I nternet Engi neering Task Force (I ETF) T. Henderson

Request for Comments: 6582 Boei ng
obsol etes: 3782 S. Floyd
Cat egory: Standards Track I CS
| SSN: 2070-1721 A CGurtov
University of Qulu

Y. Nishida

W DE Pr oj ect

April 2012

The NewReno Modification to TCP's Fast Recovery Al gorithm
Abst r act

RFC 5681 docunents the followi ng four intertwi ned TCP congestion
control algorithms: slow start, congestion avoi dance, fast
retransmt, and fast recovery. RFC 5681 explicitly allows certain
nodi fi cati ons of these algorithms, including nodifications that use
the TCP Sel ective Acknow edgment (SACK) option (RFC 2883), and

nodi fications that respond to "partial acknow edgnents” (ACKs that
cover new data, but not all the data outstanding when | oss was
detected) in the absence of SACK. This docunent describes a specific
algorithmfor responding to partial acknow edgrments, referred to as
"NewReno". This response to partial acknow edgnments was first
proposed by Janey Hoe. This docurment obsol etes RFC 3782.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further infornmation on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6582.

Hender son, et al. St andards Track [Page 1]

RFC 6582 TCP NewReno April 2012

Copyri ght Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunent nmay contain material from|ETF Documents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
nodi fi cati ons of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh

1. | nt roducti on

For the typical inmplementation of the TCP fast recovery algorithm
described in [RFC5681] (first inplenented in the 1990 BSD Reno

rel ease, and referred to as the "Reno algorithm in [FF96]), the TCP
data sender only retransmits a packet after a retransmit tineout has
occurred, or after three duplicate acknow edgnments have arrived
triggering the fast retransmt algorithm A single retransmt
timeout mght result in the retransm ssion of several data packets,
but each invocation of the fast retransmt algorithmin RFC 5681
leads to the retransm ssion of only a single data packet.

Two problens arise with Reno TCP when multiple packet |osses occur in
a single window First, Reno will often take a tinmeout, as has been
docunented in [Hoe95]. Second, even if a retransnmission tineout is
avoided, nultiple fast retransmts and wi ndow reducti ons can occur,
as docunented in [F94]. Wen nultiple packet |osses occur, if the
SACK option [RFC2883] is available, the TCP sender has the
information to make intelligent decisions about which packets to
retransmt and which packets not to retransmt during fast recovery.

Hender son, et al. St andards Track [Page 2]

RFC 6582 TCP NewReno April 2012

Thi s docunent applies to TCP connections that are unable to use the
TCP Sel ective Acknow edgnent (SACK) option, either because the option
is not locally supported or because the TCP peer did not indicate a
willingness to use SACK

In the absence of SACK, there is little information available to the
TCP sender in naking retransm ssion decisions during fast recovery.
Fromthe three duplicate acknow edgnents, the sender infers a packet
l oss, and retransmits the indicated packet. After this, the data
sender could receive additional duplicate acknow edgnments, as the
data recei ver acknow edges additional data packets that were already
in flight when the sender entered fast retransmt.

In the case of multiple packets dropped froma single w ndow of data,
the first new information available to the sender cones when the
sender receives an acknow edgnment for the retransmitted packet (that
is, the packet retransmtted when fast retransmit was first entered).
If there is a single packet drop and no reordering, then the

acknow edgnment for this packet will acknow edge all of the packets
transmtted before fast retransnmit was entered. However, if there
are multiple packet drops, then the acknow edgnent for the
retransmtted packet will acknowl edge sonme but not all of the packets
transmtted before the fast retransmt. W call this acknow edgnent
a partial acknow edgnent.

Along with several other suggestions, [Hoe95] suggested that during
fast recovery the TCP data sender respond to a partial acknow edgnent
by inferring that the next in-sequence packet has been | ost and
retransmtting that packet. This docunment describes a nodification
to the fast recovery algorithmin RFC 5681 that incorporates a
response to partial acknow edgrments received during fast recovery.

We call this nodified fast recovery al gorithm NewReno, because it is
a slight but significant variation of the behavior that has been
historically referred to as Reno. This docunent does not discuss the
ot her suggestions in [Hoe95] and [Hoe96], such as a change to the
ssthresh paraneter during slow start, or the proposal to send a new
packet for every two duplicate acknow edgnents during fast recovery.
The version of NewReno in this document al so draws on ot her

di scussions of NewReno in the literature [LMD7] [Hen98].

