I nt ernet Engi neering Task Force (1 ETF)

Request for Comments:
bsol etes: 3517

Cat egory: Standards Track

| SSN: 2070-1721

E. Bl anton
Purdue University
M Al man

| CSI
L. Wang

Juni per Networ ks
. Jarvinen
M Koj o

Uni versity of Hel sink
Y. Nishida

W DE Pr oj ect
August 2012

A Conservative Loss Recovery Al gorithm Based on
Sel ective Acknow edgnent (SACK) for TCP

Abst ract

Thi s docunent presents a conservative |oss recovery algorithmfor TCP
that is based on the use of the sel ective acknow edgnent (SACK) TCP
option. The algorithmpresented in this docunent conforns to the
spirit of the current congestion contro

but allows TCP senders to recover
segnents are lost froma single flight of data.

speci fication (RFC 5681),
nore effectively when nultiple

Thi s docunent

obsol etes RFC 3517 and descri bes changes fromit.

Status of This Menp

This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by

the Internet Engineering Steering Goup (lIESG.

Furt her

information on Internet Standards is available in Section 2 of

RFC 5741.

I nformati on about the current status of this document, any
errata, and how to provide feedback on it nmay be obtained at
http://ww. rfc-editor.org/info/rfc6675.

Bl anton, et al.

St andards Track

[Page 1]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

Copyri ght Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

1. | nt roducti on

Thi s docunent presents a conservative | oss recovery algorithmfor TCP
that is based on the use of the sel ective acknow edgnent (SACK) TCP
option. Wile the TCP SACK option [RFC2018] is being steadily
deployed in the Internet [AII00], there is evidence that hosts are
not using the SACK i nformati on when naking retransm ssi on and
congestion control decisions [PFOl]. The goal of this docunent is to
outline one straightforward nethod for TCP i npl ementati ons to use
SACK i nformation to increase performance

[RFC5681] all ows advanced | oss recovery algorithnms to be used by TCP
[RFC793] provided that they follow the spirit of TCP's congestion
control algorithnms [RFC5681] [RFC2914]. [RFC6582] outlines one such
advanced recovery algorithmcalled NewReno. This docunent outlines a
| oss recovery algorithmthat uses the SACK TCP option [RFC2018] to
enhance TCP's | oss recovery. The algorithmoutlined in this
docunent, heavily based on the algorithmdetailed in [FF96], is a
conservative replacenent of the fast recovery al gorithm[Jac90]

[RFC5681]. The algorithmspecified in this docunment is a

strai ghtforward SACK-based | oss recovery strategy that follows the
gui delines set in [RFC5681] and can safely be used in TCP

i mpl ementations. Alternate SACK-based | oss recovery methods can be
used in TCP as inplenenters see fit (as long as the alternate
algorithms follow the guidelines provided in [RFC5681]). Pl ease
note, however, that the SACK-based decisions in this docunent (such
as what segments are to be sent at what tine) are |largely decoupl ed
fromthe congestion control algorithms, and as such can be treated as
separate issues if so desired.

Thi s docunent represents a revision of [RFC3517] to address severa
situations that are not handled explicitly in that document. A

Bl anton, et al. St andards Track [Page 2]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

2.

sunmary of the changes between this docunent and [RFC3517] can be
found in Section 9.

Definitions

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119

[RFC2119].

The reader is expected to be famliar with the definitions given in
[RFC5681] .

The reader is assuned to be famliar with selective acknow edgnents
as specified in [RFC2018].

For the purposes of explaining the SACK-based | oss recovery
algorithm we define six variables that a TCP sender stores:

"H ghACK" is the sequence number of the highest byte of data that
has been cunul atively ACKed at a given point.

"Hi ghData" is the highest sequence nunber transmtted at a given
poi nt .

"H ghRxt" is the highest sequence number which has been
retransmitted during the current |oss recovery phase.

"RescueRxt" is the highest sequence nunber which has been
optimstically retransmtted to prevent stalling of the ACK cl ock
when there is loss at the end of the wi ndow and no new data is
avai | abl e for transm ssion.

