

The nanes of all YIN elenents MJST be properly qualified with their
nanespaces specified above using the standard nechani sns of
[XML- NAMES], i.e., "xmns" and "xm ns: xxx" attributes.

The argument of a YANG statement is represented in YIN either as an
XM. attribute or a subelement of the keyword el enent. Table 1
defines the mapping for the set of YANG keywords. For extensions,
the argunent mapping is specified within the "extension" statenent
(see Section 7.17). The following rules hold for argunents:

o If the argunent is represented as an attribute, this attribute has
no nanmespace

o If the argunment is represented as an elenent, it is qualified by
the sane nanespace as its parent keyword el ement.

o If the argunent is represented as an elenent, it MJST be the first
child of the keyword el ement.

Substatenents of a YANG statenent are represented as (additional)
children of the keyword elenent and their relative order MJST be the
same as the order of substatenents in YANG

Comments in YANG MAY be mapped to XML comments.

Bj or kl und St andards Track [Page 138]

RFC 6020

Bj or kl und

YANG

Cct ober

Mappi ng of argunents of the YANG statenents.

anyxm

ar gunent
augment

base

bel ongs-to
bi t

case

choi ce
config

cont act
cont ai ner
def aul t
description
devi at e

devi ati on
enum
error-app-tag
error-nmessage
ext ensi on
feature
fraction-digits
gr oupi ng
identity
if-feature

i mport

i ncl ude

i nput

key

| eaf

| eaf -1i st

| ength

list

nmandat ory
max- el ement s
m n-el enent s
nodul e

nmust
nanespace
notification
or der ed- by
or gani zati on
out put

pat h

name
name
target - node
nane

nodul e

name

name

name

val ue

t ext

name

val ue

t ext

val ue
target - node
nane

val ue

val ue

name

name

val ue

nane

name

name

nodul e
nodul e

<no ar gument >
val ue

name

name

val ue

name

val ue

val ue

val ue

name

condi tion
uri

nane

val ue

t ext

<no ar gument >
val ue

St andards Track

2010

[Page 139]

RFC 6020

Bj or kl und

pattern
position
prefix
presence
range

ref erence
refine

require-instance

revision

revi si on-date

rpc

st atus
subnodul e
type

t ypedef

uni que
units

uses

val ue

when
yang- ver si on
yi n-el emrent

YANG

val ue
val ue
val ue
val ue
val ue
t ext
target - node
val ue
dat e
dat e
name
val ue
name
nane
nane
tag
name
name
val ue
condi tion
val ue
val ue

Table 1

St andards Track

Cct ober

2010

[Page 140]

RFC 6020 YANG Cct ober

11.1. 1. Usage Exanple
The foll owi ng YANG nodul e:

nodul e acne-foo {
nanmespace "http://acne. exanpl e. com foo";
prefix "acfoo";

i mport ny-extensions {
prefix "nmyext";
}

list interface {
key "name";
| eaf nanme {
type string;
}

| eaf ntu {
type uint 32;
description "The MIU of the interface.";
nyext: c-define "MY_MIU';

}

where the extension "c-define" is defined in Section 7.17.3, is
translated into the follow ng YIN

2010

Bj or kl und St andards Track [Page 141]

RFC 6020 YANG Oct ober 2010

<modul e name="acne-f oo"
xm ns="urn:ietf:parans: xm :ns:yang:yin:1"
xm ns: acfoo="http://acne. exanpl e. coni f 00"
xm ns: nyext ="http://exanpl e. conl ny- ext ensi ons" >

<nanespace uri="http://acne. exanpl e. com foo"/ >
<prefix val ue="acfoo"/>

<i nport nodul e="ny- ext ensi ons" >
<prefix val ue="nyext"/>
</inport >

<list name="interface">
<key val ue="nane"/ >
<l eaf name="nane">
<type name="string"/>
</l eaf >
<l eaf name="ntu">
<type nanme="ui nt 32"/ >
<descri pti on>
<text >The MIU of the interface.</text>
</ descri ption>
<nyext: c-define name="MY_MIU"/>
</| eaf >
</list>
</ modul e>

Bj or kl und St andards Track [Page 142]

RFC 6020 YANG Oct ober 2010

12. YANG ABNF G anmar

In YANG alnpst all statements are unordered. The ABNF grammar
[RFC5234] defines the canonical order. To inprove nodul e
readability, it is RECOVWENDED that clauses be entered in this order.

Wthin the ABNF granmar, unordered statenents are nmarked with
comment s.

This grammar assunes that the scanner replaces YANG comrents with a
singl e space character.

<CODE BEG NS> file "yang. abnf"

nodul e- st m = optsep nodul e-keyword sep identifier-arg-str
opt sep
"{" stmsep
nmodul e- header-stnts
I i nkage-stnts
neta-stnts
revision-stnts

body-stnts
"1" optsep
subnodul e- st nt = opt sep subnodul e-keyword sep identifier-arg-str
opt sep
"{" stmsep
subnmodul e- header-stnts
I i nkage-stnts

meta-stnts
revision-stnts
body-stnts

"1" optsep

nodul e- header-stnts = ;; these stnts can appear in any order
[yang-version-stnt stntsep]
namespace-stnt stntsep
prefix-stm stmtsep

subnodul e- header-stnts =
;; these stnts can appear in any order
[yang-version-stnt stntsep]
bel ongs-to-stnt stntsep

Bj or kl und St andards Track [Page 143]

RFC 6020 YANG Oct ober 2010

neta-stnts ;; these stnts can appear in any order
[organi zation-stnt stntsep]
[contact-stnt stntsep]
[description-stnt stntsep]