We do not claimthat the NewReno version of fast recovery described
here is an optimal nodification of fast recovery for responding to
partial acknow edgnents, for TCP connections that are unable to use
SACK. Based on our experiences with the NewReno nodification in the
networ k simulator known as ns-2 [NS] and with numerous

i mpl enent ati ons of NewReno, we believe that this nodification

i mproves the performance of the fast retransmit and fast recovery

Hender son, et al. St andards Track [Page 3]

RFC 6582 TCP NewReno April 2012

algorithnms in a wide variety of scenarios. Previous versions of this
RFC [RFC2582] [RFC3782] provide sinulation-based evidence of the
possi bl e perfornmance gains.

2. Term nol ogy and Definitions

Thi s docunent assunes that the reader is famliar with the terns
SENDER MAXI MUM SEGMENT S| ZE (SMBS), CONGESTI ON W NDOW (cwnd), and
FLI GHT SI ZE (FlightSize) defined in [RFC5681].

Thi s docunent defines an additional sender-side state variable called
"recover":

recover:
When in fast recovery, this variable records the send sequence
nunber that must be acknow edged before the fast recovery
procedure is declared to be over.

3. The Fast Retransnit and Fast Recovery Al gorithnms in NewReno
3.1. Protocol Overview

The basic idea of these extensions to the fast retransmt and fast
recovery algorithnms described in Section 3.2 of [RFC5681] is as
follows. The TCP sender can infer, fromthe arrival of duplicate
acknow edgnments, whether nultiple |osses in the same wi ndow of data
have nmost |ikely occurred, and avoid taking a retransmt tinmeout or
maki ng mul ti pl e congesti on wi ndow reductions due to such an event.

The NewReno nodification applies to the fast recovery procedure that
begi ns when three duplicate ACKs are received and ends when either a
retransm ssion timeout occurs or an ACK arrives that acknow edges al
of the data up to and including the data that was outstandi ng when
the fast recovery procedure began.

Hender son, et al. St andards Track [Page 4]

RFC 6582 TCP NewReno April 2012

3.2. Specification

The procedures specified in Section 3.2 of [RFC5681] are followed,
with the nodifications listed below Note that this specification
avoi ds the use of the key words defined in RFC 2119 [RFC2119], since
it mainly provides sender-side inplenentation gui dance for
performance i nprovenent, and does not affect interoperability.

1) Initialization of TCP protocol control bl ock
VWhen the TCP protocol control block is initialized, recover is
set to the initial send sequence nunber.

2) Three duplicate ACKs:
When the third duplicate ACK is received, the TCP sender first
checks the value of recover to see if the Curnul ative
Acknowl edgrment field covers nore than recover. |f so, the value
of recover is increnmented to the value of the highest sequence
nunber transmitted by the TCP so far. The TCP then enters fast
retransmt (step 2 of Section 3.2 of [RFC5681]). |If not, the TCP
does not enter fast retransmt and does not reset ssthresh.

3) Response to new y acknow edged dat a:
Step 6 of [RFC5681] specifies the response to the next ACK that
acknow edges previously unacknow edged data. Wen an ACK arrives
that acknow edges new data, this ACK could be the acknow edgnent
elicited by the initial retransm ssion fromfast retransmt, or
elicited by a later retransnmission. There are two cases:

Ful I acknow edgnents:

If this ACK acknow edges all of the data up to and including
recover, then the ACK acknow edges all the internedi ate segnents
sent between the original transm ssion of the |ost segnent and
the receipt of the third duplicate ACK. Set cwnd to either (1)
mn (ssthresh, max(FlightSize, SMSS) + SMSS) or (2) ssthresh,
where ssthresh is the value set when fast retransmt was entered,
and where FlightSize in (1) is the amobunt of data presently
outstanding. This is terned "deflating" the window. |If the
second option is selected, the inplenentation is encouraged to
take neasures to avoid a possible burst of data, in case the
amount of data outstanding in the network is much |less than the
new congesti on wi ndow allows. A sinple mechanismis to limt the
nunber of data packets that can be sent in response to a single
acknow edgnent. Exit the fast recovery procedure.

