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Abstract

   Adoption of cloud and fog technology allows operators to deploy a
   single "Service Function" (SF) to multiple "execution locations".
   The decision to steer traffic to a specific location may change
   frequently based on load, proximity, etc.  Under the current Service
   Function Chaining (SFC) framework, steering traffic dynamically to
   the different execution endpoints requires a specific "rechaining",
   i.e., a change in the service function path reflecting the different
   IP endpoints to be used for the new execution points.  This procedure
   may be complex and take time.  In order to simplify rechaining and
   reduce the time to complete the procedure, we discuss separating the
   logical Service Function Path (SFP) from the specific execution
   endpoints.  This can be done by identifying the SFs using a name
   rather than a routable IP endpoint (or Layer 2 address).  This
   document describes the necessary extensions, additional functions,
   and protocol details in the Service Function Forwarder (SFF) to
   handle name-based relationships.

   This document presents InterDigital’s approach to name-based SFC.  It
   does not represent IETF consensus and is presented here so that the
   SFC community may benefit from considering this mechanism and the
   possibility of its use in the edge data centers.
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1.  Introduction

   The requirements on today’s networks are very diverse, enabling
   multiple use cases such as the Internet of Things (IoT), Content
   Distribution, Gaming, and Network functions such as Cloud Radio
   Access Network (RAN) and 5G control planes based on a Service-Based
   Architecture (SBA).  These services are deployed, provisioned, and
   managed using Cloud-based techniques as seen in the IT world.
   Virtualization of compute and storage resources is at the heart of
   providing (often web) services to end users with the ability to
   quickly provision virtualized service endpoints through, e.g.,
   container-based techniques.  This creates the ability to dynamically
   compose new services from existing services.  It also allows an
   operator to move a service instance in response to user mobility or
   to change resource availability.  When moving from a purely "distant
   cloud" model to one of localized micro data centers with regional,
   metro, or even street level, often called "edge" data centers, such
   virtualized service instances can be instantiated in topologically
   different locations with the overall "distant" data center now being
   transformed into a network of distributed ones.  The reaction of
   content providers, like Facebook, Google, NetFlix, and others, is not
   just to rely on deploying content servers at the ingress of the
   customer network.  Instead, the trend is towards deploying multiple
   Point of Presences (POPs) within the customer network, those POPs
   being connected through proprietary mechanisms [Schlinker2017] to
   push content.

   The Service Function Chaining (SFC) framework [RFC7665] allows
   network operators as well as service providers to compose new
   services by chaining individual "service functions".  Such chains are
   expressed through explicit relationships of functional components
   (the SFs) realized through their direct Layer 2 (e.g., Media Access
   Control (MAC) address) or Layer 3 (e.g., IP address) relationship as
   defined through next-hop information that is being defined by the
   network operator.  See Section 4 for more background on SFC.

   In a dynamic service environment of distributed data centers such as
   the one outlined above, with the ability to create and recreate
   service endpoints frequently, the SFC framework requires
   reconfiguring the existing chain through information based on the new
   relationships, causing overhead in a number of components,
   specifically the orchestrator that initiates the initial SFC and any
   possible reconfiguration.



   This document describes how such changes can be handled without
   involving the initiation of new and reconfigured SFCs.  This is
   accomplished by lifting the chaining relationship from Layer 2 and
   Layer 3 information to that of SF "names", which can, for instance,
   be expressed as URIs.  In order to transparently support such named
   relationships, we propose to embed the necessary functionality
   directly into the Service Function Forwarder (SFF) as described in
   [RFC7665].  With that, the SFF described in this document allows for
   keeping an existing SFC intact, as described by its Service Function
   Path (SFP), while enabling the selection of appropriate service
   function endpoint(s) during the traversal of packets through the SFC.
   This document is an Independent Submission to the RFC Editor.  It is
   not an output of the IETF SFC WG.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Example Use Case: 5G Control-Plane Services

   We exemplify the need for chaining SFs at the level of a service name
   through a use case stemming from the current 3GPP Release 16 work on
   Service Based Architecture (SBA) [SDO-3GPP-SBA],
   [SDO-3GPP-SBA-ENHANCEMENT].  In this work, mobile network control
   planes are proposed to be realized by replacing the traditional
   network function interfaces with a fully service-based one.  HTTP was
   chosen as the application-layer protocol for exchanging suitable
   service requests [SDO-3GPP-SBA].  With this in mind, the exchange
   between, for example, the 3GPP-defined (Rel. 15) Session Management
   Function (SMF) and the Access and Mobility Management Function (AMF)
   in a 5G control plane is being described as a set of web-service-like
   requests that are, in turn, embedded into HTTP requests.  Hence,
   interactions in a 5G control plane can be modeled based on SFCs where
   the relationship is between the specific (IP-based) SF endpoints that
   implement the necessary service endpoints in the SMF and AMF.  The
   SFs are exposed through URIs with work ongoing to define the used
   naming conventions for such URIs.

   This move from a network function model (in pre-Release 15 systems of
   3GPP) to a service-based model is motivated through the proliferation
   of data-center operations for mobile network control-plane services.
   In other words, typical IT-based methods to service provisioning,
   particularly that of virtualization of entire compute resources, are
   envisioned to being used in future operations of mobile networks.
   Hence, operators of such future mobile networks desire to virtualize
   SF endpoints and direct (control-plane) traffic to the most
   appropriate current service instance in the most appropriate (local)
   data center.  Such a data center is envisioned as being
   interconnected through a software-defined wide area network (SD-WAN).
   "Appropriate" here can be defined by topological or geographical
   proximity of the service initiator to the SF endpoint.
   Alternatively, network or service instance compute load can be used
   to direct a request to a more appropriate (in this case less loaded)
   instance to reduce possible latency of the overall request.  Such
   data-center-centric operation is extended with the trend towards
   regionalization of load through a "regional office" approach, where
   micro data centers provide virtualizable resources that can be used
   in the service execution, creating a larger degree of freedom when
   choosing the "most appropriate" service endpoint for a particular
   incoming service request.

   While the move to a service-based model aligns well with the
   framework of SFC, choosing the most appropriate service instance at
   runtime requires so-called "rechaining" of the SFC since the
   relationships in said SFC are defined through Layer 2 or Layer 3
   identifiers, which, in turn, are likely to be different if the chosen
   service instances reside in different parts of the network (e.g., in



   a regional data center).

