I nt ernet Engi neering Task Force (1 ETF) T. Bray, Ed.
Request for Comments: 8259 Textual ity
Qbsol etes: 7159 Decenber 2017
Cat egory: Standards Track

| SSN: 2070-1721

The JavaScript oject Notation (JSON) Data Interchange Fornat
Abst r act

JavaScript Object Notation (JSON) is a |lightweight, text-based,

| anguage-i ndependent data interchange format. It was derived from
the ECMAScri pt Progranm ng Language Standard. JSON defines a snal

set of formatting rules for the portable representation of structured
dat a.

Thi s docunent renoves inconsistencies with other specifications of
JSON, repairs specification errors, and offers experience-based
i nteroperability guidance.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further infornmation on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
https://ww. rfc-editor.org/info/rfc8259.

Br ay St andards Track [Page 1]

RFC 8259 JSON Decenber 2017

Copyri ght Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunent nmay contain material from|ETF Documents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
nodi fi cati ons of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh

Br ay St andards Track [Page 2]

RFC 8259 JSON Decenber 2017

Tabl e of Contents

1. Introduction Ce e e 3
1.1. Conventions Used in This Document 4
1.2. Specifications of JSON - 4
1.3. Introduction to This Revision . 5

2. JSON G anmar 5

3. Values . 6

4. bjects . 6

5. Arrays . 7

6. Nunbers . . 7

7. Strings 8

8. String and Character |ssues . 9
8.1. Character Encoding C e e 9
8.2. Unicode Characters 10
8.3. String Conparison 10

9. Parsers 00

10. Generators00

11. 1 ANA Considerations 11

12. Security Considerations 12

13. Exanples 12

14. References 14
14.1. Normative References 14
14.2. Informative References 14

Appendi x A. Changes fromRFC 7159 16

Contributors 16

Author’s Address 16

1. Introduction

JavaScript Object Notation (JSON) is a text format for the

serialization of structured data. It is derived fromthe object

literals of JavaScript, as defined in the ECMAScri pt Progranmn ng

Language Standard, Third Edition [ECMA-262].

JSON can represent four primtive types (strings, nunbers, bool eans,

and null) and two structured types (objects and arrays).

A string is a sequence of zero or more Unicode characters [UN CODE].

Note that this citation references the |atest version of Unicode

rather than a specific release. It is not expected that future

changes in the Unicode specification will inpact the syntax of JSON

An object is an unordered collection of zero or nore nane/val ue
pairs, where a name is a string and a value is a string, numnber,
bool ean, null, object, or array.

An array is an ordered sequence of zero or nore val ues.

Br ay St andards Track [Page 3]

RFC 8259 JSON Decenber 2017

The terns "object"” and "array" come fromthe conventions of
JavaScri pt.

JSON s design goals were for it to be mniml, portable, textual, and
a subset of JavaScript.

1.1. Conventions Used in This Document

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in al
capitals, as shown here.

The grammatical rules in this docunent are to be interpreted as
descri bed in [RFC5234].

1.2. Specifications of JSON

Thi s docunent replaces [RFC7159]. [RFC7159] obsol eted [RFC4627],
whi ch originally described JSON and regi stered the nmedia type
"application/json".

JSON is al so described in [ECVA-404].

The reference to ECMA-404 in the previous sentence is normative, not
with the usual meaning that inplenmentors need to consult it in order
to understand this docurment, but to enphasize that there are no

i nconsistencies in the definition of the term"JSON text" in any of
its specifications. Note, however, that ECVA-404 all ows severa
practices that this specification recommends avoiding in the
interests of nmaximal interoperability.

The intent is that the grammar is the sane between the two docunents,
al t hough different descriptions are used. |If there is a difference
found between them ECMA and the IETF will work together to update
bot h docunents.

If an error is found with either docurment, the other should be
exanined to see if it has a simlar error; if it does, it should be
fixed, if possible.

If either docunent is changed in the future, ECVMA and the | ETF will
work together to ensure that the two docunents stay aligned through
t he change.

Br ay St andards Track [Page 4]

RFC 8259 JSON Decenber 2017

1.3. Introduction to This Revision

In the years since the publication of RFC 4627, JSON has found very
wi de use. This experience has revealed certain patterns that, while
allowed by its specifications, have caused interoperability probl emns.