[reference-stnt stntsep]

| i nkage-stnts = ;; these stnts can appear in any order
*(inport-stnt stntsep)
*(include-stnt stntsep)

revision-stnts = *(revision-stnt stntsep)

body-stnts = *((extension-stnt /

feature-stnt /
identity-stnt /
typedef-stm /

groupi ng-stnt /

dat a- def -stnt /

augnent -stnt /

rpc-stmt /
notification-stnt /

devi ation-stnt) stntsep)

contai ner-stm /
| eaf -stnt /
leaf-list-stnt /
list-stnt /

choi ce-stnt /
anyxm -stnt /
uses-stnt

dat a- def - st nt

yang-versi on-stm yang-ver si on- keyword sep yang-version-arg-str

opt sep stntend

yang-version-arg-str = < a string that matches the rule
yang-version-arg >

yang- version-arg ="1"

i mport-stm i mport-keyword sep identifier-arg-str optsep
"{" stmsep
prefix-stm stmtsep

[revision-date-stm stntsep]

oy

Bj or kl und St andards Track [Page 144]

RFC 6020

i ncl ude-stnt

nanmespace- st nt

uri-str

prefix-stm

bel ongs-to-stnt

or gani zati on-stnt

contact-stnt

description-stm

ref erence-stnt
units-stm

revi sion-stmt

revi si on-date

YANG Oct ober 2010

i ncl ude- keyword sep identifier-arg-str optsep

(II;II /
"{" stmsep

[revision-date-stm stmsep]
II}II)

nanespace- keyword sep uri-str optsep stntend

< a string that matches the rule
URI in RFC 3986 >

prefix-keyword sep prefix-arg-str
opt sep stntend

bel ongs-to-keyword sep identifier-arg-str
opt sep
"{" stmsep
prefix-stm stmtsep
II}II

or gani zati on- keyword sep string
opt sep stntend
cont act - keyword sep string optsep stntend

descripti on-keyword sep string optsep
stnt end

ref erence- keyword sep string optsep stntend
units-keyword sep string optsep stntend

revi si on-keyword sep revision-date optsep
(";" 1
"{" stmsep
[description-stnt stmntsep]
[reference-stnt stntsep]

")

dat e-arg-str

revi sion-date-stnt = revision-date-keyword sep revision-date stntend

Bj or kl und St andards Track [Page 145]

RFC 6020

ext ensi on-stm

ar gunment - st nt

yi n-el ement - st nt

yin-el ement -arg-str

yi n-el emrent -arg

identity-stnt

base- st nt

feature-stm

Bj or kl und

YANG Oct ober 2010

ext ensi on-keyword sep identifier-arg-str optsep
(";" 1
"{" stmsep
;; these stnts can appear in any order
[argunent -stm st ntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")

argunent - keyword sep identifier-arg-str optsep
(II;II /
"{" stmsep
[yin-el enent-stnt stntsep]
Il}ll)

yi n-el ement - keyword sep yin-el ement-arg-str
stnt end

< a string that matches the rule
yin-elenment-arg >

true-keyword / fal se-keyword

identity-keyword sep identifier-arg-str optsep
(";" 1
"{" stmsep

;; these stnts can appear in any order

[base-stnt stntsep]

[status-stnt stntsep]

[description-stnt stntsep]

[reference-stnt stntsep]

")

base- keyword sep identifier-ref-arg-str
opt sep stntend

feature-keyword sep identifier-arg-str optsep
("
"{" stmsep
;; these stnts can appear in any order
*(if-feature-stnt stntsep)
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")

St andards Track [Page 146]

RFC 6020

i f-feature-stnt

typedef -stm

type- st nt

type-body-stnts

YANG Cct ober

2010

if-feature-keyword sep identifier-ref-arg-str

opt sep stntend

typedef - keyword sep identifier-arg-str optsep

"{" stmsep
;; these stnts can appear in any order
type-stnt stntsep
[units-stm stntsep]
[defaul t-stnt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

II}II
type-keyword sep identifier-ref-arg-str opt
(";" 1
"{" stmsep
type- body-stnts
")

nunerical -restrictions /

deci mal 64- speci fication /
string-restrictions /

enum speci fication /

| eafref-specification /

i dentityref-specification /

i nstance-identifier-specification /
bits-specification /

uni on-speci fication

nunerical -restrictions = range-stm stmtsep

range- st nt =

deci mal 64- speci fi cati

fraction-digits-stm

Bj or kl und

range- keyword sep range-arg-str optsep

(";" 1

"{" stmsep
;; these stnts can appear in any order
[error-nessage-stm stntsep]
[error-app-tag-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")
on = fraction-digits-stnt

= fraction-digits-keyword sep
fraction-digits-arg-str stntend

St andards Track [Page

sep

147]

RFC 6020

YANG Oct ober 2010

fraction-digits-arg-str = < a string that natches the rule

fraction-digits-arg =

string-restrictions =

| engt h-stm =

pattern-stnt =

def aul t-stnt =

enum speci fi cation

enum st nt =

Bj or kl und

fraction-digits-arg >

("1 "o/ ™mav [2" ["3" ["4"]
5"/ ve" ["7 ["8"])
{[ov2t /"3 4"/ 5"/ et/ 7t/ 8" ["9"

;; these stnts can appear in any order
[l ength-stnt stntsep]
*(pattern-stnt stntsep)

| engt h-keyword sep | ength-arg-str optsep

("

"{" stmsep
;; these stnts can appear in any order
[error-nmessage-stm stntsep]
[error-app-tag-stm stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")

pattern-keyword sep string optsep

("

“{" stntsep
;; these stnts can appear in any order
[error-nmessage-stnt stntsep]
[error-app-tag-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")
defaul t - keyword sep string stntend
1*(enum stnt stntsep)

enum keyword sep string optsep

("

"{" stmsep
;; these stnts can appear in any order
[val ue-stm stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")

St andards Track [Page 148]