   Hence, when a traffic flow is forwarded over a service chain
   expressed as an SFC-compliant SFP, packets in the traffic flow are
   processed by the various SF instances, with each SF instance applying
   an SF prior to forwarding the packets to the next network node.  It
   is a service-layer concept and can possibly work over any Virtual
   network layer and corresponding underlay network.  The underlay
   network can be IP or alternatively any Layer 2 technology.  At the
   service layer, SFs are identified using a path identifier and an
   index.  Eventually, this index is translated to an IP address (or MAC
   address) of the host where the SF is running.  Because of this, any
   change-of-service function instance is likely to require a change of
   the path information since either the IP address (in the case of
   changing the execution from one data center to another) or MAC
   address will change due to the newly selected SF instance.

   Returning to our 5G control-plane example, a user’s connection
   request to access an application server in the Internet may start
   with signaling in the control plane to set up user-plane bearers.
   The connection request may flow through SFs over a service chain in
   the control plane, as deployed by a network operator.  Typical SFs in
   a 5G control plane may include "RAN termination / processing", "Slice
   Selection Function", "AMF", and "SMF".  A "Network Slice" is a
   complete logical network including Radio Access Network (RAN) and
   Core Network (CN).  Distinct RAN and CN Slices may exist.  A device
   may access multiple Network Slices simultaneously through a single
   RAN.  The device may provide Network Slice Selection Assistance
   Information (NSSAI) parameters to the network to help it select a RAN
   and a Core Network part of a slice instance.  Part of the control
   plane, the Common Control Network Function (CCNF), includes the
   Network Slice Selection Function (NSSF), which is in charge of
   selecting core Network Slice instances.  The classifier, as described
   in SFC architecture, may reside in the user terminal or at the
   Evolved Node B (eNB).  These SFs can be configured to be part of an
   SFC.  We can also say that some of the configurations of the SFP may
   change at the execution time.  For example, the SMF may be relocated
   as the user moves and a new SMF may be included in the SFP based on
   user location.  Figure 1 shows the example SFC described here.

               +------+   +---------+  +-----+   +-----+
               | User |   | Slice   |  |     |   |     |
               | App  |-->| Control |->| AMF |-->| SMF |-->
               | Fn   |   | Function|  |     |   |     |
               +------+   +---------+  +-----+   +-----+

        Figure 1: Mapping SFC onto Service Function Execution Points
                       along a Service Function Path

4.  Background

   [RFC7665] describes an architecture for the specification, creation,
   and ongoing maintenance of SFCs.  It includes architectural concepts,
   principles, and components used in the construction of composite
   services through deployment of SFCs.  In the following, we outline
   the parts of this SFC architecture relevant for our proposed
   extension, followed by the challenges with this current framework in
   the light of our example use case.

4.1.  Relevant Part of SFC Architecture

   The SFC architecture, as defined in [RFC7665], describes
   architectural components such as SF, classifier, and SFF.  It
   describes the SFP as the logical path of an SFC.  Forwarding traffic
   along such an SFP is the responsibility of the SFF.  For this, the
   SFFs in a network maintain the requisite SFP forwarding information.
   Such SFP forwarding information is associated with a service path
   identifier (SPI) that is used to uniquely identify an SFP.  The
   service forwarding state is represented by the Service Index (SI) and
   enables an SFF to identify which SFs of a given SFP should be
   applied, and in what order.  The SFF also has information that allows



   it to forward packets to the next SFF after applying local SFs.

   The operational steps to forward traffic are then as follows: Traffic
   arrives at an SFF from the network.  The SFF determines the
   appropriate SF the traffic should be forwarded to via information
   contained in the SFC encapsulation.  After SF processing, the traffic
   is returned to the SFF and, if needed, is forwarded to another SF
   associated with that SFF.  If there is another non-local hop (i.e.,
   to an SF with a different SFF) in the SFP, the SFF further
   encapsulates the traffic in the appropriate network transport
   protocol and delivers it to the network for delivery to the next SFF
   along the path.  Related to this forwarding responsibility, an SFF
   should be able to interact with metadata.

4.2.  Challenges with Current Framework

   As outlined in previous sections, the SFP defines an ordered sequence
   of specific SF instances being used for the interaction between
   initiator and SFs along the SFP.  These SFs are addressed by IP (or
   any L2/MAC) addresses and defined as next-hop information in the
   network locator maps of traversing SFF nodes.

   As outlined in our use case, however, the service provider may want
   to provision SFC nodes based on dynamically spun-up SF instances so
   that these (now virtualized) SFs can be reached in the SFC domain
   using the SFC underlay layer.

   Following the original model of SFC, any change in a specific
   execution point for a specific SF along the SFP will require a change
   of the SFP information (since the new SF execution point likely
   carries different IP or L2 address information) and possibly even the
   next-hop information in SFFs along the SFP.  In case the availability
   of new SF instances is rather dynamic (e.g., through the use of
   container-based virtualization techniques), the current model and
   realization of SFC could lead to reducing the flexibility of service
   providers and increasing the management complexity incurred by the
   frequent changes of (service) forwarding information in the
   respective SFF nodes.  This is because any change of the SFP (and
   possibly next-hop info) will need to go through suitable management
   cycles.

   To address these challenges through a suitable solution, we identify
   the following requirements:

   *  Relations between Service Execution Points MUST be abstracted so
      that, from an SFP point of view, the Logical Path never changes.

   *  Deriving the Service Execution Points from the abstract SFP SHOULD
      be fast and incur minimum delay.

   *  Identification of the Service Execution Points SHOULD NOT use a
      combination of Layer 2 or Layer 3 mechanisms.

   The next section outlines a solution to address the issue, allowing
   for keeping SFC information (represented in its SFP) intact while
   addressing the desired flexibility of the service provider.

5.  Name-Based Operation in SFF

5.1.  General Idea

   The general idea is two pronged.  Firstly, we elevate the definition
   of an SFP onto the level of "name-based interactions" rather than
   limiting SFPs to Layer 2 or Layer 3 information only.  Secondly, we
   extend the operations of the SFF to allow for forwarding decisions
   that take into account such name-based interaction while remaining
   backward compatible to the current SFC architecture as defined in
   [RFC7665].  In the following sections, we outline these two
   components of our solution.