Al so, a small nunber of errata have been reported regardi ng RFC 4627
(see RFC Errata | Ds 607 [Err607] and 3607 [Err3607]) and regarding
RFC 7159 (see RFC Errata | Ds 3915 [Err3915], 4264 [Err4264], 4336

[Err4336], and 4388 [Err4388]).

This docunent’s goal is to apply the errata, renpve inconsistencies
with other specifications of JSON, and highlight practices that can
lead to interoperability problens.

2. JSON G ammar

A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, numbers, and three literal nanes.

A JSON text is a serialized value. Note that certain previous
specifications of JSON constrained a JSON text to be an object or an
array. Inplementations that generate only objects or arrays where a
JSON text is called for will be interoperable in the sense that al
i npl enentations will accept these as conform ng JSON texts.

JSON-text = ws val ue ws
These are the six structural characters:

begi n-array =ws 5B ws ; [left square bracket

begi n- obj ect =ws W7B ws ; { left curly bracket
end- arr ay =ws W5D ws ;] right square bracket
end- obj ect =ws W7D ws ; } right curly bracket
nane-separator = ws %3A ws ; : colon

val ue-separator = ws %2C ws ; , comma

Br ay St andards Track [Page 5]

RFC 8259 JSON Decenber 2017

I nsignificant whitespace is allowed before or after any of the six
structural characters.

ws = *(
920 / ; Space
o009 / ; Horizontal tab
o 0A / ; Line feed or New |ine
% 0D) ; Carriage return

3. Val ues

A JSON val ue MUST be an object, array, nunber, or string, or one of
the following three literal nanes:

fal se
nul |
true

The literal nanes MUST be | owercase. No other literal nanmes are

al | oned.
value = false / null / true / object / array / nunmber / string
fal se = 9%66.61. 6C. 73. 65 ; false
null = %6e. 75. 6¢C. 6¢C ; null
true = 9&74.72.75.65 ; true
4. (hjects

An object structure is represented as a pair of curly brackets
surroundi ng zero or nore nane/value pairs (or nmenbers). A nane is a
string. A single colon conmes after each nane, separating the nane
fromthe value. A single commma separates a value froma foll ow ng
nane. The nanes within an object SHOULD be uni que.

obj ect begi n-object [nenber *(val ue-separator nmenber)]

end- obj ect
menber = string nane-separator val ue

An obj ect whose nanes are all unique is interoperable in the sense
that all software inplenentations receiving that object will agree on
t he name-val ue mappings. Wen the nanes within an object are not

uni que, the behavior of software that receives such an object is
unpredi ctabl e. Many inplenentations report the |ast name/val ue pair
only. Qher inplementations report an error or fail to parse the

Br ay St andards Track [Page 6]

RFC 8259 JSON Decenber 2017
obj ect, and sone inplenentations report all of the nane/val ue pairs,
i ncl udi ng dupli cates.
JSON parsing libraries have been observed to differ as to whether or
not they make the ordering of object nmenbers visible to calling
software. | nplenentations whose behavi or does not depend on nenber
ordering will be interoperable in the sense that they will not be
af fected by these differences.

5. Arrays

An array structure is represented as square brackets surroundi ng zero
or nore values (or elenents). Elenents are separated by commas.

array = begin-array [value *(value-separator value)] end-array

There is no requirenent that the values in an array be of the sane
type.

6. Numbers
The representati on of nunbers is sinmlar to that used in nost
programm ng | anguages. A nunber is represented in base 10 using
decimal digits. It contains an integer conponent that may be
prefixed with an optional ninus sign, which nay be followed by a
fraction part and/or an exponent part. Leading zeros are not
al | owed.
A fraction part is a decimal point followed by one or nore digits.
An exponent part begins with the letter E in uppercase or |owercase,
which may be followed by a plus or mnus sign. The E and optiona
sign are foll owed by one or nmore digits.