"Pipe" is a sender’s estimate of the nunmber of bytes outstanding
in the network. This is used during recovery for limting the
sender’s sending rate. The pipe variable allows TCP to use
fundanental |y different congestion control than the algorithm
specified in [RFC5681]. The congestion control al gorithm using
the pipe estimate is often referred to as the "pipe algorithnt

"DupAcks" is the number of duplicate acknow edgnments received
since the last cunul ative acknow edgnent.

For the purposes of this specification, we define a "duplicate
acknow edgnent” as a segnment that arrives carrying a SACK bl ock that
identifies previously unacknow edged and un- SACKed octets between

H ghACK and Hi ghData. Note that an ACK which carries new SACK data
is counted as a duplicate acknow edgnent under this definition even

Bl anton, et al. St andards Track [Page 3]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

if it carries new data, changes the advertised wi ndow, or noves the
cunul ati ve acknow edgnment point, which is different fromthe
definition of duplicate acknow edgnent in [RFC5681].

We define a variable "DupThresh” that holds the nunber of duplicate
acknow edgnments required to trigger a retransm ssion. Per [RFC5681],
this threshold is defined to be 3 duplicate acknow edgnents.

However, inplenmenters should consult any updates to [RFC5681] to
determ ne the current value for DupThresh (or nethod for deternining
its value).

Finally, a range of sequence nunbers [A B] is said to "cover"
sequence nunber Sif A<= S <= B

3. Keepi ng Track of SACK Information

For a TCP sender to inplenment the algorithmdefined in the next
section, it nmust keep a data structure to store incomng selective
acknow edgnment infornmation on a per connection basis. Such a data
structure is commonly called the "scoreboard". The specifics of the
scoreboard data structure are out of scope for this docunent (as |ong
as the inplenentation can performall functions required by this
speci fication).

Note that this docunment refers to keeping account of (marking)

i ndi vi dual octets of data transferred across a TCP connection. A
real -worl d i nplementation of the scoreboard would likely prefer to
manage this data as sequence nunber ranges. The algorithns presented
here allow this, but require the ability to mark arbitrary sequence
nunber ranges as havi ng been sel ectively acknow edged.

Finally, note that the algorithmin this document assumes a sender
that is not keeping track of segnent boundaries after transmitting a
segnment. It is possible that there is a nmore refined and precise
al gorithm available to a sender that keeps this extra state than the
al gorithm presented herein; however, we |leave this as future work.

4, Processi ng and Acting Upon SACK | nfornmation

This section describes a specific structure and control flow for

i mpl enenting the TCP behavi or described by this standard. The
behavior is what is standardi zed, and this particular collection of
functions is the strongly recommended neans of inplenenting that
behavi or, though ot her approaches to achi eving that behavior are

f easi bl e.

The definition of Sender Maxi mum Segment Size (SMSS) used in this
section is provided in [RFC5681].

Bl anton, et al. St andards Track [Page 4]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

For the purposes of the algorithmdefined in this docunent, the
scoreboard SHOULD i npl erent the foll owi ng functions:

Update ():

G ven the information provided in an ACK, each octet that is
cunul atively ACKed or SACKed shoul d be marked accordingly in the
scoreboard data structure, and the total nunber of octets SACKed
shoul d be recorded.

Note: SACK information is advisory and therefore SACKed data MJST
NOT be renmoved fromthe TCP's retransm ssion buffer until the data
is cunul atively acknow edged [RFC2018].

| sLost (SeqNum:

This routine returns whether the given sequence number is
considered to be lost. The routine returns true when either
DupThresh di sconti guous SACKed sequences have arrived above
"SegNumi or nore than (DupThresh - 1) * SMBS bytes with sequence
nunbers greater than ' SeqNumi have been SACKed. O herw se, the
routine returns fal se.

Set Pi pe ():
This routine traverses the sequence space from H ghACK to Hi ghData
and MUST set the "pipe" variable to an estimte of the nunber of
octets that are currently in transit between the TCP sender and
the TCP receiver. After initializing pipe to zero, the foll ow ng
steps are taken for each octet 'S1' in the sequence space between
H ghACK and Hi ghData that has not been SACKed:
(a) If IsLost (S1) returns false
Pipe is increnented by 1 octet.
The effect of this condition is that pipe is increnented for
packets that have not been SACKed and have not been determ ned
to have been lost (i.e., those segnents that are still assumed
to be in the network).
(b) If S1 <= HighRxt:
Pipe is incremented by 1 octet.

