Internet Engineering Task Force

(IETF) R. Bellis
IsC

S. Cheshire

Apple Inc.

J. Dickinson

S. Dickinson
Sinodun

T. Lemon

Nibbhaya Consulting
T. Pusateri
Unaffiliated

March 2019

DNS Stateful Operations

Request for Comments: 8490
Updates: 1035, 7766
Category: Standards Track
ISSN: 2070-1721

Abstract

This document defines a new DNS OPCODE for DNS Stateful Operations

(DSO) .

padding,
stateful operations.

DSO messages communicate operations within persistent
stateful sessions using Type Length Value
are defined that manage session timeouts,
and a framework is defined for extensions to enable new

This document updates RFC 1035 by adding a new

Three TLVs
and encryption

(TLV) syntax.
termination,

DNS header OPCODE that has both different message semantics and a new

result code.

This document updates RFC 7766 by redefining a session,
providing new guidance on connection reuse,

and providing a new

mechanism for handling session idle timeouts.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF) .

It represents the consensus of the IETF community.

It has

received public review and has been approved for publication by the

Internet Engineering Steering Group

(IESG) . Further information on

Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document,

any errata,

and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8490.

Bellis, et al.

Standards Track

[Page 1]

REFC 8490 DNS Stateful Operations March 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 4
2. Requirements Language 6
3. Terminology 6
4. Applicability 9
4.1. Use Cases . 9
4.1.1. Session Management e e e e e e e e e e e e e 9
4.1.2. Long-Lived Subscriptions 9
4.2. Applicable Transports« . ¢« ¢« « « « « « « « < . 10
5. Protocol Details . . . e i
5.1. DSO Session Establlshment e e e D
5.1.1. DSO Session Establishment Fallure e
5.1.2. DSO Session Establishment Success 14
5.2. Operations after DSO Session Establishment 14
5.3. DSO Session Termination 15
5.3.1. Handling Protocol Errors « ¢ « « « « « « « . 15
5.4. Message Format . . P
5.4.1. DNS Header Flelds in DSO Messages e
5.4.2. DSO Data e e e e e e e e e e . . . 18
5.4.3. DSO Unldlrectlonal Messages e e e e e e e e e e ... 20
5.4.4. TLV Syntax . . 2
5.4.5. Unrecognized TLVs e e e e e e e e e e e e e e e e e e 22
5.4.6. EDNS(0) and TSIG . . &« + ¢ v « « o o o« o « o« « « o« . 23
5.5. Message Handling . . e e e e e e e e .24
5.5.1. Delayed Acknowledgement Management e e e e e 25
5.5.2. MESSAGE ID NamespacCesS . . « « « « o « o o o o« o« « « . 26
5.5.3. Error Responses . . . e e e e e e 27
5.6. Responder-Initiated Operatlon Cancellatlon e e« « o« . . 28
6. DSO Session Lifecycle and Timers « +« « « « « « « « « 29
6.1. DSO Session Initiation o o . < . . 29
6.2. DSO Session Timeouts« . « <« « . < . . 30
6.3. Inactive DSO Sessions « ¢ ¢« ¢« v v « « o o o < o o 31

Bellis, et al. Standards Track [Page 2]

REFC 8490 DNS Stateful Operations March 2019

6.4. The Inactivity Timeout . . . G)2
6.4.1. Closing Inactive DSO Se331ons e 4
6.4.2. Values for the Inactivity Timeout 33
6.5. The Keepalive Interval « « « « ¢« « « « « . 34
6.5.1. Keepalive Interval Expiry . . . G X
6.5.2. Values for the Keepalive Interval G X
6.6. Server—-Initiated DSO Session Termination 36
6.6.1. Server-Initiated Retry Delay Message 37
6.6.2. Misbehaving Clients « « <« « . . . 38
6.6.3. Client Reconnection . . e e e+« e+« .+« 38
7. Base TLVs for DNS Stateful Operatlons 4 0)
7.1. Keepalive TLV 40
7.1.1. Client Handling of Recelved Se551on Tlmeout Values . 42
7.1.2. Relationship to edns-tcp- keepallve EDNS(0) Option . . 43
7.2 Retry Delay TLV . . . e e e e o ... 44
7.2.1. Retry Delay TLV Used as a Prlmary TLV e .. 44
7.2.2. Retry Delay TLV Used as a Response Addltlonal TLV . . 46
7.3. Encryption Padding TLV ¢« ¢ « « « « « « « « . 46
8. Summary Highlights . . e e e e e e e e e e e e e e e e e AT
8.1. QR Bit and MESSAGE ID c e e e e e e e e e e e e e e e e 47
8.2. TLV Usage . . . e e e e e e e e e e e e e e e ... 48
9. Additional Con51deratlons C e e e e e e e e e e e e e o oo b
9.1. Service Instances « « ¢ ¢« « « < « « « < « « < < . 50
9.2. Anycast Considerations 51
9.3. Connection Sharing . . . e e e« < « < . 52
9.4. Operational Con31deratlons for Mlddleboxes « « « < « .« . 53
9.5. TCP Delayed Acknowledgement Considerations 54
10. IANA Considerations . . Y
10.1. DSO OPCODE Reglstratlon o Y
10.2. DSO RCODE Registration « .« . . « . 57
10.3. DSO Type Code Registry« « « « « « « « « <« . 57
11. Security Considerations . . . e e e e e e e e .. 59
11.1. TLS Zero Round-Trip Con51deratlons e e e e e e e e . o« . 59
12. References . . e e e e e e e e e e e e e e e e .60
12.1. Normative References e
12.2. Informative References « « « . . . 61
Acknowledgements ¢ v v e 4 4 e e e e e e« « . . 63

