I nternet Engi neering Task Force (I ETF) P. Kewi sch
Request for Comments: 7095 Mozill a
Cat egory: Standards Track January 2014
| SSN: 2070-1721

jCard: The JSON Format for vCard
Abst r act

This specification defines "jCard", a JSON format for vCard data.
The vCard data format is a text format for representing and
exchangi ng information about individuals and other entities, for
exanpl e, tel ephone nunbers, enail addresses, structured names, and
delivery addresses. JSON is a |ightweight, text-based, |anguage-

i ndependent data interchange format comonly used in |nternet
applications.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc7095

Copyri ght Notice

Copyright (c) 2014 |ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Kewi sch St andards Track [Page 1]

RFC 7095

j Card January 2014

Tabl e of Contents

1. Introduction .
2. Conventions Used in Th| S Docurrent
3

3. 3.
3

DWW W W W W W R WL WD

. Converting fromvCard to jCard
3. 1.
3.2

Pr e- processi ng

j Card nj ect and. S&/nt act| c Ent | t| es (RFC 6350 Sectl ons .

6.1.1 and 6.1.2) . .

Properties (RFC 6350, Sectl on 6)
Speci al Cases for Properties

1.1 The VERSI ON Property

1.2. Gouping of Properties

.1.3. Structured Property Val ues

aranmeters (RFC 6350, Section 5)
VALUE Par anet er .

1.
3.
3.
3
P

1 .o .
4.2. Milti-Valued Paraneters .
V.

SRR RS RS RS R RN RS

al ues (RFC 6350, Section 4) . .

1. Text (RFC 6350, Section 4.1)

2 URI (RFC 6350, Section 4.2) . .

3. Date (RFC 6350, Section 4.3.1)

4. Tinme (RFC 6350, Section 4.3.2) . .

5 Date-Ti me (RFC 6350, Section 4.3.3) . . .
6 Date and/or Time (RFC 6350, Section 4.3. 4)
7 Ti mestanp (RFC 6350, Section 4.3.5)

8. Bool ean (RFC 6350, Section 4.4)

9. Integer (RFC 6350, Section 4.5)

.10. Float (RFC 6350, Section 4.6) . . .
.11, UTC O fset (RFC 6350, Section 4.7) .
.12. Language Tag (RFC 6350, Section 4.8)

Ext ensi ons (RFC 6350, Section 6.10)

4, Convert|ngfromJCard|nto vCard Coe
5. Handling Unrecogni zed Properties or Paraneters

5. 1.
5. 2.
5. 3.

Converting vCard into jCard .
Converting jCard into vCard .
Exanpl es Coe

6. Security Considerati ons .
7. | ANA Considerations .

7. 1.
7.2.

GROUP vCard Pararreie'r Co .
UNKNOWN vCard Val ue Dat a Type .

8. Acknow edgnents .
9. References

9.1.
9. 2.

Nor mati ve Ref er ences
I nformati ve References

Appendi x A, ABNF Synt ax
Appendi x B. Exanples .

B. 1.
B.
B.

Kew sch

1.
1.2. jCard Data

Exampl e: vCard of fhe Author of RFC 63;50.
1. vCard Data

A DhWW

O~NNNO1O1

10

11
11
12
12
12
13
14
16
16
17
17
17
18
18
18
19

19
20
20

22
23
24
24
24
24

26
27
27
27
28

St andards Track [Page 2]

RFC 7095 j Card January 2014

1

| ntroducti on

The vCard data format [RFC6350] provides for the capture and exchange
of information normally stored within an address book or directory
application. The vCard format has gone through nultiple revisions,
nost recently vCard 4.

As certain simlarities exist between vCard and the i Cal endar data
format [RFC5545], there is also an effort to define a JSO\ based data
format for calendar information called jCal [JCAL] that parallels the
format defined in this specification. The term"JSON' describes the
JavaScript Object Notation defined in [RFC4627].

The purpose of this specification is to define "jCard", a JSON format
for vCard data. One nain advantage to using a JSONbased format over
the classic vCard format is easier processing for JavaScri pt-based

wi dgets and libraries, especially in the scope of web-based
applications.

The key design considerations are essentially the same as those for
[JCAL] and [RFC6321], that is:

Round-tri pping (converting a vCard instance to jCard and back)
will give the sane semantic result as the starting point. For
exanpl e, all conponents, properties, and property paraneters are
guaranteed to be preserved.

The Ordering of elenents and the case of property and paraneter
nanes will not necessarily be preserved.

The vCard data senmantics are to be preserved, allowing a sinple
consumer to easily browse the data in jCard. A full understandi ng
of vCard is still required in order to nodify and/or fully
conprehend the directory data.

Extensions to the underlying vCard specification nust not lead to
requiring an update to jCard.

Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

The underlying format used for jCard is JSON. Consequently, the
terns "object"” and "array" as well as the four prinmtive types
(strings, nunbers, booleans, and null) are to be interpreted as
described in Section 1 of [RFC4627].

Kewi sch St andards Track [Page 3]

RFC 7095 j Card January 2014

Sone exanples in this docunment contain "partial" JSON docunments used
for illustrative purposes. |In these exanples, three periods "..."
are used to indicate a portion of the docunment that has been renoved
f or conpact ness.

3. Converting fromvCard to jCard

This section describes how vCard objects are converted to jCard using
a sinple mappi ng between the vCard data nodel and JSON el enments.

In [RFC6350], vCard objects are conprised of a set of "properties”,

"parameters", and "values". The top level of a vCard object contains
"properties". A "property" has a "value" and a set of zero or nore
"paranmeters". Each of these entities has a representation in jCard,

defined in the followi ng sections. The representation of a vCard
object in JSON will be naned "jCard object" throughout this docunent.

3.1. Pre-processing

vCard uses a line-folding mechanismto limt lines of data to a
maxi mum line length (typically 75 octets) to ensure nmaximum
i kelihood of preserving data integrity as it is transported via
various neans (e.g., emnil) -- see Section 3.2 of [RFC6350].

vCard data uses an "escape" character sequence for text val ues and
property paraneter values. See Section 3.4 of [RFC6350] as well as
[RFC6868] .