RFC 6020 YANG Oct ober 2010

| eafref-specification =
;; these stnts can appear in any order
pat h-stm stmtsep
[require-instance-stm stmsep]

pat h-stm = pat h-keyword sep path-arg-str stntend

requi re-instance-stnt = require-instance-keywrd sep
require-instance-arg-str stmntend

require-instance-arg-str = < a string that matches the rule
require-instance-arg >

require-instance-arg = true-keyword / fal se-keyword
i nstance-identifier-specification =
[require-instance-stnm stmtsep]

identityref-specification =
base-stm stmtsep

uni on-specification = 1*(type-stnt stntsep)

1*(bit-stm stntsep)

bits-specification

bit-stmn = bit-keyword sep identifier-arg-str optsep
(G
"{" stmsep
;; these stnts can appear in any order
[position-stm stmtsep]
[status-stnt stntsep]
[description-stnt stmtsep]
[reference-stnt stntsep]
")
posi tion-stnt = position-keyword sep

posi tion-val ue-arg-str stntend

position-value-arg-str = < a string that matches the rule
posi tion-val ue-arg >

position-val ue-arg = non-negative-integer-value

stat us-stnt

st atus-keyword sep status-arg-str stntend

Bj or kl und St andards Track [Page 149]

RFC 6020

status-arg-str

status-arg

config-stnt

config-arg-str

config-arg

mandat or y- st m

nmandat ory- ar g-str

mandat or y- ar g
presence- st nt

or der ed- by- st nt

ordered-by-arg-str

or der ed-by-arg

nmust - st nt

error-nmessage-stnt

error-app-tag-stnt

Bj or kl und

YANG

< a string that matches the rule
status-arg >

current-keyword /
obsol et e- keyword /
depr ecat ed- keywor d

confi g- keyword sep
config-arg-str stntend

< a string that matches the rule
config-arg >

true-keyword / fal se-keyword

mandat or y- keyword sep
mandat ory-arg-str stntend

< a string that matches the rule
mandat ory-arg >

true-keyword / fal se-keyword
presence- keyword sep string stntend

or der ed- by- keyword sep
ordered-by-arg-str stntend

< a string that matches the rule
ordered-hby-arg >

user - keyword / system keyword

nmust - keyword sep string optsep

("

"{" stmsep
;; these stnts can appear
[error-nessage-stm stmtsep]
[error-app-tag-stnt stntsep]
[description-stm stmsep]
[reference-stnt stntsep]

")
error-nmessage- keyword sep string st

error-app-tag-keywrd sep string st

St andards Track

Cct ober

in any order

nt end

nt end

2010

[Page 150]

RFC 6020

m n-el enent s- st nt

m n-val ue-arg-str

m n-val ue-arg

max- el enent s- st nt

max-val ue-arg-str

max- val ue- arg

val ue-stnt

gr oupi ng- stm

contai ner-stm

Bj or kl und

YANG Cct ober
m n- el enent s- keyword sep
m n-val ue-arg-str stntend

< a string that matches the rule
m n-val ue-arg >

non- negati ve-i nt eger-val ue

max- el ement s- keyword sep
max- val ue-arg-str stntend

< a string that matches the rule
nmax-val ue-arg >

unbounded- keyword /
posi tive-integer-val ue

val ue- keyword sep integer-val ue stntend

2010

groupi ng- keyword sep identifier-arg-str optsep

("

"{" stmsep
;; these stnts can appear in any order
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*((typedef-stmt /

groupi ng-stnt) stntsep)

*(dat a-def -stnt stntsep)

")

cont ai ner-keyword sep identifier-arg-str optsep

("1

"{" stmsep
;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
*(must-stnt stntsep)
[presence-stm stmntsep]
[config-stnt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*((typedef-stmt /

groupi ng-stmt) stntsep)

*(dat a-def -stmt st nt sep)

")

St andards Track [Page 151]

RFC 6020

| eaf -stnt

| eaf-list-stnt

list-stnt

Bj or kl und

YANG Cct ober

= | eaf -keyword sep identifier-arg-str optsep
"{" stmsep

nyn

;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
type-stnmt stntsep
[units-stm stntsep]
*(must-stnt stntsep)
[defaul t-stnt stntsep]
[config-stnt stntsep]

[mandat ory-stnt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

2010

= leaf-list-keyword sep identifier-arg-str optsep
"{" stmsep

oy

i
{

;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
type-stnt stntsep
[units-stm stntsep]
*(must-stnt stntsep)
[config-stnt stntsep]
[mn-el ements-stnt stntsep]
[mex- el enment s-stnt stntsep]
[order ed- by-stm stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

st-keyword sep identifier-arg-str optsep

stnt sep

;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
*(must-stnt stntsep)

[key-stm stmtsep]

*(uni que-stnt stntsep)
[config-stnt stntsep]
[mn-el ements-stnt stntsep]
[mex- el enment s-stnt stntsep]
[order ed- by-stmt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

St andards Track [Page

152]

RFC 6020

key- st nt

key-arg-str

key-arg
uni que-stm

uni que-arg-str

uni que-arg

choice-stm

short-case-stnt

case-stnt

Bj or kl und

YANG Oct ober 2010

*((typedef-stmt /

groupi ng-stnt) stntsep)
1*(dat a- def - st nmt st nt sep)
II}II

key- keyword sep key-arg-str stntend

< a string that matches the rule
key-arg >

node-identifier *(sep node-identifier)
uni que- keyword sep uni que-arg-str stntend

< a string that matches the rule
uni que-arg >

descendant - schena- nodei d
*(sep descendant - schema- nodei d)

choi ce- keyword sep identifier-arg-str optsep
(";" 1
"{" stmsep
;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
[defaul t-stnt stntsep]
[config-stnt stntsep]
[mandat ory-stnt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*((short-case-stnt / case-stnt) stntsep)
")

contai ner-stm /
| eaf -stnt /
leaf-list-stnt /
list-stnt /
anyxm - st nt

case-keyword sep identifier-arg-str optsep
("
"{" stmsep
;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
[status-stnt stntsep]