Authors’ Addresses . . . ¢« ¢« « v v v v 4 e e e e e e 4w e e« « . 63

Bellis, et al. Standards Track [Page 3]

REFC 8490 DNS Stateful Operations March 2019

1.

Introduction

This document specifies a mechanism for managing stateful DNS
connections. DNS most commonly operates over a UDP transport, but it
can also operate over streaming transports; the original DNS RFC
specifies DNS-over-TCP [RFC1035], and a profile for DNS-over-TLS
[RFC7858] has been specified. These transports can offer persistent
long-lived sessions and therefore, when using them for transporting
DNS messages, it is of benefit to have a mechanism that can establish
parameters associated with those sessions, such as timeouts. In such
situations, it is also advantageous to support server—-initiated
messages (such as DNS Push Notifications [Push]).

The existing Extension Mechanism for DNS (EDNS(0)) [RFC6891] is
explicitly defined to only have "per-message" semantics. While

EDNS (0) has been used to signal at least one session-related
parameter (edns-tcp-keepalive EDNS(0) Option [RFC7828]), the result
is less than optimal due to the restrictions imposed by the EDNS (0)
semantics and the lack of server-initiated signaling. For example, a
server cannot arbitrarily instruct a client to close a connection
because the server can only send EDNS(0) options in responses to
queries that contained EDNS(0) options.

This document defines a new DNS OPCODE for DNS Stateful Operations
(DSO) with a value of 6. DSO messages are used to communicate
operations within persistent stateful sessions, expressed using Type
Length Value (TLV) syntax. This document defines an initial set of
three TLVs used to manage session timeouts, termination, and
encryption padding.

All three TLVs defined here are mandatory for all implementations of
DSO. Further TLVs may be defined in additional specifications.

DSO messages may or may not be acknowledged. Whether a DSO message
is to be acknowledged (a DSO request message) or is not to be
acknowledged (a DSO unidirectional message) is specified in the
definition of that particular DSO message type. The MESSAGE ID is
nonzero for DSO request messages, and zero for DSO unidirectional
messages. Messages are pipelined and responses may appear out of
order when multiple requests are being processed concurrently.

The format for DSO messages (Section 5.4) differs somewhat from the
traditional DNS message format used for standard queries and
responses. The standard twelve-byte header is used, but the four
count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero,
and accordingly their corresponding sections are not present.

Bellis, et al. Standards Track [Page 4]

REFC 8490 DNS Stateful Operations March 2019

The actual data pertaining to DNS Stateful Operations (expressed in
TLV syntax) is appended to the end of the DNS message header. Just
as in traditional DNS-over-TCP [RFC1035] [RFC7766], the stream
protocol carrying DSO messages (which are just another kind of DNS
message) frames them by putting a 16-bit message length at the start.
The length of the DSO message is therefore determined from that
length rather than from any of the DNS header counts.

When displayed using packet analyzer tools that have not been updated
to recognize the DSO format, this will result in the DSO data being
displayed as unknown extra data after the end of the DNS message.

