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Abstract

Thi s docunent specifies a RObust Header Conpression (ROHC) profile
for conpression of TCP/IP packets. The profile, called ROHC TCP,
provi des efficient and robust conpression of TCP headers, including
frequently used TCP options such as sel ective acknow edgments ( SACKs)
and Ti mest anps.

ROHC- TCP wor ks wel | when used over links with significant error rates
and long round-trip times. For many bandwidth-linmited |inks where
header conpression is essential, such characteristics are conmon.

Thi s specification obsoletes RFC 4996. It fixes a technical issue
with the SACK conpression and clarifies other conpressi on nethods
used.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6846
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1

| ntroducti on

There are several reasons to perform header conpression on | ow or
medi um speed links for TCP/IP traffic, and these have al ready been
di scussed in [RFC2507]. Additional considerations that make

robust ness an inportant objective for a TCP [ RFC0O793] conpression
schene are introduced in [RFC4163]. Finally, existing TCP/IP header
conpressi on schenes ([ RFCL144], [RFC2507]) are limted in their
handl i ng of the TCP options field and cannot conpress the headers of
handshaki ng packets (SYNs and FI Ns).

It is thus desirable for a header conpression schene to be able to
handl e 1 oss on the |ink between the conpression and deconpression
points as well as |oss before the conpression point. The header
conpressi on scheme al so needs to consider how to efficiently conpress
short-lived TCP transfers and TCP options, such as selective

acknow edgnents (SACK) ([RFC2018], [RFC2883]) and Ti mest anps

([ RFC1323]). TCP options that may be | ess frequently used do not
necessarily need to be conpressed by the protocol, and instead can be
passed transparently w thout reducing the overall conpression
efficiency of other parts of the TCP header

The Robust Header Conmpression (ROHC) Wirking Group has devel oped a
header conpression framework on top of which various profiles can be
defined for different protocol sets, or for different conpression
strategies. This docunent defines a TCP/IP conpression profile for
the ROHC framework [ RFC5795], conpliant with the requirenents listed
in [ RFC4163] .

Specifically, it describes a header conpression scheme for TCP/IP
header conpression (ROHC-TCP) that is robust agai nst packet |oss and
that offers enhanced capabilities, in particular for the conpression
of header fields including TCP options. The profile identifier for
TCP/ 1 P conpression i s 0x0006.

Ter m nol ogy

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Thi s docunent reuses sone of the terminology found in [RFC5795]. In
addition, this docunment uses or defines the follow ng terns:
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Base cont ext

The base context is a context that has been validated by both the
conpressor and the deconpressor. A base context can be used as
the reference when buil ding a new context using replication

Base Context ldentifier (Base CID)

The Base CIDis the CID that identifies the base context, from
whi ch i nformati on needed for context replication can be extracted.

Base header

The Base header is a conpressed representation of the innernost IP
and TCP headers of the unconpressed packet.

Chai ning of itens

A chain groups fields based on simlar characteristics. ROHC TCP
defines chain itens for static, dynanmic, replicable, or irregular
fields. Chaining is done by appending an item for each header
e.g., to the chain in their order of appearance in the

unconpr essed packet. Chaining is useful to construct conpressed
headers froman arbitrary nunber of any of the protocol headers
for which ROHC- TCP defines a conpressed fornmat.

Context Replication (CR)

Context replication is the mechani smthat establishes and
initializes a new context based on another existing valid context
(a base context). This mechanismis introduced to reduce the
overhead of the context establishment procedure, and is especially
useful for conpression of nultiple short-lived TCP connections
that may be occurring sinultaneously or near-sinultaneously.

ROHC- TCP packet types
ROHC- TCP uses three different packet types: the Initialization and
Refresh (I R) packet type, the Context Replication (IR CR) packet
type, and the Conpressed packet (CO type.

Short-1ived TCP transfer

Short-lived TCP transfers refer to TCP connections transmtting
only small anounts of packets for each single connection
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3.

3.

Backgr ound

This section provides sonme background information on TCP/IP header
conpressi on. The fundanmental s of general header conpression can be
found in [RFC5795]. In the follow ng subsections, two existing
TCP/ I P header conpression schenes are first described along with a

di scussion of their limtations, followed by the classification of
TCP/ I P header fields. Finally, some of the characteristics of short-
lived TCP transfers are summari zed.

A behavi or analysis of TCP/IP header fields is found in [RFC4413].
1. Existing TCP/IP Header Conpression Schenes

Conpressed TCP (CTCP) and | P Header Conpression (IPHC) are two

di fferent schemes that may be used to conpress TCP/I P headers. Both
schenmes transmt only the differences fromthe previous header in
order to reduce the size of the TCP/IP header

The CTCP [ RFC1144] conpressor detects transport-level retransm ssions
and sends a header that updates the context conpletely when they
occur. Wiile CTCP works well over reliable links, it is vulnnerable
when used over less reliable |inks as even a single packet |o0ss
results in |l oss of synchronization between the conpressor and the
deconpressor. This in turn leads to the TCP receiver discarding al
remai ni ng packets in the current wi ndow because of a checksum error
This effectively prevents the TCP fast retransnit algorithm[RFC5681]
frombeing triggered. |In such a case, the conpressor must wait unti
TCP tines out and retransmts a packet to resynchronize.

To reduce the errors due to the inconsistent contexts between
conpressor and deconpressor when conpressing TCP, | PHC [ RFC2507]

i mproves somewhat on CTCP by augmenting the repair mechani smof CTCP
with a local repair mechanismcalled TWCE and with a |ink-1ayer
mechani sm based on negative acknow edgnments to request a header that
updates the context.

The TW CE al gorithm assunes that only the Sequence Nunber field of
TCP segnments is changing with the deltas between consecutive packets
bei ng constant in nost cases. This assunption is, however, not

al ways true, especially when TCP Ti nestanps and SACK options are
used.

The full header request nmechani smrequires a feedback channel that
may be unavailable in some circunstances. This channel is used to
explicitly request that the next packet be sent with an unconpressed
header to allow resynchronization without waiting for a TCP tineout.
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In addition, this mechani sm does not performwell on links with | ong
round-trip tines.

Both CTCP and IPHC are also limted in their handling of the TCP
options field. For IPHC, any change in the options field (caused by
Ti mestanps or SACK, for exanple) renders the entire field
unconpressi ble, while for CICP, such a change in the options field
ef fectively disables TCP/I P header conpression altogether

Finally, existing TCP/IP conpression schemes do not conpress the
headers of handshaki ng packets (SYNs and FINs). Conpressing these
packets may greatly inprove the overall header conpression ratio for
the cases where nmany short-lived TCP connections share the sane
channel

3.2. (Cdassification of TCP/| P Header Fields

Header conpression is possible due to the fact that there is much
redundancy between header field values within packets, especially

bet ween consecutive packets. To utilize these properties for TCP/IP
header compression, it is inportant to understand the change patterns
of the various header fields.

Al fields of the TCP/IP packet header have been classified in detai
in [RFC4413]. The mmin conclusion is that nost of the header fields
can easily be conpressed away since they sel dom or never change. The
followi ng fields do, however, require nore sophisticated mechani sms:

- IPv4 ldentification (16 bits) - IP-ID
- TCP Sequence Nunber (32 bits) - SN
- TCP Acknow edgnment Nunber (32 bits)
- TCP Reserved ( 4 bits)
- TCP ECN fl ags ( 2 bits) - ECN
- TCP W ndow (16 bits)
- TCP Options
o Maxi num Segnent Size (32 bits) - MsS
o Wndow Scal e (24 bits) - WBCALE
0 SACK Permitted (16 bits)
0 TCP SACK (80, 144, 208, or 272 bhits) - SACK
o TCP Tinestanp (80 bits) - TS

The assi gnnent of |P-1D val ues can be done in various ways, usually
one of sequential, sequential jump, or random as described in
Section 4.1.3 of [RFC4413]. Some |Pv4 stacks do use a sequentia
assi gnment when generating |P-1D values but do not transmt the
contents of this field in network byte order; instead, it is sent
with the two octets reversed. |In this case, the conpressor can
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conpress the IP-ID field after swapping the bytes. Consequently, the
deconpressor al so swaps the bytes of the IP-1D after deconpression to
regenerate the original IP-ID. Wth respect to TCP conpression, the
analysis in [ RFC4413] reveals that there is no obvi ous candi date
among the TCP fields suitable to infer the IP-1D.

The change pattern of several TCP fields (Sequence Nunber,

Acknowl edgrment Nunber, Wndow, etc.) is very hard to predict.
particul ar inportance to a TCP/ I P header conpression schene is the
under st andi ng of the sequence and acknow edgnent numbers [ RFC4413].

Specifically, the TCP Sequence Nunber can be anywhere within a range
defined by the TCP Wndow at any point on the path (i.e., wherever a
conpressor mght be deployed). M ssing packets or retransm ssions
can cause the TCP Sequence Number to fluctuate within the limts of
this window The TCP W ndow al so bounds the junps in acknow edgment
nunber .

Anot her inportant behavior of the TCP/IP header is the dependency
bet ween t he sequence nunber and the acknow edgnent number. TCP
connections can be either near-symetrical or show a strong
asymmetrical bias with respect to the data traffic. |In the latter
case, the TCP connections mainly have one-way traffic (Wb browsing
and file downl oading, for exanple). This neans that on the forward
path (fromserver to client), only the sequence nunber is changing
whil e the acknow edgnment nunber remains constant for nost packets; on
the backward path (fromclient to server), only the acknow edgment
nunber is changi ng and the sequence nunber remains constant for nost
packets. A conpression schene for TCP should thus have packet
formats suitable for either cases, i.e., packet formats that can
carry either only sequence nunber bits, only acknow edgnment nunber
bits, or both.

In addition, TCP flows can be short-lived transfers. Short-lived TCP
transfers will degrade the performance of header conpression schenes
that establish a new context by initially sending full headers.

Mul tiple simultaneous or near simnultaneous TCP connections may
exhibit much simlarity in header field values and context val ues
among each other, which would nake it possible to reuse information
between flows when initializing a new context. A nmechanismto this
end, context replication [ RFC4164], makes the context establishnent
step faster and nore efficient, by replicating part of an existing
context to a new flow. The conclusion from|[RFC4413] is that part of
the I P sub-context, some TCP fields, and some context val ues can be
replicated since they sel dom change or change with only a snmall junp.
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ROHC- TCP al so conpresses the foll owi ng headers: |Pv6 Destination

Opti ons header [ RFC2460], |Pv6 Routing header [RFC2460], |Pv6 Hop-by-
Hop Options header [RFC2460], Authentication Header (AH) [RFC4302],
CGeneric Routing Encapsul ation (GRE) [ RFC2784] [ RFC2890], and the

M ni mal Encapsul ati on (M NE) header [ RFC2004].

Headers specific to Mobile IP (for I Pv4 or | Pv6) do not receive any
special treatment in this docunent, for reasons simlar to those
described in [ RFC3095].

4. Overview of the TCP/IP Profile (Informative)
4.1. GCeneral Concepts

ROHC- TCP uses the ROHC protocol as described in [RFC5795]. ROHC TCP
supports context replication as defined in [ RFC4164]. Context
replication can be particularly useful for short-lived TCP fl ows

[ RFC4413] .

4.2. Conpressor and Deconpressor Interactions
4.2.1. Conpressor QOperation

Header conpression with ROHC can be conceptually characterized as the
interaction of a conpressor with a deconpressor state nachine. The
conpressor’'s task is to mininally send the information needed to
successful ly deconpress a packet, based on a certain confidence
regarding the state of the deconpressor context.

For ROHC- TCP conpression, the conpressor nornmally starts conpression
with the initial assunption that the deconpressor has no usefu
information to process the new flow, and sends Initialization and
Refresh (IR} packets. Alternatively, the conpressor may al so support
Context Replication (CR) and use | R-CR packets [RFC4164], which
attenpts to reuse context information related to another flow.

The conpressor can then adjust the conpression |level based on its
confidence that the deconpressor has the necessary information to
successfully process the Conpressed (CO packets that it selects. In
ot her words, the task of the conmpressor is to ensure that the
deconpressor operates in the state that allows deconpression of the
nost efficient CO packet(s), and to allow the deconpressor to nove to
that state as soon as possi bl e otherw se
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4.2.2. Deconpressor Feedback

The ROHC-TCP profile can be used in environments with or without

f eedback capabilities from deconpressor to conpressor. ROHC TCP,
however, assunes that if a ROHC feedback channel is available and if
this channel is used at |east once by the deconpressor for a specific
ROHC- TCP context, this channel will be used during the entire
conpressi on operation for that context. |If the feedback channe

di sappears, conpression should be restarted.

The reception of either positive acknow edgnents (ACKs) or negative
acknow edgnents (NACKs) establishes the feedback channel fromthe
deconpressor for the context for which the feedback was received.
Once there is an established feedback channel for a specific context,
the conpressor should nmake use of this feedback to estimte the
current state of the deconpressor. This helps in increasing the
conpressi on efficiency by providing the information needed for the
conpressor to achi eve the necessary confidence |evel.

The ROHC- TCP feedback nechanismis |limted in its applicability by
the nunber of (least significant bit (LSB) encoded) master sequence
nunber (MSN) (see Section 6.1.1) bits used in the FEEDBACK-2 format
(see Section 8.3). It is not suitable for a deconpressor to use

f eedback al together where the MSN bits in the feedback could wap
around within one round-trip time. Instead, unidirectional operation
-- where the conpressor periodically sends |arger context-updating
packets -- is nore appropriate.

4.3. Packet Formats and Encodi ng Met hods

The packet formats and encodi ng net hods used for ROHC-TCP are defined
using the formal notation [RFC4997]. The formal notation is used to
provi de an unanbi guous representation of the packet formats and a
clear definition of the encodi ng nethods.

4.3.1. Conpressing TCP Options

The TCP options in ROHC- TCP are conpressed using a |ist conpression
encodi ng that allows option content to be established so that TCP
options can be added to the context w thout having to send all TCP
options unconpressed.

4.3.2. Conpressing Extension Headers
ROHC- TCP conpresses the extension headers as listed in Section 3.2.
These headers are treated exactly as other headers and thus have a

static chain, a dynamc chain, an irregular chain, and a chain for
context replication (Section 6.2).
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Thi s means that headers appearing in or disappearing fromthe fl ow
bei ng conpressed will lead to changes to the static chain. However,
the change pattern of extension headers is not deened to inpair
conpression efficiency with respect to this design strategy.

4. 4. Expected Conpression Ratios with ROHC TCP

The following table illustrates typical conpression ratios that can
be expected when usi ng ROHC- TCP and | PHC [ RFC2507] .

The figures in the table assume that the conpression context has

al ready been properly initialized. For the TS option, the Ti nestanp
is assuned to change with snmall values. Al TCP options include a
sui tabl e nunmber of No Operation (NOP) options [RFC0793] for paddi ng
and/or alignment. Finally, in the exanples for |IPv4, a sequentia

| P-1 D behavior is assumned.

Total Header Size (octets)

ROHC- TCP | PHC
Unc. DATA  ACK DATA  ACK
| Pv4+TCP+TS 52 8 8 18 18
| Pv4+TCP+TS 52 7 6 16 16 (1)
| Pv6+TCP+TS 72 8 7 18 18
| Pv6+TCP+no opt 60 6 5 6 6
| Pv6+TCP+SACK 80 - 15 - 80 (2)
| Pv6+TCP+SACK 80 - 9 - 26 (3)

(1) The payl oad size of the data streamis constant.

(2) The SACK option appears in the header, but was not present
in the previous packet. Two SACK bl ocks are assuned.

(3) The SACK option appears in the header, and was al so present
in the previous packet (with different SACK bl ocks).
Two SACK bl ocks are assuned.

The table belowillustrates the typical initial conpression ratios
for ROHC-TCP and I PHC. The data streamin the exanple is assuned to
be 1 Pv4+TCP, with a sequential behavior for the IP-ID. The follow ng
options are assunmed present in the SYN packet: TS, MsS, and WSCALE
with an appropriate nunber of NOP options.

Total Header Size (octets)
Unc. ROHC- TCP | PHC
1st packet (SYN) 60 49 60
2nd packet 52 12 52

The figures in the table assune that the conpressor has received an

acknow edgnment fromthe deconpressor before conpressing the second
packet, which can be expected when feedback is used in ROHC TCP
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This is because in the nost conmon case, the TCP ACKs are expected to
take the sane return path, and because TCP does not send nore packets
until the TCP SYN packet has been acknow edged.

5. Conpressor and Deconpressor Logic (Normative)
5.1. Context Initialization

The static context of ROHC-TCP flows can be initialized in either of
two ways:

1. By using an IR packet as in Section 7.1, where the profile nunber
is Ox06 and the static chain ends with the static part of a TCP
header .

2. By replicating an existing context using the nechani sm defined by
[ RFC4164]. This is done with the | R-CR packet defined in
Section 7.2, where the profile nunber is 0x06.

5.2. Conpressor Operation
5.2.1. Conpression Logic

The task of the conpressor is to deternm ne what data nust be sent
when conpressing a TCP/ I P packet, so that the deconpressor can
successfully reconstruct the original packet based on its current
state. The selection of the type of conpressed header to send thus
depends on a nunber of factors, including:

o The change behavi or of header fields in the flow, e.g., conveying
the necessary information within the restrictions of the set of
avai |l abl e packet formats.

o The conpressor’s |level of confidence regardi ng deconpressor state,
e.g., by selecting header formats updating the sane type of
informati on for a nunber of consecutive packets or fromthe
recepti on of deconpressor feedback (ACKs and/or NACKS).

0o Additional robustness required for the flow, e.g., periodic
refreshes of static and dynami c information using IR and | R-DYN
packets when deconpressor feedback is not expected.

The inmpact of these factors on the conpressor’s packet type sel ection
is described in nore detail in the follow ng subsections.
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In this section, a "higher conpression state" neans that |ess data

will be sent in conpressed packets, i.e., snmaller conpressed headers
are used, while a | ower conpression state nmeans that a | arger anount
of data will be sent using | arger conpressed headers.

5.2.1.1. Optimstic Approach

The optimstic approach is the principle by which a conpressor sends
the sane type of information for a nunber of packets (consecutively
or not) until it is fairly confident that the deconpressor has
received the information. The optimstic approach is useful to
ensure robustness when ROHC-TCP is used to conpress packets over

| ossy |inks.