St andards Track [Page 153]

RFC 6020

anyxm -stnt

uses-stnt

refine-stnt

refine-arg-str

refine-arg

Bj or kl und

YANG Oct ober 2010

[description-stnt stntsep]
[reference-stnt stntsep]
*(dat a-def -stmt st nt sep)

")

anyxm - keyword sep identifier-arg-str optsep

("

"{" stmsep
;; these stnts can appear in any order
[when-stnt stntsep]

*(if-

feature-stnt stmsep)

*(must-stnt stntsep)
[config-stnt stntsep]

[mandat ory-stnt stntsep]
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

")

uses- keyword sep identifier-ref-arg-str optsep

(";"

"{" stmsep
;; these stnts can appear in any order
[when-stnt stntsep]
*(if-feature-stnt stntsep)
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*(refine-stnt stntsep)
*(uses-augnent -stnt stntsep)

")

refi ne-keyword sep refine-arg-str optsep

("

"{" stmsep

(refi
refi
refi
refi
refi
refi
refi

")

ne-contai ner-stnts /
ne-leaf-stnts /
ne-leaf-list-stnts /
ne-list-stnts /
ne-choi ce-stnts /
ne-case-stnts /

ne- anyxm -stnts)

< a string that matches the rule
refine-arg >

descendant - schema- nodei d

St andards Track [Page 154]

RFC 6020

refine-container-stnts

refine-leaf-stnts

YANG

;; these stnts can appear in
*(must-stnt stntsep)

[presence-stm stm sep]
[config-stnt stntsep]
[description-stnt stmtsep]
[reference-stnt stntsep]

;; these stnts can appear in
*(must-stnt stntsep)

[defaul t-stnt stntsep]
[config-stnt stntsep]

[mandat ory-stnt stntsep]
[description-stnt stmtsep]
[reference-stnt stntsep]

refine-leaf-list-stnts =

refine-list-stnts

refine-choice-stnts

refine-case-stnts

refine-anyxm -stnts

Bj or kl und

;; these stnts can appear in
*(must-stnt stntsep)
[config-stnt stntsep]

[mn-el ements-stnt stntsep]

[max- el ement s-stnt stnt sep]
[description-stnm stmntsep]
[reference-stnt stntsep]

;; these stnts can appear in
*(must-stnt stntsep)
[config-stnt stntsep]

[mn-el ements-stnt stntsep]

[max- el ement s-stnt stntsep]
[description-stnmt stmtsep]
[reference-stnt stntsep]

;; these stnts can appear in
[defaul t-stnt stntsep]
[config-stnt stntsep]

[mandat ory-stnt stntsep]
[description-stnt stmtsep]
[reference-stnt stntsep]

;; these stnts can appear in
[description-stnt stmntsep]
[reference-stnt stntsep]

;; these stnts can appear in
*(must-stnt stntsep)
[config-stnt stntsep]

St andards Track

any

any

any

any

any

any

any

Cct ober 2010

order

or der

or der

order

or der

or der

or der

[Page 155]

RFC 6020

uses-augnment - st m

uses- augment - arg- str

uses-augment -arg

augnent - st nt

augment -arg-str

augnent -arg

unknown- st at enent

unknown- st at enent 2

when- st m

Bj or kl und

YANG

[mandat ory-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]

Cct ober 2010

augment - keyword sep uses-augnent-arg-str optsep

"{" stmsep

;; these stnts can appear in any order

[when-stnt stntsep]

*(if-feature-stnt stntsep)

[status-stnt stntsep]

[description-stnt stntsep]

[reference-stnt stntsep]

1*((data-def-stnt stmtsep) /
(case-stnt stntsep))

Il}ll

= < a string that matches the rule
uses-augnent-arg >

descendant - schema- nodei d

augment - keywor d sep augnent-arg-str optsep

"{" stmsep

;; these stnts can appear in any order

[when-stnt stntsep]
*(if-feature-stnt stntsep)
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
1*((data-def-stnt stmtsep) /
(case-stnt stntsep))

oy

< a string that matches the rule
augnment-arg >

absol ut e- schenmn- nodei d

prefix ":" identifier [sep string] optsep
(";" 1 "{" *unknown-statenent2 "}")

= [prefix ":"] identifier [sep string] optsep
(";" 1 "{" *unknown-statenent2 "}")

when- keyword sep string optsep
("1
"{" stmsep

;; these stnts can appear in any order

St andards Track

[Page 156]

RFC 6020

rpc-stnt

i nput -stnt

out put - st nt

notification-stm

Bj or kl und

YANG Cct ober

[description-stnt stntsep]
[reference-stnt stntsep]

")

rpc-keyword sep identifier-arg-str optsep
("1
"{" stmsep
;; these stnts can appear in any order
*(if-feature-stnt stntsep)
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*((typedef-stmt /
groupi ng-stnt) stntsep)
[i nput-stm stntsep]
[out put -stnt stntsep]
")

i nput - keywor d optsep
"{" stmsep
;; these stnts can appear in any order
*((typedef-stnmt /
groupi ng-stnt) stntsep)
1*(dat a- def -st nt st nt sep)

II}II

out put - keyword opt sep

"{" stmsep
;; these stnts can appear in any order
*((typedef-stmt /

groupi ng-stnt) stntsep)

1*(dat a- def -stnmt st nt sep)

Il}ll

notification-keywrd sep
identifier-arg-str optsep
("
"{" stmsep
;; these stnts can appear in any order
*(if-feature-stnt stntsep)
[status-stnt stntsep]
[description-stnt stntsep]
[reference-stnt stntsep]
*((typedef-stmt /
groupi ng-stmt) stntsep)
*(dat a-def -stmt st nt sep)
")