Hender son, et al. St andards Track [Page 5]

RFC 6582 TCP NewReno April 2012

Partial acknow edgnents:

If this ACK does *not* acknow edge all of the data up to and

i ncluding recover, then this is a partial ACK. In this case,
retransmt the first unacknow edged segnent. Deflate the
congestion w ndow by the amount of new data acknow edged by the
Cunul ati ve Acknow edgnent field. |If the partial ACK acknow edges
at | east one SMBS of new data, then add back SMSS bytes to the
congestion window. This artificially inflates the congestion

wi ndow in order to reflect the additional segnent that has |eft
the network. Send a new segnment if permtted by the new val ue of
cwnd. This "partial w ndow deflation" attenpts to ensure that,
when fast recovery eventually ends, approximately ssthresh anount
of data will be outstanding in the network. Do not exit the fast
recovery procedure (i.e., if any duplicate ACKs subsequently
arrive, execute step 4 of Section 3.2 of [RFC5681]).

For the first partial ACK that arrives during fast recovery, also
reset the retransmt tiner. Tiner nmanagenent is discussed in
nore detail in Section 4.

4) Retransmt tineouts:
After a retransmt tineout, record the highest sequence nunber
transmtted in the variable recover, and exit the fast recovery
procedure if applicable.

Step 2 above specifies a check that the Cumul ati ve Acknow edgnent
field covers nore than recover. Because the acknow edgnent field
contai ns the sequence nunber that the sender next expects to receive,
the acknow edgnent "ack_nunber"™ covers nore than recover when

ack_number - 1 > recover;

i.e., at least one byte nore of data is acknow edged beyond the
hi ghest byte that was outstanding when fast retransmit was | ast
ent er ed.

Note that in step 3 above, the congestion windowis deflated after a
partial acknow edgnent is received. The congestion w ndow was |ikely
to have been inflated considerably when the partial acknow edgment

was received. |In addition, depending on the original pattern of
packet |osses, the partial acknow edgnent ni ght acknow edge nearly a
wi ndow of data. |In this case, if the congestion w ndow was not

defl ated, the data sender m ght be able to send nearly a w ndow of
dat a back-t o- back.

Hender son, et al. St andards Track [Page 6]

RFC 6582 TCP NewReno April 2012

Thi s docunent does not specify the sender’s response to duplicate
ACKs when the fast retransmit/fast recovery algorithmis not invoked.
This is addressed in other docunments, such as those describing the
Limted Transnit procedure [RFC3042]. This docunent al so does not
address issues of adjusting the duplicate acknow edgment threshol d,
but assunmes the threshold specified in the | ETF standards; the
current standard is [RFC5681], which specifies a threshold of three
dupl i cate acknow edgnents.

As a final note, we would observe that in the absence of the SACK
option, the data sender is working fromlimted information. Wen
the issue of recovery frommultiple dropped packets froma single
wi ndow of data is of particular inmportance, the best alternative
woul d be to use the SACK option

4. Handling Duplicate Acknow edgnments after a Ti meout

After each retransmt tineout, the highest sequence numnber
transmtted so far is recorded in the variable recover. |If, after a
retransmit timeout, the TCP data sender retransnits three consecutive
packets that have already been received by the data receiver, then
the TCP data sender will receive three duplicate acknow edgrments that
do not cover more than recover. In this case, the duplicate

acknow edgnents are not an indication of a new instance of

congestion. They are sinply an indication that the sender has
unnecessarily retransnitted at | east three packets.

However, when a retransmtted packet is itself dropped, the sender
can al so receive three duplicate acknow edgnents that do not cover
nore than recover. |In this case, the sender woul d have been better
off if it had initiated fast retransnit. For a TCP sender that

i mpl ements the algorithmspecified in Section 3.2 of this document,
the sender does not infer a packet drop from duplicate

acknow edgnents in this scenario. As always, the retransnmit timer is
the backup nechanismfor inferring packet loss in this case.