The effect of this condition is that pipe is incremented for
the retransmi ssion of the octet.

Bl anton, et al. St andards Track [Page 5]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

Note that octets retransmtted without being considered |ost are
counted twi ce by the above nechani sm

Next Seg ():

This routine uses the scoreboard data structure naintai ned by the
Update() function to determine what to transmt based on the SACK
information that has arrived fromthe data receiver (and hence
been marked in the scoreboard). NextSeg () MJST return the
sequence nunber range of the next segment that is to be
transmtted, per the follow ng rules:

(1) If there exists a smallest unSACKed sequence nunber ' S2' that
neets the following three criteria for determning |oss, the
sequence range of one segnent of up to SMSS octets starting
with S2 MUST be returned.

(1.a) S2 is greater than Hi ghRxt.

(1.b) S2 is less than the highest octet covered by any
recei ved SACK

(1.c) IsLost (S2) returns true.

(2) If no sequence nunber 'S2' per rule (1) exists but there
exi sts avail able unsent data and the receiver’s advertised
wi ndow al | ows, the sequence range of one segment of up to SMSS
octets of previously unsent data starting with sequence number
H ghDat a+1 MJST be ret urned.

(3) If the conditions for rules (1) and (2) fail, but there exists
an unSACKed sequence nunber ’'S3' that neets the criteria for
detecting loss given in steps (1.a) and (1.b) above
(specifically excluding step (1.c)), then one segnent of up to
SMBS octets starting with S3 SHOULD be ret urned.

(4) If the conditions for (1), (2), and (3) fail, but there exists
out st andi ng unSACKed data, we provide the opportunity for a
single "rescue" retransm ssion per entry into | oss recovery.

If H ghACK is greater than RescueRxt (or RescueRxt is
undefined), then one segment of up to SMSS octets that MJST
i ncl ude the highest outstandi ng unSACKed sequence nunber
SHOULD be returned, and RescueRxt set to RecoveryPoint.

H ghRxt MJST NOT be updat ed.

Note that rules (3) and (4) are a sort of retransm ssion "l ast

resort”. They allow for retransm ssion of sequence nunbers
even when the sender has |less certainty a segnent has been

Bl anton, et al. St andards Track [Page 6]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

lost than as with rule (1). Retransmtting segnents via rule
(3) and (4) will help sustain the TCP s ACK cl ock and
therefore can potentially help avoid retransm ssion tinmeouts.
However, in sending these segnents, the sender has two copies
of the sane data considered to be in the network (and also in
the pipe estimate, in the case of (3)). Wen an ACK or SACK
arrives covering this retransmtted segnent, the sender cannot
be sure exactly how nmuch data |left the network (one of the two
transm ssi ons of the packet or both transmi ssions of the
packet). Therefore, the sender may underesti mate pi pe by
consi dering both segnents to have left the network when it is
possi bl e that only one of the two has.

(5) If the conditions for each of (1), (2), (3), and (4) are not
nmet, then NextSeg () MJST indicate failure, and no segrment is
r et ur ned.

Not e: The SACK-based | oss recovery algorithmoutlined in this
docunent requires nore conputational resources than previous TCP | oss
recovery strategies. However, we believe the scoreboard data
structure can be inplenented in a reasonably efficient manner (both
in terms of computation conplexity and nenory usage) in nost TCP

i mpl enent ati ons.

5. Al gorithmDetails

Upon the recei pt of any ACK containing SACK i nfornmation, the
scoreboard MUST be updated via the Update () routine.

If the incoming ACK is a cunul ative acknow edgnent, the TCP MUST
reset DupAcks to zero.

If the incoming ACK is a duplicate acknow edgnent per the definition
in Section 2 (regardless of its status as a cunmul ative

acknow edgnent), and the TCP is not currently in | oss recovery, the
TCP MUST i ncrease DupAcks by one and take the foll ow ng steps:

(1) If DupAcks >= DupThresh, go to step (4).

