
ï»¿

Internet Engineering Task Force (IETF) D. Lawrence
Request for Comments: 8767 Oracle
Updates: 1034, 1035, 2181 W. Kumari
Category: Standards Track P. Sood
ISSN: 2070-1721 Google
 March 2020

 Serving Stale Data to Improve DNS Resiliency

Abstract

 This document defines a method (serve-stale) for recursive resolvers
 to use stale DNS data to avoid outages when authoritative nameservers
 cannot be reached to refresh expired data. One of the motivations
 for serve-stale is to make the DNS more resilient to DoS attacks and
 thereby make them less attractive as an attack vector. This document
 updates the definitions of TTL from RFCs 1034 and 1035 so that data
 can be kept in the cache beyond the TTL expiry; it also updates RFC
 2181 by interpreting values with the high-order bit set as being
 positive, rather than 0, and suggests a cap of 7 days.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8767.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Background
 4. Standards Action
 5. Example Method
 6. Implementation Considerations
 7. Implementation Caveats
 8. Implementation Status
 9. EDNS Option
 10. Security Considerations
 11. Privacy Considerations
 12. NAT Considerations
 13. IANA Considerations
 14. References

 14.1. Normative References
 14.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 Traditionally, the Time To Live (TTL) of a DNS Resource Record (RR)
 has been understood to represent the maximum number of seconds that a
 record can be used before it must be discarded, based on its
 description and usage in [RFC1035] and clarifications in [RFC2181].

 This document expands the definition of the TTL to explicitly allow
 for expired data to be used in the exceptional circumstance that a
 recursive resolver is unable to refresh the information. It is
 predicated on the observation that authoritative answer
 unavailability can cause outages even when the underlying data those
 servers would return is typically unchanged.

 We describe a method below for this use of stale data, balancing the
 competing needs of resiliency and freshness.

 This document updates the definitions of TTL from [RFC1034] and
 [RFC1035] so that data can be kept in the cache beyond the TTL
 expiry; it also updates [RFC2181] by interpreting values with the
 high-order bit set as being positive, rather than 0, and also
 suggests a cap of 7 days.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 For a glossary of DNS terms, please see [RFC8499].

3. Background

 There are a number of reasons why an authoritative server may become
 unreachable, including Denial-of-Service (DoS) attacks, network
 issues, and so on. If a recursive server is unable to contact the
 authoritative servers for a query but still has relevant data that
 has aged past its TTL, that information can still be useful for
 generating an answer under the metaphorical assumption that "stale
 bread is better than no bread."

 [RFC1035], Section 3.2.1 says that the TTL "specifies the time
 interval that the resource record may be cached before the source of
 the information should again be consulted." [RFC1035], Section 4.1.3
 further says that the TTL "specifies the time interval (in seconds)
 that the resource record may be cached before it should be
 discarded."

 A natural English interpretation of these remarks would seem to be
 clear enough that records past their TTL expiration must not be used.
 However, [RFC1035] predates the more rigorous terminology of
 [RFC2119], which softened the interpretation of "may" and "should".

 [RFC2181] aimed to provide "the precise definition of the Time to
 Live," but Section 8 of [RFC2181] was mostly concerned with the
 numeric range of values rather than data expiration behavior. It
 does, however, close that section by noting, "The TTL specifies a
 maximum time to live, not a mandatory time to live." This wording
 again does not contain BCP 14 key words [RFC2119], but it does convey
 the natural language connotation that data becomes unusable past TTL
 expiry.

 As of the time of this writing, several large-scale operators use
 stale data for answers in some way. A number of recursive resolver

 packages, including BIND, Knot Resolver, OpenDNS, and Unbound,
 provide options to use stale data. Apple macOS can also use stale
 data as part of the Happy Eyeballs algorithms in mDNSResponder. The
 collective operational experience is that using stale data can
 provide significant benefit with minimal downside.

