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Abstract

   This document defines the security architecture for WebRTC, a
   protocol suite intended for use with real-time applications that can
   be deployed in browsers -- "real-time communication on the Web".
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1.  Introduction

   The Real-Time Communications on the Web (RTCWEB) Working Group
   standardized protocols for real-time communications between Web
   browsers, generally called "WebRTC" [RFC8825].  The major use cases
   for WebRTC technology are real-time audio and/or video calls, Web
   conferencing, and direct data transfer.  Unlike most conventional
   real-time systems (e.g., SIP-based [RFC3261] soft phones), WebRTC
   communications are directly controlled by some Web server, via a
   JavaScript (JS) API as shown in Figure 1.

                            +----------------+
                            |                |
                            |   Web Server   |
                            |                |
                            +----------------+
                                ^        ^
                               /          \
                       HTTP   /            \   HTTP
                             /              \
                            /                \
                           v                  v
                        JS API              JS API
                  +-----------+            +-----------+



                  |           |    Media   |           |
                  |  Browser  |<---------->|  Browser  |
                  |           |            |           |
                  +-----------+            +-----------+

                      Figure 1: A Simple WebRTC System

   A more complicated system might allow for inter-domain calling, as
   shown in Figure 2.  The protocol to be used between the domains is
   not standardized by WebRTC, but given the installed base and the form
   of the WebRTC API is likely to be something SDP-based like SIP or
   something like the Extensible Messaging and Presence Protocol (XMPP)
   [RFC6120].

             +--------------+                +--------------+
             |              | SIP, XMPP, ... |              |
             |  Web Server  |<-------------->|  Web Server  |
             |              |                |              |
             +--------------+                +--------------+
                    ^                                ^
                    |                                |
              HTTP  |                                |  HTTP
                    |                                |
                    v                                v
                    JS API                       JS API
              +-----------+                     +-----------+
              |           |        Media        |           |
              |  Browser  |<------------------->|  Browser  |
              |           |                     |           |
              +-----------+                     +-----------+

                   Figure 2: A Multidomain WebRTC System

   This system presents a number of new security challenges, which are
   analyzed in [RFC8826].  This document describes a security
   architecture for WebRTC which addresses the threats and requirements
   described in that document.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Trust Model

   The basic assumption of this architecture is that network resources
   exist in a hierarchy of trust, rooted in the browser, which serves as
   the user’s Trusted Computing Base (TCB).  Any security property which
   the user wishes to have enforced must be ultimately guaranteed by the
   browser (or transitively by some property the browser verifies).
   Conversely, if the browser is compromised, then no security
   guarantees are possible.  Note that there are cases (e.g., Internet
   kiosks) where the user can’t really trust the browser that much.  In
   these cases, the level of security provided is limited by how much
   they trust the browser.

   Optimally, we would not rely on trust in any entities other than the
   browser.  However, this is unfortunately not possible if we wish to
   have a functional system.  Other network elements fall into two
   categories: those which can be authenticated by the browser and thus
   can be granted permissions to access sensitive resources, and those
   which cannot be authenticated and thus are untrusted.

3.1.  Authenticated Entities

   There are two major classes of authenticated entities in the system:

   Calling services:  Web sites whose origin we can verify (optimally



      via HTTPS, but in some cases because we are on a topologically
      restricted network, such as behind a firewall, and can infer
      authentication from firewall behavior).

   Other users:  WebRTC peers whose origin we can verify
      cryptographically (optimally via DTLS-SRTP).

   Note that merely being authenticated does not make these entities
   trusted.  For instance, just because we can verify that
   <https://www.example.org/> is owned by Dr. Evil does not mean that we
   can trust Dr. Evil to access our camera and microphone.  However, it
   gives the user an opportunity to determine whether they wish to trust
   Dr. Evil or not; after all, if they desire to contact Dr. Evil
   (perhaps to arrange for ransom payment), it’s safe to temporarily
   give them access to the camera and microphone for the purpose of the
   call, but they don’t want Dr. Evil to be able to access their camera
   and microphone other than during the call.  The point here is that we
   must first identify other elements before we can determine whether
   and how much to trust them.  Additionally, sometimes we need to
   identify the communicating peer before we know what policies to
   apply.

3.2.  Unauthenticated Entities

   Other than the above entities, we are not generally able to identify
   other network elements; thus, we cannot trust them.  This does not
   mean that it is not possible to have any interaction with them, but
   it means that we must assume that they will behave maliciously and
   design a system which is secure even if they do so.