Therefore, if field X in the unconpressed packet changes val ue, the
conpressor MJST use a packet type that contains an encoding for field
Xuntil it has gained confidence that the deconpressor has received
at | east one packet containing the new value for X. The conpressor
SHOULD choose a conpressed format with the small est header that can
convey the changes needed to fulfill the optimstic approach

condi tion used.

5.2.1.2. Periodic Context Refreshes

When the optimstic approach is used, there will always be a
possibility of deconpression failures since the deconpressor nmay nhot
have received sufficient information for correct deconpression

Therefore, until the deconpressor has established a feedback channel
the conpressor SHOULD periodically nove to a | ower conpression state
and send IR and/or | R DYN packets. These refreshes can be based on
timeouts, on the nunber of conpressed packets sent for the flow, or
any other strategy specific to the inplementation. Once the feedback
channel is established, the deconpressor MAY stop perform ng periodic
refreshes.

5.2.2. Feedback Logic
The semantics of feedback messages, acknow edgnments (ACKs) and
negative acknow edgments (NACKs or STATI C-NACKs), are defined in
Section 5.2.4.1 of [RFC5795].

5.2.2.1. Optional Acknow edgnents (ACKs)

The conpressor MAY use acknow edgnment feedback (ACKs) to nove to a
hi gher conpression state.
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Upon reception of an ACK for a context-updating packet, the
conpressor obtains confidence that the deconpressor has received the
acknow edged packet and that it has observed changes in the packet
flow up to the acknow edged packet.

This functionality is optional, so a conpressor MJUST NOT expect to
get such ACKs, even if a feedback channel is available and has been
established for that flow.

5.2.2.2. Negative Acknow edgments ( NACKs)

The conpressor uses feedback fromthe deconpressor to nove to a | ower
conpressi on state (NACKs).

On reception of a NACK feedback, the conpressor SHOULD:
o assune that only the static part of the deconpressor is valid, and

o re-send all dynamic information (via an IR or | R-DYN packet) the
next tine it conpresses a packet for the indicated flow

unless it has confidence that information sent after the packet being
acknow edged al ready provides a suitable response to the NACK
feedback. 1In addition, the conpressor MAY use a CO packet carrying a
7-bit Cyclic Redundancy Check (CRC) if it can determ ne with enough
confidence what information provides a suitable response to the NACK
f eedback.

On reception of a STATI C-NACK feedback, the conpressor SHOULD
o assune that the deconpressor has no valid context, and

o re-send all static and all dynamic information (via an IR packet)
the next tine it conpresses a packet for the indicated flow

unless it has confidence that information sent after the packet that
i s being acknow edged al ready provides a suitable response to the
STATI C- NACK f eedback.

5.2.3. Context Replication

A conpressor MAY support context replication by inplenmenting the
addi ti onal conpression and feedback | ogic defined in [ RFC4164].
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5.3. Deconpressor Qperation
5.3.1. Deconpressor States and Logic

The three states of the deconpressor are No Context (NC), Static
Context (SC), and Full Context (FC). The deconpressor starts inits
| owest conpression state, the NC state. Successful deconpression
will always nove the deconpressor to the FC state. The deconpressor
state nmachine normally never | eaves the FC state once it has entered
this state; only repeated deconpression failures will force the
deconpressor to transit downwards to a | ower state.

Below is the state nmachine for the deconpressor. Details of the
transitions between states and deconpression logic are given in the
subsections followi ng the figure.

Success
Foa>o - oo - So - So - So - So - >- -+
| |
No Static | No Dynam c Success | Success
+o->o -+ | +o->o -+ oo o> oo p— +o->o -+
| | | | | | | | |
| v | | v | v | v
o e e e e e oo + T + o e e e oo +
| No Context (NCO | | Static Context (SC) | | Full Context (FC) |
oo e e +
A | A |
| Static Context | | Context Damage Assuned |
| Damage Assumed | | |
+---- - <------ <------ <----- + +---- - <------ <------ <----- +

5.3.1.1. Reconstruction and Verification

VWhen deconpressing an IR or an | R-DYN packet, the deconpressor MJUST
validate the integrity of the received header using CRC-8 validation
[RFC5795]. If validation fails, the packet MUST NOT be delivered to
upper | ayers.

Upon receiving an | R-CR packet, the deconpressor MJST performthe
actions as specified in [ RFC4164] .

When deconpressi ng other packet types (e.g., CO packets), the
deconpressor MJST validate the outcone of the deconpression attenpt
using CRC verification [RFC5795]. |If verification fails, a
deconpressor inplenmentati on MAY attenpt corrective or repair measures
on the packet, and the result of any attenpt MJST be validated using
the CRC verification; otherw se, the packet MJST NOT be delivered to
upper | ayers.
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When the CRC-8 validation or the CRC verification of the received
header is successful, the deconpressor SHOULD update its context with
the information received in the current header; the deconpressor then
passes the reconstructed packet to the systenis network |ayer.

O herwi se, the deconpressor context MJST NOT be updat ed.

If the received packet is older than the current reference packet,
e.g., based on the master sequence nunber (MSN) in the conpressed
packet, the deconpressor MAY refrain fromupdating the context using
the information received in the current packet, even if the
correctness of its header was successfully verified.

5.3.1.2. Detecting Context Danage

Al header formats carry a CRC and are context updating. A packet
for which the CRC succeeds updates the reference values of all header
fields, either explicitly (fromthe information about a field carried
within the conpressed header) or inplicitly (fields that are inferred
fromother fields).

The deconpressor nmay assune that sone or the entire context is
invalid, follow ng one or nore failures to validate or verify a
header using the CRC. Because the deconpressor cannot know the exact
reason(s) for a CRC failure or what field caused it, the validity of
the context hence does not refer to what exact context entry is
deened valid or not.

Validity of the context rather relates to the detection of a problem
with the context. The deconpressor first assumes that the type of
information that nost likely caused the failure(s) is the state that
normal |y changes for each packet, i.e., context danmage of the dynamc
part of the context. Upon repeated failures and unsuccessfu

repairs, the deconpressor then assunmes that the entire context,
including the static part, needs to be repaired, i.e., static context
damage.

Cont ext Danage Detection
The assunption of context damage neans that the deconpressor will
not attenpt decompression of a CO header that carries a 3-bit CRC
and only attenpt deconpression of IR, IR DYN, or IR CR headers or
CO headers protected by a CRC 7.

Static Context Damage Detection
The assunption of static context danage neans that the

deconpressor refrains fromattenpti ng deconpressi on of any type of
header other than the IR header.
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How t hese assunptions are nade, i.e., how context danage is detected,
is open to inplenentations. |t can be based on the residual error
rate, where a low error rate nmakes the deconpressor assume damage
nore often than on a high-rate |ink.

The deconpressor inplenents these assunptions by selecting the type
of conmpressed header for which it nmay attenpt deconpression. In
other words, validity of the context refers to the ability of a
deconpressor to attenpt or not attenpt deconpression of specific
packet types.

5.3.1.3. No Context (NC) State

Initially, while working in the No Context (NC) state, the
deconpressor has not yet successfully deconpressed a packet.

Al l ow ng deconpressi on:

In the NC state, only packets carrying sufficient information on
the static fields (IR and | R-CR packets) can be deconpressed;

ot herwi se, the packet MJUST NOT be deconpressed and MUST NOT be
delivered to upper |ayers.

Feedback | ogi c:

In the NC state, the deconpressor should send a STATIC-NACK i f a
packet of a type other than IR is received, or if deconpression of
an | R packet has failed, subject to the feedback rate limtation
as described in Section 5.3.2.

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

5.3.1.4. Static Context (SC) State

When the deconpressor is in the Static Context (SC) state, only the
static part of the deconpressor context is valid.

Fromthe SC state, the deconpressor noves back to the NC state if
static context danage is detected.

Al | owi ng deconpressi on:

In the SC state, packets carrying sufficient information on the
dynam c fields covered by an 8-bit CRC (e.g., IR and IR-DYN) or CO
packets covered by a 7-bit CRC can be deconpressed; otherw se, the
packet MJUST NOT be deconpressed and MJUST NOT be delivered to upper
| ayers.
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5.3

5. 3.

Pel

Feedback | ogi c:

In the SC state, the deconpressor should send a STATIC-NACK i f CRC
validation of an IRRIRDYNIR-CR fails and static context danage
is assuned. If any other packet type is received, the
deconpressor should send a NACK. Both of the above cases are
subject to the feedback rate limtation as described in

Section 5.3.2.

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

.1.5. Full Context (FC) State

In the Full Context (FC) state, both the static and the dynam c parts
of the deconpressor context are valid. Fromthe FC state, the
deconpressor moves back to the SC state if context damage is

det ect ed.

Al'| owi ng deconpressi on:

In the FC state, deconpression can be attenpted regardl ess of the
type of packet received.

Feedback | ogi c:

In the FC state, the deconpressor should send a NACK if the
deconpressi on of any packet type fails and context damage is
assuned, subject to the feedback rate limtation as described in
Section 5.3.2.

2. Feedback Logic

The decomnpressor MAY send positive feedback (ACKs) to initially
establish the feedback channel for a particular flow Either
positive feedback (ACKs) or negative feedback (NACKs) establishes
t hi s channel

Once the feedback channel is established, the deconpressor is

REQUI RED t o conti nue sendi ng NACKs or STATI C-NACKs for as long as the
context is associated with the sane profile, in this case with
profile 0x0006, as per the logic defined for each state in

Section 5.3.1.

The deconpressor MAY send ACKs upon successful deconpression of any
packet type. |In particular, when a packet carrying a significant
context update is correctly deconpressed, the deconpressor MAY send
an ACK.
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The deconpressor should limt the rate at which it sends feedback
for both ACKs and STATI C- NACK/ NACKs, and shoul d avoi d sendi ng
unnecessary duplicates of the same type of feedback nessage that nay
be associated to the sane event.

5.3.3. Context Replication

ROHC- TCP supports context replication; therefore, the deconpressor
MUST i npl enent the additional deconpressor and feedback | ogic defined
in [ RFC4164] .

6. Encodings in ROHC- TCP (Normative)
6.1. Control Fields in ROHC TCP

In ROHC- TCP, a number of control fields are used by the deconpressor
inits interpretation of the format of the packets received fromthe
conpr essor.

A control fieldis a field that is transnmtted fromthe conpressor to
the deconpressor, but is not part of the unconpressed header. Val ues
for control fields can be set up in the context of both the
conpressor and the deconpressor. Once established at the
deconpressor, the values of these fields should be kept until updated
by anot her packet.

6.1.1. Master Sequence Number (MSN)
There is no field in the TCP header that can act as the naster
sequence nunber for TCP conpression, as explained in [ RFC4413],
Section 5. 6.
To overcone this problem ROHC TCP introduces a control field called
the Master Sequence Number (MSN) field. The MSN field is created at
the conpressor, rather than using one of the fields al ready present
in the unconpressed header. The conpressor increnents the val ue of
the MSN by one for each packet that it sends.
The MSN field has the followi ng two functions:
1. Differentiating between packets when sendi ng feedback data.

2. Inferring the value of increnmenting fields such as the IP-1D
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The MSN field is present in every packet sent by the conpressor. The
MEN is LSB encoded within the CO packets, and the 16-bit MSN i s sent
in full in IR IR-DYN packets. The deconpressor always sends the MSN
as part of the feedback information. The conpressor can |ater use
the MSN to infer which packet the deconpressor is acknow edgi ng.

When the MSN is initialized, it SHOULD be initialized to a random
val ue. The compressor should only initialize a new MSN for the
initial IR or I R-CR packet sent for a CID that corresponds to a
context that is not already associated with this profile. In other
words, if the conpressor reuses the same CID to conpress many TCP
flows one after the other, the MSNis not reinitialized but rather
continues to increment nonotonically.

For context replication, the conpressor does not use the MSN of the
base context when sending the IR CR packet, unless the replication
process overwites the base context (i.e., Base CID == CID).

I nstead, the conpressor uses the value of the MSNif it already
exists in the ROHC- TCP context being associated with the new fl ow
(CID); otherwise, the MSN is initialized to a new val ue.

6.1.2. | P-1 D Behavi or

The IP-1D field of the | Pv4d header can have di fferent change
patterns. Conceptually, a conpressor nonitors changes in the val ue
of the IP-ID field and sel ects encodi ng net hods and packet formats
that are the closest match to the observed change pattern

ROHC- TCP defines different types of conpression techniques for the
IP-1D, to provide the flexibility to conpress any of the behaviors it
may observe for this field: sequential in network byte order (NBO,
sequenti al byte-swapped, random (RND), or constant to a val ue of
zero.

The conpressor monitors changes in the value of the IP-IDfield for a
nunber of packets, to identify which one of the above |listed
conpression alternatives is the closest match to the observed change
pattern. The conpressor can then sel ect packet formats and encodi ng
nmet hods based on the identified field behavior

If nore than one | evel of IP headers is present, ROHC TCP can assign
a sequential behavior (NBO or byte-swapped) only to the IP-1D of the
i nnernost | P header. This is because only this IP-ID can possibly
have a sufficiently close correlation with the MSN (see al so

Section 6.1.1) to conpress it as a sequentially changing field.
Therefore, a conmpressor MJUST NOT assign either the sequential (NBO
or the sequential byte-swapped behavior to tunneling headers.
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The control field for the I P-1D behavior deternines which set of
packet formats will be used. These control fields are also used to
deternine the contents of the irregular chain item (see Section 6.2)
for each | P header.

6.1.3. Explicit Congestion Notification (ECN)

When ECN [ RFC3168] is used once on a flow, the ECN bits coul d change
quite often. ROHC-TCP nmintains a control field in the context to

i ndi cate whether or not ECN is used. This control field is
transmtted in the dynam c chain of the TCP header, and its value can
be updat ed using specific conpressed headers carrying a 7-bit CRC

When this control field indicates that ECN i s being used, itens of
all I'P and TCP headers in the irregular chain include bits used for
ECN. To preserve octet-alignment, all of the TCP reserved bits are
transmtted and, for outer |IP headers, the entire Type of Service/
Traffic Cass (TOS/TC) field is included in the irregular chain
When there is only one | P header present in the packet (i.e., no IP
tunneling is used), this conpression behavior allows the conpressor
to handl e changes in the ECN bits by adding a single octet to the
conpressed header.

The reason for including the ECN bits of all |IP headers in the
conpressed packet when the control field is set is that the profile
needs to efficiently conpress flows containing IP tunnels using the
“"full-functionality option" of Section 9.1 of [RFC3168]. For these
flows, a change in the ECN bits of an inner |IP header is propagated
to the outer I P headers. When the "limted-functionality” option is
used, the conpressor will therefore sonetines send one octet nore
than necessary per tunnel header, but this has been considered a
reasonabl e trade-of f when designing this profile.

6.2. Compressed Header Chains

Sone packet types use one or nore chains containing sub-header
information. The function of a chainis to group fields based on
simlar characteristics, such as static, dynamic, or irregular
fields. Chaining is done by appending an item for each header to the
chain in their order of appearance in the unconpressed packet,
starting fromthe fields in the outernost header

Chains are defined for all headers conpressed by ROHC-TCP, as listed

below. Also |isted are the nanmes of the encodi ng nethods used to
encode each of these protocol headers.
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o TCP [ RFCO793], encoding nmethod: "tcp"

o |Pv4 [RFC0791], encodi ng nmethod: "ipv4"

o |Pve [RFC2460], encodi ng nethod: "ipv6"

o AH [RFC4302], encodi ng net hod: "ah"

0 GCRE [ RFC2784][ RFC2890], encodi ng net hod: "gre"

o M NE [ RFC2004], encodi ng nethod: "m ne"

o |Pve Destination Options header [ RFC2460], encodi ng nethod:
"ip_dest_opt"

o |Pv6 Hop-by-Hop Options header [RFC2460], encodi ng net hod:
"ip_hop_opt"

o |Pv6e Routing header [RFC2460], encoding nethod: "ip_rout_opt"

Stati c chain:

The static chain consists of one itemfor each header of the chain
of protocol headers to be conpressed, starting fromthe outernost

| P header and ending with a TCP header. |In the formal description
of the packet formats, this static chain itemfor each header is a

format whose name is suffixed by

only used

_static". The static chainis
in IR packets.

Dynam c chain

The dynani c chain consists of one itemfor each header of the
chain of protocol headers to be conpressed, starting fromthe

out er nost

| P header and ending with a TCP header. The dynamic

chain itemfor the TCP header al so contains a conpressed |ist of
TCP options (see Section 6.3). In the formal description of the
packet formats, the dynamic chain itemfor each header type is a

format whose nanme is suffixed by

_dynanic". The dynamic chain is

used in both IR and | R-DYN packets.

Replicate chain:

The replicate chain consists of one itemfor each header in the
chain of protocol headers to be conpressed, starting fromthe

out er nost

| P header and ending with a TCP header. The replicate

chain itemfor the TCP header al so contains a conpressed |ist of
TCP options (see Section 6.3). In the formal description of the
packet formats, the replicate chain itemfor each header type is a
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6.

format whose nanme is suffixed by " replicate". Header fields that
are not present in the replicate chain are replicated fromthe
base context. The replicate chain is only used in the IR CR
packet .

Irregul ar chain:

The structure of the irregular chain is anal ogous to the structure
of the static chain. For each conpressed packet, the irregular
chain is appended at the specified location in the general format
of the conpressed packets as defined in Section 7.3. This chain
al so includes the irregular chain items for TCP options as defined
in Section 6.3.6, which are placed directly after the irregul ar
chain itemof the TCP header, and in the sane order as the options
appear in the unconpressed packet. 1In the fornmal description of
the packet formats, the irregular chain itemfor each header type
is a format whose nanme is suffixed by " _irregular”. The irregular
chain is used only in CO packets.