   If the next-hop information in the Network Locator Map (NLM) is



   described using an L2/L3 identifier, the name-based SFF (nSFF) may
   operate as described for (traditional) SFF, as defined in [RFC7665].
   On the other hand, if the next-hop information in the NLM is
   described as a name, then the nSFF operates as described in the
   following sections.

   In the following sections, we outline the two components of our
   solution.

5.2.  Name-Based Service Function Path (nSFP)

   The existing SFC framework is defined in [RFC7665].  Section 4
   outlines that the SFP information is representing path information
   based on Layer 2 or Layer 3 information, i.e., MAC or IP addresses,
   causing the aforementioned frequent adaptations in cases of
   execution-point changes.  Instead, we introduce the notion of a
   "name-based Service Function Path (nSFP)".

   In today’s networking terms, any identifier can be treated as a name,
   but we will illustrate the realization of a "Name-based SFP" through
   extended SFF operations (see Section 6) based on URIs as names and
   HTTP as the protocol of exchanging information.  Here, URIs are being
   used to name for an SF along the nSFP.  Note that the nSFP approach
   is not restricted to HTTP (as the protocol) and URIs (as next-hop
   identifier within the SFP).  Other identifiers such as an IP address
   itself can also be used and are interpreted as a "name" in the nSFP.
   IP addresses as well as fully qualified domain names forming complex
   URIs (uniform resource identifiers), such as www.example.com/
   service_name1, are all captured by the notion of "name" in this
   document.

   Generally, nSFPs are defined as an ordered sequence of the "name" of
   SFs, and a typical nSFP may look like: 192.0.x.x -> www.example.com
   -> www.example2.com/service1 -> www.example2.com/service2.

   Our use case in Section 3 can then be represented as an ordered named
   sequence.  An example for a session initiation that involves an
   authentication procedure, this could look like 192.0.x.x ->
   smf.example.org/session_initiate -> amf.example.org/auth ->
   smf.example.org/session_complete -> 192.0.x.x.  (Note that this
   example is only a conceptual one since the exact nature of any future
   SBA-based exchange of 5G control-plane functions is yet to be defined
   by standardization bodies such as 3GPP).

   In accordance with our use case in Section 3, any of these named
   services can potentially be realized through more than one replicated
   SF instance.  This leads to making dynamic decisions on where to send
   packets along the SAME SFP information, being provided during the
   execution of the SFC.  Through elevating the SFP onto the notion of
   name-based interactions, the SFP will remain the same even if those
   specific execution points change for a specific service interaction.

   The following diagram in Figure 2 describes this nSFP concept and the
   resulting mapping of those named interactions onto (possibly)
   replicated instances.

     +---------------------------------------------------------------+
     |Service Layer                                                  |
     | 192.0.x.x --> www.example.com --> www.example2.com -->        |
     |                      ||              ||                       |
     +----------------------||--------------||-----------------------+
                            ||              ||
                            ||              ||
     +----------------------||--------------||-----------------------+
     |Underlay Network      \/              \/                       |
     |               +--+ +--+ +--+    +--+ +--+ +--+                |
     |               |  | |  | |  |    |  | |  | |  |                |
     |               +--+ +--+ +--+    +--+ +--+ +--+                |
     |               Compute and       Compute and                   |
     |               storage nodes     storage nodes                 |
     +---------------------------------------------------------------+



        Figure 2: Mapping SFC onto Service Function Execution Points
         along a Service Function Path Based on Virtualized Service
                             Function Instance

5.3.  Name-Based Network Locator Map (nNLM)

   In order to forward a packet within an nSFP, we need to extend the
   NLM as defined in [RFC8300] with the ability to consider name
   relations based on URIs as well as high-level transport protocols
   such as HTTP for means of SFC packet forwarding.  Another example for
   SFC packet forwarding could be that of Constrained Application
   Protocol (CoAP).

   The extended NLM or name-based Network Locator Map (nNLM) is shown in
   Table 1 as an example for www.example.com being part of the nSFP.
   Such extended nNLM is stored at each SFF throughout the SFC domain
   with suitable information populated to the nNLM during the
   configuration phase.

     +-----+-----+--------------------+------------------------------+
     | SPI | SI  | Next Hop(s)        | Transport Encapsulation (TE) |
     +=====+=====+====================+==============================+
     | 10  | 255 | 192.0.2.1          | VXLAN-gpe                    |
     +-----+-----+--------------------+------------------------------+
     | 10  | 254 | 198.51.100.10      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 10  | 253 | www.example.com    | HTTP                         |
     +-----+-----+--------------------+------------------------------+
     | 40  | 251 | 198.51.100.15      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 50  | 200 | 01:23:45:67:89:ab  | Ethernet                     |
     +-----+-----+--------------------+------------------------------+
     | 15  | 212 | Null (end of path) | None                         |
     +-----+-----+--------------------+------------------------------+

                  Table 1: Name-Based Network Locator Map

   Alternatively, the extended NLM may be defined with implicit name
   information rather than explicit URIs as in Table 1.  In the example
   of Table 2, the next hop is represented as a generic HTTP service
   without a specific URI being identified in the extended NLM.  In this
   scenario, the SFF forwards the packet based on parsing the HTTP
   request in order to identify the host name or URI.  It retrieves the
   URI and may apply policy information to determine the destination
   host/service.

     +-----+-----+--------------------+------------------------------+
     | SPI | SI  | Next Hop(s)        | Transport Encapsulation (TE) |
     +=====+=====+====================+==============================+
     | 10  | 255 | 192.0.2.1          | VXLAN-gpe                    |
     +-----+-----+--------------------+------------------------------+
     | 10  | 254 | 198.51.100.10      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 10  | 253 | HTTP Service       | HTTP                         |
     +-----+-----+--------------------+------------------------------+
     | 40  | 251 | 198.51.100.15      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 50  | 200 | 01:23:45:67:89:ab  | Ethernet                     |
     +-----+-----+--------------------+------------------------------+
     | 15  | 212 | Null (end of path) | None                         |
     +-----+-----+--------------------+------------------------------+

         Table 2: Name-Based Network Locator Map with Implicit Name
                                Information

5.4.  Name-Based Service Function Forwarder (nSFF)

   It is desirable to extend the SFF of the SFC underlay to handle nSFPs
   transparently and without the need to insert any SF into the nSFP.
   Such extended nSFFs would then be responsible for forwarding a packet



   in the SFC domain as per the definition of the (extended) nSFP.