VWhen converting fromvCard to jCard, first vCard |lines MJST be
unfol ded. Afterwards, any vCard escapi ng MJST be unescaped.
Finally, JSON escaping (e.g., for control characters) MJST be
appli ed.

The reverse order applies when converting fromjCard to vCard.
First, JSON escapi ng MJUST be unescaped. Afterwards, vCard escapi ng
MUST be applied. Finally, long |Iines SHOULD be fol ded as descri bed
in [RFC6350] .

One key difference in the formatting of values used in vCard and
jCard is that in jCard the specification uses date/time val ues
aligned with the extended format of [ISO 8601.2004], which is nore
commonly used in Internet applications that nmake use of the JSON
format. The sections of this docunent describing the various date
and time formats contain nore information on the use of the conplete
representation, reduced accuracy, or truncated representation

Kewi sch St andards Track [Page 4]

RFC 7095 j Card January 2014

3.2. jCard Object and Syntactic Entities (RFC 6350, Sections 6.1.1 and

6.1.2)
In Sections 6.1.1 and 6.1.2 of [RFC6350], the BEG N and END
properties delimt a syntactic vCard entity. |In jCard, each
syntactic entity is represented by an array with two el enents and is
naned "jCard object”. The first elenent is the string "vcard", and

the second elenment is an array of jCard properties as described in
Section 3.3, belonging to the entity.

Al t hough [RFC6350] defines BEG N and END to be properties, they MJST
NOT appear as properties of the jCard. Instead, the jCard object is
sufficient to define a vCard entity. Wen converting fromjCard to
vCard, the BEA N and END properties MJST be added to encl ose the
properties of the jCard object.

Exampl e:

["vcard", [
/* Add properties in place of this coment */
]

]

Consuners of this format wi shing to define content that can represent
nmultiple jCard objects within the sane JSON docunent can use a sinple
JSON array, each elenment being a single jCard object.

3.3. Properties (RFC 6350, Section 6)

Each individual vCard property is represented in jCard by an array
with three fixed elenments, followed by one or nore additiona

el emrents, depending on if the property is a nmulti-valued property as
described in Section 3.3 of [RFC6350].

The array consists of the follow ng fixed el enents:

1. The nane of the property, as a | owercase string. The vCard
format specifies that property nanmes are case insensitive and
recomends that they be rendered in uppercase. |In jCard, they
MJST be in | owercase.

2. An object containing the paraneters as described in Section 3.4.

If the property has no paraneters, an enpty object is used to
represent that.

Kewi sch St andards Track [Page 5]

RFC 7095 j Card January 2014

3. The type identifier string of the value, in |lowercase. It is
i mportant that parsers check this to deternine the data type of
the value and that they do not rely on assunptions. For exanple,
for structured values, the data type will be "array".

The remaining el enents of the array are used for one or nore val ues
of the property. For single-value properties, the array has exactly
four elenents; for multi-valued properties, each value is another

el ement, and there can be any nunber of additional elenents.

In the follow ng exanple, the "categories" property is nulti-val ued
and has two values, while all other properties are single-val ued:

["vcard",
[
["version", {}, "text", "4.0"],
["fn", {}, "text", "John Doe"],
["gender", {}, "text", "M],
["categories", {}, "text", "conputers", "caneras"],
]
]

As described in Section 3.3.1.3, a property value nmay be a structured
property value, in which case it is represented as an array
encapsulated in the array that represents the overall property.

Strictly speaking, this means that the property value is not
represented in the format indicated by the type identifier but by an
array instead. However, the values inside the encapsul ated array are
of the format identified by the type identifier

The above al so holds for nulti-valued properties, where sone of the
val ues may be structured property values and therefore are
represented as an encapsul ated array.

A special case is where a value in an encapsul ated array consists of
mul tiple conponents itself, in which case it is represented as yet
anot her nested array, with elenents matching the val ue type.

Section 3.3.1.3 describes this in nore detail.

The above illustrates that it’s inportant for the parser to check the
format of each property value, as it mght either directly match the
val ue type, or it mght be a structured val ue where nested

subel enents match the val ue type.

Kewi sch St andards Track [Page 6]

RFC 7095 j Card January 2014

3.3.1. Special Cases for Properties

Thi s section describes sone properties that have special handling
when converting to jCard.

3.3.1.1. The VERSION Property

The vCard format specification [RFC6350] defines the "VERSI ON'
property to be mandatory. The jCard "version" property MJST be
represented in the corresponding jCard conponent, with the same val ue
as in the vCard. vCards that conformto RFC 6350 will contain the

val ue "4.0".

Al so in accordance to [RFC6350], the "version" property MJST be the
first element of the array containing the properties of a jCard.

3.3.1.2. Gouping of Properties

In vCard [RFC6350], related properties can be grouped together using
a grouping construct. The grouping is acconplished by adding a
prefix (which consists of the group nanme followed by a dot) to the
property nane.

In jCard, the sane grouping is achieved through a "group" paraneter
that holds the group name. |In jCard, a property name therefore MJST
NOT be prefixed by a group nane.

The " GROUP" paranmeter MJUST NOT be used in vCard; as per [RFC6350], it
is merely registered to reserve the paranmeter, avoiding collisions.
Formal registration of the "GROUP" paraneter is described in

Section 7.1.

3.3.1.2.1. Goup Conversion Rules

In jCard, the paraneter’s value is a single opaque string.
Conversion rules are as foll ows:

o FromvCard to jCard, the group construct (see [RFC6350],
Section 3.3) is removed. In its place, the "group" paraneter is
used. |Its value is a string corresponding to the group name,
which is case insensitive both in vCard and jCard. The nane’s
case SHOULD be converted into | owercase.

o Wen converting fromjCard to vCard, the value of the "group"
paraneter followed by a dot is prefixed to the property name, and
the "group" paraneter is discarded. The "GROUP" paraneter MJST
NOT appear in the resulting vCard. Follow ng the recomendati ons
in [RFC6350], the nanme’s case SHOULD be converted into uppercase.