4.  Overview

   This section describes a typical WebRTC session and shows how the
   various security elements interact and what guarantees are provided
   to the user.  The example in this section is a "best case" scenario
   in which we provide the maximal amount of user authentication and
   media privacy with the minimal level of trust in the calling service.
   Simpler versions with lower levels of security are also possible and
   are noted in the text where applicable.  It’s also important to
   recognize the tension between security (or performance) and privacy.
   The example shown here is aimed towards settings where we are more
   concerned about secure calling than about privacy, but as we shall
   see, there are settings where one might wish to make different
   tradeoffs -- this architecture is still compatible with those
   settings.

   For the purposes of this example, we assume the topology shown in the
   figures below.  This topology is derived from the topology shown in
   Figure 1, but separates Alice’s and Bob’s identities from the process
   of signaling.  Specifically, Alice and Bob have relationships with
   some Identity Provider (IdP) that supports a protocol (such as OpenID
   Connect) that can be used to demonstrate their identity to other
   parties.  For instance, Alice might have an account with a social
   network which she can then use to authenticate to other Web sites
   without explicitly having an account with those sites; this is a
   fairly conventional pattern on the Web. Section 7.1 provides an
   overview of IdPs and the relevant terminology.  Alice and Bob might
   have relationships with different IdPs as well.  Note: The IdP
   mechanism described here has not seen wide adoption.  See Section 7
   for more on the status of IdP-based authentication.

   This separation of identity provision and signaling isn’t
   particularly important in "closed world" cases where Alice and Bob
   are users on the same social network and have identities based on
   that domain (Figure 3).  However, there are important settings where
   that is not the case, such as federation (calls from one domain to
   another; see Figure 4) and calling on untrusted sites, such as where
   two users who have a relationship via a given social network want to
   call each other on another, untrusted, site, such as a poker site.

   Note that the servers themselves are also authenticated by an



   external identity service, the SSL/TLS certificate infrastructure
   (not shown).  As is conventional in the Web, all identities are
   ultimately rooted in that system.  For instance, when an IdP makes an
   identity assertion, the Relying Party consuming that assertion is
   able to verify because it is able to connect to the IdP via HTTPS.

                               +----------------+
                               |                |
                               |     Signaling  |
                               |     Server     |
                               |                |
                               +----------------+
                                   ^        ^
                                  /          \
                          HTTPS  /            \   HTTPS
                                /              \
                               /                \
                              v                  v
                           JS API              JS API
                     +-----------+            +-----------+
                     |           |    Media   |           |
               Alice |  Browser  |<---------->|  Browser  | Bob
                     |           | (DTLS+SRTP)|           |
                     +-----------+            +-----------+
                           ^      ^--+     +--^     ^
                           |         |     |        |
                           v         |     |        v
                     +-----------+   |     |  +-----------+
                     |           |<--------+  |           |
                     |   IdP1    |   |        |    IdP2   |
                     |           |   +------->|           |
                     +-----------+            +-----------+

                  Figure 3: A Call with IdP-Based Identity

   Figure 4 shows essentially the same calling scenario but with a call
   between two separate domains (i.e., a federated case), as in
   Figure 2.  As mentioned above, the domains communicate by some
   unspecified protocol, and providing separate signaling and identity
   allows for calls to be authenticated regardless of the details of the
   inter-domain protocol.

           +----------------+    Unspecified    +----------------+
           |                |      protocol     |                |
           |    Signaling   |<----------------->|    Signaling   |
           |    Server      |  (SIP, XMPP, ...) |    Server      |
           |                |                   |                |
           +----------------+                   +----------------+
                    ^                                   ^
                    |                                   |
              HTTPS |                                   | HTTPS
                    |                                   |
                    |                                   |
                    v                                   v
                 JS API                               JS API
           +-----------+                             +-----------+
           |           |             Media           |           |
     Alice |  Browser  |<--------------------------->|  Browser  | Bob
           |           |           DTLS+SRTP         |           |
           +-----------+                             +-----------+
                 ^      ^--+                      +--^     ^
                 |         |                      |        |
                 v         |                      |        v
           +-----------+   |                      |  +-----------+
           |           |<-------------------------+  |           |
           |   IdP1    |   |                         |    IdP2   |
           |           |   +------------------------>|           |
           +-----------+                             +-----------+

             Figure 4: A Federated Call with IdP-Based Identity



4.1.  Initial Signaling

   For simplicity, assume the topology in Figure 3.  Alice and Bob are
   both users of a common calling service; they both have approved the
   calling service to make calls (we defer the discussion of device
   access permissions until later).  They are both connected to the
   calling service via HTTPS and so know the origin with some level of
   confidence.  They also have accounts with some IdP.  This sort of
   identity service is becoming increasingly common in the Web
   environment (with technologies such as Federated Google Login,
   Facebook Connect, OAuth, OpenID, WebFinger), and is often provided as
   a side effect service of a user’s ordinary accounts with some
   service.  In this example, we show Alice and Bob using a separate
   identity service, though the identity service may be the same entity
   as the calling service or there may be no identity service at all.

