I nt ernet Engi neering Task Force (1 ETF) M Thomnson
Request for Comments: 8449 Mozill a
Updat es: 6066 August 2018
Cat egory: Standards Track

| SSN: 2070-1721

Record Size Limt Extension for TLS
Abst ract

An extension to Transport Layer Security (TLS) is defined that allows
endpoi nts to negotiate the maxi mum si ze of protected records that
each will send the other.

This replaces the maxi num fragnent |ength extension defined in
RFC 6066.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
https://ww. rfc-editor.org/info/rfc8449.

Copyri ght Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thonson St andards Track [Page 1]

RFC 8449 TLS Record Limt August 2018

Tabl e of Contents

I ntroducti on Ce e e
Conventions and Definitions . e e e e
Limtations of the "max_fragment | ength" Extension
The "record_size |Iimt" Extension .
4.1. Record Expansion Limts . . .
Deprecating "max_fragment | ength"
Security Considerations . .
| ANA Consi derations .
. References Coe e
8.1. Normative References
8.2. Informative References
Acknowl edgnent s
Aut hor’ s Address

PwnNE

N O
OOO~NNNNOOAWWN

1. I nt roducti on

| mpl enenti ng Transport Layer Security (TLS) [TLS] or Datagram TLS
(DTLS) [DTLS] for constrained devices can be challenging. However,
recent inprovenents to the design and inplenentation of cryptographic
al gorithms have made TLS accessible to sone highly limted devices
(see, for example, [RFC7925]).

Receiving | arge protected records can be particularly difficult for a
device with limted operating nenory. TLS versions 1.2 [RFC5246] and
earlier permt senders to generate records 16384 octets in size, plus
any expansion from conpression and protection up to 2048 octets
(though typically this expansion is only 16 octets). TLS 1.3 reduces
the all owance for expansion to 256 octets. Allocating up to 18K of
nmenory for ciphertext is beyond the capacity of some inplenentations.

An Aut hentication Encryption with Additional Data (AEAD) cipher (see
[RFC5116]) APl requires that an entire record be present to decrypt
and authenticate it. Simlarly, other ciphers cannot produce

aut henticated data until the entire record is present. |Increnenta
processi ng of records exposes endpoints to the risk of forged data.

The "max_fragment _| ength" extensi on [RFC6066] was designed to enable
constrained clients to negotiate a | ower record size. However,
"max_fragnment | ength" suffers from several design problens (see
Section 3).

Thi s docunent defines a "record size linmt" extension (Section 4).

Thi s extension replaces "max_fragment | ength" [RFC6066], which this
docunent deprecates. This extension is valid in all versions of TLS.

Thonson St andards Track [Page 2]

RFC 8449 TLS Record Limt August 2018

A snaller protected record size is just one of nmany problens that a
constrained i npl enentation m ght need to address. The

"record_size linmt" extension only addresses the nmenory allocation
problem it does not address limts of code size, processing
capability, or bandw dth capacity.

2. Conventions and Definitions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [RFC2119] [RFCB8174] when, and only when, they appear in al
capitals, as shown here.

3. Limtations of the "max_fragment_| ength" Extension

The "max_fragment | ength” extension has several limtations that make
it unsuitable for use.

A client that has no constraints preventing it fromaccepting a | arge
record cannot use "max_fragment | ength" w thout risking a reduction
in the size of records. The maxi num val ue that the extension pernits
is 2212, much smaller than the maxi mumrecord size of 2714 that the
protocol permts.

For large data transfers, small record sizes can materially affect
performance. Every record incurs additional costs, both in the
additional octets for record headers and for expansion due to
encryption. Processing nore records al so adds conputati ona

over heads that can be anortized nore effectively for larger record
sizes. Consequently, clients that are capable of receiving |arge
records could be unwilling to risk reducing performance by offering
the extension, especially if the extension is rarely needed.

This would not be an issue if a codepoint were available or could be

added for fragnments of 2714 octets. However, RFC 6066 requires that

servers abort the handshake with an "illegal paraneter” alert if they
receive the extension with a value they don’t understand. This nmakes
it inmpossible to add new values to the extension without the risk of

failed connection attenpts.

A server that negotiates "max_fragnent length" is required to echo
the value selected by the client. The server cannot request a | ower
l[imt than the one the client offered. This is a significant problem
if a server is nore constrained than the clients it serves.

Thonson St andards Track [Page 3]

RFC 8449 TLS Record Limt August 2018

The "max_fragment | ength" extension is also ill-suited to cases where
the capabilities of client and server are asymretric. Constraints on
record size are often receiver constraints.

