Internet Architecture Board (| AB) D. Thal er

Request for Comments: 6055 M cr osoft

Updates: 2130 J. Klensin

Cat egory: Infornationa

| SSN: 2070-1721 S. Cheshire
Appl e

February 2011

| AB Thoughts on Encodings for Internationalized Domai n Nanes

Abst ract

Thi s docunent explores issues with Internationalized Domai n Nanes
(IDNs) that result fromthe use of various encodi ng schenes such as
UTF-8 and the ASClI |- Conpati bl e Encodi ng produced by the Punycode
algorithm It focuses on the inportance of agreeing on a single
encodi ng and how conplicated the state of affairs ends up being as a
result of using different encodings today.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for infornmational purposes.

Thi s docunent is a product of the Internet Architecture Board (I AB)
and represents information that the |1 AB has deemed val uable to
provide for permanent record. Docunents approved for publication by
the 1AB are not a candidate for any level of Internet Standard; see
Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6055.

Copyri ght Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document.

Thal er, et al. | nf or mati onal [Page 1]

RFC 6055 | DN Encodi ngs February 2011

Tabl e of Contents

1. Introduction, 2
1.1. APls . . . R <
2. Use of Non-DNS Protocols e
3. Use of Non-ASCIl in DNS10
3.1. Exanples 14
4., Recommendations . . e]
5. Security CbnS|derat|ons e
6. Acknow edgenents . . A K
7. |1 AB Menbers at the T|ne of Approval P K
8. References e e e e20
8.1. Normative References e e e e s, 20
8. 2. Informati ve References 20
1. | nt roducti on

The goal of this docunment is to explore what can be | earned from sone
current difficulties in inplenenting Internationalized Donmai n Nanes
(1 DNs).

A domai n nane consists of a sequence of |abels, conventionally
witten separated by dots. An IDNis a donmain nane that contains one
or nore |labels that, in turn, contain one or nore non- ASCl

characters. Just as with plain ASCI| domai n nanmes, each |IDN | abe
nmust be encoded using some nmechani smbefore it can be transmitted in
networ k packets, stored in menory, stored on disk, etc. These

encodi ngs need to be reversible, but they need not store donmai n namnes
the sanme way humans conventionally wite themon paper. For exanple,
when transmitted over the network in DNS packets, domain nane |abels
are *not* separated with dots.

Internationalized Dormai n Nanmes for Applications (IDNA), discussed
later in this docunent, is the standard that defines the use and
coding of internationalized domain nanmes for use on the public
Internet [RFC5890]. An earlier version of IDNA [RFC3490] is now
bei ng phased out. Except where noted, the two versions are
approximately the sane with regard to the issues discussed in this
docunent. However, sone explanations appeared in the earlier
docunents that were no | onger considered useful when the |ater

revi sion was created; they are quoted here fromthe docunments in
whi ch they appear. |In addition, the term nology of the two versions
di ffer sonewhat; this docunent reflects the termi nology of the
current version.

Uni code [Unicode] is a list of characters (including non-spacing

marks that are used to form sone ot her characters), where each
character is assigned an integer value, called a code point. 1In

Thal er, et al. I nf or mati onal [Page 2]

RFC 6055 | DN Encodi ngs February 2011

sinple terns a Unicode string is a string of integer code point
values in the range 0 to 1,114,111 (10FFFF in base 16). These

i nteger code points nust be encoded usi ng sone nechani sm before they
can be transmtted in network packets, stored in nmenory, stored on
di sk, etc. Some commpn ways of encoding these integer code point

val ues in conputer systens include UTF-8, UTF-16, and UTF-32. In
addition to the material below, those forns and the tradeoffs anong
them are di scussed in Chapter 2 of The Unicode Standard [Uni code].

UTF-8 is a mechani sm for encoding a Unicode code point in a variable
nunber of 8-bit octets, where an ASCI| code point is preserved as-is.
Those octets encode a string of integer code point values, which
represent a string of Unicode characters. The authoritative
definition of UTF-8 is in Sections 3.9 and 3.10 of The Uni code

St andard [Uni code], but a description of UTF-8 encoding can al so be
found in RFC 3629 [RFC3629]. Descriptions and fornul ae can al so be
found in Annex D of ISO I EC 10646-1 [10646].

UTF-16 is a nmechanismfor encoding a Unicode code point in one or two
16-bit integers, described in detail in Sections 3.9 and 3.10 of The
Uni code Standard [Unicode]. A UTF-16 string encodes a string of

i nteger code point values that represent a string of Unicode
characters.

UTF-32 (formerly UCS-4), also described in Sections 3.9 and 3. 10 of
The Uni code Standard [Unicode], is a nechanismfor encoding a Unicode
code point in a single 32-bit integer. A UTF-32 string is thus a
string of 32-bit integer code point values, which represent a string
of Uni code characters.

Note that UTF-16 results in some all-zero octets when code points
occur early in the Unicode sequence, and UTF-32 always has all-zero
octets.

| DNA specifies validity of a |abel, such as what characters it can
contain, relationships anong them and so on, in Unicode terns.
Valid | abels can be in either "Ulabel" or "A-label" form wth the
appropriate one determ ned by particular protocols or by context.

Ul abel formis a direct representation of the Unicode characters
usi ng one of the encoding forns di scussed above. This docunent

di scusses UTF-8 strings in many places. Wile all U1l abels can be
represented by UTF-8 strings, not all UTF-8 strings are valid

U-| abel s (see Section 2.3.2 of the |IDNA Definitions docunent

[RFC5890] for a discussion of these distinctions). A-label formuses
a conpressed, ASClI-conpatible encoding (an "ACE'" in | DNA and ot her
term nol ogy) produced by an algorithmcalled Punycode. U I abels and

Thal er, et al. I nf or mati onal [Page 3]

RFC 6055 | DN Encodi ngs February 2011

A-l abel s are duals of each other: transfornations fromone to the
other do not lose information. The transformati on mechani sns are
specified in the I DNA Protocol document [RFC5891].