The format of the irregular chain for the innernmost |P header
differs fromthe format of outer |P headers, since this header is
part of the conpressed base header

Conpressing TCP Options with List Conpression

This section describes in detail how list conpression is applied to

the TCP options. In the definition of the packet formats for RCHC

TCP, the nobst frequent TCP options have one encodi ng net hod each, as
listed in the table bel ow

SACK
Generic options

tcp_opt _sack
tcp_opt _generic

e Fom e e e aaa oo +
| Opti on nane | Encoding nmet hod nane

o e e oo o e e e e oo +
| NOP | tcp_opt_nop

| ECL | tcp_opt_eol |
| MBS | tcp_opt_nss |
| WNDOWSCALE | tcp_opt_wscale |
| TI MESTAMP | tcp_opt _ts |
| SACK-PERM TTED | tcp_opt_sack_permitted

| | |
| | |

Each of these encodi ng net hods has an unconpressed format, a format
suffixed by " list_iten and a format suffixed by " _irregular". In
some cases, a single encoding nethod may have nmultiple " _list_itent
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or " _irregular" formats, in which case bindings inside these formats
determ ne what format is used. This is further described in the
foll owi ng sections.

6.3.1. List Conpression

The TCP options in the unconpressed packet can be represented as an
ordered list, whose order and presence are usually constant between
packets. The generic structure of such a list is as follows:

list: | item1l | item2 | | itemn

To conpress this list, ROHCTCP uses a list conpression scheme, which
conpresses each of these itens individually and conbines theminto a
conpressed |ist.

The basic principles of |ist-based conpression are the follow ng:

1) When a context is being initialized, a conplete representation
of the conpressed list of options is transmtted. Al options
that have any content are present in the conpressed list of itens
sent by the conpressor.

Then, once the context has been initialized:

2) When the structure AND the content of the |list are unchanged,
no i nformati on about the list is sent in conpressed headers.

3) When the structure of the list is constant, and when only the
content defined within the irregular format for one or nore
options is changed, no information about the list needs to be sent
in conpressed base headers; the irregular content is sent as part
of the irregular chain, as described in Section 6.3.6.

4) \When the structure of the list changes, a conpressed list is
sent in the conpressed base header, including a representation of
its structure and order. Content defined within the irregular
format of an option can still be sent as part of the irregular
chain (as described in Section 6.3.6), provided that the item
content is not part of the conpressed |ist.

Pelletier, et al. St andards Track [ Page 25]



RFC 6846 RCHC- TCP January 2013

6.

6.

3.2. Tabl e-Based Item Conpression

3.

The tabl e-based item conpressi on conpresses individual itens sent in
conpressed lists. The conpressor assigns a unique identifier
"I ndex", to each item "lItent, of a list.

Conpressor Logic

The conpressor conceptual ly maintains an itemtabl e containing al
items, indexed using "lndex". The (Index, lItem pair is sent
together in conmpressed lists until the conpressor gains enough
confidence that the deconpressor has observed the nmappi ng between
itenms and their respective index. Confidence is obtained fromthe
recepti on of an acknow edgnent fromthe deconpressor, or by
sending (I ndex, Iten) pairs using the optimstic approach. Once
confidence is obtained, the index alone is sent in conpressed
lists to indicate the presence of the itemcorresponding to this

i ndex.

The conpressor may reassign an existing index to a newitem by
re-establishing the mappi ng using the procedure described above.

Deconpr essor Logic
The deconpressor conceptually naintains an itemtable that
contains all (Index, Item pairs received. The itemtable is
updat ed whenever an (lndex, Iten) pair is received and
deconpression is successfully verified using the CRC. The
deconpressor retrieves the itemfromthe table whenever an index
wi t hout an acconpanying itemis received.
If an index w thout an acconpanying itemis received and the
deconpressor does not have any context for this index, the header
MJST be di scarded and a NACK SHOULD be sent.

3. Encoding of Conpressed Lists

Each itempresent in a conpressed list is represented bhy:

0o an index into the table of itens

O a presence bit indicating if a conpressed representation of the
itemis present in the |ist

o an item (if the presence bit is set)

Deconpression of an itemwll fail if the presence bit is not set and
the deconpressor has no entry in the context for that item
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A conpressed |list of TCP options uses the follow ng encodi ng:

0 1 2 3 4 5 6 7
T D

| Reserved |PS | m

B T S T g

| Xl 1, ..., XI_m | moctets, or m* 4 bits
/ R Y |

| : Paddi ng :if PS =0 and mis odd

e B

/ iteml1, ..., itemn / variabl e

A R S S

Reserved: MUST be set to zero; otherw se, the deconpressor MJST

di scard the packet.

PS: Indicates size of Xl fields:
PS = 0 indicates 4-bit Xl fields;

PS = 1 indicates 8-bit Xl fields.

m Nunber of Xl item(s) in the conpressed |ist.

Xl 1, ..., XI_m mX itenms. Each Xl represents one TCP option in

the unconpressed packet, in the sane order as they appear
unconpressed packet.

The format of an Xl itemis as foll ows:

LI g
PS = 0: | X| | ndex
T S

0 1 2 3 4 5 6 7
T D

PS = 1: | X | Reserved | I ndex
T S i N S
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6. 3. 4.

X: Indicates whether the itemis present in the |ist:

X =1 indicates that the itemcorresponding to the Index is
sent inthe iteml, ..., itemn list;

X =0 indicates that the itemcorresponding to the Index is
not sent and is instead included in the irregular chain

Reserved: MUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

Index: An index into the itemtable. See Section 6.3.4.

When 4-bit Xl itenms are used, the Xl itens are placed in octets
in the follow ng manner:

0 1 2 3 4 5 6 7
e

| Xk | Xk +1 |
S S

Paddi ng: A 4-bit padding field is present when PS = 0 and the
nunber of Xls is odd. The Padding field MJIST be set to zero;
ot herwi se, the deconpressor MJST discard the packet.

Iltem1, ..., itemn: Each itemcorresponds to an XI with X =1 in
Xl 1, ..., XI m The format of the entries in the itemlist is
described in the table in Section 6.3. The conpressed format(s)
suffixed by " _list_itenf in the encodi ng met hods defines the item

i nside the conpressed itemlist.

Item Tabl e Mappi ngs

The itemtable for TCP options list conpression is limted to 16
different items, since it is unlikely that any packet flow wll
contain a |l arger nunmber of unique options.

The mappi ng between the TCP option type and table indexes are |isted

in

the tabl e bel ow
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e o +
| Opti on nane | Tabl e index

o e e oo oo +
| NOP | 0 |
| EQL | 1 |
| MSS | 2 |
| W NDOW SCALE | 3

| TI MESTAVP | 4 |
| SACK- PERM TTED | 5 |
| SACK | 6 |
| CGeneric options | 7-15
R R +

Sone TCP options are used nore frequently than others. To sinplify
their conpression, a part of the itemtable is reserved for these
option types, as shown on the table above. Both the conpressor and
the deconpressor MJST use these mappi ngs between item and i ndexes to
(de) compress TCP options when using |ist conpression

It is expected that the option types for which an index is reserved
inthe itemtable will only appear once in a list. However, if an
option type is detected twice in the same options list and if both
options have a different content, the conpressor should conpress the
second occurrence of the option type by nmapping it to a generic
conpressed option. Qherwise, if the options have the exact sane
content, the conpressor can still use the same table index for both.

The NOP option

The NOP option can appear nore than once in the list. However,
since its value is always the sane, no context information needs
to be transnmitted. Miltiple NOP options can thus be mapped to the
sane index. Since the NOP option does not have any content when
conpressed as a "_list_itenm, it will never be present in the item
list. For consistency, the conpressor should still establish an
entry in the list by setting the presence bit, as done for the

ot her type of options.

Li st conpression always preserves the original order of each item
in the decompressed list, whether or not the itemis present in
the conmpressed " _list_item or if nultiple itenms of the sane type
can be napped to the same index, as for the NOP option
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The ECL option

The size of the conpressed format for the EOL option can be |arger
than one octet, and it is defined so that it includes the option
paddi ng. This is because the EOQL should term nate the parsing of
the options, but it can also be foll owed by paddi ng octets that
all have the value zero.

The Generic option

The Generic option can be used to conmpress any type of TCP option
that does not have a reserved index in the itemtable.

6.3.5. Conpressed Lists in Dynamc Chain

A compressed list for TCP options that is part of the dynam c chain
(e.g., in IR or IR DYN packets) must have all its list itenms present,
i.e., all X-bits in the XI list MJST be set.

6.3.6. Irregular Chain Itens for TCP Options

The " list_itent represents the option inside the conpressed item
list, and the "_irregular” format is used for the option fields that
are expected to change with each packet. Wen an itemof the
specified type is present in the current context, these irregular
fields are present in each conpressed packet, as part of the
irregular chain. Since many of the TCP option types are not expected
to change for the duration of a flow, many of the " _irregular”
formats are enpty.

The irregular chain for TCP options is structured anal ogously to the
structure of the TCP options in the unconpressed packet. |If a
conpressed list is present in the conpressed packet, then the
irregular chain for TCP options must not contain irregular itens for
the list items that are transmtted inside the conpressed list (i.e.,
itens in the list that have the X-bit set inits XI). The itens that
are not present in the conpressed list, but are present in the
unconpressed list, nmust have their respective irregular itenms present
in the irregular chain.

6.3.7. Replication of TCP Options
The entire table of TCP options itens is always replicated when using
the IR-CR packet. 1In the IR CR packet, the list of options for the

new flowis also transnmitted as a conpressed list in the IRCR
packet .
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6.4. Profile-Specific Encoding Methods

This section defines encoding nethods that are specific to this
profile. These nmethods are used in the formal definition of the
packet formats in Section 8.

6.4.1. inferred_ip_v4 header checksum

Thi s encodi ng net hod conpresses the Header Checksumfield of the |IPv4
header. This checksumis defined in [RFCO791] as foll ows:

Header Checksum 16 bits

A checksum on the header only. Since sone header fields change
(e.g., time to live), this is reconputed and verified at each
point that the internet header is processed.

The checksum al gorithmis:

The checksumfield is the 16-bit one's conplenent of the one's
conpl ement sum of all 16-bit words in the header. For purposes
of computing the checksum the value of the checksumfield is
zero.

As described above, the header checksum protects individual hops from
processing a corrupted header. Wen alnost all | P header information
is conpressed away, and when deconpression is verified by a CRC
conput ed over the original header for every conpressed packet, there
is no point in having this additional checksum instead, it can be
recomput ed at the deconpressor side.

The "inferred_i p_v4_header_checksuni encodi ng nethod thus conpresses
the I Pv4 header checksum down to a size of zero bits. Using this
encodi ng net hod, the deconpressor infers the value of this field
usi ng the conputation above.

This encoding nethod inplicitly assunes that the conpressor will not
process a corrupted header; otherw se, it cannot guarantee that the
checksum as reconputed by the deconpressor will be bitw se identica

to its original value before conpression.
6.4.2. inferred_m ne_header_ checksum

Thi s encodi ng net hod conpresses the mininal encapsul ati on header
checksum This checksumis defined in [ RFC2004] as fol |l ows:
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Header Checksum

The 16-bit one’s conpl ement of the one’s conpl emrent sum of al
16-bit words in the mnimal forwardi ng header. For purposes of
conputing the checksum the value of the checksumfield is
zero. The I P header and I P payload (after the mnim
forwardi ng header) are not included in this checksum
conput ati on.

The "inferred_m ne_header_checksunm encodi ng net hod conpresses the

m ni mal encapsul ati on header checksum down to a size of zero bits,
i.e., no bits are transmtted in conpressed headers for this field.
Using this encodi ng nethod, the deconpressor infers the value of this
field using the above conputation

The notivations and the assunmptions for inferring this checksum are
simlar to the ones explained above in Section 6.4.1

6.4.3. inferred_ip v4 length

Thi s encodi ng net hod conpresses the Total Length field of the |IPv4
header. The Total Length field of the IPv4 header is defined in
[ RFCO791] as foll ows:

Total Length: 16 bits

Total Length is the length of the datagram nmeasured in octets,
i ncluding internet header and data. This field allows the
length of a datagramto be up to 65,535 octets.

The "inferred_ip_v4 | ength" encodi ng nethod conpresses the I Pv4 Tota
Length field down to a size of zero bits. Using this encoding

nmet hod, the deconpressor infers the value of this field by counting
in octets the length of the entire packet after deconpression

6.4.4. inferred_ ip v6 length

Thi s encodi ng net hod conpresses the Payl oad Length field of the |IPv6
header. This length field is defined in [ RFC2460] as foll ows:

Payl oad Length: 16-bit unsigned integer
Length of the I Pv6 payload, i.e., the rest of the packet
following this | Pv6 header, in octets. (Note that any

ext ensi on headers present are considered part of the payl oad,
i.e., included in the length count.)
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The "inferred_ip _v6_| ength" encodi ng nethod conpresses the Payl oad
Length field of the | Pv6 header down to a size of zero bits. Using
this encodi ng nmet hod, the deconpressor infers the value of this field
by counting in octets the length of the entire packet after

deconpr essi on.

6.4.5. inferred offset

Thi s encodi ng nethod conpresses the data offset field of the TCP
header .

The "inferred offset" encoding nethod is used on the Data O f set
field of the TCP header. This field is defined in [RFC0793] as:

Data Ofset: 4 bits

The nunber of 32-bit words in the TCP header. This indicates
where the data begins. The TCP header (even one including
options) is an integral nunber of 32 bits |ong.

The "inferred_offset" encoding method conpresses the Data O f set
field of the TCP header down to a size of zero bits. Using this
encodi ng net hod, the deconpressor infers the value of this field by
first deconpressing the TCP options list, and by then setting:

data offset = (options length / 4) + 5
The equation above uses integer arithnetic.
6.4.6. baseheader extension_headers

In CO packets (see Section 7.3), the innernmost |P header and the TCP
header are conbined to create a conpressed base header. In sone
cases, the I P header will have a nunmber of extension headers between
itself and the TCP header.

To remain formally correct, the base header nust define sone
representati on of these extension headers, which is what this
encodi ng nethod is used for. This encoding nmethod skips over all the
ext ensi on headers and does not encode any of the fields. Changed
fields in these headers are encoded in the irregular chain
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6.4.7. baseheader outer_headers

Thi s encodi ng nethod, as well as the baseheader _extensi on_headers
encodi ng net hod descri bed above, is needed for the specification to
remain formally correct. It is used in CO packets (see Section 7.3)
to describe tunneling I P headers and their respective extension
headers (i.e., all headers |ocated before the innernost |P header).

Thi s encodi ng nethod skips over all the fields in these headers and
does not perform any encodi ng. Changed fields in outer headers are
i nstead handl ed by the irregul ar chain

6.4.8. Scal ed Encoding of Fields

Sonme header fields will exhibit a change pattern where the field
i ncreases by a constant value or by nmultiples of the sane val ue.

Exampl es of fields that may have this behavior are the TCP Sequence

Nunber and the TCP Acknow edgnment Nunber. For such fields, ROHC TCP
provides the means to downscale the field value before applying LSB

encodi ng, which allows the conpressor to transnit fewer bits.

To be able to use scaled encoding, the field is required to fulfill
the follow ng equation

unscal ed_val ue = scaling factor * scal ed val ue + residue

To use the scal ed encodi ng, the conpressor nust be confident that the
deconpressor has established values for the "residue" and the
"scaling factor", so that it can correctly deconpress the field when
only an LSB-encoded "scal ed _val ue" is present in the conpressed
packet .

Once the conpressor is confident that the value of the scaling_factor
and the val ue of the residue have been established in the
deconpressor, the conpressor nmay send conpressed packets using the
scal ed representation of the field. The conpressor MJST NOT use
scal ed encoding with the value of the scaling_factor set to zero.

If the compressor detects that the value of the residue has changed,
or if the conpressor uses a different value for the scaling factor,
it MJUST NOT use scal ed encoding until it is confident that the
deconpressor has received the new val ue(s) of these fields.

When the unscal ed value of the field waps around, the value of the
residue is likely to change, even if the scaling_factor remains
constant. In such a case, the conpressor nmust act in the same way as
for any other change in the residue.

Pelletier, et al. St andards Track [ Page 34]



RFC 6846 RCHC- TCP January 2013

The foll owi ng subsections describe how the scal ed encoding is applied
to specific fields in ROHC-TCP, in particular, how the scaling factor
and residue values are established for the different fields.

6.4.8.1. Scal ed TCP Sequence Number Encodi ng

For sonme TCP flows, such as data transfers, the payload size will be
constant over periods of tine. For such flows, the TCP Sequence
Nunber is bound to increase by nultiples of the payload size between
packets, which neans that this field can be a suitable target for
scal ed encoding. Wen using this encoding, the payload size will be
used as the scaling factor (i.e., as the value for scaling factor) of
this encoding. This neans that the scaling factor does not need to
be explicitly transmitted, but is instead inferred fromthe | ength of
the payload in the conpressed packet.

Establ i shing scaling_factor:

The scaling factor is established by sending unscal ed TCP Sequence
Nunber bits, so that the deconpressor can infer the scaling factor
fromthe payl oad size

Est abl i shing resi due:

The residue is established identically as the scaling factor,
i.e., by sending unscal ed TCP Sequence Number bits.

A detailed specification of howthe TCP Sequence Nunmber uses the
scal ed encoding can be found in the definitions of the packet
formats, in Section 8.2.

6.4.8.2. Scal ed Acknow edgnent Nunmber Encodi ng

Simlar to the pattern exhibited by the TCP Sequence Number, the
expected increase in the TCP Acknow edgment Nunber is often constant
and is therefore suitable for scal ed encoding.

For the TCP Acknow edgrment Number, the scaling factor depends on the
size of packets flowing in the opposite direction; this information
m ght not be available to the conpressor/deconpressor pair. For this
reason, ROHC-TCP uses an explicitly transmtted scaling factor to
conpress the TCP Acknow edgrment Nunber.
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Est abl i shing scaling factor:

The scaling factor is established by explicitly transmtting the
val ue of the scaling factor (called ack _stride in the forma
notation in Section 8.2) to the deconpressor, using one of the
packet types that can carry this information.

Est abl i shi ng residue:

The scaling residue is established by sendi ng unscal ed TCP
Acknowl edgrment Number bits, so that the deconpressor can infer its
val ue fromthe unscal ed value and the scaling factor (ack _stride).

A detailed specification of how the TCP Acknow edgment Nunber uses
the scal ed encoding can be found in the definitions of the packet
formats, in Section 8.2.