Nuneric val ues that cannot be represented in the granmmar bel ow (such
as Infinity and NaN) are not permtted.

nunber = [minus] int [frac] [exp]
deci mal - poi nt = %&2E ;

digitl-9 = %31-39 ; 1-9

e = W65 / %45 ; e E
exp = e[mnus / plus] 1*DIAT

frac = decimal -point 1*DIG T

Br ay St andards Track [Page 7]

RFC 8259 JSON Decenber 2017

int =zero/ (digitl-9 *DIAT)
m nus = %2D Do
plus = %2B ;ot
zero = %30 ;0

This specification allows inplementations to set linits on the range
and precision of numbers accepted. Since software that inplenents
| EEE 754 bi nary64 (doubl e precision) nunmbers [|I EEE754] is generally
avai | abl e and wi dely used, good interoperability can be achi eved by
i mpl enent ati ons that expect no nobre precision or range than these
provide, in the sense that inplenmentations will approxi mate JSON
nunbers within the expected precision. A JSON nunber such as 1E400
or 3.141592653589793238462643383279 may i ndicate potentia
interoperability problens, since it suggests that the software that
created it expects receiving software to have greater capabilities
for nuneric magnitude and precision than is widely avail abl e.

Not e that when such software is used, nunbers that are integers and
are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
sense that inplenmentations will agree exactly on their numeric

val ues.

7. Strings

The representation of strings is simlar to conventions used in the C
fam |y of progranm ng | anguages. A string begins and ends with
quotation marks. All Unicode characters nay be placed within the
qguotation marks, except for the characters that MJST be escaped:
guotation mark, reverse solidus, and the control characters (U+0000

t hrough W+001F).

Any character may be escaped. |If the character is in the Basic
Multilingual Plane (W+0000 through U+FFFF), then it may be
represented as a six-character sequence: a reverse solidus, followed
by the | owercase letter u, followed by four hexadecinal digits that
encode the character’s code point. The hexadecimal letters A through
F can be uppercase or |owercase. So, for exanmple, a string
containing only a single reverse solidus character may be represented
as "\u005C'

Alternatively, there are two-character sequence escape
representati ons of sone popul ar characters. So, for exanple, a
string containing only a single reverse solidus character nmay be
represented nore compactly as "\\".

Br ay St andards Track [Page 8]

RFC 8259 JSON Decenber 2017

To escape an extended character that is not in the Basic Miltilingua
Pl ane, the character is represented as a 12-character sequence,
encodi ng the UTF-16 surrogate pair. So, for exanple, a string
containing only the G clef character (W1D11E) may be represented as
"\ uD834\ uDDLE".

string = quotation-mark *char quotati on-nark

char = unescaped /

escape (
w22 |/ ;o qguotation mark UW+0022
% 5C / P\ reverse solidus U+005C
W 2F / v sol i dus U+002F
%62 / ;b backspace U+0008
%x66 / ; f formfeed U+000C
% 6E / ;n line feed U+000A
w72 |/ ;T carriage return U+000D
W74 |/ ;o t tab U+0009
%75 AHEXDI G) ; UuXXXX U+ XXXX
escape = W5C ;o\

guotation-mark = 922 ;
unescaped = %20-21 / %23-5B / 9%5D 10FFFF
8. String and Character |ssues
8.1. Character Encoding

JSON text exchanged between systens that are not part of a closed
ecosystem MJUST be encoded using UTF-8 [RFC3629].

Previ ous specifications of JSON have not required the use of UTF-8
when transmitting JSON text. However, the vast mgjority of JSON
based software i npl enentati ons have chosen to use the UTF-8 encodi ng,
to the extent that it is the only encoding that achieves

i nteroperability.

| mpl ement ati ons MUST NOT add a byte order mark (U+FEFF) to the

begi nning of a networked-transmtted JSON text. |In the interests of
interoperability, inplenentations that parse JSON texts MAY ignore
the presence of a byte order nark rather than treating it as an
error.

Br ay St andards Track [Page 9]

RFC 8259 JSON Decenber 2017

8.

8.

10.

2. Unicode Characters

When all the strings represented in a JSON text are conposed entirely
of Uni code characters [UNI CODE] (however escaped), then that JSON
text is interoperable in the sense that all software inplenentations
that parse it will agree on the contents of names and of string

val ues in objects and arrays.

However, the ABNF in this specification allows nenber names and
string values to contain bit sequences that cannot encode Uni code
characters; for exanple, "\uDEAD' (a single unpaired UTF-16
surrogate). Instances of this have been observed, for exanple, when
a library truncates a UTF-16 string w thout checking whether the
truncation split a surrogate pair. The behavior of software that
recei ves JSON texts containing such values is unpredictable; for
exanpl e, inplenmentations mght return different values for the length
of a string value or even suffer fatal runtinme exceptions.

