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Abst r act

Thi s docunent describes CoDel (Controlled Delay) -- a genera
framework that controls bufferbl oat-generated excess delay in nodern
net wor ki ng environnents. CoDel consists of an estimator, a setpoint,
and a control loop. It requires no configuration in normal |nternet
depl oynent s.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
conmmunity. This document is a product of the Internet Engi neering
Task Force (IETF). It represents the consensus of the | ETF
conmunity. It has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
al |l documents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 7841.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it nmay be obtained at
https://wwv. rfc-editor.org/info/rfc8289
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1

| ntroducti on

The "persistently full buffer” problem has been di scussed in the | ETF
conmunity since the early 80s [ RFC896]. The |IRTF s End-to-End
Research Group called for the depl oynent of Active Queue Managenent
(AQV) to solve the problemin 1998 [ RFC2309]. Despite this

awar eness, the problemhas only gotten worse as growth in nenory
density per More’'s Law fuel ed an exponential increase in buffer poo
size. Efforts to deploy AQM have been frustrated by difficult
configuration and negative inpact on network utilization. This

"buf ferbl oat” probl em [BLOAT] has becone increasingly inportant
throughout the Internet but particularly at the consuner edge. Queue
nmanagenent has becone nore critical due to increased consunmer use of
the Internet, mxing |large video transactions with tine-critical VolP
and gami ng.

An effective AQM renedi ates bufferbl oat at a bottl eneck while "doing
no harnm at hops where buffers are not bloated. However, the

devel opnent and depl oynent of AQM are frequently subject to

nm sconcepti ons about the cause of packet queues in network buffers.
Net wor k buffers exist to absorb the packet bursts that occur
naturally in statistically multiplexed networks. Buffers helpfully
absorb the queues created by reasonabl e packet network behavi or such
as short-termmsmatches in traffic arrival and departure rates that
arise fromupstreamresource contention, transport conversation
startup transients, and/or changes in the nunber of conversations
sharing a link. Unfortunately, other |ess useful network behaviors
can cause queues to fill, and their effects are not nearly as benign.
Di scussi on of these issues and the reason why the solution is not
sinmply "snaller buffers" can be found in [RFC2309], [VANQO006],

[ REDL1998], and [ CODEL2012]. To understand queue nmanagenent, it is
critical to understand the difference between the necessary, usefu
"good" queue and the counterproductive "bad" queue.

Several approaches to AQM have been devel oped over the past two
decades, but none have been widely depl oyed due to performance

probl ens. Wen designed with the wong conceptual nodel for queues,
AQVs have linmited operational range, require a |lot of configuration
tweaki ng, and frequently inpair rather than inprove perfornmance.
Learning fromthis past history, the CoDel approach is designed to
neet the foll ow ng goals:

o Make AQM paraneterl ess for nornal operation, with no knobs for
operators, users, or inplementers to adjust.

0 Be able to distinguish "good" queue from "bad" queue and treat
themdifferently, that is, keep delay |low while permtting
necessary bursts of traffic.
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o Control delay while insensitive (or nearly so) to round-trip
delays, link rates, and traffic loads; this goal is to "do no
harm' to network traffic while controlling del ay.

o Adapt to dynamically changing link rates with no negative inpact
on utilization.

o Alowsinmple and efficient inplenmentation (can easily span the
spectrum from | ow end access points and hone routers up to high-
end router hardware).

CoDel has five major differences fromprior AQVs: use of the |oca
gueue mnimumto track congestion ("bad" queue), use of an efficient
single state variable representation of that tracked statistic, use
of packet sojourn tine as the observed datum (rather than packets,
bytes, or rates), use of a mathematically determnm ned setpoint derived
from maxi m zi ng network power [KLEIN81], and a nodern state-space
controller.

CoDel configures itself based on a round-trip time netric that can be
set to 100 ns for the normal, terrestrial Internet. Wth no changes
to paraneters, CoDel is expected to work across a w de range of
conditions, with varying links and the full range of terrestria
round-trip tines.

CoDel is easily adapted to multiple queue systens as shown by

[ RFC8290]. Inplenmenters and users SHOULD use the fq_codel multiple-
gueue approach as it deals with many probl ens beyond the reach of an
AQV on a single queue.

CoDel was first published in [ CODEL2012] and has been inplenented in
the Li nux kernel

Note that while this document refers to droppi ng packets when
i ndi cated by CoDel, it nmay be reasonable to ECN-mark packets instead.

2. Conventions and Terns Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [ RFC2119] [ RFCB174] when, and only when, they appear in al
capitals, as shown here.
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The following terns are used in this docunment and are defined as
foll ows:

sojourn time: the amount of time a packet has spent in a particular
buffer, i.e., the tine a packet departs the buffer mnus the
time the packet arrived at the buffer. A packet can depart a
buf fer via transm ssion or drop.

standi ng queue: a queue (in packets, bytes, or time delay) in a
buf fer that persists for a "long" tine, where "long" is on the
order of the longer round-trip tines through the buffer, as
di scussed in Section 4.2. A standing queue occurs when the
m ni mum queue over the "long" tinme is non-zero and is usually
tol erable and even desirable as long as it does not exceed sone
target del ay.

bottl eneck bandwi dth: the limting bandw dth al ong a network path.
3. Understanding the Buil ding Bl ocks of Queue Managenent

At the heart of queue managenent is the notion of "good" queue and
"bad" queue and the search for ways to get rid of the "bad" queue
(which only adds del ay) while preserving the "good" queue (which
provides for good utilization). This section explains queueing, both
good and bad, and covers the CoDel building blocks that can be used
to nanage packet buffers to keep their queues in the "good" range.