Kewi sch St andards Track [Page 7]

RFC 7095 j Card January 2014

Exanpl e:

CONTACT. FN: M. John Q Public\, Esq.

i s equivalent to:

["fn", { "group": "CONTACT" }, "text", "M. John Q Public, Esq."]
3.3.1.3. Structured Property Val ues

The vCard specification defines properties with structured val ues,
for exanple, "GENDER' or "ADR'. |In vCard, a structured text val ue
consists of one or multiple text conponents, delimted by the

SEM COLON character. |Its equivalent in jCard is a structured
property value, which is an array containing one el enent for each
text conmponent, with enpty/m ssing text conponents represented by
zero-length strings.

vCard Exanpl e:
ADR: ; ;123 Main Street; Any Town; CA; 91921-1234; U. S. A
j Card Exanpl e:

["adr", {}, "text",
[
n Il, n Il, n 123 Wi n St reet Il,
"Any Town", "CA", "91921-1234", "U. S A"

]
]

Sone vCard properties, for exanple, ADR also allow a structured
val ue element that itself has multiple values. 1In this case, the
el ement of the array describing the structured value is itself an
array with one element for each of the conponent’s nultiple val ues.
vCard Exanpl e:

ADR: ;; My Street, Left Side, Second Shack; Hormet own; PA; 18252; U. S. A

Kewi sch St andards Track [Page 8]

RFC 7095 j Card January 2014

j Card Exanpl e:

["adr", {}, "text",
[

["ky Sireet", "Left Side", "Second Shack"],
"Honmet own", "PA", "18252", "U.S. A"
]

]

In both cases, the array el ement val ues MJUST have the primtive type
that matches the jCard type identifier. |In [RFC6350], there are only
structured text values and thus only JSON strings are used. For
exanpl e, extensions may define structured nunmber or bool ean val ues,
where JSON nunber or bool ean types MJST be used.

Al though it is allowed for a structured property value to hold just
one conponent, it is RECOWENDED to represent it as a single text

val ue instead, omtting the array conpletely. Nevertheless, a sinmple
i mpl enentati on MAY choose to retain the array, with a single text
value as its el enent.

Simlarly, structured values that consist of two text conponents wth
one being optional (for exanple, "GENDER') can be represented as a
single text value. Therefore, parsers of jCard data SHOULD check
even known property values for structured information by considering
the JSON data type of the value, which can be an array or a prinitive
value. This is especially inmportant for |anguages where accessing
array menbers is done by the same construct as accessing characters
of a string.

Exanpl es:

["gender”, {}, "text", ["F", "grrrl"] T,
}

["gender™, "text", "M]

Per Section 6.3.1 of [RFC6350], the component separator MJST be
specified even if the conponent value is missing. Simlarly, the
jCard array containing the structured data MJST contain all required
el ements, even if they are enpty.

vCard Exanpl e:

ADR; LABEL="123 Mapl e Ave\ nSuite 901\ nVancouver BC\ nAlB 2C9\ nCan
ada":;;;;;;

Kewi sch St andards Track [Page 9]

RFC 7095 j Card January 2014

j Card Exanpl e:

[Iladrll,

{"label ":"123 Mapl e Ave\ nSuite 901\ nVancouver BC\ nAlB 2C9\ nCanada"},
"text",

]
3.4. Paranmeters (RFC 6350, Section 5)

Property paraneters are represented as a JSON obj ect where each key-
val ue pair represents the vCard paraneter nane and its value. The
nane of the parameter MJST be in | owercase; the original case of the
par armet er val ue MJUST be preserved. For exanple, the "LANGUAGE"
property paraneter is represented in jCard by the "language" key.

Any new vCard paraneters added in the future will be converted in the
same way.

Exanpl e:

["role", { "language": "tr" }, "text", "roca"],

3.4.1. VALUE Par anet er

vCard defines a "VALUE" property paraneter (Section 5.2 of

[RFC6350]). This property paraneter MJST NOT be added to the
paraneters object. Instead, the value type is signaled through the
type identifier in the third el enment of the array describing the
property. Wen converting a property fromvCard to jCard, the value
type is determ ned as follows:

1. If the property has a "VALUE' paraneter, that paraneter’s val ue
is used as the value type.

2. If the property has no "VALUE' parameter but has a default val ue
type, the default value type is used.

3. If the property has no "VALUE" parameter and has no default val ue
type, "unknown" is used.

Converting fromjCard into vCard is done as foll ows:

1. If the property’'s value type is "unknown", no "VALUE" paraneter
i s included.

2. If the property’' s value type is the default type for that
property, no "VALUE" paraneter is included.

Kewi sch St andards Track [Page 10]

RFC 7095 j Card January 2014

3. Oherwise, a "VALUE" paraneter is included, and the value type is
used as the paraneter val ue.

See Section 5 for informati on on handling unknown val ue types.
3.4.2. Milti-Valued Paraneters

In [RFC6350], sone paraneters allow using a comma-separated |ist of
val ues. To ease processing in jCard, the value for such paraneters
MJST be represented in an array containing the separated values. The
array el enents MJST be string values. Single-value paraneters SHOULD
be represented using a single string value, although a nore sinple

i mpl enentation mght prefer an array with one string elenment. An
exanpl e of such a paraneter is the vCard "SORT-AS' paraneter; nore
such paraneters may be added in extensions.

The vCard specification requires encapsul ati on between DQUOTE
characters if a paraneter value contains a colon, a senm colon, or a
conma. These extra DQUOTE characters do not belong to the actua
paraneter val ue and hence are not included when the paraneter is
converted to jCard

Exampl e:
["vcard",
[
["version", {}, "text", "4.0"],
["n",
{ "sort-as": ["Harten", "Rene"] },
"text",
["van der Harten", "Rene", "J.", "Sir", "R D ON"]
]1
["fn", {}, "text", "Rene van der Harten"]

]
]

3.5. Values (RFC 6350, Section 4)
The foll owi ng subsections specify how vCard property val ue data types

(which are defined in Section 4 of [RFC6350]) are represented in
j Card.