3. String Conparison

Software inplenmentations are typically required to test nanmes of

obj ect nenbers for equality. Inplenentations that transformthe
textual representation into sequences of Unicode code units and then
performthe conparison nunerically, code unit by code unit, are
interoperable in the sense that inplenmentations will agree in al
cases on equality or inequality of two strings. For exanple,

i mpl enentati ons that conpare strings with escaped characters
unconverted may incorrectly find that "a\\b" and "a\u005Cb" are not
equal .

Par sers

A JSON parser transfornms a JSON text into another representation. A
JSON parser MJST accept all texts that conformto the JSON grammar.
A JSON parser MAY accept non-JSON forns or extensions.

An inplenentation may set linmits on the size of texts that it

accepts. An inplenmentation nay set limts on the maxi mum depth of
nesting. An inplenentation my set limts on the range and precision
of numbers. An inplementation may set linmits on the length and
character contents of strings.

CGenerators

A JSON generator produces JSON text. The resulting text MJST
strictly conformto the JSON granmar.

Br ay St andards Track [Page 10]

RFC 8259 JSON Decenber 2017

11.

| ANA Consi derati ons
The nedia type for JSON text is application/json.
Type name: application
Subt ype name: json
Requi red parameters: n/a
Optional parameters: n/a
Encodi ng considerations: binary
Security considerations: See RFC 8259, Section 12
Interoperability considerations: Described in RFC 8259
Publ i shed specification: RFC 8259
Applications that use this nedia type:
JSON has been used to exchange data between applications witten
in all of these programm ng | anguages: ActionScript, C, C#,
Cl ojure, ColdFusion, Conmon Lisp, E, Erlang, Go, Java, JavaScri pt,
Lua, Objective CAM,, Perl, PHP, Python, Rebol, Ruby, Scala, and
Schenme.
Addi ti onal information:
Magi ¢ nunber(s): n/a
File extension(s): .json
Maci ntosh file type code(s): TEXT
Person & enmil address to contact for further information:
| ESG
<iesg@etf.org>
I ntended usage: COWVMON
Restrictions on usage: none
Aut hor :
Dougl as Crockford
<dougl as@r ockf ord. conp
Change controller:

| ESG
<iesg@etf.org>

Br ay St andards Track [Page 11]

RFC 8259 JSON Decenber 2017

Note: No "charset" parameter is defined for this registration
Addi ng one really has no effect on conpliant recipients.

12. Security Considerations

General ly, there are security issues with scripting | anguages. JSON
is a subset of JavaScript but excludes assignnment and invocation.

Since JSON s syntax is borrowed from JavaScript, it is possible to
use that |anguage’s "eval ()" function to parse nbost JSON texts (but
not all; certain characters such as U+2028 LI NE SEPARATOR and W+2029
PARAGRAPH SEPARATCOR are |l egal in JSON but not JavaScript). This
general |y constitutes an unacceptable security risk, since the text
could contain executable code along with data declarations. The sane
consi deration applies to the use of eval ()-like functions in any

ot her progranm ng | anguage in which JSON texts conformto that

| anguage’ s synt ax.

13. Exanpl es

This is a JSON object:

"I mage": {

"Wdth": 800,

"Hei ght": 600,

"Title": "View from 15th Fl oor",

"Thunbnai | ": {
"Url " "http://ww. exanpl e. com i mage/ 481989943
"Hei ght": 125,
"Wdth": 100

1

"Ani mated" : fal se

"I Ds": [116, 943, 234, 38793]

}

Its I mage nenber is an object whose Thunbnail nenber is an object and
whose I Ds nmenber is an array of nunbers.

Br ay St andards Track [Page 12]

RFC 8259

This is a JSON array

[

{ .
"precision":
"Latitude":
"Longi t ude":
" Addr ess":
"City":
"State":
"Zip":
"Country":

"precision":
"Latitude":
"Longi t ude":
" Addr ess":
"Cty":
"State":
"Zip":
"Country":
}
]

Here are three snall
"Hell o worl d!"
42

true

Br ay

JSON

contai ni ng two obj ects:

"zip",

37.7668,

-122. 3959,

" SAN FRANCI SCO',
"CA"

"94107",

" S

"zip",
37.371991,
-122. 026020,
" SUNNYVALE" ,
" CA".