This new format has distinct advantages over an RR-based format
because it is more explicit and more compact. Each TLV definition is
specific to its use case and, as a result, contains no redundant or
overloaded fields. Importantly, it completely avoids conflating DNS
Stateful Operations in any way with normal DNS operations or with
existing EDNS (0)-based functionality. A goal of this approach is to
avoid the operational issues that have befallen EDNS(0), particularly
relating to middlebox behavior (see sections discussing EDNS(0), and
problems caused by firewalls and load balancers, in the recent work
describing causes of DNS failures [Fail]).

With EDNS(0), multiple options may be packed into a single OPT
pseudo—-RR, and there is no generalized mechanism for a client to be
able to tell whether a server has processed or otherwise acted upon
each individual option within the combined OPT pseudo-RR. The
specifications for each individual option need to define how each
different option is to be acknowledged, if necessary.

In contrast to EDNS(0), with DSO there is no compelling motivation to
pack multiple operations into a single message for efficiency
reasons, because DSO always operates using a connection-oriented
transport protocol. Each DSO operation is communicated in its own
separate DNS message, and the transport protocol can take care of
packing several DNS messages into a single IP packet if appropriate.
For example, TCP can pack multiple small DNS messages into a single
TCP segment. This simplification allows for clearer semantics. Each
DSO request message communicates just one primary operation, and the
RCODE in the corresponding response message indicates the success or
failure of that operation.

Bellis, et al. Standards Track [Page 5]

REFC 8490 DNS Stateful Operations March 2019

2.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Terminology
DSO: DNS Stateful Operations.

connection: a bidirectional byte (or message) stream, where the
bytes (or messages) are delivered reliably and in order, such as
provided by using DNS-over-TCP [RFC1035] [RFC7766] or DNS-over-TLS
[REFC7858].

session: the unqualified term "session" in the context of this
document refers to a persistent network connection between two
endpoints that allows for the exchange of DNS messages over a
connection where either end of the connection can send messages to
the other end. (The term has no relationship to the "session
layer" of the OSI "seven—-layer model".)

DSO Session: a session established between two endpoints that
acknowledge persistent DNS state via the exchange of DSO messages
over the connection. This is distinct from a DNS-over-TCP session
as described in the previous specification for DNS-over-TCP
[REC7766] .

close gracefully: a normal session shutdown where the client closes
the TCP connection to the server using a graceful close such that
no data is lost (e.g., using TCP FIN; see Section 5.3).

forcibly abort: a session shutdown as a result of a fatal error
where the TCP connection is unilaterally aborted without regard
for data loss (e.g., using TCP RST; see Section 5.3).

server: the software with a listening socket, awaiting incoming
connection requests, in the usual DNS sense.

client: the software that initiates a connection to the server’s
listening socket, in the usual DNS sense.

initiator: the software that sends a DSO request message or a DSO
unidirectional message during a DSO Session. Either a client or
server can be an initiator.

Bellis, et al. Standards Track [Page 6]

REFC 8490 DNS Stateful Operations March 2019

responder: the software that receives a DSO request message or a DSO
unidirectional message during a DSO Session. Either a client or a
server can be a responder.

sender: the software that is sending a DNS message, a DSO message, a
DNS response, or a DSO response.

receiver: the software that is receiving a DNS message, a DSO
message, a DNS response, or a DSO response.

service instance: a specific instance of server software running on
a specific host (Section 9.1).

long-lived operation: an outstanding operation on a DSO Session
where either the client or server, acting as initiator, has
requested that the responder send new information regarding the
request, as it becomes available.

early data: a TLS 1.3 handshake containing data on the first flight
that begins a DSO Session (Section 2.3 of the TLS 1.3
specification [RFC8446]). TCP Fast Open [RFC7413] is only
permitted when using TLS.

DNS message: any DNS message, including DNS queries, responses,
updates, DSO messages, etc.

DNS request message: any DNS message where the QR bit is 0.
DNS response message: any DNS message where the QR bit is 1.

DSO message: a DSO request message, DSO unidirectional message, or
DSO response to a DSO request message. If the QR bit is 1 in a
DSO message, it is a DSO response message. If the QR bit is 0 in
a DSO message, it is a DSO request message or DSO unidirectional
message, as determined by the specification of its Primary TLV.

DSO response message: a response to a DSO request message.
DSO request message: a DSO message that requires a response.
DSO unidirectional message: a DSO message that does not require and

cannot induce a response.
Primary TLV: the first TLV in a DSO request message or DSO

unidirectional message; this determines the nature of the
operation being performed.

Bellis, et al. Standards Track [Page 7]

REFC 8490 DNS Stateful Operations March 2019
Additional TLV: any TLVs that follow the Primary TLV in a DSO
request message or DSO unidirectional message.