   Alice is logged onto the calling service and decides to call Bob. She
   can see from the calling service that he is online and the calling
   service presents a JS UI in the form of a button next to Bob’s name
   which says "Call".  Alice clicks the button, which initiates a JS
   callback that instantiates a PeerConnection object.  This does not
   require a security check: JS from any origin is allowed to get this
   far.

   Once the PeerConnection is created, the calling service JS needs to
   set up some media.  Because this is an audio/video call, it creates a
   MediaStream with two MediaStreamTracks, one connected to an audio
   input and one connected to a video input.  At this point, the first
   security check is required: untrusted origins are not allowed to
   access the camera and microphone, so the browser prompts Alice for
   permission.

   In the current W3C API, once some streams have been added, Alice’s
   browser + JS generates a signaling message [RFC8829] containing:

   *  Media channel information

   *  Interactive Connectivity Establishment (ICE) [RFC8445] candidates

   *  A "fingerprint" attribute binding the communication to a key pair
      [RFC5763].  Note that this key may simply be ephemerally generated
      for this call or specific to this domain, and Alice may have a
      large number of such keys.

   Prior to sending out the signaling message, the PeerConnection code
   contacts the identity service and obtains an assertion binding
   Alice’s identity to her fingerprint.  The exact details depend on the
   identity service (though as discussed in Section 7 PeerConnection can
   be agnostic to them), but for now it’s easiest to think of as an
   OAuth token.  The assertion may bind other information to the
   identity besides the fingerprint, but at minimum it needs to bind the
   fingerprint.

   This message is sent to the signaling server, e.g., by fetch()
   [fetch] or by WebSockets [RFC6455], over TLS [RFC8446].  The
   signaling server processes the message from Alice’s browser,
   determines that this is a call to Bob, and sends a signaling message
   to Bob’s browser (again, the format is currently undefined).  The JS
   on Bob’s browser processes it, and alerts Bob to the incoming call
   and to Alice’s identity.  In this case, Alice has provided an
   identity assertion and so Bob’s browser contacts Alice’s IdP (again,
   this is done in a generic way so the browser has no specific
   knowledge of the IdP) to verify the assertion.  It is also possible
   to have IdPs with which the browser has a specific trust
   relationship, as described in Section 7.1.  This allows the browser
   to display a trusted element in the browser chrome indicating that a
   call is coming in from Alice.  If Alice is in Bob’s address book,
   then this interface might also include her real name, a picture, etc.
   The calling site will also provide some user interface element (e.g.,
   a button) to allow Bob to answer the call, though this is most likely
   not part of the trusted UI.



   If Bob agrees, a PeerConnection is instantiated with the message from
   Alice’s side.  Then, a similar process occurs as on Alice’s browser:
   Bob’s browser prompts him for device permission, the media streams
   are created, and a return signaling message containing media
   information, ICE candidates, and a fingerprint is sent back to Alice
   via the signaling service.  If Bob has a relationship with an IdP,
   the message will also come with an identity assertion.

   At this point, Alice and Bob each know that the other party wants to
   have a secure call with them.  Based purely on the interface provided
   by the signaling server, they know that the signaling server claims
   that the call is from Alice to Bob. This level of security is
   provided merely by having the fingerprint in the message and having
   that message received securely from the signaling server.  Because
   the far end sent an identity assertion along with their message, they
   know that this is verifiable from the IdP as well.  Note that if the
   call is federated, as shown in Figure 4, then Alice is able to verify
   Bob’s identity in a way that is not mediated by either her signaling
   server or Bob’s.  Rather, she verifies it directly with Bob’s IdP.

   Of course, the call works perfectly well if either Alice or Bob
   doesn’t have a relationship with an IdP; they just get a lower level
   of assurance.  I.e., they simply have whatever information their
   calling site claims about the caller/callee’s identity.  Moreover,
   Alice might wish to make an anonymous call through an anonymous
   calling site, in which case she would of course just not provide any
   identity assertion and the calling site would mask her identity from
   Bob.

4.2.  Media Consent Verification

   As described in [RFC8826], Section 4.2, media consent verification is
   provided via ICE.  Thus, Alice and Bob perform ICE checks with each
   other.  At the completion of these checks, they are ready to send
   non-ICE data.

   At this point, Alice knows that (a) Bob (assuming he is verified via
   his IdP) or someone else who the signaling service is claiming is Bob
   is willing to exchange traffic with her and (b) either Bob is at the
   IP address which she has verified via ICE or there is an attacker who
   is on-path to that IP address detouring the traffic.  Note that it is
   not possible for an attacker who is on-path between Alice and Bob but
   not attached to the signaling service to spoof these checks because
   they do not have the ICE credentials.  Bob has the same security
   guarantees with respect to Alice.