" 94085" ,

" S

JSON texts containing only val ues:

St andards Track

December 2017

[Page 13]

RFC 8259

14.

14.

14.

JSON December 2017

Ref er ences

1. Nornmtive References

[ECVA- 404]

[| EEE754]

[RFC2119]

[RFC3629]

[RFC5234]

[RFC8174]

[UNI CODE]

Ecma International, "The JSON Data | nterchange Format",
St andard ECMVA- 404,

<http://ww. ecrma-international.org/publications/

st andar ds/ Ecrra- 404. ht np.

| EEE, "Il EEE Standard for Floating-Point Arithnetic",
| EEE 754.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,
<https://ww.rfc-editor.org/info/rfc2119>.

Yergeau, F., "UTF-8, a transformation format of 1SO
10646", STD 63, RFC 3629, DO 10.17487/ RFC3629, Novenber
2003, <https://ww.rfc-editor.org/info/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234,

DO 10.17487/ RFC5234, January 2008,
<https://ww.rfc-editor.org/info/rfc5234>,

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

The Uni code Consortium "The Unicode Standard",
<htt p://wwv. uni code. or g/ versi ons/ | atest/ >.

2. I nformati ve References

[ECMA- 262]

[Err3607]

[Err3915]

Br ay

Ecma International, "ECMAScript Language Specification”,
St andard ECVA- 262, Third Edition, Decenber 1999,
<http://ww. ecma-international.org/publications/files/
ECMA- ST- ARCH

ECMA- 262, %203r do%@0edi ti on, ¥20Decenber %201999. pdf >.

RFC Errata, Erratum | D 3607, RFC 4627,
<https://ww.rfc-editor.org/erratalei d3607>.

RFC Errata, Erratum | D 3915, RFC 7159,
<https://wwv. rfc-editor.org/erratalei d3915>.

St andards Track [Page 14]

RFC 8259

[Errd264]

[Err4336]

[Err4388]

[Err607]

[RFC4627]

[RFC7159]

Br ay

JSON December

RFC Errata, Erratum I D 4264, RFC 7159,
<https://ww.rfc-editor.org/erratalei d4264>.

RFC Errata, Erratum | D 4336, RFC 7159,
<https://wwv. rfc-editor.org/erratalei d4336>.

RFC Errata, Erratum I D 4388, RFC 7159,
<https://ww.rfc-editor.org/erratalei d4388>.

RFC Errata, Erratum | D 607, RFC 4627,
<https://wwv.rfc-editor.org/erratalei dé07>.

Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627,

DO 10.17487/ RFC4627, July 2006,
<https://ww.rfc-editor.org/info/rfcd4627>.

Bray, T., Ed., "The JavaScript Cbject Notation (JSON)

2017

Dat a

I nterchange Format", RFC 7159, DA 10.17487/RFC7159, March

2014, <https://ww.rfc-editor.org/info/rfc7159>.

St andards Track [Page 15]

RFC 8259 JSON Decenber 2017

Appendi x A. Changes from RFC 7159

This section lists changes between this docunment and the text in
RFC 7159.

0 Section 1.2 has been updated to reflect the renmoval of a JSON
specification from ECVA-262, to nake ECVA-404 a normative
reference, and to explain the particular nmeaning of "normative".

0 Section 1.3 has been updated to reflect errata filed against
RFC 7159, not RFC 4627.

o Section 8.1 was changed to require the use of UTF-8 when
transmtted over a network.

0 Section 12 has been updated to increase the precision of the
description of the security risk that follows fromusing the
ECMAScript "eval ()" function.

0 Section 14.1 has been updated to include ECVMA-404 as a nornative
ref erence.

0 Section 14.2 has been updated to renove ECVA-404, update the
version of ECMA-262, and refresh the errata |ist.

Contributors
RFC 4627 was written by Douglas Crockford. This document was
constructed by making a relatively small nunber of changes to that
docunent; thus, the vast mpjority of the text here is his.

Aut hor’ s Address

TimBray (editor)
Textual ity

Emai |l : tbray@extuality.com

Br ay St andards Track [Page 16]