   In our example realization for an extended SFF, the solution
   described in this document uses HTTP as the protocol of forwarding
   SFC packets to the next (name-based) hop in the nSFP.  The URI in the
   HTTP transaction is the name in our nSFP information, which will be
   used for name-based forwarding.

   Following our reasoning so far, HTTP requests (and more specifically,
   the plaintext-encoded requests above) are the equivalent of packets
   that enter the SFC domain.  In the existing SFC framework, an IP
   payload is typically assumed to be a packet entering the SFC domain.
   This packet is forwarded to destination nodes using the L2
   encapsulation.  Any layer 2 network can be used as an underlay
   network.  This notion is now extended to packets being possibly part
   of an entire higher-layer application such as HTTP requests.  The
   handling of any intermediate layers, such as TCP and IP, is left to
   the realization of the (extended) SFF operations towards the next
   (named) hop.  For this, we will first outline the general lifecycle
   of an SFC packet in the following subsection, followed by two
   examples for determining next-hop information in Section 6.2.3,
   finished up by a layered view on the realization of the nSFF in
   Section 6.2.4.

5.5.  High-Level Architecture

   +----------+
   | SF1      |                 +--------+                  +------+
   | instance |\                |   NR   |                  | SF2  |
   +----------+ \               +--------+                  +------+
                 \                  ||                         ||
   +------------+ \ +-------+   +---------+   +---------+   +-------+
   | Classifier |---| nSFF1 |---|Forwarder|---|Forwarder|---| nSFF2 |
   +------------+   +-------+   +---------+   +---------+   +-------+
                                                               ||
                                                           +----------+
                                                           | Boundary |
                                                           |  node    |
                                                           +----------+

                     Figure 3: High-Level Architecture

   The high-level architecture for name-based operation shown in
   Figure 3 is very similar to the SFC architecture as described in
   [RFC7665].  Two new functions are introduced, as shown in the above
   diagram: namely, the nSFF and the Name Resolver (NR).

   The nSFF is an extension of the existing SFF and is capable of
   processing SFC packets based on nNLM information, determining the
   next SF where the packet should be forwarded, and the required
   transport encapsulation (TE).  Like standard SFF operation, it adds
   TE to the SFC packet and forwards it.

   The NR is a new functional component, capable of identifying the
   execution endpoints, where a "named SF" is running, triggered by
   suitable resolution requests sent by the nSFF.  Though this is
   similar to DNS function, it is not same.  It does not use DNS
   protocols or data records.  A new procedure to determine the suitable
   routing/forwarding information towards the nSFF serving the next hop
   of the SFP is used.  The details are described later.

   The other functional components, such as classifier and SF, are the
   same as described in SFC architecture, as defined in [RFC7665], while
   the Forwarders shown in the above diagram are traditional Layer 2
   switches.

5.6.  Operational Steps

   In the proposed solution, the operations are realized by the name-
   based SFF, called "nSFF".  We utilize the high-level architecture in
   Figure 3 to describe the traversal between two SF instances of an



   nSFP-based transaction in an example chain of: 192.0.x.x -> SF1
   (www.example.com) -> SF2 (www.example2.com) -> SF3 -> ...

   Service Function 3 (SF3) is assumed to be a classical SF; hence,
   existing SFC mechanisms can be used to reach it and will not be
   considered in this example.

   According to the SFC lifecycle, as defined in [RFC7665], based on our
   example chain above, the traffic originates from a classifier or
   another SFF on the left.  The traffic is processed by the incoming
   nSFF1 (on the left side) through the following steps.  The traffic
   exits at nSFF2.

   Step 1:  At nSFF1, the following nNLM is assumed:

     +-----+-----+--------------------+------------------------------+
     | SPI | SI  | Next Hop(s)        | Transport Encapsulation (TE) |
     +=====+=====+====================+==============================+
     | 10  | 255 | 192.0.2.1          | VXLAN-gpe                    |
     +-----+-----+--------------------+------------------------------+
     | 10  | 254 | 198.51.100.10      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 10  | 253 | www.example.com    | HTTP                         |
     +-----+-----+--------------------+------------------------------+
     | 10  | 252 | www.example2.com   | HTTP                         |
     +-----+-----+--------------------+------------------------------+
     | 40  | 251 | 198.51.100.15      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 50  | 200 | 01:23:45:67:89:ab  | Ethernet                     |
     +-----+-----+--------------------+------------------------------+
     | 15  | 212 | Null (end of path) | None                         |
     +-----+-----+--------------------+------------------------------+

                           Table 3: nNLM at nSFF1

   Step 2:  nSFF1 removes the previous transport encapsulation (TE) for
            any traffic originating from another SFF or classifier
            (traffic from an SF instance does not carry any TE and is
            therefore directly processed at the nSFF).

   Step 3:  nSFF1 then processes the Network Service Header (NSH)
            information, as defined in [RFC8300], to identify the next
            SF at the nSFP level by mapping the NSH information to the
            appropriate entry in its nNLM (see Table 3) based on the
            provided SPI/SI information in the NSH (see Section 4) in
            order to determine the name-based identifier of the next-hop
            SF.  With such nNLM in mind, the nSFF searches the map for
            SPI = 10 and SI = 253.  It identifies the next hop as =
            www.example.com and HTTP as the protocol to be used.  Given
            that the next hop resides locally, the SFC packet is
            forwarded to the SF1 instance of www.example.com.  Note that
            the next hop could also be identified from the provided HTTP
            request, if the next-hop information was identified as a
            generic HTTP service, as defined in Section 5.3.

   Step 4:  The SF1 instance then processes the received SFC packet
            according to its service semantics and modifies the NSH by
            setting SPI = 10 and SI = 252 for forwarding the packet
            along the SFP.  It then forwards the SFC packet to its local
            nSFF, i.e., nSFF1.

   Step 5:  nSFF1 processes the NSH of the SFC packet again, now with
            the NSH modified (SPI = 10, SI = 252) by the SF1 instance.
            It retrieves the next-hop information from its nNLM in
            Table 3 to be www.example2.com.  Due to this SF not being
            locally available, the nSFF consults any locally available
            information regarding routing/forwarding towards a suitable
            nSFF that can serve this next hop.