Packet queues formin buffers facing bottleneck links, i.e., where
the line rate goes fromhigh to | ow or where many |inks converge.

The wel | - known bandwi dt h-del ay product (sonetinmes called "pipe size")
is the bottleneck’s bandwidth multiplied by the sender-receiver-
sender round-trip delay; it is the anmount of data that has to be in
transit between two hosts in order to run the bottleneck link at 100%
utilization. To explore how queues can form consider a |long-lived
TCP connection with a 25-packet w ndow sendi ng through a connection
with a bandwi dt h-del ay product of 20 packets. After an initial burst
of packets, the connection will settle into a 5-packet (+/-1)
standi ng queue; this standing queue size is determ ned by the

m smat ch between the w ndow size and the pipe size and is unrel ated
to the connection’s sending rate. The connection has 25 packets in
flight at all tinmes, but only 20 packets arrive at the destination

over a round-trip tine. |If the TCP connection has a 30-packet
wi ndow, the queue will be 10 packets with no change in sending rate.
Simlarly, if the windowis 20 packets, there will be no queue, but

the sending rate is the same. Nothing can be inferred about the
sending rate fromthe queue size, and any queue other than transient
bursts only creates delays in the network. The sender needs to
reduce the nunber of packets in flight rather than the sending rate.
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3.

1

In the above exanple, the 5-packet standi ng queue can be seen to
contribute nothing but delay to the connection and thus is clearly
"bad" queue. If, in our exanple, there is a single bottleneck |ink
and it is much slower than the Iink that feeds it (say, a high-speed
Ethernet link into a limted DSL uplink), then a 20-packet buffer at
the bottleneck m ght be necessary to tenporarily hold the 20 packets
in flight to keep the bottleneck link’s utilization high. The burst
of packets should drain completely (to O or 1 packets) within a
round-trip tine, and this transient queue is "good" queue because it
all ows the connection to keep the 20 packets in flight and the
bottleneck link to be fully utilized. 1In ternms of the del ay

experi enced, the "good" queue goes away in about a round-trip tine,
whi |l e "bad" queue hangs around for |onger, causing del ays.

Ef fecti ve queue managenent detects "bad" queue while ignoring "good"
gueue and takes action to get rid of the "bad" queue when it is
detected. The goal is a queue controller that acconplishes this
objective. To control a queue, we need three basic conponents:

o Estimator - To figure out what we’ ve got.
o Target setpoint - To know what we want.

o Control loop - If what we’'ve got isn't what we want, we need a way
to nove it there

Esti mat or

The estimator both observes the queue and detects when "good" queue
turns to "bad" queue and vice versa. CoDel has two parts to its
estimator: what is observed as an indicator of queue and how t he
observations are used to detect "good"/"bad" queue.

Queue length has been wi dely used as an observed i ndi cator of
congestion and is frequently conflated with sending rate. Use of
gueue length as a nmetric is sensitive to how and when the length is
observed. A high-speed arrival link to a buffer serviced at a nmuch
lower rate can rapidly build up a queue that might disperse
conpletely or down to a single packet before a round-trip time has

el apsed. If the queue length is nonitored at packet arrival (as in
original Random Early Detection (RED)) or departure tine, every
packet will see a queue with one possible exception. |If the queue

length itself is time sanpled (as reconmended in [ REDL1998]), a truer
pi cture of the queue’s occupancy can be gained at the expense of
consi derabl e inpl ementati on conpl exity.
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The use of queue length is further conplicated in networks that are
subj ect to both short- and |ong-term changes in available link rate
(as in WFi). Link rate drops can result in a spike in queue |length
that should be ignored unless it persists. It is not the queue

l ength that should be controlled but the anbunt of excess del ay
packets experience due to a persistent or standi ng queue, which neans
that the packet sojourn tine in the buffer is exactly what we want to
track. Tracking the packet sojourn tinmes in the buffer observes the
actual del ay experienced by each packet. Sojourn time allows queue
management to be independent of link rate, gives superior performance
to use of buffer size, and is directly related to user-visible
performance. It works regardless of line rate changes or |ink
sharing by multiple queues (which the individual queues nay
experience as changing rates).

Consider a link shared by two queues with different priorities.
Packets that arrive at the high-priority queue are sent as soon as
the link is available, while packets in the other queue have to wait
until the high-priority queue is enpty (i.e., a strict priority
schedul er). The nunber of packets in the high-priority queue mnight
be | arge, but the queue is enptied quickly, and the amount of tine
each packet spends enqueued (the sojourn tine) is not large. The

ot her queue m ght have a smaller nunber of packets, but packet
sojourn tinmes will include the waiting time for the high-priority
packets to be sent. This nakes the sojourn tinme a good sanple of the
congestion that each separate queue is experiencing. This exanple
al so shows how the netric of sojourn tine is independent of the
nunber of queues or the service discipline used and is instead

i ndi cati ve of congestion seen by the individual queues.

How can observed sojourn tinme be used to separate "good" queue from
"bad" queue? Although averages, especially of queue |length, have
previously been wi dely used as an indicator of "bad" queue, their
efficacy is questionable. Consider the burst that disperses every
round-trip tinme. The average queue will be one-half the burst size,
though this mght vary depending on when the average is conputed and
the timng of arrivals. The average queue sojourn tine would be one-
half the time it takes to clear the burst. The average then would

i ndi cate a persistent queue where there is none. |Instead of
averages, we recomrend tracking the mnimum sojourn tine; then, if
there is one packet that has a zero sojourn time, there is no

persi stent queue.