The conpressor MAY use the scal ed acknow edgnent nunber encodi ng;

what value it will use as the scaling factor is up to the conpressor

i mpl ementation. In the case where there is a co-located deconpressor
processi ng packets of the sane TCP flow in the opposite direction

the scaling factor for the sequence number used for that flow can be

used by the conpressor to determ ne a suitable scaling factor for the
TCP Acknowl edgnent number for this flow

6.5. Encoding Methods with External Paraneters

A number of encoding nethods in Section 8.2 have one or nore
argunents for which the derivation of the paraneter’s value is

out side the scope of the ROHC-FN specification of the header fornmats.
This section lists the encodi ng nethods together with a definition of
each of their paraneters.

o ipve(is_innernost, ttl _irregular_chain_flag, ip_inner_ecn):

is_innernost: This Boolean flag is set to true when processing
the innernost | P header; otherwise, it is set to false.

ttl _irregular_chain_flag: This parameter rmust be set to the
val ue that was used for the correspondi ng

"ttl_irregul ar_chain_flag" paranmeter of the "co_baseheader"”
encodi ng nethod (as defined bel ow) when extracting the
irregular chain for a conpressed header; otherwise, it is set
to zero and ignored for other types of chains.

i p_inner_ecn: This paraneter is bound by the encodi ng nethod,;

therefore, it should be undefined when calling this encodi ng
nmethod. This value is then used to bind the corresponding
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paranmeter in the "tcp" encoding nethod, as its value is needed
when processing the irregular chain for TCP. See the
definition of the "ip_inner_ecn" paranmeter for the "tcp"
encodi ng net hod bel ow.

o ipv4(is_innernost, ttl _irregular_chain_flag, ip_inner_ecn,
i p_i d_behavi or _val ue):

See definition of argunents for "ipv6" above.

i p_i d_behavior_value: Set to a 2-bit integer val ue, using one
of the constants whose nane begins with the prefix
| P_I D BEHAVIOR and as defined in Section 8. 2.

o tcp_opt_eol (nbits):

nbits: This parameter is set to the |length of the paddi ng data
| ocated after the EOL option type octet to the end of the TCP
options in the unconpressed header.

o tcp_opt_sack(ack_val ue):

ack_value: Set to the value of the Acknow edgrment Number field
of the TCP header.

o tcp(payl oad_size, ack stride value, ip_inner_ecn):

payl oad_size: Set to the length (in octets) of the payl oad
foll owi ng the TCP header.

ack _stride_value: This paraneter is the scaling factor used
when scaling the TCP Acknow edgnment Number. Its value is set
by the conpressor inplenentation. See Section 6.4.8.2 for
recommendati ons on how to set this val ue.

i p_inner_ecn: This paraneter binds with the value given to the
correspondi ng "i p_i nner_ecn" paraneter by the "ipv4" or the
"ipve" encodi ng met hod when processing the innernmost | P header
of this packet. See also the definition of the "ip_inner_ecn"
paranmeter to the "ipv6" and "ipv4" encodi ng net hod above.

0 co_baseheader (payl oad_si ze, ack_stride_val ue,
ttl _irregular_chain_flag, ip_id _behavior_value):

payl oad_size: Set to the length (in octets) of the payl oad
foll owi ng the TCP header.
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7.

7.

ack _stride_value: This paraneter is the scaling factor used
when scaling the TCP Acknow edgment Number. Its value is set
by the conpressor inplenentation. See Section 6.4.8.2 for
recommendati ons on how to set this val ue.

ttl _irregular_chain flag: This parameter is set to one if the
TTL/Hop Limit of an outer header has changed conpared to its

reference in the context; otherwise, it is set to zero. The

val ue used for this paraneter is also used for the

"ttl _irregular_chain_flag" argunent for the "ipv4" and "ipv6"
encodi ng net hods when processing the irregular chain, as

defi ned above for the "ipv6" and "ipv4" encodi ng nethods.

i p_i d_behavior_value: Set to a 2-bit integer value, using one
of the constants whose nanme begins with the prefix
| P I D BEHAVIOR and as defined in Section 8. 2.

Packet Types (Normative)

ROHC- TCP uses three different packet types: the Initialization and
Refresh (I R) packet type, the Context Replication (IR CR) packet
type, and the Conpressed (CO packet type.

Each packet type defines a nunber of packet formats: two packet
formats are defined for the IR type, one packet format is defined for
the IR-CR type, and two sets of eight base header formats are defined
for the COtype with one additional format that is conmon to both
sets.
The profile identifier for ROHC-TCP i s 0x0006.
1. Initialization and Refresh (I R) Packets

ROHC- TCP uses the basic structure of the ROHC IR and | R-DYN packets
as defined in [RFC5795] (Sections 5.2.2.1 and 5.2.2.2, respectively).

Packet type: IR

Thi s packet type communi cates the static part and the dynam c part
of the context.

For the ROHC-TCP IR packet, the value of the x bit MJST be set to

one. It has the followi ng format, which corresponds to the
"Header" and "Payl oad" fields described in Section 5.2.1 of
[ RFC5795] :
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0 1 2 3 4 5 6 7

Add- CI D oct et : if for small CIDs and (CID !'= 0)
L S e e e

| 1 1 1 1 1 1 0 1| IR type octet
T S i N S

/ 0-2 octets of CID / 1-2 octets if for large ClDs
.+---+---+---+---+---+---+---+---.+

| Profile = 0x06 | 1 octet

B T S T g

| CRC | 1 octet
T T TN I g

| |

/ Static chain [/ variable length
| |

| . . | .

/ Dynam ¢ chain / variable |length
| |

| o

/ Payl oad / variable length

CRC. 8-bit CRC, computed according to Section 5.3.1.1 of
[ RFC5795]. The CRC covers the entire IR header, thus excl uding
payl oad, paddi ng, and feedback, if any.

Static chain: See Section 6. 2.
Dynam ¢ chai n: See Section 6. 2.
Payl oad: The payl oad of the correspondi ng original packet, if any.
The payl oad consists of all data after the |ast octet of the TCP
header to the end of the unconpressed packet. The presence of a
payl oad is inferred fromthe packet |ength.

Packet type: | R DYN
Thi s packet type communi cates the dynam c part of the context.
The ROHC- TCP | R-DYN packet has the followi ng format, which

corresponds to the "Header" and "Payl oad" fields described in
Section 5.2.1 of [RFC5795]:
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7.

0 1 2 3 4 5 6 7

: Add- CI D oct et : if for small CIDs and (CID !'= 0)
L S e e e

| 1 1 1 1 1 0 0 O] IRDYNtype octet
g S

/ 0-2 octets of CID / 1-2 octets if for large ClDs
.+---+---+---+---+---+---+---+---.+

| Profile = 0x06 | 1 octet

B T S T g

| CRC | 1 octet
e R e SR R R

| |

/ Dynam ¢ chai n [/ variable length
| |

| o

/ Payl oad / variable |length

CRC. 8-bit CRC, computed according to Section 5.3.1.1 of
[ RFC5795]. The CRC covers the entire | R DYN header, thus
excl udi ng payl oad, paddi ng, and feedback, if any.

Dynam ¢ chai n: See Section 6. 2.

Payl oad: The payl oad of the correspondi ng original packet, if any.
The payl oad consists of all data after the last octet of the TCP
header to end of the unconpressed packet. The presence of a

payl oad is inferred fromthe packet |ength.

Context Replication (IR CR) Packets

Context replication requires a dedicated | R packet fornat that
uniquely identifies the I R-CR packet for the ROHC-TCP profile. This
section defines the profile-specific part of the IR CR packet

[ RFC4164] .

Packet type: IR-CR

Thi s packet type communi cates a reference to a base context al ong
with the static and dynanic parts of the replicated context that
differs fromthe base context.
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The ROHC-TCP | R-CR packet follows the general format of the ROHC

| R- CR packet, as defined in [RFC4164], Section 3.5.2. Wth

consi deration to the extensibility of the IR packet type defined in
[ RFC5795], the ROHC- TCP profile supports context replication through
the profile-specific part of the IR packet. This is achieved using
the bit (x) left in the IR header for "Profile specific information".
For ROHC-TCP, this bit is defined as a flag indicating whether this
packet is an IR packet or an I R-CR packet. For the ROHC-TCP I R-CR
packet, the value of the x bit MJST be set to zero.

The ROHC-TCP IR-CR has the followi ng format, which corresponds to the
"Header" and "Payl oad" fields described in Section 5.2.1 of
[ RFC5795] :

0 1 2 3 4 5 6 7

: Add- CI D oct et : if for small CIDs and (CID = 0)
T S i N S

| 1 1 1 1 1 1 0 0] IRCR type octet
T T TN I g

) 0-2 octets of CID / 1-2 octets if for large Cl Ds
:I----+---+---+---+---+---+---+---:I-
| Profile = 0x06 | 1 octet
e R e SR R R
| CRC | 1 octet
L S e e e
| B | CRCY | 1 octet
B T S T g
Reserved | Base CI D : 1 octet, for snmall CD, if B=1
e e E L E T SIS R
) Base CI D / 1-2 octets, for large Cl Ds,
: if B=1
B T S T g
| |
/ Replicate chain / variable |length
| |
| o
/ Payl oad / variable length
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7.

B: B=1indicates that the Base CID field is present.

CRC. This CRC covers the entire | R-CR header, thus excl uding
payl oad, paddi ng, and feedback, if any. This 8-bit CRCis
cal cul ated according to Section 5.3.1.1 of [RFC5795].

CRC7: The CRC over the original, unconpressed, header. Calcul ated
according to Section 3.5.1.1 of [RFC4164].

Reserved: MUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

Base CID: CID of base context. Encoded according to [RFC4164],
Section 3.5. 3.

Replicate chain: See Section 6.2.

Payl oad: The payl oad of the correspondi ng original packet, if any.
The presence of a payload is inferred fromthe packet |ength.

Conpressed (CO Packets

The ROHC- TCP CO packets comunicate irregularities in the packet
header. All CO packets carry a CRC and can update the context.

The general format for a conpressed TCP header is as follows, which
corresponds to the "Header" and "Payl oad" fields described in Section
5.2.1 of [RFC5795]:
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0 1 2 3 4 5 6 7

: Add- Cl D oct et : if for small CIDs and CID 1-15
R T T ST
| First octet of base header | (wth type indication)

B T S T g
/ 0, 1, or 2 octets of CID [ 1-2 octets if large ClDs

L S e e e
/ Remai nder of base header [/ variabl e nunber of octets
B T S T g
: Irregular chain :
/ (including irregular chain / variable
items for TCP options)

| |
/ Payl oad / variable length

Base header: The conplete set of base headers is defined in
Section 8.

Irregul ar chain: See Sections 6.2 and 6. 3. 6.

Payl oad: The payl oad of the correspondi ng original packet, if any.
The presence of a payload is inferred fromthe packet I|ength.

8. Header Formats (Nornative)

Thi s section describes the set of conpressed TCP/|P packet formats.
The normative description of the packet formats is given using the
formal notation for ROHC profiles defined in [ RFC4997]. The forma
description of the packet formats specifies all of the information
needed to conpress and deconpress a header relative to the context.

In particular, the notation provides a list of all the fields present
in the unconmpressed and conpressed TCP/ I P headers, and defines how to
map from each unconpressed packet to its conpressed equival ent and

Vi ce versa
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8.1. Design Rationale for Conpressed Base Headers

The conpressed header formats are defined as two separate sets: one
set for the packets where the innernost | P header contains a
sequential IP-1D (either network byte order or byte swapped), and one
set for the packets wi thout sequential IP-ID (either random zero, or
no IP-1D).

These two sets of header formats are referred to as the "sequential”
and the "random' set of header formats, respectively.

In addition, there is one conpressed format that is common to both
sets of header formats and that can thus be used regardl ess of the
type of IP-1D behavior. This format can transmit rarely changing
fields and al so send the frequently changing fields coded in variable
lengths. It can also change the value of control fields such as

| P-1 D behavi or and ECN behavi or.

Al'l conpressed base headers contain a 3-bit CRC, unless they update
control fields such as "ip_id behavior" or "ecn used" that affect the
i nterpretati on of subsequent headers. Headers that can nodify these
control fields carry a 7-bit CRC instead.

When di scussi ng LSB-encoded fields below, "p" equals the
"of fset _paranf and "k" equals the "numl sbs _param' in [ RFC4997].

The encodi ng methods used in the conpressed base headers are based on
the follow ng design criteria:

o MSN

Since the MSN is a nunber generated by the conpressor, it only
needs to be |l arge enough to ensure robust operation and to
acconmmodate a small amount of reordering [ RFC4163]. Therefore,
each conpressed base header has an MSN field that is LSB-
encoded with k=4 and p=4 to handle a reordering depth of up to
4 packets. Additional guidance to inprove robustness when
reordering is possible can be found in [ RFC4224].

o TCP Sequence Number

ROHC- TCP has the capability to handle bulk data transfers
efficiently, for which the sequence nunber is expected to

i ncrease by about 1460 octets (which can be represented by 11
bits). For the conpressed base headers to handl e

retransm ssions (i.e., negative delta to the sequence nunber),
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the LSB interpretation interval has to handl e negative offsets
about as large as positive offsets, which nmeans that one nore
bit is needed.

Al so, for ROHC-TCP to be robust to | osses, two additional bits
are added to the LSB encodi ng of the sequence nunber. This
nmeans that the base headers should contain at |east 14 bits of
LSB- encoded sequence nunber when present. According to the

| ogi c above, the LSB offset value is set to be as large as the
positive offset, i.e., p = 2"(k-1)-1

o TCP Acknow edgnent Number

The design criterion for the acknow edgnent nunber is simlar
to that of the TCP Sequence Number. However, often only every
ot her data packet is acknow edged, which neans that the
expected delta value is twice as |large as for sequence nunbers.

Therefore, at |east 15 bits of acknow edgnent nunber should be
used in conpressed base headers. Since the acknow edgment
nunber is expected to constantly increase, and the only
exception to this is packet reordering (either on the ROHC
channel [RFC3759] or prior to the conpression point), the
negative offset for LSB encoding is set to be 1/4 of the tota
interval, i.e., p = 2"k-2)-1

o TCP W ndow

The TCP Wndow field is expected to increase in increnents of
simlar size as the TCP Sequence Nunber; therefore, the design
criterion for the TCP windowis to send at |east 14 bits when
used.

o IP-ID

For the "sequential" set of packet formats, all the conpressed
base headers contain LSB-encoded | P-1D offset bits, where the
of fset is the difference between the value of the M5N field and
the value of the IP-IDfield. The requirenent is that at |east
3 bits of IP-1D should always be present, but it is preferable
to use 4 to 7 bits. Wen k=3 then p=1, and if k>3 then p=3
since the offset is expected to increase nost of the tine.

Each set of header formats contains eight different conpressed base
headers. The reason for having this |arge nunber of header formats
is that the TCP Sequence Number, TCP Acknow edgnent Nunber, and TCP
W ndow are frequently changing in a non-linear pattern
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The design of the header formats is derived fromthe field behavior
anal ysis found in [ RFC4413].

Al of the conpressed base headers transnmit LSB-encoded MSN bits, the
TCP Push flag, and a CRC, and in addition to this, all the base
headers in the sequential packet format set contain LSB-encoded |IP-1D
bits.

The foll owi ng header formats exist in both the sequential and random
packet format sets:

o Format 1: This header format carries changes to the TCP Sequence
Nunber and is expected to be used on the downstream of a data
transfer.

o Format 2: This header format carries the TCP Sequence Nunber in
scaled formand is expected to be useful for the downstream of a
data transfer where the payload size is constant for nmultiple
packets.

o Format 3: This header format carries changes in the TCP
Acknowl edgrment Number and is expected to be useful for the
acknow edgnent direction of a data transfer.

o Format 4: This header format is simlar to format 3, but carries a
scal ed TCP Acknow edgrment Number

o Format 5: This header format carries both the TCP Sequence Nunber
and the TCP Acknow edgnment Number and is expected to be useful for
flows that send data in both directions.

o Format 6: This header format is simlar to format 5, but carries
the TCP Sequence Nunber in scaled form when the payload size is
static for certain intervals in a data flow

o Format 7: This header format carries changes to both the TCP
Acknowl edgrment Nunber and the TCP Wndow and is expected to be
useful for the acknow edgrment flows of data connections.

o Format 8: This header format is used to convey changes to sone of
the nmore sel dom changing fields in the TCP flow, such as ECN
behavi or, RST/SYN FIN flags, the TTL/Hop Limt, and the TCP
options list. This format carries a 7-bit CRC, since it can
change the structure of the contents of the irregular chain for
subsequent packets. Note that this can be seen as a reduced form
of the common packet format.
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o Common header format: The common header format can be used for al
ki nds of |P-1D behavior and shoul d be useful when sone of the nore
rarely changing fields in the IP or TCP header change. Since this
header format can update control fields that deci de how the
deconpressor interprets packets, it carries a 7-bit CRC to reduce
the probability of context corruption. This header can basically
convey changes to any of the dynanic fields in the IP and TCP
headers, and it uses a large set of flags to provide information

about which fields are present in the header format.
8.2. Formal Definition of Header Formats

/1 NOTE: The irregular, static, and dynam c chains (see Section 6.2)
/1 are defined across multiple encodi ng nmethods and are enbodi ed

/1 in the correspondingly named formats within those encoding

/1 methods. In particular, note that the static and dynamc

/1 chains ordinarily go together. The unconmpressed fields are

/1 defined across these two formats conbi ned, rather than in one

/1 or the other of them The irregular chain itens are |ikew se

/1 conbined with a baseheader fornat.