4.3.  DTLS Handshake

   Once the requisite ICE checks have completed, Alice and Bob can set
   up a secure channel or channels.  This is performed via DTLS
   [RFC6347] and DTLS-SRTP [RFC5763] keying for SRTP [RFC3711] for the
   media channel and the Stream Control Transmission Protocol (SCTP)
   over DTLS [RFC8261] for data channels.  Specifically, Alice and Bob
   perform a DTLS handshake on every component which has been
   established by ICE.  The total number of channels depends on the
   amount of muxing; in the most likely case, we are using both RTP/RTCP
   mux and muxing multiple media streams on the same channel, in which
   case there is only one DTLS handshake.  Once the DTLS handshake has
   completed, the keys are exported [RFC5705] and used to key SRTP for
   the media channels.

   At this point, Alice and Bob know that they share a set of secure
   data and/or media channels with keys which are not known to any
   third-party attacker.  If Alice and Bob authenticated via their IdPs,
   then they also know that the signaling service is not mounting a man-
   in-the-middle attack on their traffic.  Even if they do not use an
   IdP, as long as they have minimal trust in the signaling service not
   to perform a man-in-the-middle attack, they know that their
   communications are secure against the signaling service as well
   (i.e., that the signaling service cannot mount a passive attack on



   the communications).

4.4.  Communications and Consent Freshness

   From a security perspective, everything from here on in is a little
   anticlimactic: Alice and Bob exchange data protected by the keys
   negotiated by DTLS.  Because of the security guarantees discussed in
   the previous sections, they know that the communications are
   encrypted and authenticated.

   The one remaining security property we need to establish is "consent
   freshness", i.e., allowing Alice to verify that Bob is still prepared
   to receive her communications so that Alice does not continue to send
   large traffic volumes to entities which went abruptly offline.  ICE
   specifies periodic Session Traversal Utilities for NAT (STUN)
   keepalives but only if media is not flowing.  Because the consent
   issue is more difficult here, we require WebRTC implementations to
   periodically send keepalives using the consent freshness mechanism
   specified in [RFC7675].  If a keepalive fails and no new ICE channels
   can be established, then the session is terminated.

5.  SDP Identity Attribute

   The SDP "identity" attribute is a session-level attribute that is
   used by an endpoint to convey its identity assertion to its peer.
   The identity-assertion value is encoded as base64, as described in
   Section 4 of [RFC4648].

   The procedures in this section are based on the assumption that the
   identity assertion of an endpoint is bound to the fingerprints of the
   endpoint.  This does not preclude the definition of alternative means
   of binding an assertion to the endpoint, but such means are outside
   the scope of this specification.

   The semantics of multiple "identity" attributes within an offer or
   answer are undefined.  Implementations SHOULD only include a single
   "identity" attribute in an offer or answer, and Relying Parties MAY
   elect to ignore all but the first "identity" attribute.

   Name:  identity

   Value:  identity-assertion

   Usage Level:  session

   Charset Dependent:  no

   Default Value:  N/A

   Syntax:

    identity-assertion       = identity-assertion-value
                               *(SP identity-extension)
    identity-assertion-value = base64
    identity-extension       = extension-name [ "=" extension-value ]
    extension-name           = token
    extension-value          = 1*(%x01-09 / %x0b-0c / %x0e-3a / %x3c-ff)
                               ; byte-string from [RFC4566]

    <ALPHA and DIGIT as defined in [RFC4566]>
    <base64 as defined in [RFC4566]>

   Example:

    a=identity:\
      eyJpZHAiOnsiZG9tYWluIjoiZXhhbXBsZS5vcmciLCJwcm90b2NvbCI6ImJvZ3Vz\
      In0sImFzc2VydGlvbiI6IntcImlkZW50aXR5XCI6XCJib2JAZXhhbXBsZS5vcmdc\
      IixcImNvbnRlbnRzXCI6XCJhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3l6XCIsXCJz\
      aWduYXR1cmVcIjpcIjAxMDIwMzA0MDUwNlwifSJ9

      |  Note that long lines in the example are folded to meet the



      |  column width constraints of this document; the backslash ("\")
      |  at the end of a line, the carriage return that follows, and
      |  whitespace shall be ignored.

   This specification does not define any extensions for the attribute.

   The identity-assertion value is a JSON encoded string [RFC8259].  The
   JSON object contains two keys: "assertion" and "idp".  The
   "assertion" key value contains an opaque string that is consumed by
   the IdP.  The "idp" key value contains a dictionary with one or two
   further values that identify the IdP.  See Section 7.6 for more
   details.

5.1.  Offer/Answer Considerations

   This section defines the SDP offer/answer [RFC3264] considerations
   for the SDP "identity" attribute.

   Within this section, ’initial offer’ refers to the first offer in the
   SDP session that contains an SDP "identity" attribute.