There are several heuristics, based on tinestanps or on the anount of
advancenent of the Cunul ative Acknow edgment field, that allowthe
sender to distinguish, in some cases, between three duplicate

acknow edgnents following a retransmtted packet that was dropped,
and three duplicate acknow edgnents fromthe unnecessary

retransm ssion of three packets [Qr03] [G-04]. The TCP sender may
use such a heuristic to decide to invoke a fast retransmt in sone
cases, even when the three duplicate acknow edgnents do not cover
nore than recover.

Hender son, et al. St andards Track [Page 7]

RFC 6582 TCP NewReno April 2012

For exanple, when three duplicate acknow edgnents are caused by the
unnecessary retransm ssion of three packets, this is likely to be
acconpani ed by the Curul ati ve Acknow edgnment field advanci ng by at

| east four segnments. Similarly, a heuristic based on timestanps uses
the fact that when there is a hole in the sequence space, the

ti mestanp echoed in the duplicate acknow edgrment is the tinestanp of
the nost recent data packet that advanced the Cunul ative

Acknowl edgment field [RFCL323]. If timestanps are used, and the
sender stores the tinmestanp of the | ast acknow edged segnent, then
the timestanp echoed by duplicate acknow edgnents can be used to

di stingui sh between a retransmtted packet that was dropped and three
dupl i cate acknow edgnents fromthe unnecessary retransm ssion of
three packets.

4.1. ACK Heuristic

If the ACK-based heuristic is used, then follow ng the advancenent of
the Cunul ative Acknow edgnent field, the sender stores the val ue of
the previous cumul ati ve acknowl edgnent as prev_hi ghest ack, and
stores the latest cumul ative ACK as highest _ack. In addition, the
followi ng check is perforned if, in step 2 of Section 3.2, the

Cunmul ati ve Acknow edgment field does not cover nore than recover.

2*) If the Cunul ative Acknow edgnent field didn't cover nore than
recover, check to see if the congestion windowis greater than
SMSS bytes and the difference between highest_ack and
prev_hi ghest _ack is at nobst 4*SMSS bytes. |If true, duplicate
ACKs indicate a | ost segnent (enter fast retransmt).
O herwi se, duplicate ACKs likely result from unnecessary
retransm ssions (do not enter fast retransmt).

The congestion wi ndow check serves to protect against fast retransmt
i medi ately after a retransmt timeout.

If several ACKs are lost, the sender can see a junp in the cunul ative
ACK of nore than three segnents, and the heuristic can fail

[RFC5681] recommends that a receiver should send duplicate ACKs for
every out-of-order data packet, such as a data packet received during
fast recovery. The ACK heuristic is nore likely to fail if the

recei ver does not follow this advice, because then a snaller numnber
of ACK | osses are needed to produce a sufficient junp in the

cunmul ative ACK

Hender son, et al. St andards Track [Page 8]

RFC 6582 TCP NewReno April 2012

4.2. Timestanp Heuristic

If this heuristic is used, the sender stores the tinmestanp of the
| ast acknowl edged segnent. In addition, the |ast sentence of step 2
in Section 3.2 of this document is replaced as foll ows:

2**) |If the Cunul ative Acknow edgnent field didn't cover nore than
recover, check to see if the echoed tinestanmp in the |ast
non- dupl i cat e acknow edgnment equal s the stored tinestanp. |If
true, duplicate ACKs indicate a | ost segment (enter fast
retransmt). Oherw se, duplicate ACKs likely result from
unnecessary retransm ssions (do not enter fast retransmt).

The tinestanp heuristic works correctly, both when the receiver
echoes tinestanps, as specified by [RFC1323], and by its revision
attenpts. However, if the receiver arbitrarily echoes tinestanps,
the heuristic can fail. The heuristic can also fail if a tineout was
spurious and returning ACKs are not fromretransnitted segnents.

This can be prevented by detection algorithns such as the Eife
detection al gorithm [RFC3522].

5. Implenentation |Issues for the Data Receiver

[RFC5681] specifies that "Qut-of-order data segnents SHOULD be
acknow edged i medi ately, in order to accelerate | oss recovery".