Kewi sch St andards Track [Page 11]

RFC 7095 j Card January 2014

3.5.1. Text (RFC 6350, Section 4.1)

Description: vCard "TEXT" property values are represented by a
property with the type identifier "text". The value elenments are
JSON strings. For details on structured text val ues, see
Section 3.3.1.3.

Exanpl e:
["kind", {}, "text", "group"]
3.5.2. URl (RFC 6350, Section 4.2)

Description: vCard "URI" property values are represented by a
property with the type identifier "uri". The value elenents are
JSON strings.

Exanpl e:

["source", {}, "uri", "ldap://Idap.exanpl e.con cn=babs%0j ensen"]

3.5.3. Date (RFC 6350, Section 4.3.1)

Description: vCard "DATE" property values are represented by a
property with the type identifier "date". The value elenents are
JSON strings with the sane date val ue specified by [RFC6350], but
represented using the extended fornmat specified in
[1SO 8601.2004], Section 4.1.2. |If the conplete representation is
not used, the same date format restrictions regarding reduced
accuracy, truncated representation, and expanded representation
noted in [RFC6350], Section 4.3.1 apply. Wenever the extended
format is not applicable, the basic format MJST be used.

ABNF synt ax:

dat e-conplete = year "-" nonth "-" day ; YYYY- MVt DD
dat e- noreduc = date-conplete

[/ "--" month "-" day ; --MwDD

["---" day ; ---DDD

dat e = dat e- nor educ
[year; YYYY

[year "-" nonth ; YYYY-MM
["--" nmonth ; -- MM

Kewi sch St andards Track [Page 12]

RFC 7095 j Card January 2014

[{}, "date", "1985-04-12"],
[{}, "date", "1985-04"],
["bday", {}, "date", "1985"],

[{}, "date", "--04-12"],

[{}, "date", "---12"]

This tabl e contains possible conversions between the vCard DATE
format and jCard date. This information is just an exanple and not a
formal specification of the syntax. The specification can be found
in [1SO 8601.2000] and [| SO 8601. 2004] .

Fom e S Fom o +
| | vCard | jCard
S Fomm oo - Fomm e oo - +
| Conplete | 19850412 | 1985-04-12
| | |
| Reduced | 1985-04 | 1985-04
Reduced	1985	1985
Truncated	--0412	--04-12
Truncated	--04	--04
Truncated	---12	---12
S Fomm oo - Fomm e oo - +

3.5.4. Tine (RFC 6350, Section 4.3.2)

Description: vCard "TIME" property values are represented by a

property with the type identifier "tinme". The value elenments are
JSON strings with the sanme time val ue specified by [RFC6350], but
represented using the extended format specified in

[1SO 8601.2004], Section 4.2. If the conplete representation is

not used, the same tine format restrictions regarding reduced

accuracy,

[RFC6350] ,
not appl i cabl e,

deci ma

fraction,
Section 4.3.2 apply.
the basic format MJST be used.

of 60 MJUST only be used to account for

and the m dni ght hour

differs fromj Cal

Kew sch

[JCAL],

St andards Track

and truncated representation noted in
Whenever the extended format is
The seconds val ue

positive "l eap" seconds,

is always represented by 00,
Fractions of a second are not supported by this format.
UTC of fsets are pernmitted within a tinme val ue;
where they are not pernitted.

never 24.

In jCard,

note that this

[Page 13]

RFC 7095 j Card

ABNF synt ax:

time-notrunc = hour [":" mnute [":" sec
time = time-notrunc
[/ "-" mnute ":" second [zone]; -mmss
[/ "-" mnute [zone]; -mm
/["--" second [zone]; --ss
Exanpl es:
["x-time-1ocal", {}, "time", "12:30:00"],
["x-time-utc", {}, "time", "12:30:002"],
["x-time-of fset”, {}, "time", "12:30:00-0
["x-time-reduced", {}, "tine", "23"],
["x-time-truncated", {}, "tine", "-30"]

This tabl e contains possible conversions
format and jCard tine. This information
formal specification of the syntax. The
in [1SO 8601.2000] and [| SO 8601. 2004].

TSR Fomm e +-

| | vCard

Fom oo Fomm e e +-

| Conmplete | 232050

| |

| Reduced | 2320

| | |

| Reduced | 23 |

| | |

| Truncated | -2050

| | |

| Truncated | -20

| | |

| Truncated | --50

Fom oo Fomm e e +-
Al so, all conbinations may have any zone

the conpl ete representation.

January 2014

ond]] [zone]

8:00"],

bet ween the vCard TI ME
is just an exanple and not a
speci fication can be found

--------- +
j Card
--------- +
23:20: 50
|
23: 20
|
23 |
|
-20: 50 |
|
-20 |
|
--50 |
--------- +
desi gnat or appended, as in

val ues are represented by a
e-tine". The value el enents

are JSON strings with the sane date val ue specified by [RFC6350],

3.5.5. Date-Tine (RFC 6350, Section 4.3.3)
Description: vCard "DATE-TI ME' property
property with the type identifier "dat
but represented using the extended for

[1SO 8601.2004], Section 4.3. |If the
Kewi sch St andards Track

mat specified in
conplete representation is

[Page 14]

RFC 7095 j Card January 2014

not used, the sane date and tinme format restrictions noted in
Sections 3.5.3 and 3.5.4 apply. Just as described in [RFC6350],
truncation of the date part is permitted.