5.1.1.  Generating the Initial SDP Offer

   When an offerer sends an offer, in order to provide its identity
   assertion to the peer, it includes an "identity" attribute in the
   offer.  In addition, the offerer includes one or more SDP
   "fingerprint" attributes.  The "identity" attribute MUST be bound to
   all the "fingerprint" attributes in the session description.

5.1.2.  Generating an SDP Answer

   If the answerer elects to include an "identity" attribute, it follows
   the same steps as those in Section 5.1.1.  The answerer can choose to
   include or omit an "identity" attribute independently, regardless of
   whether the offerer did so.

5.1.3.  Processing an SDP Offer or Answer

   When an endpoint receives an offer or answer that contains an
   "identity" attribute, the answerer can use the attribute information
   to contact the IdP and verify the identity of the peer.  If the
   identity requires a third-party IdP as described in Section 7.1, then
   that IdP will need to have been specifically configured.  If the
   identity verification fails, the answerer MUST discard the offer or
   answer as malformed.

5.1.4.  Modifying the Session

   When modifying a session, if the set of fingerprints is unchanged,
   then the sender MAY send the same "identity" attribute.  In this
   case, the established identity MUST be applied to existing DTLS
   connections as well as new connections established using one of those
   fingerprints.  Note that [RFC8829], Section 5.2.1 requires that each
   media section use the same set of fingerprints.  If a new "identity"
   attribute is received, then the receiver MUST apply that identity to
   all existing connections.

   If the set of fingerprints changes, then the sender MUST either send
   a new "identity" attribute or none at all.  Because a change in
   fingerprints also causes a new DTLS connection to be established, the
   receiver MUST discard all previously established identities.

6.  Detailed Technical Description

6.1.  Origin and Web Security Issues

   The basic unit of permissions for WebRTC is the origin [RFC6454].
   Because the security of the origin depends on being able to
   authenticate content from that origin, the origin can only be
   securely established if data is transferred over HTTPS [RFC2818].
   Thus, clients MUST treat HTTP and HTTPS origins as different



   permissions domains.  Note: This follows directly from the origin
   security model and is stated here merely for clarity.

   Many Web browsers currently forbid by default any active mixed
   content on HTTPS pages.  That is, when JavaScript is loaded from an
   HTTP origin onto an HTTPS page, an error is displayed and the HTTP
   content is not executed unless the user overrides the error.  Any
   browser which enforces such a policy will also not permit access to
   WebRTC functionality from mixed content pages (because they never
   display mixed content).  Browsers which allow active mixed content
   MUST nevertheless disable WebRTC functionality in mixed content
   settings.

   Note that it is possible for a page which was not mixed content to
   become mixed content during the duration of the call.  The major risk
   here is that the newly arrived insecure JS might redirect media to a
   location controlled by the attacker.  Implementations MUST either
   choose to terminate the call or display a warning at that point.

   Also note that the security architecture depends on the keying
   material not being available to move between origins.  However, it is
   assumed that the identity assertion can be passed to anyone that the
   page cares to.

6.2.  Device Permissions Model

   Implementations MUST obtain explicit user consent prior to providing
   access to the camera and/or microphone.  Implementations MUST at
   minimum support the following two permissions models for HTTPS
   origins.

   *  Requests for one-time camera/microphone access.

   *  Requests for permanent access.

   Because HTTP origins cannot be securely established against network
   attackers, implementations MUST refuse all permissions grants for
   HTTP origins.

   In addition, they SHOULD support requests for access that promise
   that media from this grant will be sent to a single communicating
   peer (obviously there could be other requests for other peers), e.g.,
   "Call customerservice@example.org".  The semantics of this request
   are that the media stream from the camera and microphone will only be
   routed through a connection which has been cryptographically verified
   (through the IdP mechanism or an X.509 certificate in the DTLS-SRTP
   handshake) as being associated with the stated identity.  Note that
   it is unlikely that browsers would have X.509 certificates, but
   servers might.  Browsers servicing such requests SHOULD clearly
   indicate that identity to the user when asking for permission.  The
   idea behind this type of permissions is that a user might have a
   fairly narrow list of peers they are willing to communicate with,
   e.g., "my mother" rather than "anyone on Facebook".  Narrow
   permissions grants allow the browser to do that enforcement.

   API Requirement:  The API MUST provide a mechanism for the requesting
      JS to relinquish the ability to see or modify the media (e.g., via
      MediaStream.record()).  Combined with secure authentication of the
      communicating peer, this allows a user to be sure that the calling
      site is not accessing or modifying their conversion.

   UI Requirement:  The UI MUST clearly indicate when the user’s camera
      and microphone are in use.  This indication MUST NOT be
      suppressible by the JS and MUST clearly indicate how to terminate
      device access, and provide a UI means to immediately stop camera/
      microphone input without the JS being able to prevent it.