A persistent queue can be detected by tracking the (local) mininmm
gueue del ay packets experience. To ensure that this mninumval ue
does not become stale, it has to have been experienced recently,

i.e., during an appropriate past time interval. This interval is the
maxi mum amount of tinme a mnimumvalue is considered to be in effect
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and is related to the anount of tinme it takes for the |argest
expected burst to drain. Conservatively, this interval SHOULD be at
least a round-trip tine to avoid falsely detecting a persistent queue
and not a lot nore than a round-trip time to avoid delay in detecting
the persistent queue. This suggests that the appropriate interva
value is the maximumround-trip tine of all the connections sharing
the buffer.

Note that the follow ng key insight nakes conputation of the |oca
mnimmefficient: it is sufficient to keep a single state variable
that indicates how | ong the mni num has been above or bel ow t he
target value rather than retaining all the | ocal values to conpute
the minimum which [eads to both storage and conputational savings.
We use this insight in the pseudocode for CoDel later in the
document .

These two parts, use of sojourn time as the observed val ue and the
local minimumas the statistic to nonitor queue congestion, are key
to CoDel’'s estimator building block. The l|ocal mnimmsojourn tine
provi des an accurate and robust neasure of standing queue and has an
efficient inplenentation. In addition, use of the m ninum sojourn
time has inportant advantages in inplenmentation. The m ni mum packet
sojourn can only be decreased when a packet is dequeued, which neans
that all the work of CoDel can take place when packets are dequeued
for transm ssion and that no | ocks are needed in the inplenentation
The minimumis the only statistic with this property.

A nore detail ed explanation with many pictures can be found in
[TSV84].

3.2. Target Setpoint

Now t hat we have a robust way of detecting standi ng queue, we need a

target setpoint that tells us when to act. |If the controller is set
to take action as soon as the estimator has a non-zero val ue, the
average drop rate will be maxi m zed, which mnimzes TCP goodput

[ MACTCP1997]. Also, this policy results in no backlog over tine (no
persi stent queue), which negates nuch of the value of having a
buffer, since it maximzes the bottleneck |ink bandwi dth | ost due to
normal stochastic variation in packet interarrival time. W want a
target that maxim zes utilization while mnimzing delay. Early in
the history of packet networking, Kleinrock devel oped the analytic
machinery to do this using a quantity he called "power", which is the
ratio of a normalized throughput to a normalized delay [ KLEI N81].

Ni chol s, et al. Experi ment al [ Page 8]



RFC 8289 CoDel January 2018

It is straightforward to derive an analytic expression for the
average goodput of a TCP conversation at a given round-trip tine r
and target f (where f is expressed as a fraction of r). Reno TCP
for exanple, yields:

goodput =r (3 + 6f - f~2) / (4 (1+f))

Since the peak queue delay is sinply the product of f and r, power is
solely a function of f since the r’'s in the nunerator and denom nat or
cancel

power is proportional to (1 + 2f - 1/3 f~2) / (1 + f)~2

As Kl ei nrock observed, the best operating point (in terns of
bandwi dt h/ del ay trade-off) is the peak power point, since points off
the peak represent a higher cost (in delay) per unit of bandw dth.
The power vs. f curve for any Additive Increase Multiplicative
Decrease (AIMD) TCP i s npnotone decreasing. But the curve is very
flat for f < 0.1, followed by an increasing curvature with a knee
around f = 0.2, then a steep, alnost linear fall off [TSV84]. Since
the previous equation showed that goodput is nonotone increasing with
f, the best operating point is near the right edge of the flat top,
since that represents the highest goodput achievable for a negligible
increase in delay. However, since ther in the nodel is a
conservative upper bound, a target of 0.1r runs the risk of pushing
shorter RTT connections over the knee and giving them hi gher del ay
for no significant goodput increase. Generally, a nore conservative
target of 0.05r offers a good utilization vs. delay trade-off while
gi ving enough headroomto work well with a large variation in rea
RTT.

As the above anal ysis shows, a very snall standing queue gives cl ose
to 100% utilization of the bottleneck link. Wile this result was
for Reno TCP, the derivation uses only properties that nust hold for
any "TCP friendly" transport. W have verified by both anal ysis and
simulation that this result holds for Reno, Cubic, and Westwood
[TSV84]. This results in a particularly sinple formfor the target:
the ideal range for the permtted standing queue, or the target
setpoint, is between 5% and 10% of the TCP connection’s RTT.

We used simulation to explore the inpact when TCPs are m xed with
other traffic and with connections of different RTTs. Accordingly,
we experinmented extensively with values in the 5-10% of RTT range
and, overall, used target values between 1 and 20 nilliseconds for
RTTs from 30 to 500 nms and |ink bandw dths of 64 Kbps to 100 Mips to
experimental ly explore a value for the target that gives consistently
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high utilization while controlling delay across a range of
bandwi dt hs, RTTs, and traffic loads. Qur results were notably
consistent with the nathematics above.

A congested (but not overl oaded) CoDel link with traffic conposed
solely or primarily of long-lived TCP flows will have a nedi an del ay
through the link that will tend to the target. For bursty traffic

| oads and for overloaded conditions (where it is difficult or

i npossible for all the arriving flows to be accommpdat ed), the nedi an
gueues will be longer than the target.

The non-starvation drop inhibit feature dom nates where the link rate
beconmes very snmall. By inhibiting drops when there is I ess than an
(outbound I'ink) MU worth of bytes in the buffer, CoDel adapts to
very | ow bandwi dth |inks, as shown in [ CODEL2012].