Exampl e:

["anniversary", {}, "date-tine", "2013-02-14T12:30:00"],
["anniversary", {}, "date-tine", "2013-01-10T19:00:00Z"],
["anniversary", {}, "date-tine", "2013-08-15T09: 45: 00+01: 00"],
["anniversary", {}, "date-tinme", "---15T09:45:00+01: 00"]

This tabl e contains possible conversi ons between the vCard DATE-TI ME
format and jCard date-tine. This information is just an exanple and
not a formal specification of the syntax. The specification can be
found in [1SO 8601.2000] and [| SO 8601. 2004] .

o m e e o o e e e e e e T +
| Representation | vCard | jCard |
o o e e e e T +
Conpl ete	19850412T232050	1985-04-12T23:20: 50
Compl ete	19850412T232050Z	1985-04-12T23: 20: 50Z
Complete	19850412T232050+0400	1985- 04-12T23: 20: 50+04: 00

| | | |
| Conplete | 19850412T232050+04 | 1985-04-12T23: 20: 50+04

Reduced	1985041272320	1985-04-12T23: 20
Reduced	19850412T23	1985-04-12T23
Truncated and	--0412T72320	--04-12T23: 20

| Reduced | | |
| | | |
| Truncated and | --04T2320 | --04T23:20

| Reduced | | |
| | | |
| Truncated and | ---12T2320 | ---12T23:20

| Reduced | | |
| | | |
| Truncated and | --0412T2320 | --04-12T23: 20

| Reduced | | |
| | | |
| Truncated and | --04T23 | --04T23

| Reduced | | |
oo o - o m e e e a e oo Tt +

Kewi sch St andards Track [Page 15]

RFC 7095 j Card January 2014

3.

3.

5.

5.

As specified in [1SO 8601.2000], the | ower-order conponents may not

be omitted in the date part (reduced accuracy) and the higher-order
conponents may not be omitted in the time part (truncation). Al so,
al |l conbi nati ons may have any zone designator appended, as in the
conpl ete representation.

6. Date and/or Time (RFC 6350, Section 4.3.4)

Description: vCard "DATE- AND-OR-TI ME" property val ues are
represented by a property with the type identifier "date-and-or-
time". The value elenents are either a date-tine (Section 3.5.5),
a date (Section 3.5.3), or atinme (Section 3.5.4) value. Just as
described in Section 4.3.4 of [RFC6350], a stand-al one tine val ue
MJUST al ways be preceded by a "T".

[{}, "date-and-or-tine", "2013-02-14T12: 30:00"],
[{}, "date-and-or-tinme", "---22T14:00"]

["bday", {}, "date-and-or-tine", "1985"],

[{}, "date-and-or-tine", "T12:30"]

7. Timestanmp (RFC 6350, Section 4.3.5)

Description: vCard "TlI MESTAMP' property values are represented by a
property with the type identifier "timestanp”". The value elenents
are JSON strings with the sane tinestanp val ue specified by
[RFC6350], but represented using the extended format and conpl ete
representation specified in [1SO 8601. 2004], Section 4.3.2.

Exanpl e:

[{}, "tinmestanp", "2013-02-14T12:30:00"],
[{}, "tinmestanp", "2013-02-14T12:30:00Z"],
["rev", {}, "tinmestanp", "2013-02-14T12:30: 00-05"],
[{}, "tinestanp", "2013-02-14T12: 30: 00- 05: 00"]

Thi s tabl e contains possible conversi ons between the vCard TlI MESTAMP
format and jCard tinestanp. This information is just an exanple and
not a formal specification of the syntax. The specification can be
found in [1SO 8601.2000] and [| SO 8601. 2004] .

Kewi sch St andards Track [Page 16]

RFC 7095 j Card January 2014

o o e e e e T +
| Representation | vCard | jCard |
oo o e e e e a o oo e e e e e e e oo - +
| Conpl ete | 19850412T232050 | 1985-04-12T23:20:50 |
| | | |
| Conpl ete | 19850412T232050Z | 1985-04-12T23: 20: 50Z

| | | |
| Conpl ete | 19850412T232050+0400 | 1985-04-12T23: 20: 50+04: 00

| | | |
| Conpl ete | 19850412T232050+04 | 1985-04-12T23: 20: 50+04

o m e e o o e e e e e e T +

3.5.8. Boolean (RFC 6350, Section 4.4)

Description: vCard "BOOLEAN' property values are represented by a
property with the type identifier "boolean". The value elenment is
a JSON bool ean val ue.

Exanpl e:

["x-non-snoki ng", {}, "boolean", true]

3.5.9. Integer (RFC 6350, Section 4.5)

Description: vCard "INTEGER' property values are represented by a
property with the type identifier "integer". The value elenents
are JSON primtive nunber val ues.

Exampl es:

["x-karma-points", {}, "integer", 42]

JSON al l ows decimals (e.g., 3.14) and exponents (e.g., 2el0) to be

used in nuneric values. jCard does not prohibit this for "integer"

property val ues. However, since vCard does not support deci mals or

exponents in integers, any decimals and exponents MJST be elim nated

when converting an "integer" value type property fromjCard to vCard.
3.5.10. Float (RFC 6350, Section 4.6)

Description: vCard "FLOAT" property values are represented by a
property with the type identifier "float". The value elenents are
JSON primtive nunber val ues.

Exanpl e:

["x-grade", {}, "float", 1.3]

Kewi sch St andards Track [Page 17]

RFC 7095 j Card January 2014

JSON al | ows exponents (e.g., 2e10) to be used in nuneric val ues.

j Card does not prohibit this for "float" property values. However,
since vCard does not support exponents in floats, any exponents MJST
be elim nated when converting a "float" value type property from
jCard to vCard.

3.5.11. UTC Ofset (RFC 6350, Section 4.7)

Description: vCard "UTC OFFSET" property values are represented by a
property with the type identifier "utc-offset". The val ue
el ements are JSON strings with the same UTC of fset val ue specified
by [RFC6350], with the exception that the hour and mnute
conponents are separated by a ":" character, for consistency with
the [1SO 8601.2004] timezone offset, extended fornat.

Exanpl e:

/1 Note: [RFC6350] nentions use of utc-offset
/1 for the TZ property as NOTI RECOVMENDED
["tz", {}, "utc-offset", "-05:00"]

3.5.12. Language Tag (RFC 6350, Section 4.8)

Description: vCard "LANGUAGE- TAG' property values are represented by
a property with the type identifier "language-tag". The value
el ements are JSON strings containing a single | anguage-tag, as
defined in [RFC5646] .

Exampl e:
["lang", {}, "language-tag", "de"]
3.6. Extensions (RFC 6350, Section 6.10)

vCard extension properties and property paraneters (those with an
"X-" prefix in their name) are handled in the sane way as ot her
properties and property paraneters: the property is represented by an
array, the property paraneter represented by an object. The property
or paraneter nane uses the same nanme as for the vCard extension, but
in |owercase. For exanple, the "X-FOO' property in vCard turns into
the "x-foo" jCard property. See Section 5 for howto deal with
default val ues for unrecogni zed extension properties or property

par anet er s.