2010

St andards Track [Page 157]

RFC 6020

devi ati on-stm =

devi ation-arg-str =

devi ation-arg =

devi at e- not - support ed-

devi at e- add- st nt =

devi at e- del et e-stnt

Bj or kl und

YANG Cct ober

devi ati on- keyword sep
devi ation-arg-str optsep
"{" stmsep
;; these stnts can appear in any order
[description-stnt stntsep]
[reference-stnt stntsep]
(devi at e- not - supported-stnt /
1*(devi at e-add-stmt /
devi at e-repl ace-stnt /
devi ate-del ete-stnt))

oy

< a string that matches the rule
devi ation-arg >

absol ut e- schema- nodei d

stnmt =

devi at e- keyword sep

not - support ed- keywor d opt sep
(Il;ll /

"{" stmsep

")

devi at e- keywor d sep add- keyword optsep
(";" 1
"{" stmsep
[units-stm stntsep]
*(must-stnt stntsep)
*(uni que-stnt stntsep)
[defaul t-stnt stntsep]
[config-stnt stntsep]
[mandat ory-stnt stntsep]
[mn-el ements-stnt stntsep]
[max-el ement s-stnt stntsep]

")

devi at e- keyword sep del et e- keyword opt sep
("1
"{" stmsep

[units-stm stntsep]

*(must-stnt stntsep)

*(uni que-stnt stntsep)

[defaul t-stnt stntsep]

")

2010

St andards Track [Page 158]

RFC 6020 YANG Oct ober 2010

devi ate-repl ace-stnt = devi at e- keyword sep repl ace- keyword opt sep
(";" 1
"{" stmsep
[type-stnt stntsep]
[units-stnt stntsep]
[defaul t-stnt stntsep]
[config-stnt stntsep]
[mandat ory-stnt stntsep]
[mn-el ements-stnt stntsep]
[max- el ement s-stnt stnt sep]

")
;; Ranges
range-arg-str = < a string that matches the rule
range-arg >
range-arg = range-part *(optsep "|" optsep range-part)
range- part = range- boundary
[optsep ".." optsep range-boundary]
range- boundary = m n-keyword / max-keyword /
i nteger-value / decimal-val ue
;; Lengths
| engt h-arg-str = < a string that matches the rule
| ength-arg >
| ength-arg = length-part *(optsep "|" optsep |ength-part)
| engt h- part = | engt h- boundary

[optsep ".." optsep | ength-boundary]

| engt h- boundary m n-keyword / max- keyword /

non- negati ve-i nt eger-val ue

;, Date

dat e-arg-str = < a string that matches the rule
date-arg >

date-arg =4DIET "-" 2DGET "-" 2DIGT

Bj or kl und St andards Track [Page 159]

RFC 6020

YANG Oct ober 2010

;; Schema Node ldentifiers

schema- nodei d

absol ut e- schenmn- nodei d

absol ut e- schenma- nodei d /
descendant - schenm- nodei d

= 1*("/" node-identifier)

descendant - schema- nodei d =

node-identifier

node-identifier
absol ut e- schema- nodei d

[prefix ":"] identifier

;; Instance ldentifiers

i nstance-identifier

predi cate

pr edi cat e- expr

pos
7, leafref path

pat h-arg-str

pat h-arg
absol ute-path
rel ative-path

descendant - pat h

pat h- predi cate
pat h- equal i ty-expr

pat h- key- expr

Bj or kl und

1*("/" (node-identifier *predicate))
"[" *WBP (predicate-expr / pos)
(node-identifier / ".") *WSP "=" *WSP
((DQUOTE string DQUOTE) /
(SQUOTE string SQUOTE))

non- negati ve-i nt eger-val ue

*Wep "]

< a string that matches the rule
path-arg >

absol ute-path / relative-path

1*("/" (node-identifier *path-predicate))

1*(" "/") descendant-path

node-i dentifier
[*pat h- predi cat e absol ut e- pat h]

"[" *WBP pat h-equality-expr *WsP "]"
node-identifier *WSP "=" *WBP pat h- key- expr

current-function-invocation *WsP "/" *WBP
rel - pat h- keyexpr

St andards Track [Page 160]

RFC 6020

rel - pat h- keyexpr

;. Keywords,
;; Statenent keywords
anyxm - keyword

ar gunent - keywor d
augment - keywor d
base- keyword

bel ongs-t o- keywor d
bi t - keyword

case- keywor d

choi ce- keyword
confi g- keyword

cont act - keywor d
cont ai ner - keyword
def aul t - keywor d
descri pti on- keyword
enum keywor d
error-app-tag-keyword
error-message- keyword

= 1(".

YANG

UOFWBP MY Y WBP)
*(node-identifier *WsP "/" *WEP)
node-i dentifier

usi ng abnfgen’s syntax for case-sensitive strings

anyxm’
argunent’
augnment’

base’

bel ongs-to’

bit’

case’

choi ce’

config’

contact’
cont ai ner’
"defaul t’
"description’

" enumi

= 'error-app-tag
= 'error-mnmessage

ext ensi on- keyword = ' ext ension
devi ati on- keyword = 'devi ation
devi at e- keywor d = 'devi ate’

f eat ur e- keyword = 'feature
fraction-digits-keyword = "fraction-digits’
gr oupi ng- keywor d = ' grouping

i dentity-keyword = 'identity’
if-feature-keyword = 'if-feature
i mport -keyword = "inport’

i ncl ude- keyword = 'incl ude

i nput - keywor d = 'input’

key- keyword = ' key’

| eaf - keyword = 'l eaf’

| eaf -1 i st-keyword = 'leaf-list’
| engt h- keywor d = 'length’
list-keyword ="'list’
mandat or y- keywor d = 'mandat ory’

max- el enent s- keyword
m n- el enent s- keyword
nodul e- keywor d
nmust - keyword
nanespace- keyword
notification-keyword
or der ed- by- keywor d
or gani zati on- keywor d