In conparison, an inplenmentation mght be able to send data
increnentally. Encryption does not have the sane atomicity

requi renent. Some ci phers can be encrypted and sent progressively.
Thus, an endpoint might be willing to send records | arger than the
[imt it advertises for records that it receives.

If these disincentives are sufficient to discourage clients from
depl oying the "nax_fragnent | ength" extension, then constrained
servers are unable to linmit record sizes.

4. The "record_size_linmt" Extension

The ExtensionData of the "record size limt" extension is
RecordSi zeLim t:

uint 16 RecordSi zeLim t;

The val ue of RecordSizeLimt is the maxi mum size of record in octets
that the endpoint is willing to receive. This value is used to limt
the size of records that are created when encoding application data
and the protected handshake nessage into records.

When the "record_size_|limt" extension is negotiated, an endpoi nt
MUST NOT generate a protected record with plaintext that is |arger
than the RecordSi zeLimt value it receives fromits peer
Unpr ot ect ed messages are not subject to this limt.

This value is the length of the plaintext of a protected record. The
val ue includes the content type and paddi ng added in TLS 1.3 (that

is, the conplete length of TLSInnerPlaintext). |In TLS 1.2 and
earlier, the limt covers all input to conpression and encryption
(that is, the data that ultimtely produces TLSC phertext.fragment).
Paddi ng added as part of encryption, such as that added by a bl ock

ci pher, is not included in this count (see Section 4.1).

An endpoint that supports all record sizes can include any limt up
to the protocol -defined imt for maxi mumrecord size. For TLS 1.2
and earlier, that limt is 2714 octets. TLS 1.3 uses a linmt of
2714+1 octets. Higher values are currently reserved for future

versi ons of the protocol that may allow | arger records; an endpoint
MUST NOT send a val ue higher than the protocol -defined nmaxi mumrecord
size unless explicitly allowed by such a future version or extension
A server MJST NOT enforce this restriction; a client mght advertise
a higher limt that is enabled by an extension or version the server

Thonson St andards Track [Page 4]

RFC 8449 TLS Record Limt August 2018

does not understand. A client MAY abort the handshake with an
"illegal _paraneter” alert if the record_size_lint extension includes
a value greater than the maxi nrumrecord size pernitted by the

negoti ated protocol version and extensions.

Even if a larger record size limt is provided by a peer, an endpoint
MUST NOT send records larger than the protocol -defined limt, unless
explicitly allowed by a future TLS version or extension

The record size limt only applies to records sent toward the
endpoi nt that advertises the limt. An endpoint can send records
that are larger than the limt it advertises as its own linmt. A TLS
endpoint that receives a record larger than its advertised limt MJST
generate a fatal "record overflow' alert; a DTLS endpoint that
receives a record larger than its advertised linit MAY either
generate a fatal "record_overflow' alert or discard the record.

Endpoi nts SHOULD advertise the "record size |limt" extension, even if
they have no need to limt the size of records. For clients, this
allows servers to advertise a limt at their discretion. For
servers, this allows clients to know that their limt will be
respected. |If this extension is not negotiated, endpoints can send
records of any size permtted by the protocol or other negoti ated

ext ensi ons.

Endpoi nts MUST NOT send a "record size |limt" extension with a val ue
smal l er than 64. An endpoint MJST treat receipt of a smaller value
as a fatal error and generate an "illegal paraneter” alert.

In TLS 1.3, the server sends the "record size |imt" extension in the
Encr ypt edExt ensi ons nessage.

During renegotiation or resunption, the record size linmt is

renegoti ated. Records are subject to the limts that were set in the
handshake that produces the keys that are used to protect those
records. This admits the possibility that the extensi on m ght not be
negoti ated when a connection is renegotiated or resuned.

The Path Maxi mum Transmi ssion Unit (PMIU) in DITLS also linmits the
size of records. The record size limt does not affect PMIU

di scovery and SHOULD be set independently. The record size limt is
fixed during the handshake and so should be set based on constraints
at the endpoint and not based on the current network environment. In
conparison, the PMIU is determined by the network path and can change
dynam cally over time. See [PMIU and Section 4.1.1.1 of [DTLS] for
nore detail on PMIU discovery.

Thonson St andards Track [Page 5]

RFC 8449 TLS Record Limt August 2018

PMIU governs the size of UDP datagrans, which linmts the size of
records, but does not prevent records frombeing smaller. An
endpoi nt that sends small records is still able to send nmultiple
records in a single UDP datagram

4.1. Record Expansion Linmts

The size limt expressed in the "record size |limt" extension doesn't
account for expansion due to conpression or record protection. It is
expected that a constrained device will disable conpression to avoid
unpredi ctabl e increases in record size. Streamciphers and existing
AEAD ci phers don’t permt variable amounts of expansion, but bl ock

ci phers do permt variable expansion

In TLS 1.2, block ciphers allow from1l to 256 octets of padding.