Kewi sch St andards Track [Page 18]

RFC 7095 j Card January 2014

4.

5.

Converting fromjCard into vCard

When converting property and property paraneter values, the nanes
SHOULD be converted to uppercase. Although vCard names are case

i nsensitive, common practice is to keep themall uppercase foll ow ng
the actual definitions in [RFC6350].

Character escaping and line folding MUST be applied to the resulting
vCard data as required by [RFC6350] and [RFC6868].

VWhen converting to vCard, the "VALUE" paraneter MJST be added to
properti es whose default value type is unknown but do not have a
jCard type identifier "unknown". The "VALUE" paraneter MAY be
omitted for properties using the default value type. The "VALUE"
parameter MUST be omitted for properties that have the jCard type
identifier "unknown".

Handl i ng Unrecogni zed Properties or Paraneters

In vCard, properties can have one or nore val ue types as specified by
their definition, with one of those val ues being defined as the
default. Wen a property uses its default value type, the "VALUE"
property paraneter does not need to be specified on the property.

For exanple, "BDAY"'s default value type is "date-and-or-tine", so
"VALUE=dat e- and-or-ti me" need not be set as a property paraneter.
However, "BDAY" also allows a "text" value to be specified, and if
that is used, "VALUE=text" has to be set as a property paraneter.

VWhen new properties are defined or "X-" properties used, a vCard-to-
jCard converter m ght not recogni ze them and not know what the
appropriate default value types are, yet it needs to be able to
preserve the values. A sinmilar issue arises for unrecognized
property paraneters.

In jCard, a new "unknown" property value type is introduced. |Its
purpose is to all ow preserving unknown property val ues when round-
tripping between jCard and vCard. To avoid collisions, this
specification reserves the "UNKNOAN' property value type in vCard.
It MJUST NOT be used in any vCard as specified by [RFC6350], nor any
extensions to it. The type is hence registered to the "vCard Val ue
Data Types" registry; see Section 7.2.

1. Converting vCard into jCard

Any property that does not include a "VALUE" property paraneter and
whose default value type is not known MJST be converted to a
primtive JSON string. The content of that string is the unprocessed
val ue text. Also, value type MJST be set to "unknown".

Kewi sch St andards Track [Page 19]

RFC 7095 j Card January 2014

5.

5.

2.

3.

To correctly inplenent this format, it's critical to use the val ue
type "unknown" when the default value type is not known. If this
requirenment is ignored and, for exanple, "text" is used, additiona
escapi ng may occur that breaks round-trippi ng val ues.

Any unrecogni zed property paranmeter MJST be converted to a string
value, with its content set to the property paraneter val ue text,
treated as if it were a "TEXT" val ue.

Converting jCard into vCard

In jCard, the value type is always explicitly specified. It is
converted to vCard using the vCard "VALUE" paraneter, except in the
foll owi ng two cases:

o If the value type specified in jCard matches the default val ue
type in vCard, the "VALUE' paraneter MAY be onitted.

o If the value type specified in jCard is set to "unknown", the
"VALUE" parameter MJST NOT be specified. The value MJST be taken
over in vCard without processing.

Exanpl es

The following is an exanple of an unrecogni zed vCard property (that
uses a "URI" value as its default), and the equivalent jCard
representation of that property.

vCard:

X- COVPLAI NT- URI : mai | t 0: abuse@xanpl e. org

j Card:

["x-complaint-uri", {}, "unknown", "mailto:abuse@xanple.org"]

The following is an exanple of how to cope with jCard data where the
parser was unable to identify the value type. Note how the "unknown"
val ue type is not added to the vCard data, and escapi ng, aside from
standard JSON string escaping, is not processed.

j Card:

["x-coffee-data”, {}, "unknown", "Stenophylla; Guinea\\, Africa"]

vCar d:

X- COFFEE- DATA: St enophyl | a; Gui nea\, Afri ca

Kewi sch St andards Track [Page 20]

RFC 7095 j Card January 2014

There are no standard properties in [RFC6350] that have a default
type of integer. Consequently, this exanple uses the follow ng
extended property that we treat as having a default type (nanely,

i nteger) known to the parser in order to illustrate how a property
with a known default type woul d be transformed.

j Card:

["x-karma-points", {}, "integer", 95]
vCard:

X- KARVA- PO NTS: 95

The following is an exanple of an unrecogni zed vCard property
parameter (that uses a "FLOAT" value as its default) specified on a
recogni zed vCard property, and the equivalent jCard representation of
that property and property paraneter.

vCard:

CGENDER; X- PROBABI LI TY=0. 8: M

j Card:

["gender", { "x-probability": "0.8" }, "text", "M]
6. Security Considerations

Thi s specification defines how vCard data can be "transl ated" between
two different data formats -- the original text format and JSON - -
with a one-to-one mapping to ensure all the semantic data in one
format (properties, paraneters, and values) are preserved in the
other. It does not change the senmantic meaning of the underlying
data itself, or inpose or renpbve any security considerations that
apply to the underlying data.

The use of JSON as a format does have its own inherent security risks
as discussed in Section 7 of [RFC4627]. Even though JSON is

consi dered a safe subset of JavaScript, it should be kept in mnd
that a flaw in the parser for JSON data could still inpose a threat
that doesn't arise with conventional vCard data.

Wth this in mnd when using jCard, the parser for JSON data should
be aware of the security inplications. For exanple, the use of
JavaScript’s eval () function is only allowed using the regul ar
expression in Section 6 of [RFC4627]. A native parser with ful

awar eness of the JSON format shoul d be preferred.

Kewi sch St andards Track [Page 21]

RFC 7095 j Card January 2014

In addition, it is expected that this new format will result in vCard
data being nore widely disseninated (e.g., with use in web
applications rather than just dedicated "contact managers").
In all cases, application devel opers have to conformto the semantics
of the vCard data as defined by [RFC6350] and associ at ed extensions,
and all of the security considerations described in Section 9 of
[RFC6350], or any associ ated extensions, are applicable.