4. Standards Action

 The definition of TTL in Sections 3.2.1 and 4.1.3 of [RFC1035] is
 amended to read:

 TTL a 32-bit unsigned integer number of seconds that specifies the
 duration that the resource record MAY be cached before the
 source of the information MUST again be consulted. Zero values
 are interpreted to mean that the RR can only be used for the
 transaction in progress, and should not be cached. Values
 SHOULD be capped on the order of days to weeks, with a
 recommended cap of 604,800 seconds (7 days). If the data is
 unable to be authoritatively refreshed when the TTL expires, the
 record MAY be used as though it is unexpired. See Sections 5
 and 6 of [RFC8767] for details.

 Interpreting values that have the high-order bit set as being
 positive, rather than 0, is a change from [RFC2181], the rationale
 for which is explained in Section 6. Suggesting a cap of 7 days,
 rather than the 68 years allowed by the full 31 bits of Section 8 of
 [RFC2181], reflects the current practice of major modern DNS
 resolvers.

 When returning a response containing stale records, a recursive
 resolver MUST set the TTL of each expired record in the message to a
 value greater than 0, with a RECOMMENDED value of 30 seconds. See
 Section 6 for explanation.

 Answers from authoritative servers that have a DNS response code of
 either 0 (NoError) or 3 (NXDomain) and the Authoritative Answer (AA)
 bit set MUST be considered to have refreshed the data at the
 resolver. Answers from authoritative servers that have any other
 response code SHOULD be considered a failure to refresh the data and
 therefore leave any previous state intact. See Section 6 for a
 discussion.

5. Example Method

 There is more than one way a recursive resolver could responsibly
 implement this resiliency feature while still respecting the intent
 of the TTL as a signal for when data is to be refreshed.

 In this example method, four notable timers drive considerations for
 the use of stale data:

 * A client response timer, which is the maximum amount of time a
 recursive resolver should allow between the receipt of a
 resolution request and sending its response.

 * A query resolution timer, which caps the total amount of time a
 recursive resolver spends processing the query.

 * A failure recheck timer, which limits the frequency at which a
 failed lookup will be attempted again.

 * A maximum stale timer, which caps the amount of time that records
 will be kept past their expiration.

 Most recursive resolvers already have the query resolution timer and,
 effectively, some kind of failure recheck timer. The client response
 timer and maximum stale timer are new concepts for this mechanism.

 When a recursive resolver receives a request, it should start the
 client response timer. This timer is used to avoid client timeouts.
 It should be configurable, with a recommended value of 1.8 seconds as

 being just under a common timeout value of 2 seconds while still
 giving the resolver a fair shot at resolving the name.

 The resolver then checks its cache for any unexpired records that
 satisfy the request and returns them if available. If it finds no
 relevant unexpired data and the Recursion Desired flag is not set in
 the request, it should immediately return the response without
 consulting the cache for expired records. Typically, this response
 would be a referral to authoritative nameservers covering the zone,
 but the specifics are implementation dependent.

 If iterative lookups will be done, then the failure recheck timer is
 consulted. Attempts to refresh from non-responsive or otherwise
 failing authoritative nameservers are recommended to be done no more
 frequently than every 30 seconds. If this request was received
 within this period, the cache may be immediately consulted for stale
 data to satisfy the request.

 Outside the period of the failure recheck timer, the resolver should
 start the query resolution timer and begin the iterative resolution
 process. This timer bounds the work done by the resolver when
 contacting external authorities and is commonly around 10 to 30
 seconds. If this timer expires on an attempted lookup that is still
 being processed, the resolution effort is abandoned.

 If the answer has not been completely determined by the time the
 client response timer has elapsed, the resolver should then check its
 cache to see whether there is expired data that would satisfy the
 request. If so, it adds that data to the response message with a TTL
 greater than 0 (as specified in Section 4). The response is then
 sent to the client while the resolver continues its attempt to
 refresh the data.

 When no authorities are able to be reached during a resolution
 attempt, the resolver should attempt to refresh the delegation and
 restart the iterative lookup process with the remaining time on the
 query resolution timer. This resumption should be done only once per
 resolution effort.

 Outside the resolution process, the maximum stale timer is used for
 cache management and is independent of the query resolution process.
 This timer is conceptually different from the maximum cache TTL that
 exists in many resolvers, the latter being a clamp on the value of
 TTLs as received from authoritative servers and recommended to be
 7 days in the TTL definition in Section 4. The maximum stale timer
 should be configurable. It defines the length of time after a record
 expires that it should be retained in the cache. The suggested value
 is between 1 and 3 days.