3.3. Control Loop

Section 3.1 describes a sinple, reliable way to nmeasure "bad"
(persistent) queue. Section 3.2 shows that TCP congestion contro
dynamics gives rise to a target setpoint for this neasure that's a
provably good bal ance between enhanci ng throughput and m ni m zi ng
delay. Section 3.2 also shows that this target is a constant
fraction of the sane "l argest average RTT" interval used to

di stingui sh persistent fromtransient queue. The only renaining
bui | di ng bl ock needed for a basic AQMis a "control |oop" algorithm
to effectively drive the queueing systemfrom any "persistent queue
above the target" state to a state where the persistent queue is
bel ow t he target.

Control theory provides a wealth of approaches to the design of
control |oops. Most of classical control theory deals with the
control of linear, time-invariant, Single-Input-Single-Qutput (SISO
systenms. Control |oops for these systens generally come froma well -
under st ood cl ass known as Proportional -1ntegral -Derivative (PID)
controllers. Unfortunately, a queue is not a |linear system and an
AQMV operates at the point of naxi mumnon-linearity (where the output
i nk bandwi dt h saturates, so increased demand creates del ay rather
than higher utilization). Qutput queues are also not time invariant
since traffic is generally a mx of connections that start and stop
at arbitrary tinmes and that can have radically different behaviors
rangi ng from "open-1oop" UDP audi o/video to "cl osed-| oop" congesti on-
avoiding TCP. Finally, the constantly changing m x of connections
(which can't be converted to a single "lunped paraneter" node
because of their transfer function differences) nakes the system

Mul ti-lnput-Milti-Qutput (MM, not SISO
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Si nce queuei ng systens nmatch none of the prerequisites for a
classical controller, a better approach is a nodern state-space
controller with "no persistent queue" and "has persistent queue"
states. Since Internet traffic m xtures change rapidly and

unpredi ctably, a noise- and error-tol erant adaptation algorithmlike
stochastic gradient is a good choice. Since there's essentially no
information in the ambunt of persistent queue [TSV84], the adaptation
shoul d be driven by how long it has persisted.

Consi der the two extremes of traffic behavior: a single, open-Iloop
UDP video stream and a single, long-lived TCP bulk data transfer. |If
the average bandwi dth of the UDP video streamis greater than the
bottleneck link rate, the link’s queue will grow, and the controller
will eventually enter "has persistent queue" state and start dropping
packets. Since the video streamis open loop, its arrival rate is
unaffected by drops, so the queue will persist until the average drop
rate is greater than the output bandwi dth deficit (= average arriva
rate - average departure rate); the job of the adaptation algorithm
is to discover this rate. For this exanple, the adaptation could
consist of sinply estimating the arrival and departure rates and then
dropping at a rate slightly greater than their difference, but this
class of algorithmwon’t work at all for the bulk data TCP stream
TCP runs in closed-loop flow balance [TSV84], so its arrival rate is
al nost al ways exactly equal to the departure rate -- the queue isn't
the result of a rate inbalance but rather a msmatch between the TCP
sender’ s wi ndow and the source-destination-source round-trip path
capacity (i.e., the connection’s bandw dth-delay product). The
sender’s TCP congestion avoi dance algorithmw Il slowy increase the
send w ndow (one packet per round-trip time) [RFC5681], which wll
eventual |y cause the bottleneck to enter "has persistent queue"
state. But, since the average input rate is the sane as the average
output rate, the rate deficit estimation that gave the correct drop
rate for the video stream would conpute a drop rate of zero for the
TCP stream However, if the output |ink drops one packet as it
enters "has persistent queue" state, when the sender discovers this
(via TCP's normal packet |oss repair nechanisns), it will reduce its
wi ndow by a factor of two [ RFC5681]; so, one round-trip tine after
the drop, the persistent queue will go away.

If there were N TCP conversations sharing the bottl eneck, the
controll er would have to drop Q(N) packets (one from each
conversation) to nake all the conversations reduce their w ndow to
get rid of the persistent queue. |If the traffic nmix consists of
short (<= bandwi dt h-del ay product) conversations, the aggregate
behavi or becones nore |ike the open-loop video exanpl e since each
conversation is likely to have already sent all its packets by the
time it | earns about a drop so each drop has negligible effect on
subsequent traffic.
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The controll er does not know the number, duration, or kind of
conversations creating its queue, so it has to learn the appropriate
response. Since single drops can have a large effect if the degree
of multiplexing (the nunber of active conversations) is snmall
dropping at too high a rate is likely to have a catastrophic effect
on throughput. Dropping at a lowrate (< 1 packet per round-trip
time) and then increasing the drop rate slowy until the persistent
gueue goes below the target is unlikely to overdrop and i s guaranteed
to eventual ly dissipate the persistent queue. This stochastic

gradi ent |earning procedure is the core of CoDel’s control |oop (the
gradi ent exists because a drop al ways reduces the (instantaneous)
gueue, SO an increasing drop rate always noves the system "down"
toward no persistent queue, regardless of traffic mx).

The "next drop tine" is decreased in inverse proportion to the square
root of the nunmber of drops since the drop state was entered, using
the well-known non-linear relationship of drop rate to throughput to
get a linear change in throughput [REDL1998][ MACTCP1997].