Punycode [RFC3492] is thus a nechani smfor encoding a Unicode string
in an ASCl|-conpatible encoding, i.e., using only letters, digits,
and hyphens fromthe ASCI| character set. Wen a Unicode |abel that
is valid under the IDNA rules (a U-label) is encoded with Punycode
for I DNA purposes, it is prefixed with "xn--"; the result is called
an A-label. The prefix convention assunmes that no other DNS | abel s
(at least no other DNS | abel s in | DNA-aware applications) are all owed
to start with these four characters. Consequently, when A-1abel
encodi ng i s assuned, any DNS | abel s beginning with "xn--" now have a
di fferent nmeani ng (the Punycode encodi ng of a | abel containing one or
nore non-ASClI | characters) or no defined neaning at all (in the case
of labels that are not |IDNA-conpliant, i.e., are not well-formed

A-1 abel s).

| SO 2022-JP [RFC1468] is a nmechanismfor encoding a string of ASCl
and Japanese characters, where an ASCI| character is preserved as-is.
| SO 2022-JP is stateful: special sequences are used to switch between
character coding tables. As a result, if there are |ost or mangl ed
characters in a character stream it is extrenely difficult to
recover the original streamafter such a | ost character encoding
shift.

Conparison of Unicode strings is not as easy as conparing ASCl
strings. First, there are a nmultitude of ways to represent a string
of Uni code characters. Second, in many |anguages and scripts, the
actual definition of "sane" is very context-dependent. Because of
this, conparison of two Unicode strings nust take into account how
the Unicode strings are encoded. Regardless of the encoding,

however, comparison cannot sinply be done by conparing the encoded
Uni code strings byte by byte. The only tine that is possible is when
the strings are both mapped into some canonical form and encoded the
sane way.

In 1996 the | AB sponsored a workshop on character sets and encodi ngs
[RFC2130]. This document adds to that discussion and focuses on the
i mportance of agreeing on a single encoding and how conplicated the
state of affairs ends up being as a result of using different

encodi ngs today.

Different applications, APls, and protocols use different encoding
schenes today. Many of themwere originally defined to use only
ASCI 1. Internationalizing Domain Names in Applications (IDNA)

[RFC5890] defines a nechanismthat requires changes to applications,
but in an attenpt not to change APls or servers, specifies that the

Thal er, et al. I nf or mati onal [Page 4]

RFC 6055 | DN Encodi ngs February 2011

A-label fornmat is to be used in nany contexts. |In sone ways this
could be seen as not changing the existing APls, in the sense that
the strings being passed to and fromthe APIs are still apparently
ASCI| strings. In other ways it is a very profound change to the
exi sting APls, because while those strings are still syntactically
valid ASCI| strings, they no | onger nmean the sane thing that they
used to. What looks Iike a plain ASCII string to one piece of
software or library could be seen by another piece of software or
library (with the application of out-of-band information) to be in
fact an encoding of a Unicode string.

Section 1.3 of the original |IDNA specification [RFC3490] states:

The I DNA protocol is contained conpletely within applications. It
is not a client-server or peer-to-peer protocol: everything is
done inside the application itself. Wen used with a DNS resol ver
library, IDNA is inserted as a "shinm between the application and
the resolver library. Wen used for witing nanes into a DNS
zone, IDNA is used just before the nane is conmtted to the zone.

Figure 1 depicts a sinplistic architecture that a naive reader m ght
assune fromthe paragraph quoted above. (A variant of this sane

pi cture appears in Section 6 of the original |IDNA specification

[RFC3490], further strengthening this assunption.)

Thal er, et al. I nf or mati onal [Page 5]

RFC 6055 | DN Encodi ngs February 2011

| DNS |
| Resol ver
| Library |

|

|

|

|

|

| R e
|

|

|

| Fom e oo -+
|

| I nt er net |

Sinplistic Architecture
Figure 1

There are, however, two problens with this sinplistic architecture
that cause it to differ fromreality.

First, resolver APIs on Qperating Systens (0OSs) today (Mac OS,

W ndows, Linux, etc.) are not DNS-specific. They typically provide a
| ayer of indirection so that the application can work i ndependent of
the nane resol uti on mechani sm which could be DNS, nDNS

[DNS- MULTI CAST], LLMNR [RFC4795], Net Bl OS-over- TCP

[RFC1001] [RFC1002], hosts table [RFC0952], NIS [NIS], or anything

el se. For exanple, "Basic Socket Interface Extensions for |Pv6"

[RFC3493] specifies the getaddrinfo() APl and contains nany phrases
i ke "For exanple, when using the DNS" and "any type of name

resol ution service (for exanple, the DNS)". Inportantly, DNS is
mentioned only as an exanple, and the application has no know edge as
to whether DNS or sone other protocol wll be used.

Second, even with the DNS protocol, private nanespaces (sonetines
i ncluding private uses of the DNS) do not necessarily use the sane
character set encodi ng scheme as the public Internet namespace.

Thal er, et al. I nf or mati onal [Page 6]

RFC 6055 | DN Encodi ngs February 2011

We will discuss each of the above issues in subsequent sections. For
reference, Figure 2 depicts a nore realistic architecture on typica
hosts today (which don’t have IDNA inserted as a shiminmredi ately
above the DNS resolver library). More generally, the host may be
attached to one or nore |ocal networks, each of which nmay or may not
be connected to the public Internet and may or nay not have a private

T T SEpu o S S S
| DNS| | LLMNR| | nDNS| | Net BI OS] | hosts| | .. .|

nanespace

... +
| Host |
| S + |
| | Application |

| S R, S R, + |
| | |
| S RS S RS + |
| | CGeneric |

| | Name | |
| | Resolution |

| | AP | |
| S e S e + |
| | |
| +---- - S R, B Ty +---- - + |
| |
| |
| |
| |
| |

Fom et o - - T ST ++---- - ++---+
oo o e e e e e e e e e e e e e e e me—m oo +
|
|
/ \

/ \

/ | ocal \

\ net wor k /

\ /

\ /
|
|
/ \

/ \

/ \
| I nt er net |
\ /

\ /

\ /

Realistic Architecture

Figure 2

Thal er, et al. I nf or mati onal [Page 7]

RFC 6055 | DN Encodi ngs February 2011

1.1. APIs

Section 6.2 of the original |IDNA specification [RFC3490] states
(where ToASCI | and ToUni code bel ow refer to conversions using the
Punycode al gorithm:

It is expected that new versions of the resolver libraries in the
future will be able to accept donmain nanes in other charsets than
ASClI I, and application devel opers m ght one day pass not only
domai n nanes in Unicode, but also in local script to a new APl for
the resolver libraries in the operating system Thus the ToASCl
and ToUni code operations m ght be perfornmed inside these new
versions of the resolver libraries.