VWen a limt |lower than the protocol-defined Iimt is advertised, a
second limt applies to the length of records that use bl ock ciphers.
An endpoi nt MJUST NOT add padding to records that woul d cause the
protected record to exceed the size of a protected record that
contai ns the maxi mum anount of plaintext and the mninmumpernitted
anount of paddi ng.

For exanple, TLS RSA WTH AES 128 CBC SHA has 16-octet bl ocks and a
20-octet MAC. Gven a record size limt of 256, a record of that

l ength would require a m nimum of 11 octets of padding (for

[RFC5246], where the MAC is covered by encryption); or 15 octets if

the "encrypt _then_mac" extension [RFC7366] is negotiated. Wth this
l[imt, a record with 250 octets of plaintext could be padded to the

same length by including at nmost 17 octets of padding, or 21 octets

with "encrypt_then_mac".

An inplenentation that always adds the mni mum anount of padding wll
al ways conply with this requirenent.

5. Deprecating "nmax_fragnent _| ength"

The "record_size |imt" extension replaces the "max_fragnent | ength"
ext ensi on [RFC6066]. A server that supports the "record size linmt"
extensi on MJST ignore a "max_fragment_| ength" that appears in a
ClientHello if both extensions appear. A client MJST treat receipt
of both "max_fragnent | ength" and "record_size |linmt" as a fata
error, and it SHOULD generate an "illegal paraneter” alert.

Clients that depend on having a small record size MAY continue to
advertise the "max_fragnent_| ength".

Thonson St andards Track [Page 6]

RFC 8449 TLS Record Limt August 2018

6.

8.

8.

Security Considerations

Very small record sizes might generate additional work for senders
and receivers, limting throughput and increasing exposure to deni al
of service.

| ANA Consi der ati ons

Thi s docunent registers the "record_size |limt" extension in the "TLS
Ext ensi onType Val ues” registry established in [RFC5246]. The
"record_size_ |limt" extension has been assigned a code point of 28.
The 1 ANA registry [TLS-REGA STRY] lists this extension as
"Recomrended" (i.e., "Y") and indicates that it may appear in the
ClientHell o (CH) or EncryptedExtensions (EE) nmessages in TLS 1.3
[TLS].

In the same registry, the "max_fragment | ength" has been changed to
not reconmended (i.e., "N').

Ref er ences
1. Nornmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<https://ww. rfc-editor.org/info/rfc2119>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10. 17487/ RFC5246, August 2008,
<https://ww. rfc-editor.org/info/rfc5246>.

[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Ext ensi ons: Extension Definitions”, RFC 6066,
DA 10.17487/ RFC6066, January 2011,
<https://ww.rfc-editor.org/info/rfc6066>.

[RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", RFC 7366, DO 10.17487/ RFC7366, Septenber 2014,
<https://ww.rfc-editor.org/info/rfc7366>.

[RFC8174] Leiba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

Thonson St andards Track [Page 7]

RFC 8449 TLS Record Limt August 2018

[TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DO 10.17487/ RFC8446, August 2018,
<https://ww.rfc-editor.org/info/rfc8446>.

8. 2. I nformati ve References

[DTLS] Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <https://ww.rfc-editor.org/infol/rfc6347>.

[PMTU McCann, J., Deering, S., Mgul, J., and R Hinden, Ed.,
"Path MU Di scovery for |IP version 6", STD 87, RFC 8201,
DO 10.17487/ RFC8201, July 2017,
<https://ww.rfc-editor.org/info/rfc8201>.

[RFC5116] MG ew, D., "An Interface and Al gorithns for Authenticated
Encryption", RFC 5116, DO 10.17487/RFC5116, January 2008,
<https://ww.rfc-editor.org/info/rfc5116>.

[RFC7925] Tschofenig, H, Ed. and T. Fossati, "Transport Layer
Security (TLS) / Datagram Transport Layer Security (DTLS)
Profiles for the Internet of Things", RFC 7925,
DA 10.17487/ RFC7925, July 2016,
<https://ww.rfc-editor.org/info/rfc7925>.

[TLS- REG STRY]
Sal owey, J. and S. Turner, "IANA Registry Updates for TLS
and DTLS", RFC 8447, DO 10.17487/ RFC8447, August 2018,
<https://wwv. rfc-editor.org/info/rfc8447>.
Acknowl edgnent s
Thomas Porni n and Hannes Tschof eni g provided significant input to
this docurment. Al an DeKok identified an issue with the interaction
between record size limts and PMIU.
Aut hor’ s Addr ess

Martin Thomson
Mozill a

Enmail: martin.thomson@nuail.com

Thonson St andards Track [Page 8]