[HLEDTEELErrrr i rriiririirriglrgi
// Constants
FHLEDTEELErrr i rririirirrlrgi

| P_I D_BEHAVI OR_SEQUENTI AL = O;
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED = 1;
| P_I D BEHAVI OR_RANDOM = 2;

| P_I D BEHAVI OR ZERO = 3;

[HEDETET i rrriririrrnri
/1 dobal control fields

FEEEEEEEE b

CONTROL {
ecn_used [ 17;
nsn [ 16 ];
/[l ip_id fields are for innernost |P header only
i p_id_of fset [ 16 1;
i p_i d_behavi or _i nner nost [ 217;
/1 ACK-rel at ed
ack stride [ 32 ];
ack_number _scal ed [ 32 ];
ack_nunber _resi due [ 32 7;
seq_nunber _scal ed [ 32 1;
seqg_nunber _resi due [ 32 1;
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FEEETELE i rrrnn
/1 Encoding nmethods not specified in FN syntax
FEETTPIE bbb rrrn

list_tcp_options "defined in Section 6.3.3";
inferred_ip_v4 header checksum "defined in Section 6.4.1";
i nferred_m ne_header_checksum "defined in Section 6.4.2";
inferred_ip_v4_length "defined in Section 6.4.3";
inferred_i p_v6_l ength "defined in Section 6.4.4";
i nferred_of fset "defined in Section 6.4.5";
baseheader ext ensi on_headers "defined in Section 6.4.6";
baseheader out er headers "defined in Section 6.4.7";

FEEETELE b rrrrirrirr
/1 General encoding methods
NN NN NN

static_or _irreg(flag, wdth)

UNCOVPRESSED {
field [ width ];
}

COVPRESSED irreg_enc {
field == irregular(width) [ width ];
ENFORCE(fl ag == 1);

}

COVPRESSED st ati c_enc {
field =:= static [ 0 ];
ENFORCE(fl ag == 0);

}

}

zero_or _irreg(flag, w dth)

UNCOVPRESSED {
field [ width ];
}

COVPRESSED non_zero {
field == irregular(width) [ width ];
ENFORCE(fl ag == 0);

}

COVPRESSED zero {
field =:= unconmpressed_value(width, 0) [ 0 ];
ENFORCE(fl ag == 1);
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}
}

vari abl e_|l ength_32_enc(fl ag)

UNCOMPRESSED {
field [ 32 ];
}

COVPRESSED not _present {
field == static [ 0 ];
ENFORCE(fl ag == 0);

}

COVPRESSED |shb_8 bit {
field == Isb(8, 63) [ 81];
ENFORCE(fl ag == 1);

}

COVPRESSED | sb_16_bit {
field == Isb(16, 16383) [ 16 ];
ENFORCE(fl ag == 2);

}

COVPRESSED irreg 32 bit {
field =-=irregular(32) [ 32 ];
ENFORCE(fl ag == 3);
}
}

optional 32(fl ag)

UNCOMPRESSED {
item[ O, 32 ];
}

COVWPRESSED present {
item=:=irregular(32) [ 32 ];
ENFORCE(fl ag == 1);

}

COVPRESSED not _present {
item=:= conpressed _value(0, 0) [ 0 ];
ENFORCE(fl ag == 0);
}
}

Isb 7 or 31
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UNCOVPRESSED {
item[ 32 ];

COVPRESSED | sh_7 {
di scri m nat or
item

0 [ 1];
Isb(7, 8) [ 7 ];

}

COVPRESSED | sh_31
di scri m nat or

: F 1
item =:

[ 1],
| sb(31, 256) [ 31 ];

In i

}
}

opt _|sb_7 or_31(fl ag)

UNCOVPRESSED {
item[ O, 32 ];
}

COVWPRESSED present {
item=:=1sb 7 or 31 [ 8, 32 ];
ENFORCE(flag == 1);

}

COVWPRESSED not _present {
item=:= compressed_value(0, 0) [ 0 ];
ENFORCE(fl ag == 0);

}

}

crc3(data_val ue, data_l ength)

UNCOVPRESSED {
}

COMPRESSED {

crc_value ==
crc(3, 0x06, 0x07, data_value, data length) [ 3 ];
}

}
crc7(data_val ue, data_l ength)

UNCOMVPRESSED {
}
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COVPRESSED {
crc_value ==
crc(7, 0x79, Ox7f, data_value, data length) [ 7 ];
}
}

one_bit _choice

UNCOVPRESSED {
field [ 1];

COVPRESSED zero {
field [ 117;
ENFORCE(fi el d. UVALUE == 0);
}

COVPRESSED nonzero {
field [ 117;
ENFORCE(fi el d. UVALUE == 1);

/1 Encoding nethod for updating a scaled field and its associ ated
/1 control fields. Should be used both when the value is scal ed
/1 or unscaled in a conpressed fornat.
/1 Does not have an unconpressed side.
field_scaling(stride_value, scal ed_value, unscal ed_val ue, residue_val ue)
{

UNCOVPRESSED {

/1 Not hi ng
}

COVPRESSED no_scal i ng {
ENFORCE( stri de_val ue == 0);
ENFORCE( r esi due_val ue == unscal ed_val ue);
ENFORCE( scal ed_val ue == 0);

}

COVWPRESSED scal i ng_used {
ENFORCE(stride_value !'= 0);
ENFORCE( r esi due_val ue == (unscal ed_val ue % stride_val ue));
ENFORCE( unscal ed_val ue ==
scal ed_value * stride_value + residue_val ue);
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FEETTELE b rirriirrrr
/1 1Pv6 Destination options header
FEOTTELE bbb rrrniirrrr

i p_dest_opt
UNCOVPRESSED ({
next header [ 8 ];
[ engt h [ 81;
val ue [ length. UVALUE * 64 + 48 ];
}
DEFAULT ({
l ength == static;
next header =:= static;
val ue =:= static;
}
COVPRESSED dest _opt_static {
next header =:=irregular(8) [ 8 ];
 ength == irreqgular(8) [ 81;
}
COVPRESSED dest _opt _dynam c {
val ue =: =

irregular(length. UVALUE * 64 + 48) [ |ength. UVALUE * 64 + 48 ];
}
COVWPRESSED dest _opt_0O_replicate {
di scrimnator =:="'00000000" [ 8 ];
}

COVWPRESSED dest _opt_1 replicate {

di scrimnator =:="'10000000’ [ 81;
 ength == irregul ar(8) [ 81;
val ue ==
i rregul ar (I engt h. UVALUE*64+48) [ |ength. UVALUE * 64 + 48 ];
}
COVWPRESSED dest _opt _irregul ar {
}

}

FEETTEEE b ririirrrrnd
/1 1Pv6 Hop-by-Hop options header
FEPETEEE bbb rrrniirirnd

i p_hop_opt
{
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UNCOWPRESSED {

next header [ 8 ];
 ength [ 81;
val ue [ length. UVALUE * 64 + 48 ];
}
DEFAULT ({
| ength == static;
next header =:= static;
val ue =:= static;
}
COVPRESSED hop_opt _static {
next header =:=irregular(8) [ 8 ];
 ength == irreqgular(8) [ 8 1;
}
COVPRESSED hop_opt _dynam ¢ {
val ue =: =
i rregul ar (1 ength. UVALUE*64+48) [ | ength. UVALUE *
}
COVPRESSED hop_opt _0_replicate {
di scrimnator =:= '00000000" [ 8 ];
}

COVPRESSED hop_opt _1 replicate {

di scrimnator =: = '10000000’
 ength == irregul ar(8)
val ue = =
i rregul ar (| engt h. UVALUE*64+48) [ | ength. UVALUE *
}
COVPRESSED hop_opt _irregul ar {
}

}

FEOETELE bbb rrrrirrrrrd
/1 1Pv6 Routing header
NN NN NN
i p_rout_opt

UNCOVPRESSED {

next header [ 8 ];
 ength [ 81;
val ue [ length. UVALUE * 64 + 48 ];

}
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DEFAULT {
| ength == static;
next header =:= static;
val ue == static;
}
COVPRESSED rout _opt_static {
next header =:= irregular(8) [ 81;
 ength == irregul ar(8) [ 81;
val ue = =
i rregul ar (| engt h. UVALUE*64+48) [ | ength. UVALUE * 64 + 48 ];
}
COVPRESSED r out _opt _dynam ¢ {
}
COVWPRESSED rout _opt_O_replicate {
di scrimnator =:= '00000000" [ 8 ];
}

COVWPRESSED rout _opt_0O_replicate {

di scrimnator =:= 10000000’ [ 81;
 ength == irregul ar(8) [ 81;
val ue ==

irregular(Iethh.UVALUE*64+48) [ length. UVALUE * 64 + 48 ];

}
COVWPRESSED rout _opt _irregul ar {

}
}

LEEEEEEEE bbb bbb irrri
/| GRE Header

FEEEEEEEE bbb bbb irrri
optional _checksum(fl ag_val ue)

UNCOWPRESSED {

val ue [ O, 16 1];
reservedl [ 0, 16 ];

}

COVPRESSED cs_present {
val ue == irregul ar(16) [ 16 ];
reservedl =:= unconpressed value(16, 0) [ 0 ];
ENFORCE(f | ag_val ue == 1);

}

COVPRESSED not _present {
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val ue =: = conpressed_value(0, 0) [ 0 ];
reservedl =:= conpressed value(0, 0) [ 0 ];
ENFORCE(f 1 ag_val ue == 0);
}
}
gre_proto
{

UNCOVPRESSED {
protocol [ 16 ];

COVPRESSED et her _v4 {
di scri m nat or = conpressed_val ue(1, 0) [ 171;
pr ot ocol = unconpressed_val ue(16, 0x0800) [ 0 ];

}

COVPRESSED et her _v6 {
di scri m nat or = conpressed_val ue(1, 1) [ 171;
pr ot ocol = unconpressed_val ue(16, 0x86DD) [ 0 ];

gre

UNCOVPRESSED {

c_flag [ 117;
r _flag =: = unconpressed_value(1l, 0) [ 11];
k_flag [ 17;
s _flag [ 17;
reserved0 =: = unconpressed value(9, 0) [ 9 ];
version =: = unconpressed value(3, 0) [ 3 1];
pr ot ocol [ 16 1;
checksum and_res [ 0, 32 1];
key [ 0, 32 1];
sequence_nunber [ 0, 32];
}
DEFAULT {
c_flag == static;
k_flag == static;
s _flag == static;
pr ot ocol == static;
key == static;
sequence_nunber =:= static;
}

COVPRESSED gre_static {
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ENFORCE( (c_fl ag. UVALUE == 1 && checksum_and_r es. ULENGTH == 32)
|| checksum and_res. ULENGTH == 0);

ENFORCE( (s_fl ag. UVALUE == 1 && sequence_nunber. ULENGTH == 32)
| | sequence_nunber. ULENGTH == 0);

protocol =:= gre_proto [ 17;
c_flag == irregular(1) [ 17;
k flag == irregular(1) [ 171;
s _flag == irregular(1) [ 171;
paddi ng =:= conpressed_val ue(4, 0) [ 41;
key =:= optional 32(k_flag. WALUE) [ 0, 32 ];
}
COVPRESSED gre_dynam c {
checksum and_res =:=
optional _checksum(c_fl ag. UVALUE) [ 0, 16 ];
sequence_nunber =:= optional 32(s_flag. UVALUE) [ 0, 32 ];
}
COVPRESSED gre 0 replicate {
di scri m nat or =:= ' 00000000’ [ 81;

checksum and_res =:=
optional checksum(c_flag. UWALUE) [ O, 16 ];
sequence_nunber =:=
optional 32(s_fl ag. UVALUE) [ 0, 8 32]7;
}

COVWPRESSED gre_1 replicate {

di scri m nat or =:= ’10000’ [ 51;
c_flag == irregular(1) [ 17;
k flag == irregular(1) [ 17;
s _flag == irregular(1) [ 171;
checksum and_res =:=

opti onal _checksun{c_fl ag. UVALUE) 0, 16 1;
key =:= optional 32(k_flag. WALUE) [ 0, 32 ];
sequence_nunber =:= optional 32(s_flag. UVALUE) [ 0, 32 ];

}

COWPRESSED gre_irregul ar {
checksum and_res =:=
optional checksum(c_flag. UWALUE) [ O, 16 ];
sequence_nunber =:=
opt |Isb 7 or_31(s_flag. UVALUE) [ 0, 8 32]7;
}

}

[T LTELErr i rirrriiiiirrrrngni
// M NE header
FHHELTEELErrr i rrririirirrrrrni

Pelletier, et al. St andards Track [ Page 56]



RFC 6846 RCHC- TCP January 2013

m ne
{
UNCOWPRESSED {

next header [ 8 ];
s_bit [ 17;
res_bits [ 71;
checksum [ 16 ];
ori g_dest [ 32 1;
orig_src [ 0, 32 1];
}
DEFAULT {
next header =:= static;
s _bit == static;
res_bits == static;
checksum =:= inferred_m ne_header checksum
ori g_dest == static;
orig_src =: = static;
}
COVWPRESSED mine_static {
next header =:= irregular(8) [ 81;
s_bit == irregular(1) [ 17;
/1 Reserved bits are included to achi eve byte-alignnent
res_bits == irregular(7) [ 71;
ori g_dest == irregul ar(32) [ 32 1;
orig_src =:= optional 32(s_bit.UVALUE) [ 0, 32 ];
}
COVPRESSED m ne_dynami ¢ {
}
COVPRESSED mine_0_replicate {
di scrimnator =:='00000000" [ 8 ];
}

COVPRESSED mine_1 replicate {

di scrimnator =:="'10000000’ [ 81;
s_bit == irregular(1) [ 117;
res_bits == irregular(7) [ 71;
ori g_dest == irregul ar(32) [ 32 ];
orig_src =:= optional 32(s_bit.UVALUE) [ 0, 32 ];
}
COWMPRESSED mi ne_i rregul ar {
}
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NN NNy
/1 Authentication Header (AH)
NN NNy

ah
UNCOVPRESSED {
next header [ 81;
[ engt h [ 81;
res_bits [ 16 1;
spi [ 32 ];
sequence_nunber [ 32 ];
icv [ length. UVALUE*32-32 ];
}
DEFAULT {
next header == static;
| ength == static;
res_bits == static;
spi =:= static;
sequence_nunber =:= static;
}

COVPRESSED ah_static {

next header =:=irregular(8) [ 8 ];

| engt h =:=irregular(8) [ 81];

spi == irregular(32) [ 32 ];
}
COVPRESSED ah_dynam ¢

res_bits == irregular(16) [ 16 ];

sequence_nunber =:= irregular(32) [ 32 ];

icv ==

i rregul ar (|1 engt h. UVALUE*32-32) [ |ength. UVALUE*32-32 ];

}

COVPRESSED ah 0 replicate {
di scri m nat or =:= ' 00000000’ [ 81;
sequence_number irregular(32) [ 32 ];

icv =
i rregul ar (| engt h. UVJALUE*32-32) [ |ength. UVALUE*32-32 ];

}
COVWPRESSED ah_1 replicate {

di scri m nat or =:= '10000000’ [ 81;

 ength == irreqgular(8) [ 81];

res_bits == irregular(16) [ 16 ];

spi == irregular(32) [ 32 ];
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sequence_nunber =:=irregular(32) [ 32 ];
icv ==
i rregul ar(l ength. UVALUE*32-32) [ |ength. UVALUE*32-32 ];
}
COVPRESSED ah_irregul ar {
sequence_nunber == 1sb_7_or_31 [ 8, 32 ];
icv ==
i rregul ar (1 ength. UVALUE*32-32) [ |ength. UVALUE*32-32 ];
}

}

[HETLTEDE i rrrirlrng
/1l 1 Pv6 Header
[HETETETE i rrrirlrgi

fl _enc

UNCOWPRESSED {
flow | abel [ 20 ];

}
COVPRESSED f| _zero {

discrimnator == "'0 117;
fl ow | abel =: = unconpressed _value(20, 0) [ 0 ];
reserved == ' 0000’ [ 41;

}

COWPRESSED fl| _non_zero {
di scri m nat or =1 [ 17;
fl ow | abel irregular(20) [ 20 ];

}

}

[l The is_innernost flag is true if this is the innernpost |IP header
/1 1f extracting the irregular chain for a conpressed packet:

/1 - ttl __irregular_chain _flag nust have the sane value as it had when
/1 processi ng co_baseheader.

/1 - ip_inner_ecn is bound in this encoding nethod and the val ue that
/1 it gets bound to should be passed to the tcp encodi ng net hod

/1 For other formats than the irregular chain, these two are ignored
i pv6(is_innernost, ttl _irregular_chain _flag, ip_inner_ecn)

UNCOWPRESSED {
version =: = unconpressed_val ue(4, 6) [ 4
dscp [ 61;
i p_ecn_fl ags [ 2
fl ow | abel [ 2
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payl oad_I| ength

[ 16 ] 1
next header [ 81;
ttl _hopl [ 81;
src_addr [ 128 ];
dst _addr [ 128 ];
}
DEFAULT {
dscp == static;
i p_ecn_fl ags == static;
flow | abel == static;
payl oad | ength =:= inferred_ip _v6 | ength;
next header == static;
ttl _hopl == static;
src_addr == static;
dst _addr == static;

}
COVWPRESSED i pv6_static {

version flag =:="1 [ 171;
reserved == '00’ [ 21;
flow | abel == fl __enc [ 5 21]
next header =:= irregul ar(8) [ 81;
src_addr == irreqgular(128) [ 128 ];
dst _addr == irreqgular(128) [ 128 ];

}

COVPRESSED i pv6_dynam ¢ {
dscp == irreqgular(6) [ 6 ];
ip_ecn flags =:=irregular(2) [ 2 ];
ttl _hopl == irregular(8) [ 8 1;

}

COVWPRESSED i pv6_replicate {
dscp == irreqgular(6) [ 6 ];
ip_ecn flags =:=irregular(2) [ 2 ];
reserved == ' 000’ [ 31;
fl ow_| abel == fl _enc [ 5, 2117;

}

COVPRESSED i pv6_outer_wi thout _ttl _irregular {
dscp .= static_or _irreg(ecn_used. UVALUE, 6) [ O, 6
ip_ecn flags =:= static_or_irreg(ecn_used. UWALUE, 2) [ 0, 2
ENFORCE(tt! _irregul ar_chain_flag == 0);
ENFORCE(i s_i nnernost == fal se);

}

COVPRESSED i pv6_outer with ttl _irregular {

1;
|
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dscp == static_or _irreg(ecn_used. WALUE, 6) [ 0, 6 ];
ip_ecn flags =:= static_or_irreg(ecn_used. WALUE, 2) [ 0, 2 ];
ttl _hopl == irregul ar(8) [ 81;

ENFCRCE(ttI_ir}egular_chain_flag == 1);
ENFORCE(i s_i nnernost == fal se);

}

COVPRESSED i pv6_i nnernost _i rregul ar {
ENFORCE(i p_i nner _ecn == i p_ecn_fl ags. UVALUE)
ENFORCE(i s_i nnernpst == true);

}

}

[HETETETEr i rrrirlrni
/] |1 Pv4d Header
[HEDEPEEE i irririrrli

i p_i d_enc_dyn(behavi or)

UNCOVPRESSED {
ipid[ 16 ];

COVPRESSED i p_id seq {
ENFORCE( ( behavi or == | P_I D BEHAVI OR_SEQUENTI AL) |
(behavi or == | P_| D BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
ENFORCE(i p_i d_of fset. UVALUE == i p_i d. UVALUE - nsn. UVALUE)
ip_id==tirreqgular(16) [ 16 ];
}

COVPRESSED i p_id _random {
ENFORCE( behavi or == | P_I D_BEHAVI OR_RANDOM ;
ip_id == irregular(16) [ 16 ];

}

COVPRESSED ip_id zero {
ENFORCE( behavi or == | P_I D BEHAVI OR_ZERO);
ip_id == unconpressed value(1l6, 0) [ 0 ];
}
}

i p_id_enc_irreg(behavior)
UNCOWPRESSED {

ipid][ 16 ];
}

COVPRESSED i p_id seq {
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}

/1
11
11
/1
11
/1
/1

ENFORCE( behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ;
}
COVPRESSED i p_i d_seq_swapped {
ENFORCE( behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ;
}
COWPRESSED i p_id_rand {
ip_id==irreqgular(16) [ 16 ];
ENFORCE( behavi or == | P_I D_BEHAVI OR_RANDOM ;
}
COVPRESSED ip_id zero {
i p_id == unconpressed value(1l6, 0) [ 0 ];
ENFORCE( behavi or == | P_I D_BEHAVI OR_ZERO);
}
The is_innernost flag is true if this is the innernost |P header

If extracting the irregular chain for a conpressed packet:

- ttl _irregular_chain_flag nmust have the sane value as it had when

processi ng co_baseheader.