   UI Requirement:  If the UI indication of camera/microphone use is
      displayed in the browser such that minimizing the browser window
      would hide the indication, or the JS creating an overlapping
      window would hide the indication, then the browser SHOULD stop



      camera and microphone input when the indication is hidden.  (Note:
      This may not be necessary in systems that are non-windows-based
      but that have good notifications support, such as phones.)

   *  Browsers MUST NOT permit permanent screen or application sharing
      permissions to be installed as a response to a JS request for
      permissions.  Instead, they must require some other user action
      such as a permissions setting or an application install experience
      to grant permission to a site.

   *  Browsers MUST provide a separate dialog request for screen/
      application sharing permissions even if the media request is made
      at the same time as the request for camera and microphone
      permissions.

   *  The browser MUST indicate any windows which are currently being
      shared in some unambiguous way.  Windows which are not visible
      MUST NOT be shared even if the application is being shared.  If
      the screen is being shared, then that MUST be indicated.

   Browsers MAY permit the formation of data channels without any direct
   user approval.  Because sites can always tunnel data through the
   server, further restrictions on the data channel do not provide any
   additional security.  (See Section 6.3 for a related issue.)

   Implementations which support some form of direct user authentication
   SHOULD also provide a policy by which a user can authorize calls only
   to specific communicating peers.  Specifically, the implementation
   SHOULD provide the following interfaces/controls:

   *  Allow future calls to this verified user.

   *  Allow future calls to any verified user who is in my system
      address book (this only works with address book integration, of
      course).

   Implementations SHOULD also provide a different user interface
   indication when calls are in progress to users whose identities are
   directly verifiable.  Section 6.5 provides more on this.

6.3.  Communications Consent

   Browser client implementations of WebRTC MUST implement ICE.  Server
   gateway implementations which operate only at public IP addresses
   MUST implement either full ICE or ICE-Lite [RFC8445].

   Browser implementations MUST verify reachability via ICE prior to
   sending any non-ICE packets to a given destination.  Implementations
   MUST NOT provide the ICE transaction ID to JavaScript during the
   lifetime of the transaction (i.e., during the period when the ICE
   stack would accept a new response for that transaction).  The JS MUST
   NOT be permitted to control the local ufrag and password, though it
   of course knows it.

   While continuing consent is required, the ICE [RFC8445], Section 11
   keepalives use STUN Binding Indications, which are one-way and
   therefore not sufficient.  The current WG consensus is to use ICE
   Binding Requests for continuing consent freshness.  ICE already
   requires that implementations respond to such requests, so this
   approach is maximally compatible.  A separate document will profile
   the ICE timers to be used; see [RFC7675].

6.4.  IP Location Privacy

   A side effect of the default ICE behavior is that the peer learns
   one’s IP address, which leaks large amounts of location information.
   This has negative privacy consequences in some circumstances.  The
   API requirements in this section are intended to mitigate this issue.
   Note that these requirements are not intended to protect the user’s
   IP address from a malicious site.  In general, the site will learn at
   least a user’s server-reflexive address from any HTTP transaction.



   Rather, these requirements are intended to allow a site to cooperate
   with the user to hide the user’s IP address from the other side of
   the call.  Hiding the user’s IP address from the server requires some
   sort of explicit privacy-preserving mechanism on the client (e.g.,
   Tor Browser <https://www.torproject.org/projects/torbrowser.html.en>)
   and is out of scope for this specification.

   API Requirement:  The API MUST provide a mechanism to allow the JS to
      suppress ICE negotiation (though perhaps to allow candidate
      gathering) until the user has decided to answer the call.  (Note:
      Determining when the call has been answered is a question for the
      JS.)  This enables a user to prevent a peer from learning their IP
      address if they elect not to answer a call and also from learning
      whether the user is online.

   API Requirement:  The API MUST provide a mechanism for the calling
      application JS to indicate that only TURN candidates are to be
      used.  This prevents the peer from learning one’s IP address at
      all.  This mechanism MUST also permit suppression of the related
      address field, since that leaks local addresses.

   API Requirement:  The API MUST provide a mechanism for the calling
      application to reconfigure an existing call to add non-TURN
      candidates.  Taken together, this and the previous requirement
      allow ICE negotiation to start immediately on incoming call
      notification, thus reducing post-dial delay, but also to avoid
      disclosing the user’s IP address until they have decided to
      answer.  They also allow users to completely hide their IP address
      for the duration of the call.  Finally, they allow a mechanism for
      the user to optimize performance by reconfiguring to allow non-
      TURN candidates during an active call if the user decides they no
      longer need to hide their IP address.