Not e: This check covers the case when a TCP receives SACK
information for multiple segnents smaller than SMSS, which can
potentially prevent IsLost() (next step) fromdeclaring a segnent
as lost.

(2) If DupAcks < DupThresh but IsLost (H ghACK + 1) returns true --
i ndicating at |east three segnments have arrived above the current
cunmul ati ve acknow edgment point, which is taken to indicate |oss
-- go to step (4).

Bl anton, et al. St andards Track [Page 7]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

(3) The TCP MAY transmit previously unsent data segnents as per
Limted Transnit [RFC5681], except that the number of octets
whi ch may be sent is governed by pipe and cwnd as foll ows:

(3.1) Set HighRxt to H ghACK
(3.2) Run SetPipe ().

(3.3) If (cwnd - pipe) >= 1 SMSS, there exists previously unsent
data, and the receiver’s advertised wi ndow allows, transmt
up to 1 SMSS of data starting with the octet H ghData+l and
update HighData to reflect this transm ssion, then return
to (3.2).

(3.4) Termi nate processing of this ACK.
(4) Invoke fast retransmt and enter |oss recovery as foll ows:
(4.1) RecoveryPoint = Hi ghData

When the TCP sender receives a cunul ative ACK for this data
octet, the loss recovery phase is term nated.

(4.2) ssthresh = cwnd = (FlightSize / 2)

The congestion wi ndow (cwnd) and slow start threshold
(ssthresh) are reduced to half of FlightSize per [RFC5681].
Additionally, note that [RFC5681] requires that any
segnents sent as part of the Limted Transmit nechani sm not
be counted in FlightSize for the purpose of the above
equati on.

(4.3) Retransmit the first data segnent presumed dropped -- the
segnment starting with sequence nunmber Hi ghACK + 1. To
prevent repeated retransm ssion of the sanme data or a
premature rescue retransm ssion, set both H ghRxt and
RescueRxt to the highest sequence nunber in the
retransmtted segment.

(4.4) Run SetPipe ()

Set a "pipe" variable to the nunber of outstanding octets
currently "in the pipe"; this is the data which has been
sent by the TCP sender but for which no cunulative or

sel ective acknow edgnment has been received and the data has
not been determ ned to have been dropped in the network.

It is assumed that the data is still traversing the network
pat h.

Bl anton, et al. St andards Track [Page 8]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

(4.5) In order to take advantage of potential additiona
avai | abl e cwnd, proceed to step (C) bel ow

Once a TCP is in the | oss recovery phase, the followi ng procedure
MJST be used for each arriving ACK

(A) An incoming cumul ative ACK for a sequence number greater than
RecoveryPoi nt signals the end of |oss recovery, and the |oss
recovery phase MUST be terninated. Any information contained in
the scoreboard for sequence numbers greater than the new val ue of
H ghACK SHOULD NOT be cl eared when | eaving the | oss recovery
phase.

(B) Upon receipt of an ACK that does not cover RecoveryPoint, the
foll owi ng acti ons MJST be taken:

(B.1) Use Update () to record the new SACK i nformati on conveyed
by the incom ng ACK

(B.2) Use SetPipe () to re-calculate the nunber of octets stil
in the network.

(Q If cwnd - pipe >= 1 SM5S, the sender SHOULD transmit one or nore
segnents as foll ows:

(C. 1) The scoreboard MJST be queried via NextSeg () for the
sequence nunber range of the next segnent to transmt (if
any), and the given segnent sent. |If NextSeg () returns
failure (no data to send), return w thout sending anything
(i.e., termnate steps C 1 -- C5).

(C.2) If any of the data octets sent in (C. 1) are bel ow H ghDat a,
H ghRxt MJST be set to the highest sequence nunber of the
retransmtted segment unl ess NextSeg () rule (4) was
i nvoked for this retransm ssion

(C.3) If any of the data octets sent in (C 1) are above Hi ghData,
Hi ghData nmust be updated to reflect the transm ssion of
previously unsent data.