Response Primary TLV: 1in a DSO response, any TLVs with the same DSO-
TYPE as the Primary TLV from the corresponding DSO request

message. If present, any Response Primary TLV(s) MUST appear
first in the DSO response message, before any Response Additional
TLVs.

Response Additional TLV: any TLVs in a DSO response that follow the
(optional) Response Primary TLV(s).

inactivity timer: the time since the most recent non-keepalive DNS
message was sent or received (see Section 6.4).

keepalive timer: the time since the most recent DNS message was sent
or received (see Section 6.5).

session timeouts: the inactivity timer and the keepalive timer.

inactivity timeout: the maximum value that the inactivity timer can
have before the connection is gracefully closed.

keepalive interval: the maximum value that the keepalive timer can
have before the client is required to send a keepalive (see

Section 7.1).

resetting a timer: setting the timer value to zero and restarting
the timer.

clearing a timer: setting the timer value to zero but not restarting
the timer.

Bellis, et al. Standards Track [Page 8]

REFC 8490 DNS Stateful Operations March 2019

4. Applicability

DNS Stateful Operations are applicable to several known use cases and
are only applicable on transports that are capable of supporting a
DSO Session.

4.1. Use Cases
Several use cases for DNS Stateful Operations are described below.
4.1.1. Session Management

In one use case, establishing session parameters such as server-
defined timeouts is of great use in the general management of
persistent connections. For example, using DSO Sessions for stub-to-
recursive DNS-over-TLS [RFC7858] is more flexible for both the client
and the server than attempting to manage sessions using just the
edns—tcp-keepalive EDNS (0) Option [RFC7828]. The simple set of TLVs
defined in this document is sufficient to greatly enhance connection
management for this use case.

4.1.2. Long-Lived Subscriptions

In another use case, DNS-based Service Discovery (DNS-SD) [RFC6763]
has evolved into a naturally session-based mechanism where, for
example, long-lived subscriptions lend themselves to ’'push’
mechanisms as opposed to polling. Long-lived stateful connections
and server—-initiated messages align with this use case [Push].

A general use case is that DNS traffic is often bursty, but session
establishment can be expensive. One challenge with long-lived
connections is sustaining sufficient traffic to maintain NAT and
firewall state. To mitigate this issue, this document introduces a
new concept for the DNS —-- DSO "keepalive traffic". This traffic
carries no DNS data and is not considered "activity’ in the classic
DNS sense, but it serves to maintain state in middleboxes and to
assure the client and server that they still have connectivity to
each other.

Bellis, et al. Standards Track [Page 9]

REFC 8490 DNS Stateful Operations March 2019

4.2. Applicable Transports

DNS Stateful Operations are applicable in cases where it is useful to
maintain an open session between a DNS client and server, where the
transport allows such a session to be maintained, and where the
transport guarantees in-order delivery of messages on which DSO
depends. Two specific transports that meet the requirements to
support DNS Stateful Operations are DNS-over-TCP [RFC1035] [RFC7766]
and DNS-over-TLS [RFC7858].

Note that in the case of DNS-over-TLS, there is no mechanism for
upgrading from DNS-over-TCP to DNS-over-TLS mid-connection (see

Section 7 of the DNS-over-TLS specification [RFC7858]). A connection
is either DNS-over-TCP from the start, or DNS-over-TLS from the
start.

DNS Stateful Operations are not applicable for transports that cannot
support clean session semantics or that do not guarantee in-order
delivery. While in principle such a transport could be constructed
over UDP, the current specification of DNS-over-UDP [RFC1035] does
not provide in-order delivery or session semantics and hence cannot
be used. Similarly, DNS-over-HTTP [RFC8484] cannot be used because
HTTP has its own mechanism for managing sessions, which is
incompatible with the mechanism specified here.

Only DNS-over-TCP and DNS-over-TLS are currently defined for use with
DNS Stateful Operations. Other transports may be added in the future
if they meet the requirements set out in the first paragraph of this
section.

Bellis, et al. Standards Track [Page 10]

REFC 8490 DNS Stateful Operations March 2019

5.

Protocol Details

The overall flow of DNS Stateful Operations goes through a series of
phases:

Connection Establishment: A client establishes a connection to a
server (Section 4.2).

Connected but Sessionless: A connection exists, but a DSO Session
has not been established. DNS messages can be sent from the
client to server, and DNS responses can be sent from the server to

the client. 1In this state, a client that wishes to use DSO can
attempt to establish a DSO Session (Section 5.1). Standard DNS-—
over-TCP inactivity timeout handling is in effect [RFC7766] (see

Section 7.1.2 of this document).