   Step 6:  If such information exists, the Packet (plus the NSH
            information) is marked to be sent towards the nSFF serving



            the next hop based on such information in Step 8.

   Step 7:  If such information does not exist, nSFF1 consults the NR to
            determine the suitable routing/forwarding information
            towards the identified nSFF serving the next hop of the SFP.
            For future SFC packets towards this next hop, such resolved
            information may be locally cached, avoiding contacting the
            NR for every SFC packet forwarding.  The packet is now
            marked to be sent via the network in Step 8.

   Step 8:  Utilizing the forwarding information determined in Steps 6
            or 7, nSFF1 adds the suitable TE for the SFC packet before
            forwarding via the forwarders in the network towards the
            next nSFF22.

   Step 9:  When the Packet (+NSH+TE) arrives at the outgoing nSFF2,
            i.e., the nSFF serving the identified next hop of the SFP,
            it removes the TE and processes the NSH to identify the
            next-hop information.  At nSFF2 the nNLM in Table 4 is
            assumed.  Based on this nNLM and NSH information where SPI =
            10 and SI = 252, nSFF2 identifies the next SF as
            www.example2.com.

     +-----+-----+--------------------+------------------------------+
     | SPI | SI  | Next Hop(s)        | Transport Encapsulation (TE) |
     +=====+=====+====================+==============================+
     | 10  | 252 | www.example2.com   | HTTP                         |
     +-----+-----+--------------------+------------------------------+
     | 40  | 251 | 198.51.100.15      | GRE                          |
     +-----+-----+--------------------+------------------------------+
     | 50  | 200 | 01:23:45:67:89:ab  | Ethernet                     |
     +-----+-----+--------------------+------------------------------+
     | 15  | 212 | Null (end of path) | None                         |
     +-----+-----+--------------------+------------------------------+

                           Table 4: nNLM at SFF2

   Step 10: If the next hop is locally registered at the nSFF, it
            forwards the packet (+NSH) to the SF instance using suitable
            IP/MAC methods for doing so.

   Step 11: If the next hop is not locally registered at the nSFF, the
            outgoing nSFF adds new TE information to the packet and
            forwards the packet (+NSH+TE) to the next SFF or boundary
            node, as shown in Table 4.

6.  nSFF Forwarding Operations

   This section outlines the realization of various nSFF forwarding
   operations in Section 5.6.  Although the operations in Section 5
   utilize the notion of name-based transactions in general, we
   exemplify the operations here in Section 5 specifically for HTTP-
   based transactions to ground our description into a specific protocol
   for such name-based transaction.  We will refer to the various steps
   in each of the following subsections.

6.1.  nSFF Protocol Layers

   Figure 4 shows the protocol layers based on the high-level
   architecture in Figure 3.

   +-------+  +------+----+                              +----+-----+
   |App    |  |      |    |   +--------+                 |    |     |
   |HTTP   |  |-------->  |   |  NR    |                 |nSFF----->|--
   |TCP    |->| TCP  |nSFF|   +---/\---+                 |    | TCP | |
   |IP     |  | IP   |    |       ||                     |    | IP  | |
   +-------+  +------+----+  +---------+   +---------+   +----------+ |
   |   L2  |  |      L2   |->|Forwarder|-->|Forwarder|-->|   L2     | |
   +-------+  +------+----+  +---------+   +---------+   +----------+ |
     SF1           nSFF1                                     nSFF2    |
                                                 +-------+            |



                                                 | App   |/           |
                                                 | HTTP  | -----------+
                                                 | TCP   |\
                                                 | IP    |
                                                 | L2    |
                                                 +-------+
                                                   SF2

                         Figure 4: Protocol Layers

   The nSFF component here is shown as implementing a full incoming/
   outgoing TCP/IP protocol stack towards the local SFs, while
   implementing the nSFF-NR and nSFF-nSFF protocols based on the
   descriptions in Section 6.2.3.

   For the exchange of HTTP-based SF transactions, the nSFF terminates
   incoming TCP connections as well as outgoing TCP connections to local
   SFs, e.g., the TCP connection from SF1 terminates at nSFF1, and nSFF1
   may store the connection information such as socket information.  It
   also maintains the mapping information for the HTTP request such as
   originating SF, destination SF, and socket ID. nSFF1 may implement
   sending keep-alive messages over the socket to maintain the
   connection to SF1.  Upon arrival of an HTTP request from SF1, nSFF1
   extracts the HTTP Request and forwards it towards the next node as
   outlined in Section 6.2.  Any returning response is mapped onto the
   suitable open socket (for the original request) and sent towards SF1.

   At the outgoing nSFF2, the destination SF2/Host is identified from
   the HTTP request message.  If no TCP connection exists to the SF2, a
   new TCP connection is opened towards the destination SF2 and the HTTP
   request is sent over said TCP connection.  The nSFF2 may also save
   the TCP connection information (such as socket information) and
   maintain the mapping of the socket information to the destination
   SF2.  When an HTTP response is received from SF2 over the TCP
   connection, nSFF2 extracts the HTTP response, which is forwarded to
   the next node. nSFF2 may maintain the TCP connection through keep-
   alive messages.

6.2.  nSFF Operations

   In this section, we present three key aspects of operations for the
   realization of the steps in Section 5.6, namely, (i) the registration
   of local SFs (for Step 3 in Section 5.6), (ii) the forwarding of SFC
   packets to and from local SFs (for Steps 3, 4, and 10 in
   Section 5.6), (iii) the forwarding to a remote SF (for Steps 5, 6,
   and 7 in Section 5.6) and to the NR as well as (iv) for the lookup of
   a suitable remote SF (for Step 7 in Section 5.6).  We also cover
   aspects of maintaining local lookup information for reducing lookup
   latency and other issues.