(C.4) The estimate of the amount of data outstanding in the
net wor k nust be updated by increnmenting pipe by the nunber
of octets transnitted in (C 1).

(C.5 If cwnd - pipe >= 1 SMBS, return to (C 1)

Bl anton, et al. St andards Track [Page 9]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

Note that steps (A) and (C) can potentially send a burst of
back-t o- back segnents into the network if the incoming cumulative
acknow edgnent is for nore than SMSS octets of data, or if incom ng
SACK bl ocks indicate that nmore than SMSS octets of data have been
lost in the second half of the w ndow.

5.1. Retransni ssion Tinmeouts

In order to avoid nenory deadl ocks, the TCP receiver is allowed to

di scard data that has al ready been selectively acknow edged. As a
result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
i nfornmati on gathered froma recei ver upon a retransm ssion tineout
(RTO "since the timeout mght indicate that the data receiver has
reneged." Additionally, a TCP sender MJST "ignore prior SACK

information in determ ning which data to retransnit." However, since
the publication of [RFC2018], this has come to be viewed by sone as
too strong. It has been suggested that, as long as robust tests for

renegi ng are present, an inplenentation can retain and use SACK

i nformati on across a tineout event [Erratal6l0]. Wile this docunent
does not change the specification in [RFC2018], we note that

i mpl enenters should consult any updates to [RFC2018] on this subject.
Further, a SACK TCP sender SHOULD utilize all SACK information made
avai |l abl e during the | oss recovery follow ng an RTO

If an RTO occurs during |oss recovery as specified in this docunent,
RecoveryPoi nt MJST be set to H ghData. Further, the new val ue of
Recover yPoi nt MJST be preserved and the | oss recovery al gorithm
outlined in this document MJST be terminated. |In addition, a new
recovery phase (as described in Section 5) MJST NOT be initiated
until H ghACK is greater than or equal to the new val ue of

Recover yPoi nt .

As described in Sections 4 and 5, Update () SHOULD continue to be
used appropriately upon receipt of ACKs. This will allowthe
recovery period after an RTOto benefit fromall avail able

i nformation provided by the receiver, even if SACK i nformati on was
expunged due to the RTO

If there are segnents missing fromthe receiver’s buffer follow ng
processing of the retransmitted segnment, the corresponding ACK will
contain SACK information. |In this case, a TCP sender SHOULD use this
SACK i nformati on when determ ning what data should be sent in each
segnent following an RTO. The exact algorithmfor this selection is
not specified in this docunment (specifically NextSeg () is

i nappropriate during loss recovery after an RTO). A relatively
straightforward approach to "filling in" the sequence space reported
as m ssing should be a reasonabl e approach

Bl anton, et al. St andards Track [Page 10]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

6. Managi ng the RTO Ti ner

The standard TCP RTO estimator is defined in [RFC6298]. Due to the
fact that the SACK algorithmin this document can have an inmpact on
the behavior of the estimator, inplenmenters may w sh to consider how
the tinmer is managed. [RFC6298] calls for the RTOtiner to be
re-armed each tine an ACK arrives that advances the cunul ati ve ACK
point. Because the algorithmpresented in this docunent can keep the
ACK cl ock going through a fairly significant |oss event
(conparatively longer than the algorithm described in [RFC5681]), on
some networks the | oss event could |ast |onger than the RTO. In this
case the RTOtiner would expire prematurely and a segnent that need
not be retransnitted would be resent.

Therefore, we give inplenenters the latitude to use the standard

[RFC6298] - styl e RTO managenent or, optionally, a nore careful variant
that re-arms the RTO timer on each retransmi ssion that is sent during
recovery MAY be used. This provides a nore conservative tinmer than
specified in [RFC6298], and so may not al ways be an attractive
alternative. However, in sone cases it may prevent needl ess
retransm ssi ons, go-back-N transm ssion, and further reduction of the
congesti on w ndow.

7. Research

The al gorithmspecified in this document is analyzed in [FF96], which
shows that the above algorithmis effective in reducing transfer time
over standard TCP Reno [RFC5681] when nultiple segnments are dropped
froma w ndow of data (especially as the number of drops increases).