6. Implementation Considerations

 This document mainly describes the issues behind serving stale data
 and intentionally does not provide a formal algorithm. The concept
 is not overly complex, and the details are best left to resolver
 authors to implement in their codebases. The processing of serve-
 stale is a local operation, and consistent variables between
 deployments are not needed for interoperability. However, we would
 like to highlight the impact of various implementation choices,
 starting with the timers involved.

 The most obvious of these is the maximum stale timer. If this
 variable is too large, it could cause excessive cache memory usage,
 but if it is too small, the serve-stale technique becomes less
 effective, as the record may not be in the cache to be used if
 needed. Shorter values, even less than a day, can effectively handle
 the vast majority of outages. Longer values, as much as a week, give
 time for monitoring systems to notice a resolution problem and for
 human intervention to fix it; operational experience has been that
 sometimes the right people can be hard to track down and
 unfortunately slow to remedy the situation.

 Increased memory consumption could be mitigated by prioritizing
 removal of stale records over non-expired records during cache
 exhaustion. Eviction strategies could consider additional factors,
 including the last time of use or the popularity of a record, to
 retain active but stale records. A feature to manually flush only
 stale records could also be useful.

 The client response timer is another variable that deserves
 consideration. If this value is too short, there exists the risk
 that stale answers may be used even when the authoritative server is
 actually reachable but slow; this may result in undesirable answers
 being returned. Conversely, waiting too long will negatively impact
 user experience.

 The balance for the failure recheck timer is responsiveness in
 detecting the renewed availability of authorities versus the extra
 resource use for resolution. If this variable is set too large,
 stale answers may continue to be returned even after the
 authoritative server is reachable; per [RFC2308], Section 7, this
 should be no more than 5 minutes. If this variable is too small,
 authoritative servers may be targeted with a significant amount of
 excess traffic.

 Regarding the TTL to set on stale records in the response,
 historically TTLs of 0 seconds have been problematic for some
 implementations, and negative values can’t effectively be
 communicated to existing software. Other very short TTLs could lead
 to congestive collapse as TTL-respecting clients rapidly try to
 refresh. The recommended value of 30 seconds not only sidesteps
 those potential problems with no practical negative consequences, it
 also rate-limits further queries from any client that honors the TTL,
 such as a forwarding resolver.

 As for the change to treat a TTL with the high-order bit set as
 positive and then clamping it, as opposed to [RFC2181] treating it as
 zero, the rationale here is basically one of engineering simplicity
 versus an inconsequential operational history. Negative TTLs had no
 rational intentional meaning that wouldn’t have been satisfied by
 just sending 0 instead, and similarly there was realistically no
 practical purpose for sending TTLs of 2^25 seconds (1 year) or more.
 There’s also no record of TTLs in the wild having the most
 significant bit set in the DNS Operations, Analysis, and Research
 Center’s (DNS-OARC’s) "Day in the Life" samples [DITL]. With no
 apparent reason for operators to use them intentionally, that leaves
 either errors or non-standard experiments as explanations as to why
 such TTLs might be encountered, with neither providing an obviously
 compelling reason as to why having the leading bit set should be
 treated differently from having any of the next eleven bits set and
 then capped per Section 4.

 Another implementation consideration is the use of stale nameserver
 addresses for lookups. This is mentioned explicitly because, in some
 resolvers, getting the addresses for nameservers is a separate path
 from a normal cache lookup. If authoritative server addresses are
 not able to be refreshed, resolution can possibly still be successful
 if the authoritative servers themselves are up. For instance,
 consider an attack on a top-level domain that takes its nameservers
 offline; serve-stale resolvers that had expired glue addresses for
 subdomains within that top-level domain would still be able to
 resolve names within those subdomains, even those it had not
 previously looked up.

 The directive in Section 4 that only NoError and NXDomain responses
 should invalidate any previously associated answer stems from the
 fact that no other RCODEs that a resolver normally encounters make
 any assertions regarding the name in the question or any data
 associated with it. This comports with existing resolver behavior
 where a failed lookup (say, during prefetching) doesn’t impact the
 existing cache state. Some authoritative server operators have said
 that they would prefer stale answers to be used in the event that
 their servers are responding with errors like ServFail instead of

 giving true authoritative answers. Implementers MAY decide to return
 stale answers in this situation.