7. | ANA Consi derations
Thi s docunent defines a MME nedia type for use with vCard in JSON
data. This nedia type SHOULD be used for the transfer of cal endaring
data in JSON
Type name: application
Subt ype nane: vcard+json
Requi red parameters: none

Optional parameters: "version", as defined for the text/vcard medi a
type in [RFC6350], Section 10.1.

Encodi ng considerations: Sane as encodi ng consi derations of
application/json as specified in [RFC4627], Section 6.

Security considerations: See Section 6.

Interoperability considerations: This nedia type provides an
alternative format for vCard data based on JSON

Publ i shed specification: This specification.

Applications which use this nmedia type: Applications that currently
nmake use of the text/vcard nedia type can use this as an
alternative. Simlarly, applications that use the application/
json nedia type to transfer directory data can use this to further
specify the content.

Fragment identifier considerations: NA

Kewi sch St andards Track [Page 22]

RFC 7095 j Card January 2014

Addi tional information:
Deprecated alias nanes for this type: NA
Magi ¢ nunber(s): NA
File extension(s): NA
Maci ntosh file type code(s): NA

Person & email address to contact for further information:
vcarddav@etf.org

I ntended usage: COWMON

Restrictions on usage: There are no restrictions on where this nedia
type can be used.

Aut hor: See the "Author’s Address" section of this docunent.
Change controller: |ETF
7.1. CGROUP vCard Paraneter

| ANA has added the "GROUP' paraneter to the "vCard Paraneters"”

registry, initialized in Section 10.3.2 of [RFC6350]. Usage of the

"GROUP" paraneter is further described in Section 3.3.1.2 of this

docunent .

Nanmespace: <enpty>

Par amet er nanme: CGROUP

Purpose: To sinplify the jCard format.

Description: The "GROUP" paraneter is reserved for the exclusive use
of the jCard format described in this docunent. It MJST NOT be
used in plain vCard [RFC6350], nor in xCard [RFC6351].

Format definition: When converting fromjCard to vCard, the val ue of
the "GROUP" paraneter is used as part of the property name.
Therefore, the value is restricted to characters allowed in

property nanmes, nanely ALPHA, DIG@ T, and "-" characters. Wen
used, the "GROUP" paraneter MJST NOT be enpty.

Kewi sch St andards Track [Page 23]

RFC 7095 j Card January 2014

Example: As this registration serves as a reservation of the "GROUP"
paraneter so that it is not used in vCard, there is no applicable
vCard exanmple. Exanples of its usage in jCard can be found in
this document.

7.2. UNKNOMWN vCard Val ue Data Type

| ANA has added the "UNKNOMWN' val ue data type to the "vCard Val ue Data
Types" registry, initialized in Section 10.3.3 of [RFC6350]. Usage
of the "UNKNOMWN' type is further described in Section 5 of this
docunent .

Val ue nanme: UNKNOMWN

Purpose: To allow preserving property val ues whose default val ue
type is not known during round-tripping between jCard and vCard.

Format definition: (Not applicable)

Description: The "UNKNOMWN' val ue data type is reserved for the
exclusive use of the jCard format. It MJST NOT be used in plain
vCard [RFC6350] .

Example: As this registration serves as a reservation of the
"UNKNOWN' type so that it is not used in vCard, there is no
applicabl e vCard exanple. Exanples of its usage in jCard can be
found in this docunent.

8. Acknow edgnents

The author would like to thank the followi ng for their val uable
contributions: Cyrus Daboo, M ke Douglass, WlliamGll, Erwi n Rehne,
Dave Thew is, Sinmon Perreault, M chael Angstadt, Peter Saint-Andre,
Bert Greevenbosch, and Javier Godoy. This specification originated
fromthe work of the XM.-JSON technical conmttee of the Cal endaring
and Schedul i ng Consortium

9. References
9.1. Normative References
[1SO 8601. 2000]
I nternational Organization for Standardi zation, "Data
el ements and i nterchange formats -- Information

i nterchange -- Representation of dates and times", |SO
8601, Decenber 2000.

Kewi sch St andards Track [Page 24]

RFC 7095 j Card January 2014

[1SO 8601. 2004]
International Organization for Standardization, "Data
el ements and i nterchange formats -- Information
i nterchange -- Representation of dates and times", |SO
8601, Decenber 2004.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC5234] Crocker, D. and P. Overell, "Augrmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[RFC5646] Phillips, A and M Davis, "Tags for ldentifying
Languages", BCP 47, RFC 5646, Septenber 2009.

[RFC6350] Perreault, S., "vCard Format Specification", RFC 6350,
August 2011.

[RFC6868] Daboo, C., "Paraneter Value Encoding in iCal endar and
vCard", RFC 6868, February 2013.

9.2. Informative References

[JCAL] Kewi sch, P., Daboo, C., and M Douglass, "jCal: The JSON
format for iCalendar", Wrk in Progress, Decenber 2013.

[RFC5545] Desrui sseaux, B., "Internet Cal endaring and Schedul i ng
Core nject Specification (iCalendar)", RFC 5545,
Sept enber 2009.

[RFC6321] Daboo, C., Douglass, M, and S. Lees, "xCal: The XM
Format for iCalendar”, RFC 6321, August 2011.

[RFC6351] Perreault, S., "xCard: vCard XM. Representation", RFC
6351, August 2011.

[cal connect-artifacts]

The Cal endari ng and Schedul i ng Consortium "Code Artifacts
and Schemas", <http://ww. cal connect.org/artifacts.shtm >.

Kewi sch St andards Track [Page 25]

RFC 7095 j Card January 2014

Appendi x A, ABNF Synt ax

Bel ow i s the ABNF syntax as per [RFC5234] for vCard in JSON. ABNF
symbol s not described here are taken from[RFC4627]. The syntax is
non-normati ve and given for reference only.

The nuneric section nunbers given in the conments refer to sections
in [RFC6350]. Additional semantic restrictions apply, especially
regardi ng the all owed properties and subconponents per conponent.
Details on these restrictions can be found in this docunent and

[RFC6350] .