[AHK®7] shows that the algorithmdefined in this docunment can
greatly inprove throughput in connections traversing satellite
channel s.

8. Security Considerations

The al gorithm presented in this paper shares security considerations
with [RFC5681]. A key difference is that an al gorithm based on SACKs
is nmore robust against attackers forging duplicate ACKs to force the
TCP sender to reduce cwnd. Wth SACKs, TCP senders have an
addi ti onal check on whether or not a particular ACK is legitimate.
VWil e not fool-proof, SACK does provide sone ampunt of protection in
this area.

Similarly, [CPN 309] sketches a variant of a blind attack [RFC5961]
wher eby an attacker can spoof out-of-w ndow data to a TCP endpoi nt,
causing it to respond to the legitimte peer with a duplicate

cumul ative ACK, per [RFC793]. Adding a SACK-based requirenment to
trigger loss recovery effectively mtigates this attack, as the

Bl anton, et al. St andards Track [Page 11]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

duplicate ACKs caused by out-of-wi ndow segnents will not contain SACK
information indicating reception of previously un-SACKED i n-w ndow
dat a.

9. Changes Relative to RFC 3517

The state variabl e "DupAcks" has been added to the Iist of variables
mai ntai ned by this algorithm and its usage specified.

The function IsLost () has been nodified to require that nmore than
(DupThresh - 1) * SMSS octets have been SACKed above a given sequence
nunber as indication that it is lost, which is changed fromthe

m ni mum requi renent of (DupThresh * SMSS) described in [RFC3517].
This retains the requirenent that at |east three segments follow ng

t he sequence nunber in question have been SACKed, while inproving
detection in the event that the sender has outstanding segments which
are smaller than SMSS.

The definition of a "duplicate acknow edgnent” has been nodified to
utilize the SACK information in detecting |oss. Duplicate cunul ative
acknow edgnents can be caused by either loss or reordering in the
network. To di sanbi guate | oss and reordering, TCP' s fast retransm't
al gorithm [RFC5681] waits until three duplicate ACKs arrive to
trigger loss recovery. This notion was then the basis for the
algorithmspecified in [RFC3517]. However, with SACK infornmation
there is no need to rely blindly on the cunul ati ve acknow edgnent
field. W can |leverage the additional information present in the
SACK bl ocks to understand that three segnents |ying above a gap in
the sequence space have arrived at the receiver, and can use this
understanding to trigger loss recovery. This notion was used in

[RFC3517] during loss recovery, and the change in this docunment is
that the notion is also used to enter a | oss recovery phase.

The state variable "RescueRxt" has been added to the l|ist of

vari abl es maintained by the algorithm and its usage specified. This
variable is used to allow for one extra retransm ssion per entry into
| oss recovery, in order to keep the ACK cl ock going under certain

ci rcunst ances involving loss at the end of the window. This

mechani smallows for no nore than one segment of no larger than 1
SM5S to be optinmistically retransmtted per |oss recovery.

Rul e (3) of NextSeg() has been changed from MAY to SHOULD, to
appropriately reflect the opinion of the authors and working group
that it should be left in, rather than out, if an inplenentor does
not have a conpelling reason to do otherw se

Bl anton, et al. St andards Track [Page 12]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

10.

11.

11.

11.

Acknowl edgnent s

The authors wish to thank Sally Floyd for encouragi ng [RFC3517] and
conmmenting on early drafts. The algorithmdescribed in this docunent
is | oosely based on an algorithmoutlined by Kevin Fall and Sally
Floyd in [FF96], although the authors of this docunment assune
responsibility for any m stakes in the above text.

[RFC3517] was co-authored by Kevin Fall, who provided crucial input
to that docunment and hence this foll owon work.

Mural i Bashyam Ken Calvert, Tom Henderson, Reiner Ludw g, Janshid
Mahdavi, Matt Mathis, Shawn Gstermann, Vern Paxson, and Venkat
Venkat subra provi ded val uabl e feedback on earlier versions of this
docunent .