6.2.1.  Forwarding between nSFFs and nSFF-NRs

   Forwarding between the distributed nSFFs as well as between nSFFs and
   NRs is realized over the operator network via a path-based approach.
   A path-based approach utilizes path information provided by the
   source of the packet for forwarding said packet in the network.  This
   is similar to segment routing albeit differing in the type of
   information provided for such source-based forwarding as described in
   this section.  In this approach, the forwarding information to a
   remote nSFF or the NR is defined as a "path identifier" (pathID) of a
   defined length where said length field indicates the full pathID
   length.  The payload of the packet is defined by the various
   operations outlined in the following subsections, resulting in an
   overall packet being transmitted.  With this, the generic forwarding
   format (GFF) for transport over the operator network is defined in
   Figure 5 with the length field defining the length of the pathID
   provided.

   +---------+-----------------+------------------------//------------+
   |         |                 |                       //             |
   | Length  | Path ID         |  Payload             //              |



   |(12 bits)|                 |                     //               |
   +---------+-----------------+--------------------//----------------+

                 Figure 5: Generic Forwarding Format (GFF)

   *  Length (12 bits): Defines the length of the pathID, i.e., up to
      4096 bits

   *  Path ID: Variable-length bit field derived from IPv6 source and
      destination address

   For the pathID information, solutions such as those in [Reed2016] can
   be used.  Here, the IPv6 source and destination addresses are used to
   realize a so-called path-based forwarding from the incoming to the
   outgoing nSFF or the NR.  The forwarders in Figure 4 are realized via
   SDN (software-defined networking) switches, implementing an AND/CMP
   operation based on arbitrary wildcard matching over the IPv6 source
   and destination addresses as outlined in [Reed2016].  Note that in
   the case of using IPv6 address information for path-based forwarding,
   the step of removing the TE at the outgoing nSFF in Figure 4 is
   realized by utilizing the provided (existing) IP header (which was
   used for the purpose of the path-based forwarding in [Reed2016]) for
   the purpose of next-hop forwarding such as that of IP-based routing.
   As described in Step 8 of the extended nSFF operations, this
   forwarding information is used as traffic encapsulation.  With the
   forwarding information utilizing existing IPv6 information, IP
   headers are utilized as TE in this case.  The next-hop nSFF (see
   Figure 4) will restore the IP header of the packet with the relevant
   IP information used to forward the SFC packet to SF2, or it will
   create suitable TE information to forward the information to another
   nSFF or boundary node.  Forwarding operations at the intermediary
   forwarders, i.e., SDN switches, examine the pathID information
   through a flow-matching rule in which a specific switch-local output
   port is represented through the specific assigned bit position in the
   pathID.  Upon a positive match in said rule, the packet is forwarded
   on said output port.

   Alternatively, the solution in [BIER-MULTICAST] suggests using a so-
   called BIER (Binary Indexed Explicit Replication) underlay.  Here,
   the nSFF would be realized at the ingress to the BIER underlay,
   injecting the SFC packet header (plus the Network Service Header
   (NSH)) with BIER-based traffic encapsulation into the BIER underlay
   with each of the forwarders in Figure 4 being realized as a so-called
   Bit-Forwarding Router (BFR) [RFC8279].

6.2.1.1.  Transport Protocol Considerations

   Given that the proposed solution operates at the "named-transaction"
   level, particularly for HTTP transactions, forwarding between nSFFs
   and/or NRs SHOULD be implemented via a transport protocol between
   nSFFs and/or NRs in order to provide reliability, segmentation of
   large GFF packets, and flow control, with the GFF in Figure 5 being
   the basic forwarding format for this.

   Note that the nSFFs act as TCP proxies at ingress and egress, thus
   terminating incoming and initiating outgoing HTTP sessions to SFs.

   Figure 6 shows the packet format being used for the transmission of
   data, being adapted from the TCP header.  Segmentation of large
   transactions into single transport protocol packets is realized
   through maintaining a "Sequence number".  A "Checksum" is calculated
   over a single data packet with the ones-complement TCP checksum
   calculation being used.  The "Window Size" field indicates the
   current maximum number of transport packets that are allowed in-
   flight by the egress nSFF.  A data packet is sent without a "Data"
   field to indicate the end of the (e.g., HTTP) transaction.

   Note that, in order to support future named transactions based on
   other application protocols, such as Constrained Application Protocol
   (CoAP), future versions of the transport protocol MAY introduce a
   "Type" field that indicates the type of application protocol being



   used between SF and nSFF with "Type" 0x01 proposed for HTTP.  This is
   being left for future study.

               +----------------------------------------------+
               |         16 bits       |        16 bits       |
               +----------------------------------------------+
               |              Sequence number                 |
               +----------------------------------------------+
               |       Checksum        |      Window Size     |
               +----------------------------------------------+
               |                      ...                     |
               |                Data (Optional)               |
               +----------------------------------------------+

              Figure 6: Transport Protocol Data Packet Format

   Given the path-based forwarding being used between nSFFs, the
   transport protocol between nSFFs utilizes negative acknowledgements
   from the egress nSFF towards the ingress nSFF.  The transport
   protocol negative Acknowledgment (NACK) packet carries the number of
   NACKs as well as the specific sequence numbers being indicated as
   lost in the "NACK number" field(s) as shown in Figure 7.

               +-----------------------+----------------------+
               |         16 bits       |        16 bits       |
               +----------------------------------------------+
               |    Number of NACKs    |                      +
               +----------------------------------------------+
               |                   NACK number                |
               +----------------------------------------------+
               +                ... NACK number               +
               +----------------------------------------------+

              Figure 7: Transport Protocol NACK Packet Format

   If the indicated number of NACKs in a received NACK packet is
   nonzero, the ingress nSFF will retransmit all sequence numbers
   signaled in the packet while decreasing its congestion window size
   for future transmissions.

   If the indicated number of NACKs in a received NACK packet is zero,
   it will indicate the current congestion window as being successfully
   (and completely) being transmitted, increasing the congestion window
   size if smaller than the advertised "Window Size" in Figure 6.

   The maintenance of the congestion window is subject to realization at
   the ingress nSFF and left for further study in nSFF realizations.