Bj or kl und

"max- el enent s’
"m n-el ements’
nodul e’

must’
nanmespace’
notification’
or der ed- by’

or gani zati on’

St andards Track

Cct ober

[Page

2010

161]

RFC 6020 YANG Oct ober 2010

yang- ver si on- keyword
yi n-el enent - keywor d

' yang- ver si on’
"yin-el ement’

out put - keyword = 'out put’
pat h- keyword = 'path’
pattern-keyword = 'pattern’
posi ti on-keyword = 'position’
prefix-keyword = "prefix’

pr esence- keywor d = ' presence’
range- keywor d = 'range’

ref erence- keyword = 'reference’
refine-keyword = 'refine’
require-instance-keyword = ’'require-instance’
revi si on- keywor d = 'revision
revi si on-dat e-keyword = 'revision-date’
rpc- keyword = 'rpc’

st at us- keywor d = 'status’
subnmodul e- keywor d = ' subnodul e’
type- keyword = "type’

t ypedef - keyword = 'typedef’
uni que- keyword = 'uni que’

uni t s- keywor d ='units’
uses- keyword = 'uses’

val ue- keyword = 'val ue’
when- keywor d = ' when’

;; other keywords

add- keyword = 'add’
current - keywor d = 'current’
del et e- keyword = "del ete’
depr ecat ed- keyword = ’'deprecated
fal se- keyword = 'fal se’

max- keywor d = ' max’

m n- keywor d ='mn

not - support ed- keyword = ' not-supported’
obsol et e- keyword = 'obsol et e’
repl ace- keyword = "repl ace’
system keywor d = 'system
true-keyword = "true’
unbounded- keywor d = ' unbounded’
user - keyword = 'user’

Bj or kl und St andards Track [Page 162]

RFC 6020

YANG

Cct ober 2010

current-function-invocation = current-keyword *WsP " (" *WsP ")"

;; Basic Rul es

prefix-arg-str

prefix-arg
prefix

identifier-arg-str

< a string that matches the rule

prefix-arg >
prefix

identifier

< a string that matches the rule

identifier-arg >

identifier-arg = identifier
;5 An identifier MUST NOT start with ("X |'x") (M|'m) ("L |"1"))
identifier = (ALPHA / " "

*(ALPHA / DIGT / "_" ["-" [".")

identifier-ref-arg-str

identifier-ref-arg

string

i nt eger-val ue = ("-" non-negative-integer-value) /
non- negati ve-i nt eger-val ue
non- negati ve-i nteger-value = "0" / positive-integer-val ue

posi tive-integer-val ue

zer o-i nt eger-val ue
stnt end

sep

opt sep
st nt sep

| i ne-break

Bj or kl und

= < a string that matches the rule

identifier-ref-arg >

[prefix ":"] identifier

< an unquoted string as returned by

t he scanner >

= (non-zero-digit *DIGAT)
1*DAT
"/ "{" *unknown- st at enent

1*(WEP / 1ine-break)
; unconditional separator

*(WBP / |ine-break)

oy

*(WBP / line-break / unknown-statenent)

CRLF / LF

St andards Track

[Page 163]

RFC 6020

non-zero-digit
deci mal - val ue

SQUOTE

RFC 5234 core rul
ALPHA

CR

CRLF

DAT

DQUOTE

HEXDI G

HTAB

LF

SP

VCHAR

<CODE ENDS>

Bj or kl und

YANG Cct ober

% 31- 39

i nteger-value ("." zero-integer-val ue)

w27
;7 (Single Quote)

es.

ox41-5A /| 9%&61-7A
D A-Z] a-z

90D
; carriage return

CR LF
; Internet standard new |ine

%% 30- 39
: 0-9

%22
;" (Doubl e Quote)

DAT/
%61 /| 962 /| 63 / Y64 /| Y65 /| Y66
; only |lower-case a..f

%09
; horizontal tab

o 0A
; linefeed

%20
; space

%21-7E
; visible (printing) characters

SP / HTAB
; Wwhi tespace

2010

St andards Track [Page 164]

RFC 6020 YANG Oct ober 2010

13. Error Responses for YANG Rel ated Errors

A nunber of NETCONF error responses are defined for error cases
related to the data-nmodel handling. |If the relevant YANG st at enent
has an "error-app-tag" substatenent, that overrides the default value
speci fied bel ow.

13.1. Error Message for Data That Violates a unique Statenent

If a NETCONF operation would result in configuration data where a
uni que constraint is invalidated, the following error is returned:

error-tag: operation-fail ed
error-app-tag: data-not-unique
error-info: <non-uni que>: Contains an instance identifier that

points to a leaf that invalidates the unique
constraint. This elenent is present once for each
non-uni que | eaf.

The <non-uni que> elenment is in the YANG
namespace ("urn:ietf:params:xm:ns:yang: 1").

13.2. FError Message for Data That Violates a max-el ements Statenent
If a NETCONF operation would result in configuration data where a
list or a leaf-list would have too many entries the foll ow ng error
is returned:

error-tag: operation-fail ed
error-app-tag: too-many-elenents

This error is returned once, with the error-path identifying the |ist
node, even if there are nore than one extra child present.

13.3. FError Message for Data That Violates a min-elements Statenent
If a NETCONF operation would result in configuration data where a
list or a leaf-list would have too few entries the following error is
returned:

error-tag: operation-fail ed
error-app-tag: too-fewelenents

This error is returned once, with the error-path identifying the |ist
node, even if there are nore than one child m ssing.