We thank Matt Mathis and Janshid Mahdavi for inplenenting the
scoreboard in ns and hence guiding our thinking in keeping track of
SACK st ate.

The first author would like to thank Chio University and the Chio
Uni versity I nternetworking Research G oup for supporting the bul k of
his work on RFC 3517, fromwhich this docunent is derived.

Ref er ences

1. Nornmtive References

[RFC793] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[RFC2018] Mathis, M, Mhdavi, J., Floyd, S., and A Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, Cctober 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

2. I nformati ve References

[AHKOR7] Mark Al l man, Chris Hayes, Hans Kruse, Shawn Gsternann,
"TCP Performance Over Satellite Links", Proceedings of the
Fifth International Conference on Tel econmunications
Systems, Nashville, TN, March, 1997.

Bl anton, et al. St andards Track [Page 13]

RFC 6675

[Al 'l 00]

[CPNI 309]

SACK Loss Recovery Al gorithmfor TCP August 2012

Mark Al l man, "A Wb Server’s View of the Transport Layer",
ACM Conput er Comuni cation Review, 30(5), October 2000.

Fernando Gont, "Security Assessnent of the Transm ssion
Control Protocol (TCP)", CPNI Technical Note 3/2009,
<http://ww. gont.com ar/ papers/
tn-03-09-security-assessnent - TCP. pdf >, February 2009.

[Erratal6l0]

[FF96]

[Jac90]

[PFO1]

[RFC6582]

[RFC2914]

[RFC6298]

[RFC3517]

[RFC5961]

RFC Errata, Errata |ID 1610, RFC 2018,
<http://ww.rfc-editor.org>.

Kevin Fall and Sally Floyd, "Sinulation-based Conparisons
of Tahoe, Reno and SACK TCP", Conputer Conmmunication
Revi ew, July 1996.

Van Jacobson, "Modified TCP Congesti on Avoi dance
Al gorithni, Technical Report, LBL, April 1990.

Jitendra Padhye, Sally Floyd "ldentifying the TCP Behavi or
of Web Servers", ACM SI GCOW August 2001.

Henderson, T., Floyd, S., Gurtov, A, and Y. N shida, "The
NewReno Modification to TCP's Fast Recovery Al gorithni,
RFC 6582, April 2012.

Fl oyd, S., "Congestion Control Principles", BCP 41, RFC
2914, Septenber 2000.

Paxson, V., Allman, M, Chu, J., and M Sargent,
"Conputing TCP's Retransm ssion Tiner", RFC 6298, June
2011.

Blanton, E., Allman, M, Fall, K, and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Algorithmfor TCP', RFC 3517, April 2003.

Ramai ah, A, Stewart, R, and M Dalal, "Inproving TCP s
Robustness to Blind I n-Wndow Attacks", RFC 5961, August
2010.

Bl anton, et al. St andards Track [Page 14]

RFC 6675 SACK Loss Recovery Al gorithmfor TCP August 2012

Aut hors’ Addr esses

Et han Bl ant on

Purdue University Computer Sciences
305 N. University St.

West Lafayette, I N 47907

United States

EMai | : el b@sg. com

Mark Al l man

I nternational Conputer Science Institute
1947 Center St. Suite 600

Ber kel ey, CA 94704

United States

EMai |l : mall man@cir.org
http://wwvicir.org/ mall man

Lili Wang

Juni per Networ ks

10 Technol ogy Park Drive
Westford, MA 01886
United States

EMail: liliw@ uniper.net

Il po Jarvinen

Uni versity of Hel sinki

P. O Box 68

Fl - 00014 UNI VERSI TY OF HELSI NKI
Fi nl and

EMai |l : il po.jarvinen@elsinki.fi

Mar kku Koj o

Uni versity of Hel sinki

P. 0. Box 68

Fl - 00014 UNI VERSI TY OF HELSI NKI
Fi nl and

EMai | : koj o@s. hel sinki.fi

Yoshi fum N shida

W DE Pr oj ect

Endo 5322

Fuj i sawa, Kanagawa 252-8520
Japan

EMai | : nishida@vi de.ad.jp

Bl anton, et al. St andards Track [Page 15]