6.2.2.  SF Registration

   As outlined in Steps 3 and 10 of Section 5.6, the nSFF needs to
   determine if the SF derived from the Name-Based Network Locator
   (nNLM) is locally reachable or whether the packet needs to be
   forwarded to a remote SFF.  For this, a registration mechanism is
   provided for such local SF with the local nSFF.  Two mechanisms can
   be used for this:

   1.    SF-initiated: We assume that the SF registers its Fully
         Qualified Domain Name (FQDN) to the local nSFF.  As local
         mechanisms, we foresee that either a Representational State
         Transfer (REST-based) interface over the link-local link or
         configuration of the nSFF (through configuration files or
         management consoles) can be utilized.  Such local registration
         events lead to the nSFF registering the given FQDN with the NR
         in combination with a system-unique nSFF identifier that is
         being used for path-computation purposes in the NR.  For the
         registration, the packet format in Figure 8 is used (inserted
         as the payload in the GFF of Figure 5 with the pathID towards
         the NR).

                  +---------+------------------+----------------+



                  |         |                  |                |
                  |   R/D   |    hash(FQDN)    |    nSFF_ID     |
                  | (1 bit) |    (16 bits)     |    (8 bits)    |
                  +---------+------------------+----------------+

                        Figure 8: Registration Packet Format

            +  R/D: 1-bit length (0 for Register, 1 for Deregister)

            +  hash(FQDN): 16-bit length for a hash over the FQDN of the
               SF

            +  nSFF_ID: 8-bit length for a system-unique identifier for
               the SFF related to the SF

            We assume that the pathID towards the NR is known to the
            nSFF through configuration means.

            The NR maintains an internal table that associates the
            hash(FQDN), the nSFF_id information, as well as the pathID
            information being used for communication between nSFFs and
            NRs.  The nSFF locally maintains a mapping of registered
            FQDNs to IP addresses for the latter using link-local
            private IP addresses.

   2.    Orchestration-based: In this mechanism, we assume that SFC to
         be orchestrated and the chain to be provided through an
         orchestration template with FQDN information associated to a
         compute/storage resource that is being deployed by the
         orchestrator.  We also assume knowledge at the orchestrator of
         the resource topology.  Based on this, the orchestrator can now
         use the same REST-based protocol defined in option 1 to
         instruct the NR to register the given FQDN, as provided in the
         template, at the nSFF it has identified as being the locally
         servicing nSFF, provided as the system-unique nSFF identifier.

6.2.3.  Local SF Forwarding

   There are two cases of local SF forwarding, namely, the SF sending an
   SFC packet to the local nSFF (incoming requests) or the nSFF sending
   a packet to the SF (outgoing requests) as part of Steps 3 and 10 in
   Section 5.6.  In the following, we outline the operation for HTTP as
   an example-named transaction.

   As shown in Figure 4, incoming HTTP requests from SFs are extracted
   by terminating the incoming TCP connection at their local nSFFs at
   the TCP level.  The nSFF MUST maintain a mapping of open TCP sockets
   to HTTP requests (utilizing the URI of the request) for HTTP response
   association.

   For outgoing HTTP requests, the nSFF utilizes the maintained mapping
   of locally registered FQDNs to link-local IP addresses (see
   Section 6.2.2, option 1).  Hence, upon receiving an SFC packet from a
   remote nSFF (in Step 9 of Section 5.6), the nSFF determines the local
   existence of the SF through the registration mechanisms in
   Section 6.2.2.  If said SF does exist locally, the HTTP (+NSH)
   packet, after stripping the TE, is sent to the local SF as Step 10 in
   Section 5.6 via a TCP-level connection.  Outgoing nSFFs SHOULD keep
   TCP connections open to local SFs for improving SFC packet delivery
   in subsequent transactions.

6.2.4.  Handling of HTTP Responses

   When executing Steps 3 and 10 in Section 5.6, the SFC packet will be
   delivered to the locally registered next hop.  As part of the HTTP
   protocol, responses to the HTTP request will need to be delivered on
   the return path to the originating nSFF (i.e., the previous hop).
   For this, the nSFF maintains a list of link-local connection
   information, e.g., sockets to the local SF and the pathID on which
   the request was received.  Once receiving the response, nSFF consults
   the table to determine the pathID of the original request, forming a



   suitable GFF-based packet to be returned to the previous nSFF.

   When receiving the HTTP response at the previous nSFF, the nSFF
   consults the table of (locally) open sockets to determine the
   suitable local SF connection, mapping the received HTTP response URI
   to the stored request URI.  Utilizing the found socket, the HTTP
   response is forwarded to the locally registered SF.

6.2.5.  Remote SF Forwarding

   In Steps 5, 6, 7, and 8 of Section 5.6, an SFC packet is forwarded to
   a remote nSFF based on the nNLM information for the next hop of the
   nSFP.  Section 6.2.5.1 handles the case of suitable forwarding
   information to the remote nSFF not existing, therefore consulting the
   NR to obtain suitable information.  Section 6.2.5.2 describes the
   maintenance of forwarding information at the local nSFF.
   Section 6.2.5.3 describes the update of stale forwarding information.
   Note that the forwarding described in Section 6.2.1 is used for the
   actual forwarding to the various nSFF components.  Ultimately,
   Section 6.2.5.4 describes the forwarding to the remote nSFF via the
   forwarder network.

6.2.5.1.  Remote SF Discovery

   The nSFF communicates with the NR for two purposes: namely, the
   registration and discovery of FQDNs.  The packet format for the
   former was shown in Figure 8 in Section 6.2.2, while Figure 9
   outlines the packet format for the discovery request.

   +--------------+-------------+ +--------+-----------------//--------+
   |              |             | |        |                //         |
   |   hash(FQDN) |  nSFF_ID    | | Length | pathID        //          |
   |   (16 bits)  |  (8 bits)   | |(4 bits)|              //           |
   +--------------+-------------+ +--------+-------------//------------+
           Path Request                     Path Response

                     Figure 9: Discovery Packet Format

   For Path Request:

   *  hash(FQDN): 16-bit length for a hash over the FQDN of the SF

   *  nSFF_ID: 8-bit length for a system-unique identifier for the SFF
      related to the SF

   For Path Response:

   *  Length: 4-bit length that defines the length of the pathID

   *  Path ID: Variable-length bit field derived from IPv6 source and
      destination address

   A path to a specific FQDN is requested by sending a hash of the FQDN
   to the NR together with its nSFF_id, receiving as a response a pathID
   with a length identifier.  The NR SHOULD maintain a table of
   discovery requests that map discovered (hash of) FQDN to the nSFF_id
   that requested it and the pathID that is being calculated as a result
   of the discovery request.