Bj or kl und St andards Track [Page 165]

RFC 6020 YANG Oct ober 2010

13.4. Error Message for Data That Violates a nust Statenent

If a NETCONF operation would result in configuration data where the
restrictions inmposed by a "nmust" statement is violated the follow ng
error is returned, unless a specific "error-app-tag" substatement is
present for the "nmust" statenent.

error-tag: operation-fail ed
error-app-tag: rmust-violation

13.5. FError Message for Data That Violates a require-instance Statenent
If a NETCONF operation would result in configuration data where a

| eaf of type "instance-identifier" marked with require-instance
"true" refers to a non-existing instance, the following error is

r et ur ned:
error-tag: dat a- m ssi ng
error-app-tag: instance-required
error-path: Path to the instance-identifier |eaf.

13.6. FError Message for Data That Does Not Match a | eafref Type

If a NETCONF operation would result in configuration data where a
| eaf of type "leafref" refers to a non-existing instance, the
following error is returned:

error-tag: dat a- m ssi ng
error-app-tag: instance-required
error-path: Path to the |leafref |eaf.

13.7. FError Message for Data That Violates a mandatory choi ce Statenent

If a NETCONF operation would result in configuration data where no
nodes exists in a nmandatory choice, the followng error is returned:

error-tag: dat a- m ssi ng

error-app-tag: mssing-choice

error-path: Path to the element with the missing choice.
error-info: <m ssi ng- choi ce>: Contains the nane of the m ssing

mandat ory choi ce

The <m ssing-choice> elenent is in the YANG
namespace ("urn:ietf:params:xm:ns:yang: 1").

Bj or kl und St andards Track [Page 166]

RFC 6020 YANG Oct ober 2010

13.

14.

8. FError Message for the "insert" Operation

If the "insert" and "key" or "value" attributes are used in an
<edit-config> for alist or leaf-list node, and the "key" or "val ue"
refers to a non-existing instance, the followi ng error is returned:

error-tag: bad-attribute
error-app-tag: mssing-instance

| ANA Consi der ati ons

Thi s docunent defines a registry for YANG nodul e and subnodul e nanes.
The nane of the registry is "YANG Modul e Nanes".

The registry shall record for each entry:

o the nanme of the nodule or subnodul e

o for nodules, the assigned XM. nanespace

o for nodules, the prefix of the nodule

o for subnmodul es, the nane of the nodule it belongs to

o a reference to the (sub)nodul e’ s docunentation (e.g., the RFC
nunber)

There are no initial assignnents.

For allocation, RFC publication is required as per RFC 5226

[RFC5226]. All registered YANG nodul e names MJST conply with the
rules for identifiers stated in Section 6.2, and MJUST have a nodul e
name prefix.

The nodul e nanme prefix "ietf-' is reserved for | ETF stream docunents
[RFC4844], while the nodule nanme prefix "irtf-' is reserved for | RTF
st ream docunents. Mdul es published in other RFC streams MJST have a
simlar suitable prefix.

Al'l modul e and subnmodul e nanes in the registry MIST be uni que.

Al'l XM. nanespaces in the registry MJST be uni que.

Thi s docunent registers two URIs for the YANG and YIN XM. nanespaces
in the ETF XM. registry [RFC3688]. Following the format in RFC
3688, the follow ng have been registered.

URI: urn:ietf:parans:xn:ns:yang:yin:1

Bj or kl und St andards Track [Page 167]

RFC 6020 YANG Cct ober

URI: urn:ietf:parans:xm:ns:yang:1
Regi strant Contact: The | ESG
XM.: N A, the requested URIs are XML namespaces.

Thi s docunent registers two new nedia types as defined in the
foll owi ng sections.

14.1. Media type application/yang
M ME nedia type nane: application
M ME subtype nane: yang
Mandat ory paraneters: none
Optional parameters: none
Encodi ng consi derations: 8-bit
Security considerations: See Section 15 in RFC 6020
Interoperability considerations: None
Publ i shed specification: RFC 6020
Applications that use this media type:

YANG nodul e val i dators, web servers used for downl oadi ng YANG
nodul es, email clients, etc.

Addi tional information:
Magi ¢ Nunmber: None
File Extension: .yang
Maci ntosh file type code: ' TEXT

Personal and enmail address for further information:
Martin Bjorklund <nbj @ail-f.conp

I ntended usage: COWMON

Aut hor :

2010

This specification is a work itemof the I ETF NETMOD wor ki ng group,

with mailing |ist address <netnod@etf. org>.

Bj or kl und St andards Track [Page 168]

RFC 6020 YANG Cct ober 2010
Change controller
The | ESG <i esg@etf.org>
14.2. Media type application/yin+xm
M ME nedia type nane: application
M ME subtype nane: yi n+xm
Mandat ory paraneters: none

Optional paraneters:

"charset": This paraneter has identical senmantics to the charset
paraneter of the "application/xm" nedia type as specified in
[RFC3023] .

Encodi ng consi derati ons:

Identical to those of "application/xm" as
described in [RFC3023], Section 3.2.

Security considerations: See Section 15 in RFC 6020
Interoperability considerations: None

Publ i shed specification: RFC 6020

Applications that use this media type:

YANG nodul e val i dators, web servers used for downl oadi ng YANG
nodul es, enmail clients, etc.

Additional information

Magi ¢ Nunber: As specified for "application/xm" in [RFC3023],
Section 3.2.

File Extension: .yin
Maci ntosh file type code: ' TEXT

Personal and emni|l address for further information:
Martin Bjorklund <nmbj @ail -f.conp

I nt ended usage: COMMVON

Bj or kl und St andards Track [Page 169]

RFC 6020 YANG Oct ober 2010

Aut hor :
This specification is a work itemof the | ETF NETMOD wor ki ng group
with mailing |ist address <netnmod@etf. org>.