- ip_inner_ecn is bound in this encoding nethod and the val ue that

it gets bound to should be passed to the tcp encodi ng net hod

For other formats than the irregular chain, these two are ignored

i pv4(is_innernost, ttl _irregular_chain flag, ip_inner_ecn,
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i p_i d_behavi or _val ue)

UNCOWPRESSED {
version
hdr | ength
dscp
i p_ecn_fI ags
 ength
ip_id
rf
df
nf
frag_of fset
ttl _hopl
pr ot oco
checksum == inferred_i p_v4_header_checksu
src_addr
dst _addr

}

CONTRCOL {
ENFORCE(r eorder _rati o. UVALUE == reorder_ratio_val ue);

unconpr essed_val ue(4, 4)
unconpr essed_val ue(4, 5)

inferred_ip_v4 |l ength

unconpr essed_val ue(1, 0)

[
[
[
[
[
[
%
unconpressed val ue(1, 0) [
unconpr essed_val ue(13, 0) [
[
[
m
[
[
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ENFORCE(i nnernost _i p. UVALUE == i s_i nnernost);
i p_id _behavior outer [ 2 ];
innermost _ip [ 117;

}

DEFAULT {
dscp == static;
i p_ecn_flags == static;
df == static;
ttl _hopl == static;
pr ot ocol == static;
src_addr =: = static;
dst _addr =:= static;
ip_ |d behavi or _outer =:= static;

}

COVWPRESSED i pv4_static {

version_flag =:="0 [ 17;

reserved =: = ' 0000000’ [ 717;

pr ot ocol == irregular(8) [ 81];

src_addr == irregular(32) [ 32 ];

dst _addr == irregular(32) [ 32 ];
}
COVPRESSED i pv4_i nner nost _dynam ¢ {

ENFORCE(i s_i nnernmpost == 1);

ENFORCE(i p_i d_behavi or _i nner nost . UWWALUE == i p_i d_behavi or _val ue);

reserved =:= ' 00000’ [ 51;

df :::irregular(l) [ 17;

i p_id_behavior _innernost =:=irregular(2) [ 2 ];

dscp ='=|rregular(6) [ 61;

i p_ecn_fI ags == irregular(2) [ 217;

ttl _hopl == irregul ar(8) [ 81;

ip_id = =

i p_id_enc_dyn(ip_id_behavior_innernost. UWALUE) [ 0O, 16 ];

}

COVWPRESSED i pv4_out er _dynam c {
ENFORCE(i s_i nnernost == 0);

ENFORCE(i p_i d_behavi or _outer. UVALUE == i p_i d_behavi or _val ue);
reserved =1 = ' 00000’ [ 51;

df == irregular(1) [ 17;

i p_id_behavior _outer =:= i rregul ar(2) [ 21;
dscp —.:lrregular(6) [ 61;

i p_ecn_fI ags == irregular(2) [ 217;

ttl _hopl :::irregular(8) [ 81;

ip_id ==

ip_id_enc dyn(| p_id behavior_outer. UALUE) [ 0, 16 ];
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}

COWPRESSED i pv4_i nnernost _replicate {

}

January 2013

ENFORCE(i s_i nnermost == 1);
ENFORCE(i p_i d_behavi or _i nner nost . UVALUE == i p_i d_behavi or _val ue);
reserved == ' 0000’ [ 47;
i p_id_behavior _innernost =:=irregular(2) [ 2 ];
ttl_flag :::|rregular(1) 117;
df == irregular(1) [ 117;
dscp == irregul ar(6) [ 61;
ip ecn_fl ags ::|rregular(2) [ 21];
ip_id ==
ip_id_enc dyn(| p_id_behavior_innernost. UVALUE) [ 0, 16 ];
ttl hopl ==

static_or_irreg(ttl_flag. UVALUE, 8) [ 0, 8 ];

COVPRESSED i pv4_outer _replicate {

}

ENFORCE(i s_i nnernpost == 0);

ENFORCE(i p_i d_behavi or _outer. UALUE == i p_i d_behavi or _val ue);
reserved == ' 0000’ 4 1;
i p_id_behavior_outer =:=irregular(2) [ 2]
ttl _flag == irregular(1) [ 17;
df == irregular(1) [ 17;
dscp == irregul ar (6) [ 61;
ip ecnflags == irregular(2) [ 217;
ip_id ==
i p_id_enc dyn(| p_i d_behavi or _outer. U/ALUE) [ 0, 16 ];
ttl hopl ==

static_or _irreg(ttl_flag. UVALUE, 8) [ 0, 8 ];

COVPRESSED i pv4_out er _without _ttl _irregular {

}

ip_id =

ip_id_enc |rreg(|p i d_behavior outer.UALUE) [ 0, 1
dscp == static_or _i rreg(ecn_used. UVALUE, 6)
ip_ecn flags =:= static_or_irreg(ecn_used. WALUE, 2)
ENFORCE(tt! _irregul ar_chain_flag == 0);

COVPRESSED i pv4_out er ~with ttl _irregular {

ENFO?CE(| S i nnerrmst == 0);
ip_id :

i p_id_enc |rreg(| p_i d_behavi or _out er. UVALUE)
dscp == static_or |rreg(ecn used. UVALUE, 6)
i p_ecn_flags =:= static_or_irreg(ecn_used. UWWALUE, 2)
ttl _hopl =:= irregul ar (8)

Pelletier, et al.
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[ 0, 61];
[ 0, 21];
[ 0, 16 ];
[ 0, 61];
[ 0, 2],
[ 81;
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ENFORCE(tt!| irregular_chain flag == 1);

}
COVPRESSED i pv4_i nnernost _i rregul ar {
ENFORCE(i s_i nnernmpost == 1);
ip_id ==
ip_id enc_irreg(ip_id behavior_innernost. UWALUE) [ O, 16 ];
ENFORCE(i p_i nner _ecn == i p_ecn_fl ags. UVALUE)
}

}

LEETEELE it rrriiirirri
/1 TCP Options
FEETTELT i rrirri

/1 nbits is bound to the remaining length (in bits) of TCP
/1 options, including the EOL type byte.
tcp_opt _eol (nbits)

UNCOVPRESSED {

type =: = unconpressed_value(8, 0) [ 8 ];
padding =:=
unconpr essed_val ue(nbits-8, 0) [ nbits-8 ];
}
CONTRCOL {
pad_len [ 8 ];
}
COVWPRESSED eol list_item{
pad | en =:= conpressed value(8, nbits-8) [ 8 ];
}
COWPRESSED eol _irregul ar {
pad_len =:= static;
ENFORCE( nbits-8 == pad_| en. UVALUE)
}
}
tcp_opt _nop

UNCOWVPRESSED {
type =:= unconpressed_value(8, 1) [ 8 ];

COWPRESSED nop_list_item/{
}
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COVPRESSED nop_irregul ar {

}
}

tcp_opt _nss

UNCOWPRESSED {

type =: = unconpressed value(8, 2) [ 8 ];
l ength =:= unconpressed_value(8, 4) [ 8 ];
mss [ 16 ],

}
COWPRESSED nss_|ist_item{

nes =:=irregular(16) [ 16 ];
}
COWPRESSED nss_irregul ar {

nes =: = static;
}

}

tcp_opt _wscal e

UNCOWPRESSED {

type =: = unconpressed value(8, 3) [ 8 ];
l ength =:= unconpressed_value(8, 3) [ 8 ];
wscal e 8 1;
}
COVPRESSED wscal e |list_item{
wscale =:=irregular(8) [ 8 ];
}
COVWPRESSED wscal e_i rregul ar {
wscal e =:= static;
}
}
ts_Isb

UNCOVPRESSED {
tsval [ 32 ];

}

COWPRESSED tsval _7 {
di scrimnator =:
t sval

}

0 [ 1]
Isb(7, -1) [ 7 1;
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COVWPRESSED tsval 14 {
di scrimnator = ="10 [ 21;
t sval [sb(14, -1) [ 14 ];
}

COVPRESSED t sval _21 {
di scrimnator == "'110 [ 31;
t sval [ sh(21, 0x00040000) [ 21 ];
}

COWPRESSED t sval _29 {

di scrinminator = = 111’ [ 31];
t sval =:= | sb(29, 0x04000000) [ 29 ];
}
}
tcp_opt_ts
UNCOVPRESSED {
type =: = unconpressed value(8, 8) [ 8 ];
| ength =:= unconpressed_value(8, 10) [ 8 ];
t sval [ 32 ],
tsecho [ 32 ];

}

COVPRESSED tsopt _list_ item{
tsval == irregular(32) [ 32
tsecho irregular(32) [

}

COVPRESSED t sopt _irregul ar {
tsval =:=ts Isb [ 8, 16, 24, 32 ];
tsecho =:=ts_Isb [ 8, 16, 24, 32 ];
}
}

sack_pure_| sb(base)

UNCOVPRESSED {
sack field [ 32 ];
}

CONTRCOL {
ENFORCE( sack fiel d. CVALUE == (sack_field. WALUE - base));
}

COWPRESSED | sh_15 {
ENFORCE( sack_fi el d. CVALUE == sack_fiel d. CVALUE <= Ox7fff);
discrimnator =:="0 [ 17;
sack field [ 15 ];
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}

COWPRESSED | sh_22 {
ENFORCE( sack_fiel d. CVALUE == sack_fiel d. CVALUE <= Ox3fffff);
di scrimnator =:="10 [ 21];
sack field [ 22 ];

}

COVPRESSED | sb_29 {
ENFORCE( sack_fiel d. CVALUE == sack_fiel d. CVALUE <= Ox1fffffff);

di scrimnator == "110 [ 31];
sack field [ 29 ];
}
COWPRESSED ful | _of fset {
discrimnator =1="11111117 [ 81;
sack_field [ 32 ];
}

}

sack_bl ock(reference)

UNCOVPRESSED {
bl ock_start [ 32 ];
bl ock_end [ 32 ];

}
COVPRESSED ({
bl ock_start ==
sack_pure_| sb(reference) [ 16, 24, 32, 40 ];
bl ock_end ==
sack_pure_lsb(bl ock_start.UVALUE) [ 16, 24, 32, 40 ];
}

}

/1 The value of the paraneter is set to the ack_nunber val ue
/1 of the TCP header
tcp_opt _sack(ack_val ue)

UNCOWPRESSED {
type =: = unconpressed value(8, 5) [ 8
l ength [ 8
bl ock_1 [ 6
bl ock_2 [ O
bl ock_3 [ O
bl ock_4 [ O
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DEFAULT {
length =:= static;
bl ock_2 =:= unconpressed_val ue(0, 0);
bl ock_3 =:= unconpressed_val ue(0, 0);
bl ock_4 =:= unconpressed_val ue(0, 0);
}

COWPRESSED sackl list_item {
di scri m nat or = ' 00000001’
bl ock 1 = sack_bl ock(ack_val ue);
ENFORCE( | engt h. UVALUE == 10);

}

COWPRESSED sack? I|st _item{
di scri mi nat or ' 00000010’ ;
bl ock_1 sack_bl ock(ack_val ue);
bl ock_2 sack_bl ock(bl ock_1. UVALUE && OxXFFFFFFFF);
ENFORCE( | engt h. UALUE == 18);

}

COVMPRESSED sack3_list_item {
di scri m nat or ' 00000011’ ;

bl ock_1 :;: sack_block(ack_value);
bl ock_2 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);
bl ock_3 =: = sack_bl ock(bl ock_2. UWALUE && OxFFFFFFFF);

ENFCRCE(Iength UWALUE == 26);
}

COVPRESSED sack4 I|st _item{
di scri m nat or '’ 00000100’ ;

bl ock_1 =: = sack_bl ock(ack_val ue);

bl ock_2 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);
bl ock_3 =: = sack_bl ock(bl ock_2. UVALUE && OxFFFFFFFF);
bl ock_4 =: = sack_bl ock(bl ock_3. UVALUE && OxFFFFFFFF);

ENFORCE( | engt h. UVALUE == 34) ;

COVWPRESSED sack_unchanged_i rregul ar {

di scrimnator =:="'00000000’;
bl ock 1 == static;
bl ock_2 == static;
bl ock_3 == static;
bl ock_4 == static;

}

COVWPRESSED sackl1_irregul ar {
di scri m nat or = ' 00000007’
bl ock_1 : = sack_bl ock(ack_val ue);

Pelletier, et al. St andards Track [ Page 69]



RFC 6846 RCHC- TCP January 2013

ENFORCE( | engt h. UWVALUE == 10);
}

COVPRESSED sack?2_irregul ar {
di scrimnator =:='00000010’;
bl ock_1 =: = sack_bl ock(ack_val ue);
bl ock_ 2 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);

ENFORCE( | engt h. UVALUE == 18):
}

COVPRESSED sack3 |rregular {
di scrim nator ' 00000011’

bl ock_1 =E= sack_bl ock(ack_val ue);
bl ock_2 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);
bl ock_ 3 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);

ENFORCE( | engt h. UWVALUE == 26) ;
}

COVWPRESSED sack4_irregul ar {
di scri m nat or ' 00000100’ ;

bl ock_1 =: = sack_bl ock(ack_val ue);
bl ock_2 =: = sack_bl ock(bl ock_1. UVALUE && OxFFFFFFFF);
bl ock_3 =: = sack_bl ock(bl ock_2. UVALUE && OxFFFFFFFF);
bl ock_4 =: = sack block(block 3. WALUE && OxFFFFFFFF) ;
ENFORCE( | engt h. UVALUE == 34);
}
}

tcp_opt_sack _permtted

UNCOWPRESSED {

type =: = unconpressed value(8, 4) [ 8 ];
l ength =:= unconpressed_value(8, 2) [ 8 ];
}
COVWPRESSED sack _permitted |ist_item{
}
COWPRESSED sack_permitted_irregul ar {
}
}
tcp_opt _generic
UNCOVPRESSED {
type 8 1;
| engt h_nsb =:= unconpressed_value(l1l, 0) [ 1 ];
| ength_| sh 71;
Pelletier, et al. St andards Track
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contents [ length_I sb. UVALUE*8-16 ];
}
CONTROL {

option_static [ 1 ];
}
DEFAULT {

type == static;

length_| sb =:= static;

contents == static;
}
COWPRESSED generic_list_item{

type == irregul ar(8) [ 81;

option_static =:= one_bit_choice [ 171;

l ength_I sb == irregular(7) [ 71;

contents = =

irregular(length | sh. UVALUE*8-16) [ |ength_|sh. UVALUE*8-16 ];

}

/1 Used when context of option has option_static set to one

COVWPRESSED generic_static_irregular {
ENFORCE( opti on_static. UVALUE == 1);

}

/1 An itemthat can change, but currently is unchanged
COVWPRESSED generic_stable_irregul ar {
discrimnator =:="11111111" [ 8 ];
ENFORCE( opti on_static. UVALUE == 0);
}

/1 An itemthat is assunmed to change constantly.
/1 Length is not allowed to change here, since a |length change is
/1 nost likely to cause new NOPs or an EOL | ength change.
COVWPRESSED generic_full _irregular {
di scrimnator =:= '00000000’ [ 81;
contents ==
irregular(length_Isb. UVALUE*8-16) [ |ength_|sb. UVALUE*8-16 ];
ENFORCE( opti on_stati c. UVALUE == 0);

}
}

tcp_list_presence_enc(presence)

UNCOVPRESSED {
tcp_options;
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COVWPRESSED | i st_not_present {
tcp_options == static [ 0 ];
ENFORCE( pr esence == 0);

COVWPRESSED | i st _present {
tcp_options == list _tcp_options [ VARI ABLE ];
ENFORCE( presence == 1);
}
}

LEEEEEEEE bbb bbb i rri
/| TCP Header
FEEEEEEEEr bbb bbb rri
port_replicate(flags)
UNCOWPRESSED {
port [ 16 ];

COVPRESSED port_static_enc {

port =:= static [ O ];
ENFORCE( f | ags == 0b00);

}

COVPRESSED port _|sbh8 {
port =:=1sb(8, 64) [ 8 ];
ENFORCE(f | ags == 0b01);

}

COVPRESSED port _irr_enc {
port =:=irregular(1l6) [ 16 ];
ENFORCE(f 1 ags == 0b10);

}

}
tcp_irreg_i p_ecn(ip_inner_ecn)

UNCOVPRESSED ({
ip_ecn_flags [ 2 ];
}

COVPRESSED ecn_present {
/1 This field does not exist in the unconpressed header
/1 and therefore cannot use unconpressed_val ue.
i p_ecn_flags =:=
conpressed_value(2, ip_inner_ecn) [ 2 ];
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ENFORCE( ecn_used. UVALUE == 1);
}

COVPRESSED ecn_not _present {
ip_ecn_flags =:= static [ 0 ];
ENFORCE( ecn_used. UVALUE == 0);

}

}

rsf_index_enc

UNCOWPRESSED {
rsf flag [ 3 ];