Since the best rate to start dropping is at slightly nore than one
packet per RTT, the controller’s initial drop rate can be directly
derived fromthe estimator’s interval. Wen the ninimum sojourn tine
first crosses the target and CoDel drops a packet, the earliest the
controller could see the effect of the drop is the round-trip tine

(interval) + the local queue wait time (the target). |If the next
drop happens any earlier than this time (interval + target), CoDe
will overdrop. |In practice, the local queue waiting time tends to

vary, so meking the initial drop spacing (i.e., the time to the
second drop) be exactly the m ninum possible also |leads to
overdropping. Analysis of sinulation and real -world neasured data
shows that the 75th percentile magnitude of this variation is |ess
than the target, so the initial drop spacing SHOULD be set to the

estimator’s interval (i.e., initial drop spacing = interval) to
ensure that the controller has accounted for acceptabl e congestion
del ays.

Use of the mininumstatistic lets the controller be placed in the
dequeue routine with the estimator. This nmeans that the contro
signal (the drop) can be sent at the first sign of "bad" queue (as

i ndicated by the sojourn time) and that the controller can stop
acting as soon as the sojourn tinme falls below the target. Dropping
at dequeue has both inplenentation and control advantages.
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4.

Overview of the CoDel AQV

CoDel was initially designed as a bufferbloat solution for the
consumer network edge. The CoDel building bl ocks are able to adapt
to different or time-varying link rates, be easily used with nultiple
gueues, have excellent utilization with | ow delay, and have a sinple
and efficient inplenmentation.

The CoDel al gorithm described in the rest of this docunent uses two
key variabl es: TARGET, which is the controller’s target setpoint
described in Section 3.2, and I NTERVAL, which is the estimator’s
interval described in Section 3.3.

The only setting CoDel requires is the | NTERVAL val ue, and as 100 ns
satisfies that definition for normal Internet usage, CoDel can be
paraneter-free for consunmer use. To ensure that link utilization is
not adversely affected, CoDel’s estimator sets TARGET to one that
optim zes power. CoDel’s controller does not drop packets when the
drop woul d | eave the queue enpty or with fewer than a Maxi mum

Transmi ssion Unit (MIU) worth of bytes in the buffer. Section 3.2
shows that an ideal TARGET is 5-10% of the connection round-trip time
(RTT). In the open terrestrial-based Internet, especially at the
consumer edge, we expect nost unbloated RTTs to have a ceiling of 100
ns [ CHARB2007]. Using this RTT gives a mninum TARGET of 5 ns and

| NTERVAL of 100 ns. In practice, uncongested links will see sojourn
ti mes bel ow TARGET nore often than once per RTT, so the estimator is
not overly sensitive to the val ue of | NTERVAL.

VWen the estimator finds a persistent delay above TARGET, the
controller enters the drop state where a packet is dropped, and the
next drop time is set. As discussed in Section 3.3, the initial next
drop spacing is intended to be | ong enough to give the endpoints tine
to react to the single drop and therefore SHOULD be set to a val ue
equal to INTERVAL. |If the estimator’s output falls bel ow TARGET, the
controll er cancels the next drop and exits the drop state. (The
controller is nore sensitive than the estimator to an overly short

| NTERVAL val ue, since an unnecessary drop would occur and | ower |ink
utilization). |If the next drop tinme is reached while the controller
is still in drop state, the packet being dequeued is dropped, and the
next drop time is recal cul at ed.

Additional logic prevents re-entering the drop state too soon after
exiting it and resunmes the drop state at a recent control level, if
one exists. This logic is described nore precisely in the pseudocode
bel ow. Additional work is required to determ ne the frequency and

i mportance of re-entering the drop state.
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Note that CoDel AQMonly enters its drop state when the |ocal m ninmm
soj ourn del ay has exceeded TARGET for a time period | ong enough for
normal bursts to dissipate, ensuring that a burst of packets that
fits in the pipe will not be dropped.

4.1. Non-starvation

CoDel's goals are to control delay with little or no inpact on link
utilization and to be depl oyed on a wi de range of |ink bandw dths,

i ncluding variable-rate Iinks, w thout reconfiguration. To keep from
maki ng drops when it would starve the output |ink, CoDel makes

anot her check before dropping to see if at |east an MU worth of
bytes remains in the buffer. [|f not, the packet SHOULD NOT be
dropped; therefore, CoDel exits the drop state. The MIU size can be
set adaptively to the | argest packet seen so far or can be read from
the interface driver.

4.2. Setting | NTERVAL

The I NTERVAL val ue is chosen to give endpoints tinme to react to a
drop without being so long that response tinmes suffer. CoDel’s
estimator, TARGET, and control |oop all use INTERVAL. Understanding
their derivation shows that CoDel is the nost sensitive to the val ue
of INTERVAL for single long-lived TCPs with a decreased sensitivity
for traffic mxes. This is fortunate, as RTTs vary across
connections and are not known a priori. The best policy seens to be
to use an I NTERVAL value slightly larger than the RTT seen by nost of
the connections using a link, a value that can be determ ned as the

| argest RTT seen if the value is not an outlier (use of a 95-99th
percentile value should work). In practice, this value is not known
or neasured (however, see Appendix A for an application where

| NTERVAL is neasured). An |INTERVAL setting of 100 nms works well
across a range of RTTs from 10 ns to 1 second (excellent performance
is achieved in the range from10 ms to 300 ns). For devices intended
for the normal terrestrial Internet, |INTERVAL SHOULD have a val ue of
100 ms. This will only cause overdroppi ng where a long-lived TCP has
an RTT longer than 100 ns and there is little or no mxing with other
connections through the Iink.