 Since the goal of serve-stale is to provide resiliency for all
 obvious errors to refresh data, these other RCODEs are treated as
 though they are equivalent to not getting an authoritative response.
 Although NXDomain for a previously existing name might well be an
 error, it is not handled that way because there is no effective way
 to distinguish operator intent for legitimate cases versus error
 cases.

 During discussion in the IETF, it was suggested that, if all
 authorities return responses with an RCODE of Refused, it may be an
 explicit signal to take down the zone from servers that still have
 the zone’s delegation pointed to them. Refused, however, is also
 overloaded to mean multiple possible failures that could represent
 transient configuration failures. Operational experience has shown
 that purposely returning Refused is a poor way to achieve an explicit
 takedown of a zone compared to either updating the delegation or
 returning NXDomain with a suitable SOA for extended negative caching.
 Implementers MAY nonetheless consider whether to treat all
 authorities returning Refused as preempting the use of stale data.

7. Implementation Caveats

 Stale data is used only when refreshing has failed in order to adhere
 to the original intent of the design of the DNS and the behavior
 expected by operators. If stale data were to always be used
 immediately and then a cache refresh attempted after the client
 response has been sent, the resolver would frequently be sending data
 that it would have had no trouble refreshing. Because modern
 resolvers use techniques like prefetching and request coalescing for
 efficiency, it is not necessary that every client request needs to
 trigger a new lookup flow in the presence of stale data, but rather
 that a good-faith effort has been recently made to refresh the stale
 data before it is delivered to any client.

 It is important to continue the resolution attempt after the stale
 response has been sent, until the query resolution timeout, because
 some pathological resolutions can take many seconds to succeed as
 they cope with unavailable servers, bad networks, and other problems.
 Stopping the resolution attempt when the response with expired data
 has been sent would mean that answers in these pathological cases
 would never be refreshed.

 The continuing prohibition against using data with a 0-second TTL
 beyond the current transaction explicitly extends to it being
 unusable even for stale fallback, as it is not to be cached at all.

 Be aware that Canonical Name (CNAME) and DNAME records [RFC6672]
 mingled in the expired cache with other records at the same owner
 name can cause surprising results. This was observed with an initial
 implementation in BIND when a hostname changed from having an IPv4
 Address (A) record to a CNAME. The version of BIND being used did
 not evict other types in the cache when a CNAME was received, which
 in normal operations is not a significant issue. However, after both
 records expired and the authorities became unavailable, the fallback
 to stale answers returned the older A instead of the newer CNAME.

8. Implementation Status

 The algorithm described in Section 5 was originally implemented as a
 patch to BIND 9.7.0. It has been in use on Akamai’s production
 network since 2011; it effectively smoothed over transient failures
 and longer outages that would have resulted in major incidents. The
 patch was contributed to the Internet Systems Consortium, and the
 functionality is now available in BIND 9.12 and later via the options
 stale-answer-enable, stale-answer-ttl, and max-stale-ttl.

 Unbound has a similar feature for serving stale answers and will
 respond with stale data immediately if it has recently tried and

 failed to refresh the answer by prefetching. Starting from version
 1.10.0, Unbound can also be configured to follow the algorithm
 described in Section 5. Both behaviors can be configured and fine-
 tuned with the available serve-expired-* options.

 Knot Resolver has a demo module here: <https://knot-
 resolver.readthedocs.io/en/stable/modules-serve_stale.html>.

 Apple’s system resolvers are also known to use stale answers, but the
 details are not readily available.

 In the research paper "When the Dike Breaks: Dissecting DNS Defenses
 During DDoS" [DikeBreaks], the authors detected some use of stale
 answers by resolvers when authorities came under attack. Their
 research results suggest that more widespread adoption of the
 technique would significantly improve resiliency for the large number
 of requests that fail or experience abnormally long resolution times
 during an attack.