DSO Session Establishment in Progress: A client has sent a DSO
request within the last 30 seconds, but has not yet received a DSO
response for that request. In this phase, the client may send
more DSO requests and more DNS requests, but MUST NOT send DSO
unidirectional messages (Section 5.1).

DSO Session Establishment Timeout: A client has sent a DSO request,
and after 30 seconds has still received no DSO response for that
request. This means that the server is now in an indeterminate
state. The client forcibly aborts the connection. The client MAY
reconnect without using DSO, if appropriate.

DSO Session Establishment Failed: A client has sent a DSO request,
and received a corresponding DSO response with a nonzero RCODE.
This means that the attempt to establish the DSO Session did not
succeed. At this point, the client is permitted to continue
operating without a DSO Session (Connected but Sessionless) but
does not send further DSO messages (Section 5.1).

DSO Session Established: A client has sent a DSO request, and
received a corresponding DSO response with RCODE set to NOERROR
(0) . A DSO Session has now been successfully established. Both
client and server may send DSO messages and DNS messages; both may
send replies in response to messages they receive (Section 5.2).
The inactivity timer (Section 6.4) is active; the keepalive timer
(Section 6.5) is active. Standard DNS-over-TCP inactivity timeout
handling is no longer in effect [RFC7766] (see Section 7.1.2 of
this document) .

Bellis, et al. Standards Track [Page 11]

REFC 8490 DNS Stateful Operations March 2019

Server Shutdown: The server has decided to gracefully terminate the
session and has sent the client a Retry Delay message
(Section 6.6.1). There may still be unprocessed messages from the
client; the server will ignore these. The server will not send
any further messages to the client (Section 6.6.1.1).

Client Shutdown: The client has decided to disconnect, either
because it no longer needs service, the connection is inactive
(Section 6.4.1), or because the server sent it a Retry Delay
message (Section 6.6.1). The client closes the connection
gracefully (Section 5.3).

Reconnect: The client disconnected as a result of a server shutdown.
The client either waits for the server-specified Retry Delay to
expire (Section 6.6.3) or else contacts a different server

instance. TIf the client no longer needs service, it does not
reconnect.
Forcibly Abort: The client or server detected a protocol error, and

further communication would have undefined behavior. The client
or server forcibly aborts the connection (Section 5.3).

Abort Reconnect Wait: The client has forcibly aborted the connection
but still needs service. Or, the server forcibly aborted the
connection, but the client still needs service. The client either
connects to a different service instance (Section 9.1) or waits to
reconnect (Section 6.6.3.1).

5.1. DSO Session Establishment

In order for a session to be established between a client and a
server, the client must first establish a connection to the server
using an applicable transport (see Section 4.2).

In some environments, it may be known in advance by external means
that both client and server support DSO, and in these cases either
client or server may initiate DSO messages at any time. In this
case, the session is established as soon as the connection is
established; this is referred to as implicit DSO Session
establishment.

However, in the typical case a server will not know in advance
whether a client supports DSO, so in general, unless it is known in
advance by other means that a client does support DSO, a server MUST
NOT initiate DSO request messages or DSO unidirectional messages
until a DSO Session has been mutually established by at least one
successful DSO request/response exchange initiated by the client, as

Bellis, et al. Standards Track [Page 12]

REFC 8490 DNS Stateful Operations March 2019

described below. This is referred to as explicit DSO Session
establishment.

Until a DSO Session has been implicitly or explicitly established, a
client MUST NOT initiate DSO unidirectional messages.

A DSO Session is established over a connection by the client sending
a DSO request message, such as a DSO Keepalive request message
(Section 7.1), and receiving a response with a matching MESSAGE ID,
and RCODE set to NOERROR (0), indicating that the DSO request was
successful.

Some DSO messages are permitted as early data (Section 11.1). Others
are not. Unidirectional messages are never permitted as early data,
unless an implicit DSO Session exists.

If a server receives a DSO message in early data whose Primary TLV is
not permitted to appear in early data, the server MUST forcibly abort

the connection. If a client receives a DSO message in early data,
and there is no implicit DSO Session, the client MUST forcibly abort
the connection. This can only be enforced on TLS connections;

therefore, servers MUST NOT enable TCP Fast Open (TFO) when listening
for a connection that does not require TLS.