Resol ver APls such as getaddrinfo() and its predecessor

get host bynanme() were defined to accept C- Language "char *" argunents,
meani ng they accept a string of bytes, term nated with a NULL (0)
byte. Because of the use of a NULL octet as a string term nator,
this is sufficient for ASCII strings (including A-|abels) and even

| SO 2022-JP [RFC1468] and UTF-8 strings (unless an inplenmentation
artificially precludes them, but not UTF-16 or UTF-32 strings
because a NULL octet could appear in the mddle of strings using
these encodi ngs. Several operating systens historically used in
Japan will accept (and expect) |SO 2022-JP strings in such APIs.
Sone platforns used worl dwi de al so have new versions of the APIs
(e.g., GetAddrinfoW) on Wndows) that accept other encodi ng schenes
such as UTF-16.

It is worth noting that an APl using C Language "char *" argunents
can di stingui sh between conventional ASCI| "hostnanme" | abels,
A-1abels, SO 2022-JP, and UTF-8 labels in nanes if the coding is
known to be one of those four, and the label is intact (no |lost or
mangl ed characters). |If a stateful encoding like IS0 2022-JP is
used, applications extracting |labels fromtext nust take specia
precautions to be sure that the appropriate state-setting characters
are included in the string passed to the API.

An exanpl e nethod for distinguishing anong such codings is as
fol | ows:

o if the Iabel contains an ESC (0x1B) byte, the |abel is
| SO 2022- JP; ot herwi se,

o if any byte in the |abel has the high bit set, the |abel is UTF-8;
ot herw se,

o if the label starts with "xn--", then it is presuned to be an
A-| abel ; otherw se,

Thal er, et al. I nf or mati onal [Page 8]

RFC 6055 | DN Encodi ngs February 2011

o the label is ASCII (and therefore, by definition, the |abel is
also UTF-8, since ASCII is a subset of UTF-8).

Again this assumes that ASCI| |abels never start with "xn--", and
al so that UTF-8 strings never contain an ESC character. Also the
above is nerely an illustration; UTF-8 can be detected and

di stingui shed fromother 8-bit encodings with good accuracy [MD].

It is nore difficult or inpossible to distinguish the | SO 8859
character sets [1S08859] from each other, because they differ in up
to about 90 characters that have exactly the sane encodi ngs, and a
short string is very unlikely to contain enough characters to allow a
receiver to deduce the character set. Simlarly, it is not possible
in general to distinguish between | SO 2022-JP and any ot her encoding
based on |1 SO 2022 code table sw tching.

Al though it is possible (as in the exanmple above) to distinguish some
encodi ngs when not explicitly specified, it is cleaner to have the
encodi ngs specified explicitly, such as specifying UTF- 16 for

Get Addr I nfoW), or specifying explicitly which APIs expect UTF-8
strings.

2. Use of Non-DNS Protocols

As noted earlier, typical name resolution |libraries are not
DNS-specific. Furthernore, sonme protocols are defined to use
encodi ng fornms other than |IDNA A-1abels. For exanple, nDNS

[DNS- MULTI CAST] specifies that UTF-8 be used. Indeed, the | ETF
policy on character sets and | anguages [RFC2277] (which followed the
1996 | AB-sponsored wor kshop [RFC2130]) states:

Prot ocol s MIUST be able to use the UTF-8 charset, which consists of
the | SO 10646 coded character set conbined with the UTF-8
character encoding schene, as defined in [10646] Annex R
(published in Amendrent 2), for all text.

Protocol s MAY specify, in addition, how to use other charsets or
ot her character encodi ng schenes for | SO 10646, such as UTF-16,
but [ack of an ability to use UTF-8 is a violation of this policy;
such a violation would need a vari ance procedure ([BCP9] section
9) with clear and solid justification in the protoco

speci fication docunent before being entered into or advanced upon
the standards track.

For existing protocols or protocols that nove data from existing
dat astores, support of other charsets, or even using a default
other than UTF-8, may be a requirement. This is acceptable, but
UTF- 8 support MJST be possi bl e.

Thal er, et al. I nf or mati onal [Page 9]

RFC 6055 | DN Encodi ngs February 2011

Applications that convert an IDN to A-label formbefore calling
getaddrinfo() will result in name resolution failures if the Punycode
nane is directly used in such protocols. Having libraries or
protocols to convert fromA-labels to the encodi ng schene defi ned by
the protocol (e.g., UTF-8) would require changes to APlIs and/ or
servers, which IDNA was intended to avoid.

As a result, applications that assunme that non-ASCI| nanes are
resol ved using the public DNS and blindly convert themto A-Ilabels
wi t hout knowl edge of what protocol will be selected by the nane
resolution library, have problens. Furthernore, nanme resolution
libraries often try nultiple protocols until one succeeds, because
they are defined to use a combn nanespace. For exanple, the hosts
file [RFC0952], NetBl OS-over-TCP [RFCL001], and DNS [RFC1034], are
all defined to be able to share a common syntax. This means that
when an application passes a name to be resolved, resolution may in
fact be attenpted using nultiple protocols, each with a potentially
di fferent encoding scheme. For this to work successfully, the nane
nmust be converted to the appropriate encoding schenme only after the
choice is made to use that protocol. In general, this cannot be done
by the application since the choice of protocol is not nmade by the
appl i cati on.

3. Use of Non-ASCI|l in DNS

A common misconception is that DNS only supports nanmes that can be
expressed using letters, digits, and hyphens.