Change controller:
The | ESG <i esg@etf.org>

15. Security Considerations

Thi s docunent defines a | anguage with which to wite and read
descriptions of managenent information. The |anguage itself has no
security inmpact on the Internet.

The sane considerations are relevant as for the base NETCONF protoco
(see [RFCA741], Section 9).

Data nodel ed in YANG might contain sensitive information. RPCs or
notifications defined in YANG m ght transfer sensitive information.

Security issues are related to the usage of data nodel ed in YANG
Such issues shall be dealt with in docunments describing the data
nodel s and docunents about the interfaces used to mani pul ate the data
e.g., the NETCONF docunents.

Data nodel ed in YANG i s dependent upon

o the security of the transnmission infrastructure used to send
sensitive informtion.

o the security of applications that store or rel ease such sensitive
i nformation.

o adequate authentication and access control nechanisns to restrict
the usage of sensitive data.

YANG parsers need to be robust with respect to mal forned docunents.
Readi ng mal f ormed docunents from unknown or untrusted sources could
result in an attacker gaining privileges of the user running the YANG
parser. |In an extrene situation, the entire machine could be
conpr om sed.

Bj or kl und St andards Track [Page 170]

RFC 6020 YANG Oct ober 2010

16. Contri butors

The foll owi ng people all contributed significantly to the initia
YANG docurnent :

- Andy Bi erman (Brocade)

- Bal azs Lengyel (Ericsson)

- David Partain (Ericsson)

- Juergen Schoenwael der (Jacobs University Brenen)
- Phil Shafer (Juniper Networks)

17. Acknow edgenents

The editor wi shes to thank the follow ng individuals, who al
provi ded hel pful commrents on various versions of this docunent:
Mehmet Er sue, Washam Fan, Joel Hal pern, Leif Johansson, Ladi sl av
Lhot ka, Gerhard Muenz, Tom Petch, Randy Presuhn, David Reid, and Bert
W j nen.
18. References
18.1. Normative References
[1SO 10646] International Organization for Standardization
"Informati on Technol ogy - Universal Miltiple-Cctet Coded
Character Set (UCS)", |ISO Standard 10646: 2003, 2003.

[RFC2119] Bradner, S., "Key words for use in RFCs to I ndicate
Requi renent Level s", BCP 14, RFC 2119, WMarch 1997.

[RFC3023] Murata, M, St. Laurent, S., and D. Kohn, "XM. Mdi a
Types"”, RFC 3023, January 2001.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of 1SO
10646", STD 63, RFC 3629, Novemrber 2003.

[RFC3688] Meal ling, M, "The I ETF XM. Registry", BCP 81, RFC 3688,
January 2004.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC4741] Enns, R, "NETCONF Configuration Protocol"”, RFC 4741,
Decenber 2006.

Bj or kl und St andards Track [Page 171]

RFC 6020

[RFC5226]

[RFC5234]

[RFC5277]

[XML- NAVES]

[XPATH]

[XSD- TYPES]

18.2. Informati

[RFC2578]

[RFC2579]

[RFC3780]

[RFCA844]

[XPATH2. 0]

Bj or kl und

YANG Oct ober 2010

Narten, T. and H Alvestrand, "Guidelines for Witing an
| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Crocker, D. and P. Overell, "Augmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

Chisholm S. and H. Trevino, "NETCONF Event
Noti fications", RFC 5277, July 2008.

Hol | ander, D., Tobin, R, Thonpson, H., Bray, T., and A
Layman, "Nanmespaces in XM. 1.0 (Third Edition)", Wrld
W de Wb Consortium Recommendati on REC-xm - nanes-
20091208, Decenber 2009,

<http://ww. w3. or g/ TR/ 2009/ REC- xm - nanmes- 20091208>.

Clark, J. and S. DeRose, "XM. Path Language (XPat h)
Version 1.0", World Wde Wb Consortium
Recomendat i on REC- xpat h-19991116, Novenber 1999,
<http://ww. w3. org/ TR/ 1999/ REC- xpat h- 19991116>.

Mal hotra, A. and P. Biron, "XM. Schena Part 2: Datatypes
Second Edition", Wrld Wde Wb Consortium

Recomrendat i on REC- xm schema- 2- 20041028, Cctober 2004,
<http://ww. w3. or g/ TR/ 2004/ REC- xm schema- 2- 20041028>.

ve References

Mcd oghrie, K, Ed., Perkins, D., Ed., and J.
Schoenwael der, Ed., "Structure of Managerment |nfornation
Version 2 (SMv2)", STD 58, RFC 2578, April 1999.

McC oghrie, K, Ed., Perkins, D., Ed., and J.
Schoenwael der, Ed., "Textual Conventions for SMv2",
STD 58, RFC 2579, April 1999.

Strauss, F. and J. Schoenwael der, "SM ng - Next
CGeneration Structure of Managenent |nformation",
RFC 3780, May 2004.

Daigle, L. and Internet Architecture Board, "The RFC
Series and RFC Editor", RFC 4844, July 2007.

Berglund, A., Boag, S., Chanberlin, D., Fernandez, M,
Kay, M, Robie, J., and J. Simeon, "XM. Path Language
(XPath) 2.0", Wrld Wde Wb Consortium

Recomendat i on REC- xpat h20- 20070123, January 2007,
<htt p://www. w3. or g/ TR/ 2007/ REC- xpat h20- 20070123>.

St andards Track [Page 172]

RFC 6020 YANG Oct ober 2010

[XSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0",
Wrld Wde Web Consortium Reconmendati on REC-xslt-
19991116, Novenber 1999,
<http://ww. w3. org/ TR/ 1999/ REC- xsl t - 19991116>.
Aut hor’ s Addr ess

Martin Bjorklund (editor)
Tail -f Systens

EMail: nmbj@ail-f.com

Bj or kl und St andards Track [Page 173]