   Note that some enterprises may operate proxies and/or NATs designed
   to hide internal IP addresses from the outside world.  WebRTC
   provides no explicit mechanism to allow this function.  Either such
   enterprises need to proxy the HTTP/HTTPS and modify the SDP and/or
   the JS, or there needs to be browser support to set the "TURN-only"
   policy regardless of the site’s preferences.

   Note: These requirements are intended to allow sites to conceal the
   user’s IP address from the peer.  For guidance on concealing the
   user’s IP address from the calling site see [RFC8828].

6.5.  Communications Security

   Implementations MUST support SRTP [RFC3711].  Implementations MUST
   support DTLS [RFC6347] and DTLS-SRTP [RFC5763] [RFC5764] for SRTP
   keying.  Implementations MUST support SCTP over DTLS [RFC8261].

   All media channels MUST be secured via SRTP and the Secure Real-time
   Transport Control Protocol (SRTCP).  Media traffic MUST NOT be sent
   over plain (unencrypted) RTP or RTCP; that is, implementations MUST
   NOT negotiate cipher suites with NULL encryption modes.  DTLS-SRTP
   MUST be offered for every media channel.  WebRTC implementations MUST
   NOT offer SDP security descriptions [RFC4568] or select it if
   offered.  An SRTP Master Key Identifier (MKI) MUST NOT be used.

   All data channels MUST be secured via DTLS.

   All implementations MUST support DTLS 1.2 with the
   TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher suite and the P-256
   curve [FIPS186].  Earlier drafts of this specification required DTLS
   1.0 with the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, and
   at the time of this writing some implementations do not support DTLS
   1.2; endpoints which support only DTLS 1.2 might encounter
   interoperability issues.  The DTLS-SRTP protection profile
   SRTP_AES128_CM_HMAC_SHA1_80 MUST be supported for SRTP.
   Implementations MUST favor cipher suites which support Forward
   Secrecy (FS) over non-FS cipher suites and SHOULD favor Authenticated
   Encryption with Associated Data (AEAD) over non-AEAD cipher suites.



   Note: the IETF is in the process of standardizing DTLS 1.3
   [TLS-DTLS13].

   Implementations MUST NOT implement DTLS renegotiation and MUST reject
   it with a "no_renegotiation" alert if offered.

   Endpoints MUST NOT implement TLS False Start [RFC7918].

   API Requirement:  The API MUST generate a new authentication key pair
      for every new call by default.  This is intended to allow for
      unlinkability.

   API Requirement:  The API MUST provide a means to reuse a key pair
      for calls.  This can be used to enable key continuity-based
      authentication, and could be used to amortize key generation
      costs.

   API Requirement:  Unless the user specifically configures an external
      key pair, different key pairs MUST be used for each origin.  (This
      avoids creating a super-cookie.)

   API Requirement:  When DTLS-SRTP is used, the API MUST NOT permit the
      JS to obtain the negotiated keying material.  This requirement
      preserves the end-to-end security of the media.

   UI Requirements:  A user-oriented client MUST provide an "inspector"
      interface which allows the user to determine the "security
      characteristics" of the media.

      The following properties SHOULD be displayed "up-front" in the
      browser chrome, i.e., without requiring the user to ask for them:

 
      *  A client MUST provide a user interface through which a user may
         determine the "security characteristics" for currently
         displayed audio and video stream(s).

      *  A client MUST provide a user interface through which a user may
         determine the "security characteristics" for transmissions of
         their microphone audio and camera video.

      *  If the far endpoint was directly verified, either via a third-
         party verifiable X.509 certificate or via a Web IdP mechanism
         (see Section 7), the "security characteristics" MUST include
         the verified information.  X.509 identities and Web IdP
         identities have similar semantics and should be displayed in a
         similar way.

      The following properties are more likely to require some "drill-
      down" from the user:

 
      *  The "security characteristics" MUST indicate the cryptographic
         algorithms in use (for example, "AES-CBC").

      *  The "security characteristics" MUST indicate whether FS is
         provided.

      *  The "security characteristics" MUST include some mechanism to
         allow an out-of-band verification of the peer, such as a
         certificate fingerprint or a Short Authentication String (SAS).
         These are compared by the peers to authenticate one another.

7.  Web-Based Peer Authentication

   NOTE: The mechanism described in this section was designed relatively
   early in the RTCWEB process.  In retrospect, the WG was too
   optimistic about the enthusiasm for this kind of mechanism.  At the
   time of publication, it has not been widely adopted or implemented.
   It appears in this document as a description of the state of the art
   as of this writing.



   In a number of cases, it is desirable for the endpoint (i.e., the
   browser) to be able to directly identify the endpoint on the other
   side without trusting the signaling service to which they are
   connected.  For instance, users may be making a call via a federated
   system where they wish to get direct authentication of the other
   side.  Alternately, they may be making a call on a site which they
   minimally trust (such as a poker site) but to someone who has an
   identity on a site they do trust (such as a social network).