}
COVPRESSED none {
rsf_idx =='00 [ 2];
rsf _flag =:= unconpressed val ue(3, 0x00);
}
COVPRESSED rst_only {
rsf _idx =='01 [ 2];
rsf_flag =:= unconpressed_val ue(3, 0x04);
}
COWPRESSED syn_only {
rsf_idx =:="10 [ 2 ];
rsf_flag =:= unconpressed_val ue(3, 0x02);
}
COVPRESSED fin_only {
rsf_idx =:="11 [ 2 ];
rsf_flag =:= unconpressed_val ue(3, 0x01);
}
}
optional 2bit_ paddi ng(used _fl ag)
{
UNCOVPRESSED {
}
COVWPRESSED used {
paddi ng =: = conpressed value(2, 0x0) [ 2 ];
ENFORCE(used _flag == 1);
}
COVPRESSED unused {
paddi ng =: = conpressed_val ue(0, 0x0);
Pelletier, et al. St andards Track
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ENFORCE(used_flag == 0);
}
}

/1 ack_stride_value is the user-selected stride for scaling the
/1 TCP ack_nunber

/1 ip_inner_ecn is the value bound when processing the innernost
/1 1P header (ipv4 or ipv6 encodi ng nethod)

tcp(payl oad_si ze, ack_stride_value, ip_inner_ecn)

UNCOWPRESSED {
src_port
dst _port
seq_nunber
ack_number
dat a_of f set
tcp_res_fl ags
tcp_ecn_fl ags
urg flag
ack_flag
psh_fl ag
rsf_flags
wi ndow
checksum
urg_ptr
options

}

CONTROL {

dummy field s =:= field_scaling(payl oad_si ze,
seq_nunber _scal ed. UVALUE, seq_nunber. UVALUE
seq_nunber residue. WALUE) [ 0 ];

dunmy _field_a =:= field_scaling(ack_stride. UVALUE
ack_number _scal ed. UWVALUE, ack_nunber. UVALUE
ack_nunber _residue. UVALUE) [ 0 ];

ENFORCE( ack_stride. UVALUE == ack_stride_val ue);

NN OO

RPWRFRPFEFNRAROWR R

»

]
16 ];
(dat a_of f set. UVALUE-5) *32 ];

— — — — — — — — — — — — — ——
-
[ep)

}
I NI TIAL {
ack_stride =: = unconpressed_val ue(16, 0);
}
DEFAULT {
src_port == static;
dst _port == static;
seq_nunber == static;
ack_numnber == static;

dat a_of f set i nferred_of fset;
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tcp_res flags =:= static;
tcp_ecn flags =:= static;
urg_fl ag =:= static;
ack _fl ag =: = unconpressed_val ue(1, 1);
rsf_flags =: = unconpressed_val ue(3, 0);
wi ndow =: = static;
urg ptr == static;
ack_stride =:= static;
ack_nunber _scal ed =: = static;
seq_nunber_scal ed =:= static;
ack_numnber residue =:= static;
seq_nunber residue =:= static;

}

COWPRESSED tcp_static {
src_port =:=irregular(16) [ 16 ];
dst _port =:=irregular(16) [ 16 ];

}

COVPRESSED t cp_ dynam c {
ecn_used =:= one_bit_choice [ 17;
ack_stmde_flag :::|rregular(1) [ 171;
ack_zero == irregular(1) [ 17;
urp_zero == irregular(1) [ 17;
tcp_res_flags == irregul ar(4) [ 41;
tcp_ecn_f 1l ags == irregular(2) [ 217;
urg_flag == irregular(1) [ 117;
ack_fl ag == irregular(1) [ 171;
psh_fl ag == irregular(1) [ 17;
rsf _flags == irregul ar(3) [ 31;
nsn == irregul ar(16) [ 16 ];
seq_nunber == irregul ar(32) [ 32 1;
ack_number ==

zero_or _irreg(ack_zero. CVALUE, 32) [ 0, 32 ]
wi ndow :::|rregular(16) [ 16 ];
checksum == irregul ar (16) [ 16 ];
urg_ptr ==
zero_or _irreg( _zero. CVALUE, 16) [ O, 16 ];

ack_stride ==
static_or_irreg(ack_stride_flag. CVALUE, 16) [ 0, 16 ];

options == list_tcp_options [ VAR ABLE ];
}
COWPRESSED tcp replicate {
reserved =="0 [ 117;
wi ndow_pr esence == irregular(1) [ 171;
list_present == irregular(1) [ 17;
src_port _presence =:= irregular(2) [ 21;
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dst _port _presence =:= irregular(2) [ 21;
ack_stride_fl ag == irregular(1) [ 17;
ack_presence == irregular(1) [ 117;
ur p_presence == irregular(1) [ 171;
urg_fl ag == irregular(1) [ 17;
ack flag == irregular(1) [ 17;
psh_fl ag == irregular(1) [ 171;
rsf_flags =: = rsf_i ndex_enc [ 217;
ecn_used =: = one_bit_choice [ 117;
nsn == irregul ar (16) [ 16 1;
seq_nunber == irregul ar(32) [ 32 ];
src_port ==

port repI|cate(src port _presence) [ O, 8 16 ];
dst _port ==

port repllcate(dst port _presence) [ O, 8 16 ];
wi ndow ==

statrc_or_rrreg(mnndomLpresence, 16) [ 0, 16 ];
urg_poi nt ==

static_or_irreg(urp_presence, 16) [ O, 16 ];
ack_number ==

static_or_irreg(ack_presence, 32) [ 0, 32 17;
ecn padd|ng ==

optional _2bit paddrng(ecn used. CVALUE) [ 0, 2];
tcp_res_flags ==

static_or |rreg(ecn used. CVALUE, 4) [ O, 417;
tcp_ecn flags =

static_or |rreg(ecn used. CVALUE, 2) [ 0, 27];
checksum == irregul ar (16) [ 16 1;

ack_stride ==

static_or irreg(ack stride _flag. CVALUE, 16) [ 0, 16 ];
options

tep_list presence enc(llst _present. CVALUE) [ VARI ABLE ];

}
COWPRESSED tcp_irregul ar {
ip_ecn flags =:=tcp_irreg ip _ecn(ip_inner_ecn) [ 0, 2];
tcp_res flags =:=
static_or_irreg(ecn_used. CVALUE, 4) [ O, 417;
tcp_ecn_flags =:=
static_or_irreg(ecn_used. CVALUE, 2) [ 0, 21];
checksum == irregul ar (16) [ 16 ];
}

}
FEEEEEEEE bbb r

/1 Encoding met hods used in conmpressed base headers
FEEEEEEEE b r bbb
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dscp_enc(fl ag)
{

UNCOVPRESSED {
dscp [ 6 ];

COVPRESSED st atic_enc {
dscp =:= static [ 0 ];
ENFORCE(fl ag == 0);

}

COVPRESSED irreg {
dscp == irregul ar (6) [ 61;
paddi ng =:= conpressed value(2, 0) [ 2 ];
ENFORCE(fl ag == 1);
}
}

i p_id_|Isb(behavior, k, p)
{

UNCOVPRESSED {

ip_id][ 16 ];
CONTROL {
i p_id_nbo [ 16 7;
}
COVPRESSED nbo {
ip_id offset == 1Isb(k, p) [ k ];
ENFORCE( behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ;
ENFORCE(i p_i d_of fset. UVALUE == ip_id. UWALUE - msn. UVALUE) ;
}
COVWPRESSED non_nbo {
ip_id offset == 1Ish(k, p) [ k ];
ENFORCE( behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ;
ENFORCE(i p_i d_nbo. UVALUE ==
(ip_id. UVALUE / 256) + (ip_id. WALUE % 256) * 256);
ENFORCE(i p_i d_nbo. ULENGTH == 16);
ENFORCE(i p_i d_of fset. UVALUE == i p_i d_nbo. UWVALUE - nsn. UVALUE) ;
}

}
optional _ip_id_Isb(behavior, indicator)

UNCOMPRESSED {
ipid[ 16 ]:
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}
COWPRESSED short {
ip_id == ip_id_|Isb(behavior, 8, 3) [ 8 ];
ENFORCE( (behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) | |
(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
ENFORCE( i ndi cator == 0);
}
COVWPRESSED | ong {
ip_id==irregular(16) [ 16 ];
ENFORCE( (behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) | |
(behavi or == | P_I D BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
ENFORCE(i ndi cator == 1);
ENFORCE(i p_i d_of fset. UVALUE == ip_id. UVALUE - msn. UVALUE) ;
}

COVPRESSED not _present {
ENFORCE( ( behavi or ==
(behavi or == 1|
}

dont _fragnent (versi on)

BEHAVI OR_RANDOM) | |

PID
P_I D_BEHAVI OR_ZERO)) ;

UNCOMVPRESSED {
df [ 11;

COVPRESSED v4 {
df == irregular(l) [ 11;
ENFORCE( versi on == 4);

}

COVPRESSED v6 {
df =:= conpressed_value(1, 0) [ 1 ];
ENFORCE( ver si on == 6);
}
}

FHELLEEE L rrrirrrnri

/1 Actual start of conpressed packet formats

/1 1nportant note:

/1 The base header is the conpressed representation
/1 of the innernost | P header AND t he TCP header.
LEEEEEEErrr bbb irrrrri

[l ttl _irregular_chain flag is set by the user if the TTL/Hop Limt
/1 of an outer header has changed. The sane val ue nust be passed as
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/1 an argunment to the ipv4/ipvé encodi ng methods when extracting
/1 the irregular chain itemns.
co_baseheader (payl oad_si ze, ack_stride_val ue,
ttl _irregular_chain_flag, ip_id_behavior_val ue)
{

UNCOWPRESSED v4 {
out er headers
version
header _| ength
dscp
i p_ecn_fl ags
| ength
ip_id
rf
df
nf
frag_of fset
ttl _hopl
next header
checksum
src_addr
dest addr
ext ensi on_headers =: = baseheader _extensi on_headers
src_port
dest _port
seq_nunber
ack_number
dat a_of f set
tcp_res_flags
tcp_ecn_fl ags
urg flag
ack_flag
psh_fl ag
rsf_flags
wi ndow ;
tcp_checksum 1;
urg ptr 16 ];
options [ (data offset.UVALUE-5)*32 ];

}

UNCOVPRESSED v6 {
ENFORCE(i p_i d_behavi or _i nnernost. UWVALUE == | P_I D_BEHAVI OR_RANDOM ;
out er _headers =:= baseheader outer_headers [ VAR ABLE ];
versi on =:= unconpressed_val ue(4, 6) [ 41;
dscp 6 1;

l;

l;

1

baseheader out er headers
unconpr essed_val ue(4, 4)
unconpr essed_val ue(4, 5)

VARI ABLE ];
41,

[ Y —

[e2e)]

unconpr essed_val ue(1, 0)

e

unconpr essed_val ue(1, 0)
unconpr essed_val ue(13, 0)

w

e
e e e = ¢ b

ABLE ];

<WWROORRPRRRREPERNOA

NNOOBNNO
Py,

- ed e b e

[ T S S P —

RPWRFRPFEFNRAROWR R

»

— e e e e e e e e e e e e e e e e e e e e e e

[
i p_ecn_fl ags [ 2
fl ow | abel [ 2
[ 1

0
payl oad_I| ength 6
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next header [ 81;
ttl _hopl [ 81;
src_addr [ 128 ];
dest _addr [ 128 ];
ext ensi on_headers =: = baseheader _extensi on_headers [ VARI ABLE ];
src_port [ 16 ];
dest _port [ 16 ];
seq_nunber [ 32 1;
ack_number [ 32 1;
dat a_of f set [ 41;
tcp_res_fl ags [ 41;
tcp_ecn_fl ags [ 21;
urg flag [ 171;
ack_flag [ 117;
psh_fl ag [ 117;
rsf_flags [ 31;
wi ndow [ 16 ];
tcp_checksum [ 16 ];
urg ptr [ 16 ];
options [ (data offset.UVALUE-5)*32 ];
df =: = unconpressed_val ue(0, 0) [ 01;
i p_id =:= unconpressed_val ue(0, 0) [ 01;
}
CONTROL {
dunmy field s =:= field_scaling(payl oad_size,
seq_nunber _scal ed. UVALUE, seq_nunber. UVALUE
seq_nunber _residue. WALUE) [ 0 ];
dummy _field_a =:= field_scaling(ack_stride. UVALUE
ack_number scal ed. UVALUE, ack_numnber. UVALUE
ack_nunber _residue. UWWALUE) [ 0 ];
ENFORCE( ack_stride. UVALUE == ack_stride_val ue);
ENFORCE(i p_i d_behavi or _i nnernost . UVALUE == i p_i d_behavi or _val ue);
}
I NI TIAL {
ack stride =: = unconpressed_val ue(16, 0);
}
DEFAULT {
tcp_ecn_flags =:= static;
dat a_of f set == inferred_of fset;
tcp_res flags =:= static;
rsf _flags =: = unconpressed _val ue(3, 0);
dest _port == static;
dscp == static;
src_port == static;
urg flag =: = unconpressed _val ue(1, 0);
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wi ndow =:= static;
dest _addr == static;
version =:= static;
ttl _hopl == static;
src_addr == static;
df =: = static;
ack_number == static;
urg ptr == static;
seq_nunber == static;
ack _fl ag =: = unconpressed_val ue(1, 1);

[/l The default for "options" is case 2) and 3) from

/1l the list in Section 6.3.1 (i.e., nothing present in the
/1 baseheader itself)

payl oad_I| engt h inferred_i p_v6_| ength;

checksum =:= inferred_i p_v4_header_checksum
 ength == inferred_i p_v4_length;

flow | abel == static;

next _header =: = static;

i p_ecn_flags == static;

/1 The tcp_checksum has no default,
/1 it is considered a part of tcp_lrregular

i p_i d_behavi or _i nnernmost =:= static;
ecn_used == static;

ack stride == static;
ack_number scal ed =:= static;
seq_nunber scal ed =:= static;
ack_nunber _residue == static;
seq_nunber _residue =:= static;

/1 Default is to have no TTL in irregular chain
/1 Can only be nonzero if co_common is used
ENFORCE(tt!| irregular_chain flag == 0);

}

NN NN NN
/1 Comon conpressed packet format
FEETTELE b rirriirrrrd

COVPRESSED co_common {
di scri m nat or
ttl _hopl _outer_flag

'1111101 [ 71];

conpressed_val ue(1, ttl _irregular_chain flag) [ 11;
ack _flag == irregular(1) [ 171;
psh_fl ag == irregular(1) [ 17;
rsf_flags =: = rsf_i ndex_enc [ 217;
nmsn == | sb(4, 4) [ 41;
seq_i ndi cat or == irregular(2) [ 21];
ack_indicator == irregular(2) [ 21;
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ack _stride_indicator
wi ndow_i ndi cat or

i p_i d_i ndicator
urg_ptr_present
reserved

ecn_used
dscp_present

ttl _hopl present

irregular(l)

i rregul ar(1)

i rregul ar (1)
irregular (1)
conpressed_val ue(1, 0)
one_bit_choice
irregular(l)

i rregul ar(1)

PRRPRRRRRRR

1 1 T 1 1 I O VO | O

WIS

list_present irregular(l)

i p_i d_behavi or _i nner nos == irregul ar(2) [ 21;
urg_fl ag irregular (1) [ 17;

df dont _fragnent (versi on. UVALUE) [ 17;
header crc crc7(TH S. UVALUE, THI S. ULENGTH) [ 7 1;
seq_ number

vari abl e_l engt h_32 enc(seq i ndicator. CVALUE) [ O, 8, 16, 32 ];
ack_number

vari abl e _length_32 enc(ack i ndicator. CVALUE) [ O, 8, 16, 32 ];
ack_stride =

stat|c_or_|rreg(ack_str|de_|nd|cator.CVALUE, 16) [ O, 16 ];

Wi ndow ==

static_or_irreg(w ndow_i ndi cat or. CVALUE, 16) [ 0, 16 ];
ip_id ==

optional _ip_id_Isb(ip_id_behavior_innernost. U/ALUE

i p_i d_indicator. CVALUE) [ O, 8 16 ];

urg_ptr ==

static_or _irreg(urg_ ptr _present. CVALUE, 16) [ O, 16 ];
dscp

dscp_enc(dscp_ present CVALUE) [ 0, 81];
ttl _hopl

static_or _irreg(ttl hopl _present. CVALUE, 8) [ 0, 8];
options

tcp_list_presence_ enc(llst _present. CVALUE) [ VAR ABLE ];

}

/1 Send LSBs of sequence number
COVWPRESSED rnd_1 {

di scrinminator = = ’101110’ [ 61;
seq_nunber =:= | sb(18, 65535) [ 18 ];
nmsn =:= 1sb(4, 4) [ 41;
psh_fl ag == irregular(1) [ 171;
header _crc == crc3(TH S. WALUE, THI S. ULENGTH) [ 3 ];
ENFCRCE((|p i d_behavi or i nnernost . UVALUE ==
| P_I D_BEHAVI OR_RANDOM | |
(i p_i d_behavi or _i nnernost. UVALUE == | P_I D BEHAVI OR_ZERQO)) ;

}

/1 Send scal ed sequence nunber LSBs
COVPRESSED rnd_2 {
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di scri m nat or = = '1100’ [ 41;
seq_nunber _scaled =:=1sb(4, 7) [ 417;
nen =:= | sb(4, 4) [ 417;
psh_fl ag ::irregular(l) [ 171;
header _crc == crc3(TH S. WALUE, THI S. ULENGTH) [ 3 ]

ENF(RCE( payl oad_si ze I = O);
ENFORCE( (i p_i d_behaV| or i nnernost. UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_i d_behavi or _i nnernost. UVALUE == | P_I D BEHAVI OR_ZERQ));

}

/1 Send acknowl edgnent nunber LSBs
COVWPRESSED rnd_3 {

di scrimnator =:='0 [ 17;
ack_number =:= | sb(15, 8191) [ 15 7;
nsn == | sb(4, 4) [ 41;
psh_fl ag == irregular(1) [ 17;
header crc == crcS(THI S. WALUE, THI S.ULENGTH) [ 3 ];
ENFO?CE((l p_i d_behavi or _i nnernost. UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_i d_behavi or _i nnernost. UVALUE == | P_I D BEHAVI OR_ZERQ));
}
/1 Send acknowl edgment nunber scal ed
COVPRESSED rnd_4 {
di scri m nat or == '110r [ 417;
ack_nunmber _scaled =:=1sb(4, 3) [ 41;
nsn == |sh(4, 4) [ 41];
psh_fl ag == irregular(1) [ 17;
header crc == crc3(TH S. WALUE, THI S.ULENGTH) [ 3 ];