Neal Cardwell has noted that some data receivers do not send an

i medi at e acknowl edgrment when they send a partial acknow edgnent, but
instead wait first for their del ayed acknow edgnent tiner to expire
[C98]. As [C98] notes, this severely limts the potential benefit of
NewReno by del aying the receipt of the partial acknow edgnent at the
data sender. Echoing [RFC5681], our reconmendation is that the data
recei ver send an i nmedi ate acknow edgnment for an out-of - order
segnent, even when that out-of-order segnent fills a hole in the
buf f er.

6. Inplenentation Issues for the Data Sender

In Section 3.2, step 3 above, it is noted that inplenmentations should
take neasures to avoid a possible burst of data when | eaving fast
recovery, in case the anount of new data that the sender is eligible
to send due to the new value of the congestion windowis large. This
can arise during NewReno when ACKs are | ost or treated as pure w ndow
updates, thereby causing the sender to underestimte the nunber of
new segnents that can be sent during the recovery procedure.
Specifically, bursts can occur when the FlightSize is nuch | ess than
the new congestion wi ndow when exiting fromfast recovery. One
simpl e mechanismto avoid a burst of data when | eaving fast recovery

Hender son, et al. St andards Track [Page 9]

RFC 6582 TCP NewReno April 2012

is tolimt the nunber of data packets that can be sent in response
to a single acknow edgnment. (This is known as "maxburst " in ns-2
[NS].) Oher possible nechanisns for avoiding bursts include rate-
based pacing, or setting the slow start threshold to the resultant
congestion wi ndow and then resetting the congestion wi ndow to
FlightSize. A recommendation on the general mechanismto avoid
excessively bursty sending patterns is outside the scope of this
document .

An inmpl enentation may want to use a separate flag to record whet her
or not it is presently in the fast recovery procedure. The use of
the val ue of the duplicate acknow edgnent counter for this purpose is
not reliable, because it can be reset upon w ndow updates and out - of -
order acknow edgnents.

VWhen updating the Cumul ati ve Acknow edgnent field outside of fast
recovery, the state variable recover may al so need to be updated in
order to continue to permt possible entry into fast recovery
(Section 3.2, step 2). This issue arises when an update of the

Cunul ati ve Acknow edgnment field results in a sequence wr aparound that
affects the ordering between the Cunul ati ve Acknow edgnent field and
the state variable recover. Entry into fast recovery is only
possi bl e when the Cunmul ati ve Acknow edgnent field covers nore than
the state variable recover.

It is inmportant for the sender to respond correctly to duplicate ACKs
recei ved when the sender is no longer in fast recovery (e.g., because
of aretransmt timeout). The Linmted Transmt procedure [RFC3042]
descri bes possible responses to the first and second duplicate
acknow edgnents. When three or nore duplicate acknow edgnents are
recei ved, the Cumul ative Acknow edgnent field doesn’t cover nore than
recover, and a new fast recovery is not invoked, the sender should
foll ow the guidance in Section 4. Oherw se, the sender could end up
in a chain of spurious timeouts. W mention this only because
several NewReno inplenmentations had this bug, including the

i npl enentation in ns-2 [NS]

It has been observed that some TCP inplenentations enter a slow start
or congestion avoi dance wi ndow updating algorithmimmedi ately after
the cwnd is set by the equation found in Section 3.2, step 3, even

wi t hout a new external event generating the cwnd change. Note that
after cwnd is set based on the procedure for exiting fast recovery
(Section 3.2, step 3), cwnd should not be updated until a further
event occurs (e.g., arrival of an ack, or timeout) after this

adj ust ment .

Hender son, et al. St andards Track [Page 10]

RFC 6582 TCP NewReno April 2012

7.

Security Considerations

[RFC5681] di scusses general security considerations concerning TCP
congestion control. This docunent describes a specific algorithm
that conforns with the congestion control requirenments of [RFC5681],
and so those considerations apply to this algorithm too. There are
no known additional security concerns for this specific algorithm

Concl usi ons

Thi s docunent specifies the NewReno fast retransmt and fast recovery
algorithns for TCP. This NewReno nodification to TCP can even be

i nportant for TCP inplenentations that support the SACK option
because the SACK option can only be used for TCP connections when
both TCP end- nodes support the SACK option. NewReno perforns better
than Reno in a number of scenarios discussed in previous versions of
this RFC ([RFC2582] [RFC3782]).