9. EDNS Option

 During the discussion of serve-stale in the IETF, it was suggested
 that an EDNS option [RFC6891] should be available. One proposal was
 to use it to opt in to getting data that is possibly stale, and
 another was to signal when stale data has been used for a response.

 The opt-in use case was rejected, as the technique was meant to be
 immediately useful in improving DNS resiliency for all clients.

 The reporting case was ultimately also rejected because even the
 simpler version of a proposed option was still too much bother to
 implement for too little perceived value.

10. Security Considerations

 The most obvious security issue is the increased likelihood of DNSSEC
 validation failures when using stale data because signatures could be
 returned outside their validity period. Stale negative records can
 increase the time window where newly published TLSA or DS RRs may not
 be used due to cached NSEC or NSEC3 records. These scenarios would
 only be an issue if the authoritative servers are unreachable (the
 only time the techniques in this document are used), and thus serve-
 stale does not introduce a new failure in place of what would have
 otherwise been success.

 Additionally, bad actors have been known to use DNS caches to keep
 records alive even after their authorities have gone away. The
 serve-stale feature potentially makes the attack easier, although
 without introducing a new risk. In addition, attackers could combine
 this with a DDoS attack on authoritative servers with the explicit
 intent of having stale information cached for a longer period of
 time. But if attackers have this capacity, they probably could do
 much worse than prolonging the life of old data.

 In [CloudStrife], it was demonstrated how stale DNS data, namely
 hostnames pointing to addresses that are no longer in use by the
 owner of the name, can be used to co-opt security -- for example, to
 get domain-validated certificates fraudulently issued to an attacker.
 While this document does not create a new vulnerability in this area,
 it does potentially enlarge the window in which such an attack could
 be made. A proposed mitigation is that certificate authorities
 should fully look up each name starting at the DNS root for every
 name lookup. Alternatively, certificate authorities should use a
 resolver that is not serving stale data.

11. Privacy Considerations

 This document does not add any practical new privacy issues.

12. NAT Considerations

 The method described here is not affected by the use of NAT devices.

13. IANA Considerations

 This document has no IANA actions.

14. References

14.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

 [CloudStrife]
 Borgolte, K., Fiebig, T., Hao, S., Kruegel, C., and G.
 Vigna, "Cloud Strife: Mitigating the Security Risks of
 Domain-Validated Certificates",
 DOI 10.1145/3232755.3232859, ACM 2018 Applied Networking
 Research Workshop, July 2018, <https://www.ndss-
 symposium.org/wp-content/uploads/2018/02/ndss2018_06A-
 4_Borgolte_paper.pdf>.

 [DikeBreaks]
 Moura, G.C.M., Heidemann, J., MÃ¼ller, M., Schmidt, R. de
 O., and M. Davids, "When the Dike Breaks: Dissecting DNS
 Defenses During DDoS", DOI 10.1145/3278532.3278534,
 ACM 2018 Internet Measurement Conference, October 2018,
 <https://www.isi.edu/˜johnh/PAPERS/Moura18b.pdf>.

 [DITL] DNS-OARC, "DITL Traces and Analysis", January 2018,
 <https://www.dns-oarc.net/oarc/data/ditl>.

 [RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in the
 DNS", RFC 6672, DOI 10.17487/RFC6672, June 2012,
 <https://www.rfc-editor.org/info/rfc6672>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Acknowledgements

 The authors wish to thank Brian Carpenter, Vladimir Cunat, Robert
 Edmonds, Tony Finch, Bob Harold, Tatuya Jinmei, Matti Klock, Jason
 Moreau, Giovane Moura, Jean Roy, Mukund Sivaraman, Davey Song, Paul
 Vixie, Ralf Weber, and Paul Wouters for their review and feedback.
 Paul Hoffman deserves special thanks for submitting a number of Pull
 Requests.

 Thank you also to the following members of the IESG for their final
 review: Roman Danyliw, Benjamin Kaduk, Suresh Krishnan, Mirja
 KÃ¼hlewind, and Adam Roach.

Authors’ Addresses

 David C Lawrence
 Oracle

 Email: tale@dd.org

 Warren "Ace" Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 United States of America

 Email: warren@kumari.net

 Puneet Sood
 Google

 Email: puneets@google.com