This m sconception originally stenms fromthe 1985 definition of an

"I nternet hostnane" (and net, gateway, and domain nane) for use in
the "hosts" file [RFC0952]. An Internet hostnane was defined therein
as including only letters, digits, and hyphens, where uppercase and

| owercase letters were to be treated as identical. The DNS
specification [RFC1034], Section 3.5 entitled "Preferred nane syntax"
then repeated this definition in 1987, saying that this "syntax wll
result in fewer problenms with many applications that use domai n nanes
(e.g., mail, TELNET)".

The confusion was thus left as to whether the "preferred" name syntax
was a mandatory restriction in DNS, or nmerely "preferred"

The definition of an Internet hostnane was updated in 1989

([RFC1123], Section 2.1) to allow nanmes starting with a digit.
However, it did not address the increasing confusion as to whether

all names in DNS are "hostnanes", or whether a "hostnane" is nmerely a
speci al case of a DNS narne.

Thal er, et al. I nf or mati onal [Page 10]

RFC 6055 | DN Encodi ngs February 2011

By 1997, things had progressed to a state where it was necessary to
clarify these areas of confusion. "Carifications to the DNS
Speci fication" [RFC2181], Section 11 states:

The DNS itself places only one restriction on the particul ar

| abel s that can be used to identify resource records. That one
restriction relates to the length of the label and the full nane.
The length of any one label is limted to between 1 and 63 octets.
A full domain nane is linted to 255 octets (including the
separators). The zero length full name is defined as representing
the root of the DNS tree, and is typically witten and di spl ayed
as "." Those restrictions aside, any binary string whatever can
be used as the | abel of any resource record. Sinmlarly, any

bi nary string can serve as the value of any record that includes a
domai n nane as sone or all of its value (SOA NS, MX, PTR, CNAME

and any others that nmay be added). |Inplenentations of the DNS
protocol s nust not place any restrictions on the |abels that can
be used.

Hence, it clarified that the restriction to letters, digits, and
hyphens does not apply to DNS nanes in general, nor to records that

i ncl ude "domai n nanes". Hence, the "preferred" nanme syntax described
in the original DNS specification [RFCL034] is indeed nerely
"preferred", not nandatory.

Since there is no restriction even to ASCII, let alone letter-digit-
hyphen use, DNS does not violate the subsequent |ETF requirenent to
al l ow UTF-8 [RFC2277] .

Usi ng UTF-16 or UTF-32 encodi ng, however, woul d not be ideal for use
in DNS packets or C-Language "char *" APls because existing software
al ready uses ASClI I, and UTF-16 and UTF-32 strings can contain
all-zero octets that existing software will interpret as the end of
the string. To use UTF-16 or UTF-32, one woul d need sone way of
knowi ng whet her the string was encoded using ASC |, UTF-16, or
UTF-32, and indeed for UTF-16 or UTF-32 whether it was big-endian or
little-endian encoding. |In contrast, UTF-8 works well because any
7-bit ASCI| string is also a UTF-8 string representing the sane
characters.

If a private nanmespace is defined to use UTF-8 (and not ot her

encodi ngs such as UTF-16 or UTF-32), there’'s no need for a nechani sm
to know whet her a string was encoded using ASCI|I or UTF-8, because
(for any string that can be represented using ASCII) the

representations are exactly the same. In other words, for any string
that can be represented using ASCII, it doesn’'t matter whether it is
interpreted as ASCI1 or UTF-8 because both encodi ngs are the samne,
and for any string that can't be represented using ASCIIl, it’'s

Thal er, et al. I nf or mati onal [Page 11]

RFC 6055 | DN Encodi ngs February 2011

obviously UTF-8. In addition, unlike UTF-16 and UTF-32, ASCI| and
UTF-8 are both byte-oriented encodings so the question of big-endian
or little-endian encodi ng doesn’t apply.

VWil e inplenentati ons of the DNS protocol nust not place any
restrictions on the |abels that can be used, applications that use
the DNS are free to i npose whatever restrictions they |like, and many
have. The above rules pernit a domain nane | abel that contains
unusual characters, such as enbedded spaces, which many applications
consi der a bad idea. For exanple, the original specification

[RFC0821] of the SMIP protocol [RFC5321] constrains the character set
usable in emnil addresses. There is now an effort underway to define
an extension to SMIP to support internationalized enmail addresses and
headers. See the EAl framework [RFC4952] for nore discussion on this
t opi c.

Shortly after the DNS Carifications [RFC2181] and | ETF character
sets and | anguages policy [RFC2277] were published, the need for

i nternationalized names within private nanespaces (i.e., within
enterprises) arose. The current (and past, predating |IDNA and the
prefi xed ACE conventions) practice within enterprises that support

ot her |l anguages is to put UTF-8 names in their internal DNS servers
in a private nanespace. For example, "Using the UTF-8 Character Set
in the Domain Name Systemt [UTF8-DNS] was first witten in 1997, and
was then w dely deployed in Wndows. The use of UTF-8 nanes in DNS
was sinmilarly inplenented and depl oyed in Mac OS, sinply by virtue of
the fact that applications blindly passed UTF-8 strings to the nane
resol ution APls, the nane resolution APlIs blindly passed those UTF-8
strings to the DNS servers, and the DNS servers correctly answered
those queries. Fromthe user’s point of view, everything worked
properly w thout any special new code being witten, except that
ASCI | is matched case-insensitively whereas UTF-8 is not (although
some enterprise DNS servers reportedly attenpt to do case-insensitive
mat ching on UTF-8 within private nanmespaces, an action that causes

ot her problens and viol ates a subsequent prohibition [RFC4343]).
Wthin a private nanespace, and especially in light of the | ETF UTF-8
policy [RFC2277], it was reasonable to assume that binary strings
were encoded in UTF-8.

As implied earlier, there are also issues with nmapping strings to
some canoni cal form independent of the encoding. Such issues are
not discussed in detail in this docunent. They are discussed to sone
extent in, for exanmple, Section 3 of "Unicode Fornat for Network

I nt erchange" [RFC5198], and are left as opportunities for elaboration
in other docunents.