A nunber of options for the basic algorithns presented in Section 3
are also referenced in Appendi x A of this docunent. These include
the handling of the retransmission tiner, the response to partia
acknow edgnents, and whether or not the sender nmust mmintain a state
variable called recover. Qur belief is that the differences between
these variants of NewReno are small conpared to the differences

bet ween Reno and NewReno. That is, the inportant thing is to

i mpl ement NewReno instead of Reno for a TCP connection without SACK
it is less inportant exactly which variant of NewReno is inplenented.

Acknowl edgnent s

Many thanks to Anil Agarwal, Mark All man, Arnmando Caro, Jeffrey Hsu,
Vern Paxson, Kacheong Poon, Keyur Shah, and Bernie Volz for detailed
f eedback on the precursor RFCs 2582 and 3782. Jeffrey Hsu provided
clarifications on the handling of the variable recover; these
clarifications were applied to RFC 3782 via an erratum and are
incorporated into the text of Section 6 of this docunent. Yoshifum
Ni shida contributed a nodification to the fast recovery algorithmto
account for the case in which FlightSize is 0 when the TCP sender

| eaves fast recovery and the TCP receiver uses del ayed

acknow edgnents. Al exander Zi mrermann provi ded several suggestions
to inmprove the clarity of the docunent.

Hender son, et al. St andards Track [Page 11]

RFC 6582 TCP NewReno April 2012

10. References
10.1. Normmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC5681] Al l man, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

10.2. Informative References
[Co8] Cardwel I, N., "delayed ACKs for retransnitted packets:
ouch!". Novenber 1998, Enmil to the tcpinpl mailing list,

archi ved at
<http://groups. yahoo. coni group/tcp-inpl/message/ 1428>.

[FO4] Floyd, S., "TCP and Successive Fast Retransmts", Technica
report, May 1995.
<ftp://ftp.ee.lbl.gov/papers/fastretrans. ps>.

[FF96] Fall, K. and S. Floyd, "Sinulation-based Conparisons of
Tahoe, Reno and SACK TCP", Conputer Communi cation Review,
July 1996. <ftp://ftp.ee.lbl.gov/papers/sacks. ps.Z>.

[GFO4] GQurtov, A and S. Floyd, "Resolving Acknow edgnent
Anbi guity in non-SACK TCP', NExt Generation Teletraffic and
Wred/ Wrel ess Advanced Networ ki ng (NEV2AN 04),
February 2004. <http://ww. cs. hel sinki.fi/u/gurtov/
papers/ heuristics. htm >,

[Gur 03] GQurtov, A., "[Tsvwg] resolving the probl em of unnecessary
fast retransmits in go-back-N', email to the tsvwg mailing
list, July 28, 2003. <http://ww.ietf.org/mail-archivel/
web/t svwg/ current/ msg04334. ht m >.

[Hen98] Henderson, T., "Re: NewReno and the 2001 Revi sion",
Septenber 1998. Emmil to the tcpinpl mailing |ist,
archi ved at
<http://groups. yahoo. coni group/tcp-inpl/message/ 1321>.

[Hoe95] Hoe, J., "Startup Dynam cs of TCP's Congestion Control and
Avoi dance Schenmes", Master’'s Thesis, MT, June 1995.

[Hoe96] Hoe, J., "Inproving the Start-up Behavior of a Congestion

Control Schene for TCP', ACM SI GCOMM August 1996.
<http://ccr.sigconm org/archive/ 1996/ conf/ hoe. pdf >.

Hender son, et al. St andards Track [Page 12]

RFC 6582 TCP NewReno April 2012

[LMD7] Lin, DD and R Mrris, "Dynam cs of Random Early
Det ecti on", SIGCOW 97, October 1997.

[NS] "The Network Sinmulator version 2 (ns-2)",
<http://ww.isi.edu/ nsnam ns/ >.

[RFC1323] Jacobson, V., Braden, R, and D. Borman, "TCP Extensions
for H gh Performance", RFC 1323, May 1992.

[RFC2582] Floyd, S. and T. Henderson, "The NewReno Mdification to
TCP' s Fast Recovery Al gorithnt, RFC 2582, April 1999.

[RFC2883] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenment (SACK) Option
for TCP', RFC 2883, July 2000.