4.3. Setting TARGET
TARGET i s the naxi mum accept abl e persi stent queue del ay above which
CoDel is dropping or preparing to drop and bel ow which CoDel will not
drop. TARGET SHOULD be set to 5 ns for normal Internet traffic.
The cal cul ations of Section 3.2 show that the best TARGET value is

5-10% of the RTT, with the |ow end of 5% preferred. Extensive
simul ati ons exploring the inpact of different TARGET val ues when used
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with mxed traffic flows with different RTTs and different bandw dths
show that below a TARGET of 5 ns, utilization suffers for sone
conditions and traffic | oads; above 5 ms showed very little or no

i mprovenent in utilization

Sojourn tinmes nmust renmmi n above the TARGET for | NTERVAL anount of
time in order to enter the drop state. Any packet with a sojourn
time less than TARGET will reset the tine that the queue was | ast
bel ow TARGET. Since Internet traffic has very dynanic
characteristics, the actual sojourn delay experienced by packets
varies greatly and is often |l ess than TARGET unless the overload is
excessive. Wwen a link is not overloaded, it is not a bottleneck
and packet sojourn tinmes will be small or nonexistent. In the usua
case, there are only one or two places along a path where packets
will encounter a bottleneck (usually at the edge), so the tota
amount of queuei ng del ay experienced by a packet should be | ess than
10 ms even under extrenely congested conditions. This net delay is
substantially | ower than conmobn current queueing del ays on the
Internet that grow to orders of seconds [ NETAL2010] [ CHARB2007].

Regardi ng the roles of TARGET and the mini mumtracking | NTERVAL, note
that TARGET SHOULD NOT be increased in response to |ower |ayers that
have a bursty nature, where packets are transmtted for short periods
interspersed with idle periods where the link is waiting for

perm ssion to send. CoDel’s estimator will "see" the effective
transm ssion rate over an | NTERVAL anmpunt of time, and increasing
TARGET only |l eads to | onger queue delays. On the other hand, where a
significant additional delay is added to the intrinsic RTT of npbst or
all packets due to the waiting tine for a transmssion, it is
necessary to increase | NTERVAL by that extra delay. TARGET SHOULD
NOT be adjusted for such short-term bursts, but | NTERVAL MAY need to
be adjusted if the path’s intrinsic RTT changes.

4.4. Use with Multiple Queues

CoDel is easily adapted to nultiple queue systens. Wth other
approaches, there is always a question of how to account for the fact
that each queue receives less than the full link rate over tine and
usual ly sees a varying rate over tinme. This is what CoDel excels at:
using a packet’s sojourn time in the buffer conpletely circunvents
this problem In a multiple-queue setting, a separate CoDe

al gorithmruns on each queue, but each CoDel instance uses the packet
sojourn tinme the sane way a singl e-queue CoDel does. Just as a

si ngl e-queue CoDel adapts to changing |ink bandw dths [ CODEL2012], so
does a nultipl e-queue CoDel system As an optimzation to avoid
gueuei ng nore than necessary, when testing for queue occupancy before
droppi ng, the total occupancy of all queues sharing the sanme out put
link SHOULD be used. This property of CoDel has been exploited in
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fg_codel [RFC8290], which hashes on the packet header fields to

determ ne a specific bin, or sub-queue, for the packet and runs CoDe
on each bin or sub-queue, thus creating a well-nmni xed output flow and
obviating issues of reverse path flows (including "ack conpression").

4.5. Setting Up CoDel

CoDel is set for use in devices in the open Internet. An | NTERVAL
setting of 100 ms is used, TARGET is set to 5% of |INTERVAL, and the
initial drop spacing is also set to the I NTERVAL. These settings
have been chosen so that a device, such as a small WF router, can
be sold w thout the need for any values to be made adj ustabl e,
yielding a paraneterless inplenentation. In addition, CoDel is
useful in environments with significantly different characteristics
fromthe normal Internet, for exanple, in switches used as a cluster
interconnect within a data center. Since cluster traffic is entirely
internal to the data center, round-trip latencies are low (typically
<100 us) but bandwi dths are high (1-40 Gops), so it’'s relatively easy
for the aggregation phase of a distributed conputation (e.g., the
Reduce part of a Map/Reduce) to persistently fill and then overflow
the nodest per-port buffering available in nmost high-speed switches.
A CoDel configured for this environment (TARGET and I NTERVAL in the

m crosecond rather than mllisecond range) can mnimze drops or
Explicit Congestion Notification (ECN) nmarks whil e keepi ng throughput
hi gh and | atency | ow.

Devi ces destined for these environments MAY use a different value for
| NTERVAL, where suitable. |If appropriate analysis indicates, the
TARGET MAY be set to sonme other value in the 5-10% of | NTERVAL, and
the initial drop spacing MAY be set to a value of 1.0 to 1.2 tines

| NTERVAL. But these settings will cause problens, such as
overdroppi ng and | ow throughput, if used on the open Internet, so
devices that allow CoDel to be configured SHOULD default to the

I nt ernet -appropriate values given in this docunent.

5. Annot ated Pseudocode for CoDel AQV

What follows is the CoDel algorithmin C++-1ike pseudocode. Since
CoDel adds relatively little new code to a basic tail-drop FIFO
gueue, we have attenpted to highlight just these additions by
presenting CoDel as a sub-class of a basic FIFO queue base cl ass.
The reference code is included to aid inplenenters who wish to apply
CoDel to queue nanagenent as described here or to adapt its
principles to other applications.
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5.

5.

5.

1

2.

3.

| mpl ementors are strongly encouraged to also | ook at the Linux kerne
version of CoDel -- a well-witten, well-tested, real-world, C based
i mpl ementation. As of this witing, it is available at

https://github. com torval ds/li nux/ bl ob/ nast er/ net/sched/ sch_codel . c.