A few years after UTF-8 was already in use in private namespaces in
DNS, the strategy of using a reserved prefix and an ASCI|-conpati bl e

Thal er, et al. I nf or mati onal [Page 12]

RFC 6055 | DN Encodi ngs February 2011

encodi ng (ACE) was devel oped for IDNA. That strategy included the
Punycode al gorithm which began to be devel oped (during the period
from 2002 [1 DN- PUNYCODE] to 2003 [RFC3492]) for use in the public DNS
nanespace. There were a number of reasons for this. One such reason
the prefixed ACE strategy was selected for the public DNS nanespace
had to do with the fact that other encodi ngs such as | SO 8859-1 were
also in use in DNS and the various encodi ngs were not necessarily

di stingui shable fromeach other. Another reason had to do with
concerns about whether the details of IDNA including the use of the
Punycode al gorithm were an adequate solution to the problenms that
were posed. |If either the Punycode al gorithm or fundanmental aspects
of character handling were wong, and had to be changed to sonething
i ncompatible, it would be possible to switch to a new prefix or adopt
anot her nodel entirely. Only the part of the public DNS nanespace
that starts a label with "xn--" would be poll uted.

Today the algorithmis seen as being about as good as it can
realistically be, so noving to a different encoding (UTF-8 as
suggested in this docunent) that can be viewed as "native" woul d not
be as risky as it would have been in 2002.

In any case, the publication of Punycode [RFC3492] and the
dependencies on it in the I DNA Protocol docunent [RFC5891] and the
earlier |IDNA specification [RFC3490] thus resulted in having to use
di fferent encodings for different namespaces (where UTF-8 for private
nanespaces was al ready deployed). Hence, referring back to Figure 2,
a different encoding schene nay be in use on the Internet vs. a loca
net wor k.

In general, a host nay be connected to zero or nore networks using
private nanespaces, plus potentially the public nanespace.
Applications that convert a U-label formIDNto an A-label before
calling getaddrinfo() will incur nane resolution failures if the nane
is actually registered in a private namespace in some ot her encoding
(e.g., UTF-8). Having libraries or protocols convert from A-|labels
to the encodi ng used by a private nanespace (e.g., UTF-8) would
require changes to APls and/or servers, which IDNA was intended to
avoi d.

Al so, a fully-qualified domain name (FQDN) to be resol ved may be
obtained directly froman application, or it may be conposed by the
DNS resolver itself froma single | abel obtained froman application
by using a configured suffix search list, and the resulting FQDN nay
use multiple encodings in different |abels. For nore information on
the suffix search list, see Section 6 of "Comobn DNS | npl enentati on
Errors and Suggested Fi xes" [RFC1536], the DHCP Domain Search Option
[RFC3397], and Section 4 of "DNS Configuration options for DHCPv6"

[RFC3646] .

Thal er, et al. I nf or mati onal [Page 13]

RFC 6055 | DN Encodi ngs February 2011

As noted in Section 6 of "Comobn DNS I npl enentation Errors and
Suggest ed Fi xes" [RFC1536], the community has had bad experiences
(e.g., security problenms [RFC1535]) with "searching" for donmain nanes
by trying nultiple variations or appending different suffixes. Such
searching can yield inconsistent results depending on the order in
which alternatives are tried. Nonetheless, the practice is

wi despread and rmust be consi der ed.

The practice of searching for nanes, whether by the use of a suffix
search list or by searching in different nanespaces, can yield

i nconsistent results. For exanple, even when a suffix search list is
only used when an application provides a nane containing no dots, two
clients with different configured suffix search lists can get

di fferent answers, and the sanme client could get different answers at
different tines if it changes its configuration (e.g., when noving to
anot her network). A deeper discussion of this topic is outside the
scope of this docunent.

3.1. Exanples

Sone exanpl es of cases that can happen in existing inplenentations
today (where {non-ASClI1} bel ow represents some user-entered non-ASCl
string) are:

o User types in {non-ASCll}.{non-ASCl|I}.com and the application
passes it, in the formof a UTF-8 string, to getaddrinfo() or
get host bynanme() or equi val ent.

1. The DNS resol ver passes the (UTF-8) string unnodified to a DNS
server.

o User types in {non-ASCll}.{non-ASCI|I}.com and the application
passes it to a name resolution APl that accepts strings in some
ot her encodi ng such as UTF-16, e.g., GetAddrlnfoW) on W ndows.

1. The nane resol ution APl decides to pass the string to DNS (and
possi bly other protocols).

2. The DNS resol ver converts the name from UTF-16 to UTF-8 and
passes the query to a DNS server.

o User types in {non-ASCll}.{non-ASCl|}.com but the application
first converts it to A-label formsuch that the name that is
passed to nanme resolution APIs is (say)
xn- - elaf nkf d. xn- - 80akhbyknj 4f . com

1. The nane resolution APl decides to pass the string to DNS (and
possi bly other protocols).

Thal er, et al. I nf or mati onal [Page 14]

RFC 6055 | DN Encodi ngs February 2011

2. The DNS resol ver passes the string unnodified to a DNS server.

3. If the nane is not found in DNS, the nane resol ution API
decides to try another protocol, say nDNS.

4. The query goes out in nDNS, but since nDNS specified that
nanes are to be registered in UTF-8, the nane isn’t found
since it was encoded as an A-label in the query.

o User types in {non-ASCIl}, and the application passes it, in the
formof a UTF-8 string, to getaddrinfo() or equivalent.

1. The nane resol ution APl decides to pass the string to DNS (and
possi bly other protocols).

2. The DNS resolver will append suffixes in the suffix search
list, which may contain UTF-8 characters if the |ocal network
uses a private nanespace

3. Each FQDN in turn will then be sent in a query to a DNS
server, until one succeeds.

o User types in {non-ASCIl}, but the application first converts it
to an A-label, such that the nane that is passed to getaddrinfo()
or equivalent is (say) xn--elafnkfd

1. The nane resol ution APl decides to pass the string to DNS (and
possi bly other protocols).

2. The DNS stub resolver will append suffixes in the suffix
search list, which may contain UTF-8 characters if the |oca
network uses a private nanmespace, resulting in (say)
xn- - elaf nkfd. {non-ASCI | }. com

3. Each FQN in turn will then be sent in a query to a DNS
server, until one succeeds.

4. Since the private nanmespace in this case uses UTF-8, the above
queries fail, since the A-l1abel version of the nanme was not
regi stered in that nanespace.

o User types in {non-ASCl|1}.{non-ASCl|2}.{non-ASCI|3}.com where
{non-ASCI |1 3}.comis a public namespace using |IDNA and A-I abel s,
but {non-ASCI12}.{non-ASClI|13}.comis a private nanespace using
UTF-8, which is accessible to the user. The application passes
the nanme, in the formof a UTF-8 string, to getaddrinfo() or
equi val ent .