Addi ti onal ABNF syntax may be avail able on the Internet at
[cal connect-artifacts].

; A jCard object uses the nanme "vcard" and a properties array.
; Restrictions to which properties may be specified are to
; be taken from RFC 6350.
j cardobj ect = begi n-array
DQUOTE conponent - name DQUOTE val ue- separ at or
properties-array
end- arr ay

; A jCard property consists of the nane string, paraneters object,
; type string, and one or nore values as specified in this docunent.
property = begin-array
DQUOTE property-nane DQUOTE val ue- separ at or
par anms- obj ect val ue- separ at or
DQUOTE t ype- name DQUOTE
property-val ue *(val ue-separator property-val ue)
end- array
properties-array = begin-array
[property *(val ue-separator property)]
end- arr ay

; Property val ues depend on the type-nane. Aside fromthe val ue types
; mentioned here, extensions nay nmake use of other JSON val ue types.
property-val ue = sinpl e-prop-value / structured-prop-val ue
si mpl e-prop-value = string / nunber / true / false
struct ur ed- prop-val ue =

begi n-array

[structured-el ement *(val ue-separator structured-elenent)]

end- array

; Each structured el enent may have multiple values if

; semantically all owed.
structured-el enent = sinple-prop-value / structured-multi-prop

Kewi sch St andards Track [Page 26]

RFC 7095 j Card January 2014

structured-multi-prop =
begi n-array
[sinmple-prop-val ue *(val ue-separator sinple-prop-val ue)]
end- arr ay

; The jCard parans-object is a JSON object that follows the semantic
; guidelines described in this docunent.
par anms- obj ect = begi n-obj ect
[params-nmenber *(val ue-separator parans-nmenber)]
end- obj ect
par ans- nenber = DQUOTE par am nane DQUOTE name- separ at or param val ue
paramval ue = string / paramnul ti
param nul ti = begi n-array
[string *(val ue-separator string)]
end- array

; The type MJST be a valid type as described by this docunment. New
; value types can be added by extensions.
type-nane = "text" / "uri" [/ "date" / "time" / "date-tine" /

"bool ean" / "integer" / "float" / "utc-offset" /

"l anguage-tag" / x-type

; Property, paraneter, and type nanes MJST be | owercase. Additiona
; semantic restrictions apply as described by this docunent and

; RFC 6350.

conponent - name = | ower case- nane

property-name = | owercase- nane

param nane = | ower case- nane

x-type = | owercase- nane

| ower case-nanme = 1*(%61-7A/ DIGAT / "-")

Appendi x B. Exanpl es

This section contains an exanple of a vCard object with its jCard
representation.

B.1. Exanple: vCard of the Author of RFC 6350
B.1.1. vCard Data

BEG N: VCARD

VERSI ON: 4. 0

FN: Si mon Perreaul t

N: Perreault; Sinon;;;ing. jr, M Sc.
BDAY: - - 0203

ANNI VERSARY: 20090808T1430- 0500
GENDER: M

LANG PREF=1: fr

Kewi sch St andards Track [Page 27]

RFC 7095 j Card January 2014

LANG PREF=2: en
ORG, TYPE=wor k: Vi ageni e
ADR; TYPE=wor k: ; Sui te D2-630; 2875 Lauri er;
Quebec; QC, GLV 2M2; Canada
TEL; VALUE=uri ; TYPE="wor k, voi ce"; PREF=1:t el : +1- 418- 656- 9254; ext =102
TEL; VALUE=uri ; TYPE="wor k, cel | , voi ce, vi deo, text":tel: +1-418- 262- 6501
EMAI L; TYPE=wor k: si nbon. perreaul t @i ageni e. ca
CGEC, TYPE=wor k: geo: 46. 772673, - 71. 282945
KEY; TYPE=wor k; VALUE=uri :
htt p: // www. vi ageni e. ca/ si mon. perreaul t/si mon. asc
TZ: - 0500
URL; TYPE=hone: http://nom s80.org
END: VCARD

B.1.2. jCard Data

["vcard",
[

["version", {}, "text", "4.0"],
["fn", {}, "text", "Sinmon Perreault"],
[Ilnll,

{}

"text",

["Perreault”, "Simn", "", "", ["ing. jr", "M Sc."]]

]1
["bday", {}, "date-and-or-tinme", "--02-03"],
["anni versary",

{1}

"date-and-or-tine",

"2009- 08- 08T14: 30: 00- 05: 00"
"gender", {}, "text", "M],
"l'ang", { "pref": "1" }, "language-tag", "fr"],
"l'ang", { "pref": "2" }, "language-tag", "en"],
‘org", { "type": "work" }, "text", "Viagenie"],
"adr",

{ "type": "work" },

"text",

[

"Suite D2-630",
"2875 Laurier",
"Quebec",

n le’ ZWII ,
"Canada"

]
[
[
[
[
[

Kewi sch St andards Track [Page 28]

RFC 7095 j Card January 2014

[ut el n ,
{ "type": ["V\DI’ k", "VOi Ceu] , "pl’ef neomqe },
n ur i n ,
"tel:+1-418-656-9254; ext =102"

{ "pre": ["work", "cell", "voice", "video", "text"] },

"tel:+1-418-262-6501"

["email ",
{ "type": "work" },
"text",
"si non. perreaul t @i ageni e. ca"
1,
["geo", { "type": "work" }, "uri", "geo:46.772673,-71.282945"],
["key",
{ "type": "work" },
“uri”,
“http://wwmv. vi ageni e. ca/ si non. perreaul t/sinon. asc"
1,
["tz", {}, "utc-offset", "-05:00"],
["url™, { "type": "home" }, "uri", "http://nom s80.org"]

]
]

Aut hor’ s Addr ess

Phili pp Kewi sch

Mozil I a Corporation

650 Castro Street, Suite 300
Mountain View, CA 94041
USA

EMai |l : npzill a@ew s. ch
URI : http://ww. nozil | a. org/

Kewi sch St andards Track [Page 29]