5.1.1. DSO Session Establishment Failure

If the response RCODE is set to NOTIMP (4), or in practice any value
other than NOERROR (0) or DSOTYPENI (defined below), then the client
MUST assume that the server does not implement DSO at all. 1In this
case, the client is permitted to continue sending DNS messages on
that connection but MUST NOT issue further DSO messages on that
connection.

If the RCODE in the response is set to DSOTYPENI ("DSO-TYPE Not
Implemented"; RCODE 11), this indicates that the server does support
DSO but does not implement the DSO-TYPE of the Primary TLV in this
DSO request message. A server implementing DSO MUST NOT return
DSOTYPENI for a DSO Keepalive request message because the Keepalive
TLV is mandatory to implement. But in the future, if a client
attempts to establish a DSO Session using a response-requiring DSO
request message using some newly-defined DSO-TYPE that the server
does not understand, that would result in a DSOTYPENI response. If
the server returns DSOTYPENI, then a DSO Session is not considered
established. The client is, however, permitted to continue sending
DNS messages on the connection, including other DSO messages such as
the DSO Keepalive, which may result in a successful NOERROR response,
yielding the establishment of a DSO Session.

Bellis, et al. Standards Track [Page 13]

REFC 8490 DNS Stateful Operations March 2019

When a DSO message is received by an existing DNS server that doesn’t
recognize the DSO OPCODE, two other possible outcomes exist: the
server might send no response to the DSO message, or the server might
drop the connection.

If the server sends no response to the DSO message, the client SHOULD
wait 30 seconds, after which time the server will be assumed not to
support DSO. If the server doesn’t respond within 30 seconds, it can
be assumed that it is not going to respond; this leaves it in an
unspecified state: there is no specification requiring that a
response be sent to an unknown message, but there is also no
specification stating what state the server is in if no response is
sent. Therefore the client MUST forcibly abort the connection to the
server. The client MAY reconnect, but not use DSO, if appropriate
(Section 6.6.3.1). By disconnecting and reconnecting, the client
ensures that the server is in a known state before sending any
subsequent requests.

If the server drops the connection the client SHOULD mark that
service instance as not supporting DSO, and not attempt a DSO
connection for some period of time (at least an hour) after the
failed attempt. The client MAY reconnect but not use DSO, if
appropriate (Section 6.6.3.2).

5.1.2. DSO Session Establishment Success

When the server receives a DSO request message from a client, and
transmits a successful NOERROR response to that request, the server
considers the DSO Session established.

When the client receives the server’s NOERROR response to its DSO
request message, the client considers the DSO Session established.

Once a DSO Session has been established, either end may unilaterally
send appropriate DSO messages at any time, and therefore either
client or server may be the initiator of a message.

5.2. Operations after DSO Session Establishment

Once a DSO Session has been established, clients and servers should
behave as described in this specification with regard to inactivity
timeouts and session termination, not as previously prescribed in the
earlier specification for DNS-over-TCP [RFC7766].

Because a server that supports DNS Stateful Operations MUST return an
RCODE of "NOERROR" when it receives a Keepalive TLV DSO request
message, the Keepalive TLV is an ideal candidate for use in
establishing a DSO Session. Any other option that can only succeed

Bellis, et al. Standards Track [Page 14]

REFC 8490 DNS Stateful Operations March 2019

when sent to a server of the desired kind is also a good candidate
for use in establishing a DSO Session. For clients that implement
only the DSO-TYPEs defined in this base specification, sending a
Keepalive TLV is the only DSO request message they have available to
initiate a DSO Session. Even for clients that do implement other
future DSO-TYPEs, for simplicity they MAY elect to always send an
initial DSO Keepalive request message as their way of initiating a
DSO Session. A future definition of a new response-requiring DSO-
TYPE gives implementers the option of using that new DSO-TYPE if they
wish, but does not change the fact that sending a Keepalive TLV
remains a valid way of initiating a DSO Session.

5.3. DSO Session Termination

A DSO Session is terminated when the underlying connection is closed.
DSO Sessions are "closed gracefully" as a result of the server
closing a DSO Session because it is overloaded, because of the client
closing the DSO Session because it is done, or because of the client
closing the DSO Session because it is inactive. DSO Sessions are
"forcibly aborted" when either the client or server closes the
connection because of a protocol error.

o Where this specification says "close gracefully", it means sending
a TLS close_notify (if TLS is in use) followed by a TCP FIN, or
the equivalent for other protocols. Where this specification
requires a connection to be closed gracefully, the requirement to
initiate that graceful close is placed on the client in order to
place the burden of TCP’s TIME-WAIT state on the client rather
than the server.

o Where this specification says "forcibly abort", it means sending a
TCP RST or the equivalent for other protocols. In the BSD Sockets
API, this is achieved by setting the SO_LINGER option to zero
before closing the socket.