Thal er, et al. I nf or mati onal [Page 15]

RFC 6055 | DN Encodi ngs February 2011

1. The nane resol ution APl decides to pass the string to DNS (and
possi bly other protocols).

2. The DNS resolver tries to |locate the authoritative server, but
fails the | ookup because it cannot find a server for the UTF-8
encodi ng of {non-ASCI|3}.com even though it would have access
to the private nanespace. (To nake this work, the private
nanmespace woul d need to include the UTF-8 encodi ng of
{non-ASCI 1 3}.com)

VWhen users use multiple applications, some of which do A-1abel
conversion prior to passing a name to nane resolution APls, and sone
of which do not, odd behavior can result which at best violates the
Principle of Least Surprise, and at worst can result in security

vul nerabilities.

First consider two conpeting applications, such as web browsers, that
are designed to achieve the sane task. |f the user types the sane
nane i nto each browser, one may successfully resolve the nane (and
hence access the desired content) because the encodi ng schene is
correct, while the other nmay fail name resolution because the
encodi ng scheme is incorrect. Hence the issue can incent users to
switch to another application (which in sone cases nmeans switching to
an | DNA application, and in other cases nmeans switching away from an
| DNA appli cation).

Next consider two separate applications where one is designed to be

| aunched fromthe other, for exanmple a web browser |aunching a nedia
pl ayer application when the link to a nmedia file is clicked. |[If both
types of content (web pages and nedia files in this exanple) are
hosted at the same IDN in a private nanmespace, but one application
converts to A-labels before calling nane resolution APlIs and the

ot her does not, the user nay be able to access a web page, click on
the media file causing the media player to launch and attenpt to
retrieve the nedia file, which will then fail because the |IDN
encodi ng schene was incorrect. O even worse, if an attacker is able
to register the same nanme in the other encodi ng schenme, the user may
get the content fromthe attacker’s nmachine. This is simlar to a
normmal phishing attack, except that the two nanmes represent exactly
the sane Uni code characters.

4. Recommendati ons
On many platforns, the nane resolution library will automatically use
a variety of protocols to search a variety of namespaces, which m ght

be using UTF-8 or other encodings. In addition, even when only the
DNS protocol is used, in many operational environnents, a private DNS

Thal er, et al. I nf or mati onal [Page 16]

RFC 6055 | DN Encodi ngs February 2011

nanespace using UTF-8 is also deployed and is automatically searched
by the name resolution library.

As explained earlier, using multiple canonical formats, and multiple
encodings in different protocols or even in different places in the
sanme nanmespace creates problens. Because of this, and the fact that
both I DNA A-labels and UTF-8 are in use as encodi ng nechani sns for
donmai n nanes today, we nake the reconmmendati ons descri bed bel ow.

It is inappropriate for an application that calls a general - purpose
nane resolution library to convert a nane to an A-1abel unless the
application is absolutely certain that, in all environnents where the
application mght be used, only the gl obal DNS that uses |DNA
A-labels actually will be used to resolve the nane.

I nstead, conversion to A-label form or any other special encoding
required by a particul ar name-| ookup protocol, should be done only by
an entity that knows which protocol will be used (e.g., the DNS
resol ver, or getaddrinfo() upon deciding to pass the name to DNS),
rather than by general applications that call protocol-independent
nane resolution APIs. (O course, applications that store strings
internally in a different format than that required by those APIs,
need to convert strings fromtheir own internal format to the fornat
required by the API.) Simlarly, even if an application can know
that DNS is to be used, the conversion to A-|abels should be done
only by an entity that knows which part of the DNS namespace will be
used.

That is, a nore intelligent DNS resol ver would be nore liberal in
what it would accept froman application and be able to query for
both a name in A-label form(e.g., over the Internet) and a UTF-8
nane (e.g., over a corporate network with a private nanespace) in
case the server only recogni zes one. However, we might also take
into account that the various resolution behaviors discussed earlier
could also occur with record updates (e.g., with Dynam c Update

[RFC2136]), resulting in sonme nanes being registered in a |l oca
network’s private nanespace by applications doing conversion to
A-1abel s, and ot her names being registered using UTF-8. Hence, a
nanme m ght have to be queried with both encodings to be sure to
succeed without changes to DNS servers.

Simlarly, a nore intelligent stub resolver would al so be nore
liberal in what it would accept froma response as the value of a
record (e.g., PTR) in that it would accept either UTF-8 (Ul abels in
the case of IDNA) or A-labels and convert themto whatever encoding
is used by the application APIs to return strings to applications.

Thal er, et al. I nf or mati onal [Page 17]

RFC 6055 | DN Encodi ngs February 2011

I ndeed the choi ce of conversion within the resolver libraries is
consistent with the quote from Section 6.2 of the original |DNA
speci fication [RFC3490] stating that conversion using the Punycode
algorithm(i.e., to A-labels) "mght be perforned inside these new
versions of the resolver libraries”.

That said, sonme application-|layer protocols (e.g., EPP Donmai n Nane
Mappi ng [RFC5731]) are defined to use A-labels rather than sinply
using UTF-8 as recommended by the | ETF character sets and | anguages
policy [RFC2277]. In this case, an application may receive a string
containing A-labels and want to pass it to name resol ution APIs.
Agai n the recomrendation that a resolver library be nore liberal in
what it would accept froman application would nean that such a nane
woul d be accepted and re-encoded as needed, rather than requiring the
application to do so.

It is inportant that any APlIs used by applications to pass nanes
speci fy what encoding(s) the APl uses. For exanple, GetAddrlnfoW)
on Wndows specifies that it accepts UTF-16 and only UTF-16. In
contrast, the original specification of getaddrinfo() [RFC3493] does
not, and hence platfornms vary in what they use (e.g., Mac OS uses
UTF- 8 whereas W ndows uses W ndows code pages).