   The discovery request for an FQDN that has not previously been served
   at the nSFF (or for an FQDN whose pathID information has been flushed
   as a result of the update operations in Section 6.2.5.3) results in
   an initial latency incurred by this discovery through the NR, while
   any SFC packet sent over the same SFP in a subsequent transaction
   will utilize the nSFF-local mapping table.  Such initial latency can
   be avoided by prepopulating the FQDN-pathID mapping proactively as
   part of the overall orchestration procedure, e.g., alongside the
   distribution of the nNLM information to the nSFF.

6.2.5.2.  Maintaining Forwarding Information at Local nSFF



   Each nSFF MUST maintain an internal table that maps the (hash of the)
   FQDN information to a suitable pathID.  As outlined in Step 7 of
   Section 5.6, if a suitable entry does not exist for a given FQDN, the
   pathID information is requested with the operations in
   Section 6.2.5.1 and the suitable entry is locally created upon
   receiving a reply with the forwarding operation being executed as
   described in Section 6.2.1.

   If such an entry does exist (i.e., Step 6 of Section 5.6), the pathID
   is locally retrieved and used for the forwarding operation in
   Section 6.2.1.

6.2.5.3.  Updating Forwarding Information at nSFF

   The forwarding information maintained at each nSFF (see
   Section 6.2.5.2) might need to be updated for three reasons:

   1.    An existing SF is no longer reachable: In this case, the nSFF
         with which the SF is locally registered deregisters the SF
         explicitly at the NR by sending the packet in Figure 6 with the
         hashed FQDN and the R/D bit set to 1 (for deregister).

   2.    Another SF instance has become reachable in the network (and,
         therefore, might provide a better alternative to the existing
         SF): In this case, the NR has received another packet with a
         format defined in Figure 7 but a different nSFF_id value.

   3.    Links along paths might no longer be reachable: The NR might
         use a suitable southbound interface to transport networks to
         detect link failures, which it associates to the appropriate
         pathID bit position.

   For this purpose, the packet format in Figure 10 is sent from the NR
   to all affected nSFFs, using the generic format in Figure 5.

            +---------+-----------------+--------------//----+
            |         |                 |             //     |
            |   Type  |     #IDs        |  IDs       //      |
            | (1 bit) |    (8 bits)     |           //       |
            +---------+-----------------+----------//--------+

                       Figure 10: Path Update Format

   *  Type: 1-bit length (0 for Nsff ID, 1 for Link ID)

   *  #IDs: 8-bit length for number of IDs in the list

   *  IDs: List of IDs (Nsff ID or Link ID)

   The pathID to the affected nSFFs is computed as the binary OR over
   all pathIDs to those nSFF_ids affected where the pathID information
   to the affected nSFF_id values is determined from the NR-local table
   maintained in the registration/deregistration operation of
   Section 6.2.2.

   The pathID may include the type of information being updated (e.g.,
   node identifiers of leaf nodes or link identifiers for removed
   links).  The node identifier itself may be a special identifier to
   signal "ALL NODES" as being affected.  The node identifier may signal
   changes to the network that are substantial (e.g., parallel link
   failures).  The node identifier may trigger (e.g., recommend) purging
   of the entire path table (e.g., rather than the selective removal of
   a few nodes only).

   It will include the information according to the type.  The included
   information may also be related to the type and length information
   for the number of identifiers being provided.

   In cases 1 and 2, the Type bit is set to 1 (type nSFF_id) and the
   affected nSFFs are determined by those nSFFs that have previously
   sent SF discovery requests, utilizing the optional table mapping



   previously registered FQDNs to nSFF_id values.  If no table mapping
   the (hash of) FQDN to nSFF_id is maintained, the update is sent to
   all nSFFs.  Upon receiving the path update at the affected nSFF, all
   appropriate nSFF-local mapping entries to pathIDs for the hash(FQDN)
   identifiers provided will be removed, leading to a new NR discovery
   request at the next remote nSFF forwarding to the appropriate FQDN.

   In case 3, the Type bit is set to 0 (type linkID) and the affected
   nSFFs are determined by those nSFFs whose discovery requests have
   previously resulted in pathIDs that include the affected link,
   utilizing the optional table mapping previously registered FQDNs to
   pathID values (see Section 6.2.5.1).  Upon receiving the node
   identifier information in the path update, the affected nSFF will
   check its internal table that maps FQDNs to pathIDs to determine
   those pathIDs affected by the link problems and remove path
   information that includes the received node identifier(s).  For this,
   the pathID entries of said table are checked against the linkID
   values provided in the ID entry of the path update through a binary
   AND/CMP operation to check the inclusion of the link in the pathIDs
   to the FQDNs.  If any pathID is affected, the FQDN-pathID entry is
   removed, leading to a new NR discovery request at the next remote
   nSFF forwarding to the appropriate FQDN.

6.2.5.4.  Forwarding to Remote nSFF

   Once Steps 5, 6, and 7 in Section 5.6 are being executed, Step 8
   finally sends the SFC packet to the remote nSFF, utilizing the pathID
   returned in the discovery request (Section 6.2.5.1) or retrieved from
   the local pathID mapping table.  The SFC packet is placed in the
   payload of the generic forwarding format in Figure 5 together with
   the pathID, and the nSFF eventually executes the forwarding
   operations in Section 6.2.1.

7.  IANA Considerations

   This document has no IANA actions.

8.  Security Considerations

   Sections 5 and 6 describe the forwarding of SFC packets between named
   SFs based on URIs exchanged in HTTP messages.  Security is needed to
   protect the communications between originating node and Ssff, between
   one Nsff and the next Nsff, and between Nsff and destination.  TLS is
   sufficient for this and SHOULD be used.  The TLS handshake allows to
   determine the FQDN, which, in turn, is enough for the service routing
   decision.  Supporting TLS also allows the possibility of HTTPS-based
   transactions.

   It should be noted (per [RFC3986]) that what a URI resolves to is not
   necessarily stable.  This can allow flexibility in deployment, as
   described in this document, but may also result in unexpected
   behavior and could provide an attack vector as the resolution of a
   URI could be "hijacked" resulting in packets being steered to the
   wrong place.  This could be particularly important if the SFC is
   intended to send packets for processing at security functions.  Such
   hijacking is a new attack surface introduced by using a separate NR.
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