5.3.1. Handling Protocol Errors

In protocol implementation, there are generally two kinds of errors
that software writers have to deal with. The first is situations
that arise due to factors in the environment, such as temporary loss
of connectivity. While undesirable, these situations do not indicate
a flaw in the software and are situations that software should
generally be able to recover from.

The second is situations that should never happen when communicating
with a compliant DSO implementation. If they do happen, they
indicate a serious flaw in the protocol implementation beyond what is
reasonable to expect software to recover from. This document

Bellis, et al. Standards Track [Page 15]

REFC 8490 DNS Stateful Operations March 2019

describes this latter form of error condition as a "fatal error" and
specifies that an implementation encountering a fatal error condition
"MUST forcibly abort the connection immediately".

5.4. Message Format

A DSO message begins with the standard twelve-byte DNS message header
[RFC1035] with the OPCODE field set to the DSO OPCODE (6). However,
unlike standard DNS messages, the question section, answer section,
authority records section, and additional records sections are not
present. The corresponding count fields (QDCOUNT, ANCOUNT, NSCOUNT,
ARCOUNT) MUST be set to zero on transmission.

If a DSO message is received where any of the count fields are not
zero, then a FORMERR MUST be returned.

1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
. e s R S St S e 3
| MESSAGE ID |
e s Rt e St e ST e
|OR | OPCODE (6) | z | RCODE |
Fom oo bbb —————+
| QDCOUNT (MUST be zero)
. A s R e St S e e e 3
| ANCOUNT (MUST be zero)
e s Rt s St e 2
| NSCOUNT (MUST be zero)
Fom oo bbb —————+
| ARCOUNT (MUST be zero)
. A s R e St S e e e 3
| |
/ DSO Data /
/ /

e it e e A e A St

Bellis, et al. Standards Track [Page 16]

REFC 8490 DNS Stateful Operations March 2019

5.4.1. DNS Header Fields in DSO Messages

In a DSO unidirectional message, the MESSAGE ID field MUST be set to
zero. In a DSO request message, the MESSAGE ID field MUST be set to
a unique nonzero value that the initiator is not currently using for
any other active operation on this connection. For the purposes
here, a MESSAGE ID is in use in this DSO Session if the initiator has
used it in a DSO request message for which it is still awaiting a
response, or if the client has used it to set up a long-lived
operation that has not yet been canceled. For example, a long-lived
operation could be a Push Notification subscription [Push] or a
Discovery Relay interface subscription [Relay].

Whether a message is a DSO request message or a DSO unidirectional
message is determined only by the specification for the Primary TLV.
An acknowledgment cannot be requested by including a nonzero MESSAGE
ID in a message that is required according to its Primary TLV to be
unidirectional. ©Nor can an acknowledgment be prevented by sending a
MESSAGE ID of zero in a message that is required to be a DSO request
message according to its Primary TLV. A responder that receives
either such malformed message MUST treat it as a fatal error and
forcibly abort the connection immediately.

In a DSO request message or DSO unidirectional message, the DNS

Header Query/Response (QR) bit MUST be zero (QR=0). If the QR bit is
not zero, the message is not a DSO request or DSO unidirectional
message.

In a DSO response message, the DNS Header QR bit MUST be one (QR=1).
If the QR bit is not one, the message is not a DSO response message.

In a DSO response message (QR=1), the MESSAGE ID field MUST NOT be
zero, and MUST contain a copy of the value of the (nonzero) MESSAGE
ID field in the DSO request message being responded to. If a DSO
response message (QR=1) is received where the MESSAGE ID is zero,
this is a fatal error and the recipient MUST forcibly abort the
connection immediately.

The DNS Header OPCODE field holds the DSO OPCODE value (6).

The Z bits are currently unused in DSO messages; in both DSO request
messages and DSO responses, the Z bits MUST be set to zero (0) on
transmission and MUST be ignored on reception.

In a DSO request message (QR=0), the RCODE is set according to the
definition of the request. For example, in a Retry Delay message
(Section 6.6.1), the RCODE indicates the reason for termination.
However, in most DSO request messages (QR=0), except where clearly

Bellis, et al. Standards Track [Page 17]

REFC 8490 DNS Stateful Operations March 2019
specified otherwise, the RCODE is set to zero on transmission, and
silently ignored on reception.