Finally, the question remmins about what, if anything, a DNS server
shoul d do to handl e cases where sonme existing applications or hosts
do | DNA queries using A-labels within the | ocal network using a
private nanespace, and other existing applications or hosts send
UTF-8 queries. It is undesirable to store different records for

di fferent encodi ngs of the same name, since this introduces the
possibility for inconsistency between them |Instead, a new DNS
server serving a private nanespace using UTF-8 could potentially
treat encodi ng-conversion in the same way as case-insensitive
conpari son which a DNS server is already required to do, as long the
DNS server has some way to know what the encoding is. Two encodi ngs
are, in this sense, two representations of the sane nane, just as two
case-different strings are. However, whereas case conparison of
non- ASClI | characters is conplicated by anbiguities (as explained in
the I AB's Review and Reconmendations for Internationalized Donmain
Nanes [RFC4690]), encodi ng conversion between A-labels and U-1abels
i s unambi guous.

5. Security Considerations

Havi ng applications convert names to prefixed ACE format (A-Iabels)
before calling name resolution can result in security

vul nerabilities. If the nane is resolved by protocols or in zones
for which records are registered using other encoding schenes, an
attacker can claimthe A-label version of the sane name and hence

Thal er, et al. I nf or mati onal [Page 18]

RFC 6055 | DN Encodi ngs February 2011

trick the victiminto accessing a different destination. This can be
done for any non-ASCI| nanme, even when there is no possible confusion
due to case, |anguage, or other issues. Qher types of confusion
beyond those resulting sinmply fromthe choice of encoding schene are
di scussed in "Review and Recommendati ons for IDNs" [RFC4690].

Desi gners and users of encodings that represent Unicode strings in
terms of ASCI| should al so consider whether trademark protection or
phi shing are issues, e.g., if one nane woul d be encoded in a way that
woul d be naturally associated with another organi zati on or product.

6. Acknow edgenents

The authors wi sh to thank Patrik Faltstrom Martin Duerst, JFC
Morfin, Ran Atkinson, S. Monesany, Paul Hoffman, and St ephane
Bortzneyer for their careful review and hel pful suggestions. It is
also interesting to note that none of the first three individuals’
nanes above can be spelled out and witten correctly in ASCI| text.
Furthernore, one of the | AB nenber’s nanes bel ow (Andrei Robachevsky)
cannot be witten in the script as it appears on his birth
certificate.

7. | AB Menbers at the Tine of Approva

Ber nard Aboba
Mar cel o Bagnul o

Ross Cal | on
Spencer Dawki ns
Vijay GII

Russ Housl ey

John Kl ensin

a af Kol knman

Danny McPher son
Jon Peterson
Andr ei Robachevsky
Dave Thal er

Hannes Tschof eni g

Thal er, et al. I nf or mati onal [Page 19]

RFC 6055

8. References

8. 1.

| DN Encodi ngs February 2011

Nor mat i ve Ref er ences

[10646]

[Uni code]

8. 2.

[DNS- MULTI CAST]

[1 DN+ PUNYCODE]

I nternational Organization for Standardization,
"Informati on Technol ogy - Universal Miltiple-octet
coded Character Set (UCS)".

| SO' | EC Standard 10646, conprised of 1SOIEC 10646-
1: 2000, "Information technol ogy -- Universal

Mul tiple-Cctet Coded Character Set (UCS) -- Part 1:
Architecture and Basic Miultilingual Plane", SO 1EC
10646-2: 2001, "Information technol ogy -- Universal
Mul tiple-Cctet Coded Character Set (UCS) -- Part 2:
Suppl emrentary Pl anes" and |1 SO | EC 10646- 1:2000/ And
1: 2002, "Mathematical symbols and ot her characters”.

The Unicode Consortium The Uni code Standard,
Version 5.1.0, defined by: "The Uni code Standard,
Version 5.0", Boston, MA, Addison-Wesley, 2007, |SBN
0-321-48091-0, as anended by Unicode 5.1.0
(http://ww. uni code. or g/ versi ons/ Uni code5. 1. 0/).

I nformati ve References

[1 S08859]

Thal er,

et al.

Cheshire, S. and M Krochmal, "Milticast DNS', Wrk
in Progress, February 2011.

Costello, A, "Punycode version 0.3.3", Wrk
in Progress, January 2002.

I nternational Organization for Standardization,
"Information technology -- 8-bit single-byte coded
graphi c character sets".

| SO' | EC Standard 8859, conprised of |SQ |EC 8859-
1: 1998, Part 1: Latin al phabet No. 1 - |1SOI|EC 8859-
2:1999, Part 2: Latin al phabet No. 2 - |1SQO | EC 8859-
3:1999, Part 3: Latin al phabet No. 3 - |1SO | EC 8859-
4:1998, Part 4: Latin al phabet No. 4 - I1SOIEC 8859-
5:1999, Part 5: Latin/Cyrillic alphabet - 1SQOI

- IS

8859-6: 1999, Part 6: Latin/Arabic al phabet O’ | EC
8859-7: 2003, Part 7: Latin/ G eek al phabet | SO'| EC
8859-8: 1999, Part 8: Latin/Hebrew al phabet - 1SO I EC
8859-9: 1999, Part 9: Latin al phabet No. 5 - ISOIEC
8859-10: 1998, Part 10: Latin al phabet No. 6 - ISQO

| EC 8859-11: 2001, Part 11: Latin/Thai al phabet -

| SO | EC 8859-13: 1998, Part 13: Latin al phabet No. 7

I nf or mati onal [Page 20]

RFC 6055

[MID]

[N S]

[RFCO

[RFCO

[RFCL

[RFCL

[RFC1

[REC1

[RFCL

[RFC1

[REC1

Thal er,

821]

952]

001]

002]

034]

123]

468]

535]

536]

et al.

| DN Encodi ngs February 2011

- 1SO I EC 8859-14: 1998, Part 14: Latin al phabet No.
8 (Celtic) - I1SOIEC 8859-15:1999, Part 15: Latin
al phabet No. 9 - 1SQO I EC 8859-16: 2001, Part 16:
Lati n al phabet No. 10.