ENFORCE(ack_stride. UVALUE ! = 0);
ENFORCE( (i p_i d_behavi or _i nner nost . UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_i d_behavior_innernmost. UVALUE == | P_I D BEHAVI OR _ZERO)) ;

}

/1 Send ACK and sequence nunber
COVPRESSED rnd_5 {

di scrininator == '100’ [ 31;

psh_fl ag == irregular(1) [ 171;

nmsn == | sb(4, 4) [ 41;

header crc == crc3(TH S. WALUE, THI S.ULENGTH) [ 3 ];
seq_nunber == | sh(14, 8191) [ 14 1;
ack_number =:= | sb(15, 8191) [ 15 7;
ENFO?CE((| p_id_ behaw or _i nnernmost . UVALUE ==

| P_I D_BEHAVI OR_RANDOM) | |
(i p_i d_behavior_i nnernmost. UVALUE == | P_I D BEHAVI OR_ZERQ)) ;
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/1 Send both ACK and scal ed sequence nunber LSBs
COVPRESSED rnd_6 {

di scri m nat or == "'1010 [ 41;
header crc == crc3(TH S. WALUE, THI S. ULENGTH) [ 3 ];
psh_fl ag == irregular(1) [ 17;
ack_number == | sb(16, 16383) [ 16 ];
nsn == | sb(4, 4) [ 41;
seq_nunber _scaled =:=1sb(4, 7) [ 417;

ENFORCE( payl oad_size !I= O);
ENFORCE( (i p_i d_behavi or _i nner most . UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_id_behavior_innernost. UVALUE == | P_I D BEHAVI OR _ZERO)) ;

}

/1 Send ACK and wi ndow
COVPRESSED rnd_7 {

di scrimnator =:="101111’ [ 61;
ack_number =:= | sb(18, 65535) [ 18 ];
wi ndow == irregul ar(16) [ 16 ];
nsn =:= 1sbh(4, 4) [ 41;
psh_fl ag == irregular(1) [ 117;
header crc == cch(THI S. UWALUE, THI S.ULENGTH) [ 3 ];

ENF(RCE((| p_id_ behaV| or _i nnernost . UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_id_behavior_innernost. UWVALUE == | P_I D BEHAVI OR _ZERO)) ;

}

/1 An extended packet type for sel dom changing fields

/1 Can send LSBs of TTL, RSF flags, change ECN behavi or, and
/1 options I|ist

COVWPRESSED rnd_8 {

di scrininator == ’'10110’ [ 51;
rsf_flags =: = rsf_i ndex_enc [ 217;
list_present =:=irregular(l) [ 171;

header _crc == crc7(TH S. WALUE, THI S.ULENGTH) [ 7 ];

nsn == | sbh(4, 4) [ 47;

psh_fl ag == irregular(1) [ 171;

ttl _hopl == |Isb(3, 3) [ 31;
ecn_used =:= one_bit_choice [ 171;
seq_nunber =:= | sb(16, 65535) [ 16 1;
ack_number == | sb(16, 16383) [ 16 ];

opti ons = =

tcp_list _presence_ enc(l i st_present. CVALUE) [ VAR ABLE ];
ENFORCE( (i p_i d_behavi or _i nner nost . UVALUE ==
| P_I D_BEHAVI OR_RANDOM) | |
(i p_i d_behavior_innernmost. UVALUE == | P_I D BEHAVI OR_ZERQ)) ;
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/1 Send LSBs of sequence nunber
COWPRESSED seq_1 {

di scrimnator =:="'1010 [ 41;
ip_id == ip_id_Isb(ip_id_behavior_innermost. UWALUE, 4, 3) [ 4 ]
seq_nunber =:= | sb(16, 32767) [ 16 ];
nmen =:= | sbh(4, 4) [ 417;
psh_fl ag =:=irregular(1) [ 17;
header _crc == cch(THI S. WALUE, THI S. ULENGTH) [ 31;
ENFORCE( (i p_i d_behavi or _i nner nost . UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL) | |
(i p_i d_behavi or _i nnernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
}
/1 Send scal ed sequence nunber LSBs
COVPRESSED seq_2 {
di scri m nat or == ’11010’ [ 51;
ip_id ==
i p_id_Isb(ip_id_behavior_innernost. U/ALUE, 7, 3) [ 71;
seq_nunber _scal ed == I sb(4, 7) [ 417;
nmsn =:= 1sb(4, 4) [ 417;
psh_fl ag :::|rregular(1) [ 171;
header _crc == crc3(TH S. UWALUE, THI S. ULENGTH) [ 3 ]
ENF(RCE( payl oad_si ze I = O)
ENFORCE( (i p_i d_behaV| or i nnernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL) | |
(i p_i d_behavi or _i nnernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
}
/1 Send acknowl edgnent nunber LSBs
COVWPRESSED seq_3 {
di scrimnator =:="'1001 [ 41;
ip_id == ip_id_Isb(ip_id_behavior_innermost. UWALUE, 4, 3) [ 4]
ack_number == | sb(16, 16383) [ 16 ];
nsn == | sbh(4, 4) [ 47;
psh_fl ag == irregular(1) [ 171;
header crc == cch(THI S. WALUE, THI S. ULENGTH) [ 31;
ENFO?CE((| p_i d_behavi or _i nnernmost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL) | |
(i p_i d_behavi or _i nnernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;

}

/1 Send scal ed acknow edgnment nunber scal ed

COVPRESSED seq_4 {
di scri m nat or
ack_number _scal ed

0 [ 1];
| sb(4, 3) [ 4];
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/1 Due to having very fewip_ id bits, no negative offset

ip_id == ip_id_Isbh(ip_id_behavior_innernost. UWALUE, 3, 1) [ 3 ];
msn == I sh(4, 4) [ 4];
psh_fl ag == irregular(1) [ 171;
header _crc == crc3(TH S. WALUE, THI S. ULENGTH) [ 3 ];
ENFORCE(ack_stride. UVALUE ! = 0);
ENFORCE( (i p_i d_behavi or _i nner nmost . UVALUE ==
| P_I D BEHAVI OR_SEQUENTI AL) | |
(i p_i d_behavi or _i nnernost . UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
}
/1 Send ACK and sequence nunber
COVWPRESSED seq 5 {
di scrimnator =:="'1000’ [ 41;
ip_id == ip_id_Isb(ip_id_behavior_innermost. UWALUE, 4, 3) [ 4 ];
ack_number == | sb(16, 16383) [ 16 ];
seq_nunber == | sb(16, 32767) [ 16 ];
nsn == | sb(4, 4) [ 41;
psh_fl ag == irregular(1) [ 17;
header crc == crcS(THI S. WALUE, THI S. ULENGTH) [ 31;
ENFO?CE((| p_i d_behavi or _i nner most . UVALUE ==
| P_I D_BEHAVI OR_ _SEQUENTI AL) | |
(i p_i d_behavi or_i nner nost . UWVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
}
/1 Send both ACK and scal ed sequence nunber LSBs
COVPRESSED seq_6 {
di scri m nat or = = '11011 [ 51;
seq_ nunber _scaled =:=1sb(4, 7) [ 41;
ip_id == ip_id_Isbh(ip_id_behavior_innernost. WALUE, 7, 3) [ 7 ];
ack_number =:= | sb(16, 16383) [ 16 1;
nmsn == | sb(4, 4) [ 41;
psh_fl ag :::irregular(l) [ 17;
header crc == crc3(TH S. WALUE, THI S. ULENGTH) [ 3 ];
ENFO?CE( payl oad_si ze I = O)
ENFORCE( (i p_i d_behaV| or i nnernost. UWALUE ==
| P_I D_ BEHAVI OR_SEQUENTI AL) ||
(i p_i d_behavi or _i nnernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
}
/1 Send ACK and wi ndow
COWPRESSED seq_7 {
di scrimnator =:="'1100’ [ 41;
wi ndow =: = | sb(15, 16383) [ 15 7;
ip_id==ip_id_Isb(ip_id behavior_innernmost. UALUE, 5 3) [ 5];
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ack_number == | sb(16, 32767) [ 16 ];
nsn =:= Ish(4, 4) [ 41;
psh_fl ag == irregular(1) [ 117;
header crc == cch(THI S. UVALUE, THI S. ULENGTH) [ 31;
ENFORCE( (i p_i d_behavi or _i nner nost . UVALUE ==
| P_I D_BEHAVI OR_ _SEQUENTI AL) | |
(i p_id_behavior _innernost. UVALUE ==
I P_ ID BEHAVI OR _ . SEQUENTI AL_ SWAPPED) ) ;
}
/1 An extended packet type for seldom changing fields
/1 Can send LSBs of TTL, RSF flags, change ECN behavi or, and
/1 options |ist
COVWPRESSED seq_8 {
di scrimnator =:=’'1011’ [ 417;
ip_id == ip_id_Isb(ip_id_behavior_innermost. UWALUE, 4, 3) [ 4 ];
list_present =:=irregular(l) [ 17;
header crc == crc7(TH S. WALUE, TH S. ULENGTH) [ 71;
nsn == | sb(4, 4) [ 41;
psh_fl ag == irregular(1) [ 17;
ttl _hopl == |lsb(3, 3) [ 31;
ecn_used =:= one_bit_choice [ 171;
ack_number =:= | sb(15, 8191) [ 15 7;
rsf _flags =: = rsf_index_enc [ 21;
seq_nunber == | sh(14, 8191) [ 14 1;
options ==
tep_list presence enc(I i st_present. CVALUE) [ VARI ABLE ];

ENFORCE( (i p_i d_behavi or _i nner nost . UVALU
| P_I D_BEHAVI OR_SEQUENTI AL) ||
(i p_id_behavior _innernost. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ) ;
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8.3. Feedback Formats and Options
8.3.1. Feedback Formats

This section describes the feedback formats for the ROHC TCP profile,
foll owi ng the general ROHC feedback format described in Section 5.2.4
of [ RFC5795].

Al feedback formats carry a field | abeled MSN. The MSN field
contains LSBs of the MSN control field described in Section 6.1.1.
The sequence number to use is the MSN corresponding to the | ast
header that was successfully CRC-8 validated or CRC verified.

FEEDBACK- 1
0 1 2 3 4 5 6 7
ot e e e e e e e e oo e - -+
| VBN |
e

MBN: The LSB-encoded naster sequence nunber.

A FEEDBACK-1 is an ACK. In order to send a NACK or a STATI C NACK,
FEEDBACK- 2 nmust be used.

FEEDBACK- 2

0 1 2 3 4 5 6 7
i S L g

| Ackt ype| VSN |
T T Tl I =
| VSN |
T Tl I g
| CRC |
T Tl T e
/ Feedback options /
T T Tl I =
Ackt ype:

0 = ACK

1 = NACK

2 = STATI C- NACK

3 is reserved (MJUST NOT be used for parsability)
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MBN: The LSB-encoded naster sequence nunber.

CRC. 8-bit CRC conputed over the entire feedback el ement (as
defined in Section 5.3.1.1 of [RFC5795]). For the purpose of
conputing the CRC, the CRC field is zero. The CRCis calcul ated
usi ng the pol ynom al defined in [ RFC5795].

Feedback options: A variable nunber of feedback options, see
Section 8.3.2. Options may appear in any order.

A FEEDBACK-2 of type NACK or STATIC-NACK is always inplicitly an
acknow edgnment for a successfully deconpressed packet, which packet
corresponds to the MSN of the feedback el ement, unless the NMSN- NOT-
VALI D option (Section 8.3.2.2) appears in the feedback el enent.

The FEEDBACK-2 format always carries a CRC and is thus nore robust
than the FEEDBACK-1 format. Wen receiving FEEDBACK-2, the
conpressor MJST verify the information by conputing the CRC and by
conparing the result with the CRC carried in the feedback format.
the two are not identical, the feedback el ement MJST be discarded.

8.3.2. Feedback Options

A ROHC- TCP f eedback option has variable | ength and the foll ow ng
general format:

0 1 2 3 4 5 6 7
T D

| Opt Type | Opt Len |

T e T S

/ option data /  Opt Length (octets)
T T TN I g

Each ROHC- TCP f eedback option can appear at npst once within a
FEEDBACK- 2.

8.3.2.1. The REJECT Option

The REJECT option infornms the conpressor that the deconpressor does
not have sufficient resources to handle the flow

e

| Opt Type =2 | Opt Len =0 |
T T TN I g
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When receiving a REJECT option, the conpressor MJST stop conpressing
the packet flow, and SHOULD refrain fromattenpting to increase the
nunber of conpressed packet flows for some time. The REJECT option

MUST NOT appear nore than once in the FEEDBACK-2 format; otherw se,

the conpressor MJST discard the entire feedback el ement.

8.3.2.2. The MSN-NOT-VALID Option

The MSN-NOT- VALI D option indicates that the MSN of the feedback is
not valid.

e

| Opt Type =3 | Opt Len =0
T T TN I g

A compressor MUST ignore the MSN of the feedback el ement when this
option is present. Consequently, a NACK or a STATI C NACK f eedback
type sent with the MSN-NOT-VALID option is equivalent to a STATIC
NACK with respect to the semantics of the feedback nessage.

The MSN- NOT- VALI D option MJST NOT appear nore than once in the
FEEDBACK-2 format and MJUST NOT appear in the sanme feedback el enent as
the MSN option; otherw se, the conpressor MJST discard the entire

f eedback el ement.

8.3.2.3. The MSN Option
The MSN option provides 2 additional bits of MSN

B T S T g
| Opt Type =4 | Opt Len =1
T T TN I g

| MBN | Reser ved
L S e e e

These 2 bits are the least significant bits of the MSN and are thus
concatenated with the 14 bits already present in the FEEDBACK-2
format.

The MSN option MJUST NOT appear nore than once in the FEEDBACK-2
format and MJUST NOT appear in the sane feedback el ement as the NMSN-
NOT- VALI D option; otherw se, the conpressor MJST discard the entire
f eedback el ement.
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8.3.2.4. The CONTEXT_MEMORY Feedback Option

The CONTEXT_MEMORY option nmeans that the deconpressor does not have
sufficient nmenory resources to handl e the context of the packet fl ow,
as the flowis currently conpressed.

0 1 2 3 4 5 6 7
A R S S

| Opt Type =9 | Opt Len =0

M B &

When recei ving a CONTEXT_MEMORY option, the conpressor SHOULD t ake
actions to conpress the packet flowin a way that requires | ess
deconpressor menory resources, or stop conpressing the packet flow

The CONTEXT_MEMORY option MJST NOT appear nore than once in the
FEEDBACK-2 format; otherw se, the conpressor MJST discard the entire
f eedback el ement.

8.3.2.5. Unknown Option Types

9.

1

If an option type unknown to the conpressor is encountered, the
conpressor MJST continue parsing the rest of the FEEDBACK el enent,
which is possible since the length of the option is explicit, but
MUST ot herwi se ignore the unknown option

Changes from RFC 4996

This RFC revises RFC 4996. It is nostly backwards-conpatible with
RFC 4996, except for two cases that did not interoperate as described
bel ow.

Functi onal Changes

0 The SACK option conmpression in [RFC4996] assumed that nultiple
SACK bl ocks within the sane option would be in sorted order so
that the bl ock starts were LSB-encoded fromthe end of the
previous block. This nmeant that SACK bl ocks that are not in
sorted order could be inpossible to conpress in sonme cases.
Therefore, the SACK conpression in the formal notation has changed
and therefore also the bits-on-the-wre.

o The ESP NULL header conpression has been deprecated due to
interoperability problems with needing to know i nformation from
the trailer. The ESP NULL conpression was al ready renoved from
ROHCv2 [ RFC5225] for the same reason and it was considered better
to renove it fromthis profile rather than try to fix the
interoperability issue.
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9.

2.

10.

Non-functional Changes

0 The way sequential |P-1D conpression was described in the FN code
was i ncorrect and the code used for ROHCv2 [ RFC5225] has been
inmported into this specification (e.g., offset is nmade into a
gl obal control field). This does not change the bits-on-the-wre.
The only change is how this encoding is described in the fornal
not ati on, not how t he conpressi on occurs.

o Default encoding for the 'df’ and "ip_id fields have been added
for 1Pv6 with O-bit unconpressed format to clarify that these
never appear in |Pv6.

o The scal ed encodi ng of the Acknow edgrment Number and Sequence
Nunmber were incorrectly described in the FN code in [ RFC4996] and
have been updated in the same style as in ROHCv2 [ RFC5225]. This
does not change the bits-on-the-wire, only the way the conpression
is described in the FN code.

o The external argunents to ipv4 and co_baseheader have been
updated. This is again only a change for FN correctness and does
not affect interoperability.

o Errata for [RFC4996] related to minor errors in the FN and textua
errors have al so been corrected.

Security Consi derations

A mal functioning or malicious header conpressor could cause the
header deconpressor to reconstitute packets that do not match the

original packets but still have valid IP and TCP headers, and
possi bly also valid TCP checksuns. Such corruption nay be detected
with end-to-end authentication and integrity nechanisns that will not

be affected by the conpression. Mreover, this header conpression
schene uses an internal checksum for verification of reconstructed
headers. This reduces the probability of produci ng deconpressed

headers not matching the original ones w thout this being noticed.

Deni al - of -service attacks are possible if an intruder can introduce
(for example) bogus IR, CO or FEEDBACK packets onto the |ink and
thereby cause conpression efficiency to be reduced. However, an
intruder having the ability to inject arbitrary packets at the link
layer in this manner raises additional security issues that dwarf
those related to the use of header conpression
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11.

12.

13.

13.

| ANA Consi der ati ons

The reference for the ROHC profile identifier 0x0006 has been updated
to reference this docunent instead of RFC 4996.

A ROHC profile identifier has been reserved by I ANA for the profile
defined in this docunent. Profiles 0x0000-0x0005 have previously
been reserved; this profile is 0x0006. As for previous ROHC
profiles, profile nunbers 0xnn06 have been reserved for future
updates of this profile.

Profile Usage Docunent
identifier

0x0006 ROHC TCP [ RFC6846]
0xnn06 Reserved
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