The RCODE value in a response message (QR=1) may be one of the
following values:

R o e +
| Code | Mnemonic | Description
+———— F——————— +—_— +
0 NOERROR Operation processed successfully
1 FORMERR Format error
2 SERVFAIL Server failed to process DSO request message

due to a problem with the server
4 NOTIMP DSO not supported

5 REFUSED Operation declined for policy reasons

11 DSOTYPENTI Primary TLV’s DSO-Type is not implemented
+——— o +_ +

Use of the above RCODEs is likely to be common in DSO but does not
preclude the definition and use of other codes in future documents
that make use of DSO.

If a document defining a new DSO-TYPE makes use of response codes not
defined here, then that document MUST specify the specific
interpretation of those RCODE values in the context of that new DSO
TLV.

The RCODE field is followed by the four zero-valued count fields,
followed by the DSO Data.

5.4.2. DSO Data

The standard twelve-byte DNS message header with its zero-valued
count fields is followed by the DSO Data, expressed using TLV syntax,
as described in Section 5.4.4.

A DSO request message or DSO unidirectional message MUST contain at
least one TLV. The first TLV in a DSO request message or DSO
unidirectional message is referred to as the "Primary TLV" and
determines the nature of the operation being performed, including
whether it is a DSO request or a DSO unidirectional operation. In
some cases, it may be appropriate to include other TLVs in a DSO
request message or DSO unidirectional message, such as the DSO

Bellis, et al. Standards Track [Page 18]

REFC 8490 DNS Stateful Operations March 2019

Encryption Padding TLV (Section 7.3). Additional TLVs follow the
Primary TLV. Additional TLVs are not limited to what is defined in
this document. New Additional TLVs may be defined in the future.
Their definitions will describe when their use is appropriate.

An unrecognized Primary TLV results in a DSOTYPENI error response.
Unrecognized Additional TLVs are silently ignored, as described in
Sections 5.4.5 and 8.2.

A DSO response message may contain no TLVs, or may contain one or
more TLVs, appropriate to the information being communicated.

Any TLVs with the same DSO-TYPE as the Primary TLV from the
corresponding DSO request message are Response Primary TLV(s) and
MUST appear first in a DSO response message. A DSO response message
may contain multiple Response Primary TLVs, or a single Response
Primary TLV, or in some cases, no Response Primary TLV. A Response
Primary TLV is not required; for most DSO operations the MESSAGE ID
field in the DNS message header is sufficient to identify the DSO
request message to which a particular response message relates.

Any other TLVs in a DSO response message are Response Additional
TLVs, such as the DSO Encryption Padding TLV (Section 7.3). Response
Additional TLVs follow the Response Primary TLV(s), if present.
Response Additional TLVs are not limited to what is defined in this
document. New Response Additional TLVs may be defined in the future.
Their definitions will describe when their use is appropriate.
Unrecognized Response Additional TLVs are silently ignored, as
described in Sections 5.4.5 and 8.2.

The specification for each DSO TLV determines what TLVs are required
in a response to a DSO request message using that TLVv. If a DSO
response is received for an operation where the specification
requires that the response carry a particular TLV or TLVs, and the
required TLV(s) are not present, then this is a fatal error and the
recipient of the defective response message MUST forcibly abort the
connection immediately. Similarly, if more than the specified number
of instances of a given TLV are present, this is a fatal error and
the recipient of the defective response message MUST forcibly abort
the connection immediately.

Bellis, et al. Standards Track [Page 19]

REFC 8490 DNS Stateful Operations March 2019

5.4.3. DSO Unidirectional Messages

It is anticipated that most DSO operations will be specified to use

DSO request messages, which generate corresponding DSO responses. In
some specialized high-traffic use cases, it may be appropriate to
specify DSO unidirectional messages. DSO unidirectional messages can

be more efficient on the network because they don’t generate a stream
of corresponding reply messages. Using DSO unidirectional messages
can also simplify software in some cases by removing the need for an
initiator to maintain state while it waits to receive replies it
doesn’t care about. When the specification for a particular TLV used
as a Primary TLV (i.e., first) in an outgoing DSO request message
(i.e., QR=0) states that a message is to be unidirectional, the
MESSAGE ID field MUST be set to zero and the receiver MUST NOT
generate any response message corresponding to that DSO
unidirectional message.

The previous point, that the receiver MUST NOT generate responses to
DSO unidirectional messages, applies even in the case of errors.

When a DSO message is received where bot