Duerst, M, "The Properties and Prom zes of UTF-8",
11th International Uni code Conference, San Jose
Sept enber 1997, <http://ww. ifi.unizh.ch/mi/

nduer st/ paper s/ PDF/ | UC11- UTF- 8. pdf >.

Sun M crosystens, "System and Network
Admini stration", Mrch 1990.

Postel, J., "Sinple Mail Transfer Protocol", STD 10,
RFC 821, August 1982.

Harrenstien, K, Stahl, M, and E. Feinler, "DoD
Internet host table specification", RFC 952,
Cct ober 1985.

Net BI OS Wor ki ng Group, "Protocol standard for a
Net BI OS service on a TCP/UDP transport: Concepts and
nmet hods", STD 19, RFC 1001, March 1987.

Net BI OS Wor ki ng Group, "Protocol standard for a
Net BI OS service on a TCP/UDP transport: Detail ed
speci fications", STD 19, RFC 1002, March 1987.

Mockapetris, P., "Domain names - concepts and
facilities", STD 13, RFC 1034, Novenber 1987.

Braden, R, "Requirenents for Internet Hosts -
Application and Support", STD 3, RFC 1123,
Cct ober 1989.

Murai, J., Crispin, M, and E. van der Poel
"Japanese Character Encoding for Internet Messages",
RFC 1468, June 1993.

Gavron, E., "A Security Problem and Proposed
Correction Wth Wdely Depl oyed DNS Sof t war e"
RFC 1535, Cctober 1993.

Kumar, A., Postel, J., Neunman, C., Danzig, P., and

S. Mller, "Common DNS I npl enentation Errors and
Suggested Fi xes", RFC 1536, October 1993.

I nf or mati onal [Page 21]

RFC 6055

[RFC2130]

[RFC2136]

[RFC2181]

[RFC2277]

[RFC3397]

[RFC3490]

[RFC3492]

[RFC3493]

[RFC3629]

[RFC3646]

[RFCA343]

[RFC4690]

Thal er, et al.

| DN Encodi ngs February 2011

Weider, C., Preston, C, Sinponsen, K., Alvestrand,
H, Atkinson, R, Crispin, M, and P. Svanberg, "The
Report of the | AB Character Set W rkshop held 29
February - 1 March, 1996", RFC 2130, April 1997.

Vi xie, P., Thonmson, S., Rekhter, Y., and J. Bound,
"Dynam c Updates in the Domain Nane System (DNS
UPDATE) ", RFC 2136, April 1997.

Elz, R and R Bush, "Clarifications to the DNS
Speci fication", RFC 2181, July 1997.

Al vestrand, H., "IETF Policy on Character Sets and
Languages”, BCP 18, RFC 2277, January 1998.

Aboba, B. and S. Cheshire, "Dynam c Host
Configuration Protocol (DHCP) Domai n Search Option",
RFC 3397, Novemnber 2002.

Faltstrom P., Hoffrman, P., and A Costell o,
“Internationalizing Domain Names in Applications
(I DNA)", RFC 3490, March 2003.

Costello, A, "Punycode: A Bootstring encoding of
Uni code for Internationalized Donmain Nanes in
Applications (IDNA)", RFC 3492, March 2003.

Glligan, R, Thonson, S., Bound, J., MCann, J.,
and W Stevens, "Basic Socket |nterface Extensions
for 1Pv6", RFC 3493, February 2003.

Yergeau, F., "UTF-8, a transformation format of 1SO
10646", STD 63, RFC 3629, Noverber 2003.

Droms, R, "DNS Configuration options for Dynam c
Host Configuration Protocol for |IPv6 (DHCPv6G)",
RFC 3646, Decenber 2003.

East| ake, D., "Domai n Nanme System (DNS) Case
Insensitivity Clarification", RFC 4343,
January 2006.

Klensin, J., Faltstrom P., Karp, C, and |AB,

"Revi ew and Recommendations for Internationalized
Domai n Narmes (I DNs)", RFC 4690, Septenber 2006.

I nf or mati onal [Page 22]

RFC 6055

[RFCA

[RFC4

[RFC5

[RFC5

[RFC5

[RFC5

[RFC5

[UTF8

Thal er,

795]

952]

198]

321]

731]

890]

891]

- DNS]

et al.

| DN Encodi ngs February 2011

Aboba, B., Thaler, D., and L. Esibov, "Link-Iloca
Mul ticast Nanme Resolution (LLMNR)", RFC 4795,
January 2007.

Klensin, J. and Y. Ko, "Overview and Franework for
Internationalized Email", RFC 4952, July 2007.

Klensin, J. and M Padlipsky, "Unicode Format for
Net wor k | nterchange", RFC 5198, March 2008.

Klensin, J., "Sinple Miil Transfer Protocol",
RFC 5321, Cctober 2008.

Hol | enbeck, S., "Extensible Provisioning Protoco
(EPP) Domai n Nane Mappi ng", STD 69, RFC 5731,
August 2009.

Klensin, J., "Internationalized Domain Nanes for
Applications (IDNA): Definitions and Docunent
Framewor k", RFC 5890, August 2010.

Klensin, J., "Internationalized Donain Nanes in
Applications (I DNA): Protocol”, RFC 5891
August 2010.

Kwan, S. and J. Glroy, "Using the UTF-8 Character

Set in the Domain Nane Systeni, Work in Progress,
Novenber 1997.

I nf or mati onal [Page 23]

RFC 6055 | DN Encodi ngs February 2011

Aut hors’ Addr esses

Dave Thal er

M crosoft Corporation
One M crosoft Way
Rednmond, WA 98052
USA

Phone: +1 425 703 8835
EMai | : dthal er @n crosoft.com

John C Kl ensin
1770 Massachusetts Ave, Ste 322
Canbri dge, MA 02140

Phone: +1 617 245 1457
EMai | : john+ietf @ck.com

Stuart Cheshire

Appl e Inc.
1 Infinite Loop

Cupertino, CA 95014

Phone: +1 408 974 3207
EMai | : cheshire@ppl e. com

Thal er, et al. I nf or mati onal [Page 24]