[RFC3042] All man, M, Bal akrishnan, H, and S. Floyd, "Enhancing
TCP's Loss Recovery Using Limted Transmit", RFC 3042,
January 2001.

[RFC3522] Ludwig, R and M Meyer, "The Eifel Detection Al gorithmfor
TCP", RFC 3522, April 2003.

[RFC3782] Floyd, S., Henderson, T., and A. Qurtov, "The NewReno

Modi fication to TCP's Fast Recovery Al gorithni, RFC 3782,
April 2004.

Hender son, et al. St andards Track [Page 13]

RFC 6582 TCP NewReno April 2012

Appendi x A. Additional Infornmation

Previ ous versions of this RFC ([RFC2582] [RFC3782]) contai ned
additional informative material on the follow ng subjects, and may be
consul ted by readers who may want nore informati on about possible
variants to the algorithns and who may want references to specific
[NS] sinulations that provide NewReno test cases.

Section 4 of [RFC3782] discusses sone alternative behaviors for
resetting the retransmt timer after a partial acknow edgnent.

Section 5 of [RFC3782] discusses sone alternative behaviors for
perform ng retransm ssion after a partial acknow edgnent.

Section 6 of [RFC3782] describes nore information about the
nmotivation for the sender’s state vari abl e recover.

Section 9 of [RFC3782] introduces some NS sinulation test suites for
NewReno. |In addition, references to sinmulation results can be found
t hr oughout [RFC3782].

Section 10 of [RFC3782] provides a conparison of Reno and
NewReno TCP

Section 11 of [RFC3782] lists changes relative to [RFC2582].
Appendi x B. Changes Rel ative to RFC 3782

In [RFC3782], the cwnd after Full ACK reception will be set to

(1) mn (ssthresh, FlightSize + SM8S) or (2) ssthresh. However, the
first option carries a risk of perfornance degradation: Wth the
first option, if FlightSize is zero, the result will be 1 SMSS. This
means TCP can transmit only 1 segnent at that nmonment, which can cause
a delay in ACK transnission at the receiver due to a delayed ACK

al gorithm

The FlightSize on Full ACK reception can be zero in sone situations.
A typical exanple is where the sending wi ndow size during fast
recovery is small. In this case, the retransnmitted packet and new
dat a packets can be transmtted within a short interval. |If al
these packets successfully arrive, the receiver may generate a Ful
ACK that acknow edges all outstanding data. Even if the wi ndow size

is not small, |oss of ACK packets or a receive buffer shortage during
fast recovery can also increase the possibility of falling into this
situation.

Hender son, et al. St andards Track [Page 14]

RFC 6582 TCP NewReno April 2012

The proposed fix in this docurment, which sets cwnd to at |east 2*SMSS
if the inplenentation uses option 1 in the Full ACK case

(Section 3.2, step 3, option 1), ensures that the sender TCP
transmts at |east two segnents on Full ACK reception.

In addition, an erratumwas reported for RFC 3782 (an editoria
clarification to Section 8); this erratum has been addressed in
Section 6 of this docunent.

The specification text (Section 3.2 herein) was rewitten to nore
closely track Section 3.2 of [RFC5681].

Sections 4, 5, and 9-11 of [RFC3782] were renpved, and instead
Appendi x A of this docunment was added to back-reference this
informative material. A few references that have no citation in the
mai n body of the docunent have been renoved.

Hender son, et al. St andards Track [Page 15]

RFC 6582 TCP NewReno April 2012

Aut hors’ Addr esses

Tom Hender son
The Boei ng Conpany

EMai | : thonas. r. hender son@oei ng. com

Sally Fl oyd
I nternati onal Conputer Science Institute

Phone: +1 (510) 666-2989
EMai |l : floyd@cm org
URL: http://ww.icir.org/floyd/

Andrei Qurtov

University of Qulu

Centre for Wrel ess Conmuni cati ons CWC
P. 0. Box 4500

Fl -90014 University of Qulu

Fi nl and

EMai | : gurtov@e. oul u. fi

Yoshi fum N shida

W DE Pr oj ect

Endo 5322

Fuj i sawa, Kanagawa 252-8520
Japan

EMai | : nishida@ii de.ad.jp

Hender son, et al. St andards Track [Page 16]