Data Types

time_t is an integer time value in units convenient for the system
The code presented here uses 0 as a flag value to indicate "no tinme
set."

packet t* is a pointer to a packet descriptor. W assune it has a
tstanp field capable of holding a tinme_t and that the field is
avai |l abl e for use by CoDel (it will be set by the enqueue routine and
used by the dequeue routine).

gueue_t is a base class for queue objects (the parent class for

codel _queue_t objects). W assune it has enqueue() and dequeue()

net hods that can be inplenented in child classes. W assune it has a
bytes() nethod that returns the current queue size in bytes. This
can be an approxi mate value. The nmethod is invoked in the dequeue()
nmet hod but shouldn’t require a lock with the enqueue() nethod.

flag t is a Bool ean.

Per - Queue State (codel _queue_t Instance Vari abl es)
time_t first_above tine_ =0; // Time to declare sojourn time above
/1l TARGET
time_t drop_next_ = 0; /1 Time to drop next packet
uint32 t count_ = O; /1 Packets dropped in drop state
uint32_t lastcount_ = 0; /1 Count from previous iteration
flag_t dropping_ = fal se; /[l Set to true if in drop state
Const ant s
time_t TARCGET = MS2TI ME(5); /1 5 ms TARGET queue del ay
time_t | NTERVAL = MS2TI ME(100); // 100 ns slidi ng-m ni mum w ndow
u_i nt maxpacket = 512; /1 Maxi mum packet size in bytes

/1 (SHOULD use interface MIU)
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5.4. Enqueue Routine

Al the work of CoDel is done in the dequeue routine. The only CoDe
addition to enqueue is putting the current time in the packet’s
tstamp field so that the dequeue routine can conpute the packet’s
sojourn tinme. Note that packets arriving at a full buffer will be
dropped, but these drops are not counted towards CoDel’s
conput ati ons.

voi d codel _queue_t::enqueue(packet t* pkt)

pkt->tstanmp = cl ock();
gueue_t:: enqueue( pkt);

5.5. Dequeue Routine

This is the heart of CoDel. There are two branches based on whet her
the controller is in drop state: (i) if the controller is in drop
state (that is, the mninum packet sojourn tine is greater than
TARGET), then the controller checks if it is time to |eave drop state
or schedul es the next drop(s); or (ii) if the controller is not in
drop state, it determines if it should enter drop state and do the
initial drop

packet t* CoDel Queue: : dequeue()

{
time_t now = clock();
dodequeue_result r = dodequeue(now);
uint32_t delta;

if (dropping ) {
if (! r.ok_to_drop) {
/1 sojourn tine bel ow TARGET - | eave drop state
dropping_ = fal se

/1 Time for the next drop. Drop current packet and dequeue
/1 next. |If the dequeue doesn’'t take us out of dropping
/] state, schedule the next drop. A large backl og m ght
/1 result in drop rates so high that the next drop should
/1 happen now, hence the "while’ |oop.
while (now >= drop_next_ && dropping_) {
drop(r.p);
++count _;
r = dodequeue(now);
if (! r.ok_to_drop) {
/1 leave drop state
dropping_ = fal se
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5.

6.

} else {

/1 schedul e the next drop

drop_next _ = control _| awm(drop_next _, count_);
}

/1 1f we get here, we're not in drop state. The "ok to_drop
/1 return from dodequeue neans that the sojourn tine has been
/1 above ' TARGET' for 'INTERVAL', so enter drop state.
} else if (r.ok _to_drop) {

drop(r.p);

r = dodequeue( now);

dropping_ = true;

/1 1f min went above TARCET close to when it |ast went

/1 below, assunme that the drop rate that controlled the

/1 queue on the last cycle is a good starting point to

/1 control it now (’'drop_next’ wll be at nobst | NTERVAL’
/1 later than the tinme of the |l ast drop, so 'now - drop_next
/1 is a good approximation of the tinme fromthe |ast drop

/1 until now.) I|nplenmentations vary slightly here; this is
/1 the Linux version, which is nore wi dely depl oyed and

/] tested.

delta = count _ - lastcount_;

count _ = 1;

if ((delta > 1) &% (now - drop_next < 16*I NTERVAL))
count _ = delta;

drop_next _ = control _| awm( how, count_);

| ast count _ = count _;

return (r.p);

Hel per Routi nes

Since the degree of nultiplexing and nature of the traffic sources is
unknown, CoDel acts as a closed-1oop servo systemthat gradually

i ncreases the frequency of dropping until the queue is controlled
(sojourn time goes bel ow TARGET). This is the control |aw that
governs the servo. It has this form because of the sqrt(p)
dependence of TCP throughput on drop probability. Note that for
enbedded systens or kernel inplenentation, the inverse sqrt can be
conputed efficiently using only integer multiplication

time_t codel _queue_t::control _law(time_t t, uint32_t count)

{
}

return t + INTERVAL / sqrt(count);
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Next is a hel per routine that does the actual packet dequeue and
tracks whether the sojourn tine is above or bel ow TARGET and, if
above, if it has remained above continuously for at |east | NTERVAL
amount of tine. It returns two values: a Boolean indicating if it is
OK to drop (sojourn tine above TARGET for at |east |INTERVAL) and the
packet dequeued.

typedef struct {
packet _t* p;
flag_ t ok_to_drop;
} dodequeue_result;

dodequeue_result codel queue_t::dodequeue(tinme_t now)
dodequeue_result r = { queue_t::dequeue(), false };

if (r.p == NULL) {
/1 queue is enpty - we can’t be above TARCGET

first_above_time_ = O;
return r;
}
/1 To span a | arge range of bandw dths, CoDel runs two
/1 different AQWs in parallel. One is based on sojourn tine

/1 and takes effect when the time to send an MIU-si zed
/1 packet is less than TARGET. The 1st termof the "if"
/1 below does this. The other is based on backl og and t akes
/] effect when the tine to send an MIU si zed packet is >=
/1 TARGET. The goal here is to keep the output |ink
/1 utilization high by never allow ng the queue to get
/1 smaller than the anpbunt that arrives in a typica
/1 interarrival time (MIU sized packets arriving spaced
/1 by the anpbunt of time it takes to send such a packet on
/1 the bottleneck). The 2nd termof the "if" does this.
time_t sojourn_time = now - r.p->tstanp;
if (sojourn_time_ < TARGET || bytes() <= nmaxpacket ) {

/1 went bel ow - stay bel ow for at |east | NTERVAL

first_above_time_ = O;
} else {
if (first_above tine_ == 0)
/1 just went above frombelow if still above at

[l first_above_time, will say it’s ok to drop
first _above time_ = now + | NTERVAL;
} else if (now >= first_above time ) {
r.ok to drop = true;
}
}

return r;
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5.

8.

7. I nplenentation Considerations

time_t is an integer time value in units convenient for the system
Resolution to at least a mllisecond is required, and better
resolution is useful up to the m ni mum possi bl e packet tine on the
output link; 64- or 32-bit widths are acceptable but with 32 bits the
resol ution should be no finer than 2*{-16} to | eave enough dynam c
range to represent a wi de range of queue waiting tinmes. Narrower
wi dt hs al so have inpl ementation i ssues due to overfl ow (w apping) and
underflow (limt cycles because of truncation to zero) that are not
addressed in this pseudocode.

Since CoDel requires relatively little per-queue state and no direct
conmuni cati on or state sharing between the enqueue and dequeue
routines, it is relatively sinmple to add CoDel to al nbst any packet
processi ng pi peline, including forwardi ng engi nes based on
Application-Specific Integrated Circuits (ASICs) or Network
Processors (NPUs). One issue to consider is dodequeue()’'s use of a
"bytes()’' function to deternmine the current queue size in bytes.
Thi s val ue does not need to be exact. |f the enqueue part of the

pi peli ne keeps a running count of the total nunber of bytes it has
put into the queue, and the dequeue routine keeps a running count of
the total bytes it has renmoved fromthe queue, 'bytes()’ is sinply
the difference between these two counters (32-bit counters should be
adequate). Enqueue has to update its counter once per packet queued,
but it does not matter when (before, during, or after the packet has
been added to the queue). The worst that can happen is a slight,
transi ent underesti mate of the queue size, which mght cause a drop
to be briefly deferred.

Further Experinentation

We encourage experinentation with the recomended val ues of TARGET
and I NTERVAL for Internet settings. CoDel provides general
efficient, paraneterless building blocks for queue nmanagement t hat
can be applied to single or nultiple queues in a variety of data
net wor ki ng scenarios. CoDel’s settings may be nodified for other
speci al - purpose networki ng applications.

Security Consi derations
Thi s docunent describes an active queue nanagenent al gorithm for

i mpl enentation in networked devices. There are no known security
exposures associated with CoDel at this tine.

| ANA Consi der ati ons

Thi s docunent does not require actions by | ANA
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Appendi x A.  Applying CoDel in the Data Center

Nandi t a Dukki pati and her group at CGoogle realized that the CoDe
bui I di ng bl ocks coul d be applied to bufferbloat problens in data-
center servers, not just to Internet routers. The Linux CoDe
gueuei ng discipline (gdisc) was adapted in three ways to tackle this
buf f er bl oat probl em

1. The default CoDel action was nodified to be a direct feedback
fromaqdisc to the TCP | ayer at dequeue. The direct feedback
simply reduces TCP' s congesti on wi ndow just as congestion contro
would do in the event of drop. The schene falls back to ECN
mar ki ng or packet drop if the TCP socket |ock could not be
acqui red at dequeue.

2. Being located in the server makes it possible to nmonitor the
actual RTT to use as CoDel’s interval rather than making a "best
guess" of RTT. The CoDel interval is dynamically adjusted by
using the maxi mum TCP round-trip tinme (RTT) of those connections
sharing the sane qdi sc/bucket. |In particular, there is a history
entry of the maxi num RTT experienced over the |ast second. As a
packet is dequeued, the RTT estimate is accessed fromits TCP

socket. If the estimate is larger than the current CoDe
interval, the CoDel interval is imediately refreshed to the new
value. If the CoDel interval is not refreshed for over a second,

it is decreased to the history entry, and the process is
repeated. The use of the dynamic TCP RTT estimate all ows the
interval to adapt to the actual maxi num value currently seen and
thus lets the controller space its drop intervals appropriately.

3. Since the mathematics of conputing the setpoint are invariant, a
TARGET of 5% of the RTT or CoDel interval was used here

Non- dat a packets were not dropped, as these are typically small and
sometines critical control packets. Being |ocated on the server,
there is no concern with m sbehaving users as there would be on the
public Internet.

In several data-center workload benchmarks, which are typically
bursty, CoDel reduced the queueing |latencies at the qdi sc and thereby
i nproved the nean and 99t h-percentile | atencies fromseveral tens of
mlliseconds to |l ess than one mllisecond. The mninmumtracking part
of the CoDel framework proved useful in disanbiguating "good" queue
versus "bad" queue, which is particularly helpful in controlling
gdi sc buffers that are inherently bursty because of TCP Segnentation
O fload (TSO.
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