   Recently, a number of Web-based identity technologies (OAuth,
   Facebook Connect, etc.) have been developed.  While the details vary,
   what these technologies share is that they have a Web-based (i.e.,
   HTTP/HTTPS) IdP which attests to Alice’s identity.  For instance, if
   Alice has an account at example.org, Alice could use the example.org
   IdP to prove to others that Alice is alice@example.org.  The
   development of these technologies allows us to separate calling from
   identity provision: Alice could call you on a poker site but identify
   herself as alice@example.org.

   Whatever the underlying technology, the general principle is that the
   party which is being authenticated is NOT the signaling site but
   rather the user (and their browser).  Similarly, the Relying Party is
   the browser and not the signaling site.  Thus, the browser MUST
   generate the input to the IdP assertion process and display the
   results of the verification process to the user in a way which cannot
   be imitated by the calling site.

   The mechanisms defined in this document do not require the browser to
   implement any particular identity protocol or to support any
   particular IdP.  Instead, this document provides a generic interface
   which any IdP can implement.  Thus, new IdPs and protocols can be
   introduced without change to either the browser or the calling
   service.  This avoids the need to make a commitment to any particular
   identity protocol, although browsers may opt to directly implement
   some identity protocols in order to provide superior performance or
   UI properties.

7.1.  Trust Relationships: IdPs, APs, and RPs

   Any federated identity protocol has three major participants:

   Authenticating Party (AP):  The entity which is trying to establish
      its identity.

   Identity Provider (IdP):  The entity which is vouching for the AP’s
      identity.

   Relying Party (RP):  The entity which is trying to verify the AP’s
      identity.

   The AP and the IdP have an account relationship of some kind: the AP
   registers with the IdP and is able to subsequently authenticate
   directly to the IdP (e.g., with a password).  This means that the
   browser must somehow know which IdP(s) the user has an account
   relationship with.  This can either be something that the user
   configures into the browser or that is configured at the calling site
   and then provided to the PeerConnection by the Web application at the
   calling site.  The use case for having this information configured
   into the browser is that the user may "log into" the browser to bind
   it to some identity.  This is becoming common in new browsers.
   However, it should also be possible for the IdP information to simply
   be provided by the calling application.

   At a high level, there are two kinds of IdPs:

   Authoritative:  IdPs which have verifiable control of some section of
      the identity space.  For instance, in the realm of email, the
      operator of "example.com" has complete control of the namespace
      ending in "@example.com".  Thus, "alice@example.com" is whoever
      the operator says it is.  Examples of systems with authoritative



      IdPs include DNSSEC, an identity system for SIP (see [RFC8224]),
      and Facebook Connect (Facebook identities only make sense within
      the context of the Facebook system).

   Third-Party:  IdPs which don’t have control of their section of the
      identity space but instead verify users’ identities via some
      unspecified mechanism and then attest to it.  Because the IdP
      doesn’t actually control the namespace, RPs need to trust that the
      IdP is correctly verifying AP identities, and there can
      potentially be multiple IdPs attesting to the same section of the
      identity space.  Probably the best-known example of a third-party
      IdP is SSL/TLS certificates, where there are a large number of
      certificate authorities (CAs) all of whom can attest to any domain
      name.

   If an AP is authenticating via an authoritative IdP, then the RP does
   not need to explicitly configure trust in the IdP at all.  The
   identity mechanism can directly verify that the IdP indeed made the
   relevant identity assertion (a function provided by the mechanisms in
   this document), and any assertion it makes about an identity for
   which it is authoritative is directly verifiable.  Note that this
   does not mean that the IdP might not lie, but that is a
   trustworthiness judgement that the user can make at the time they
   look at the identity.

   By contrast, if an AP is authenticating via a third-party IdP, the RP
   needs to explicitly trust that IdP (hence the need for an explicit
   trust anchor list in PKI-based SSL/TLS clients).  The list of
   trustable IdPs needs to be configured directly into the browser,
   either by the user or potentially by the browser manufacturer.  This
   is a significant advantage of authoritative IdPs and implies that if
   third-party IdPs are to be supported, the potential number needs to
   be fairly small.

7.2.  Overview of Operation

   In order to provide security without trusting the calling site, the
   PeerConnection component of the browser must interact directly with
   the IdP.  The details of the mechanism are described in the W3C API
   specification, but the general idea is that the PeerConnection
   component downloads JS from a specific location on the IdP dictated
   by the IdP domain name.  That JS (the "IdP proxy") runs in an
   isolated security context within the browser, and the PeerConnection
   talks to it via a secure message passing channel.

   Note that there are two logically separate functions here:

   *  Identity assertion generation.

   *  Identity assertion verification.

   The same IdP JS "endpoint" is used for both functions, but of course
   a given IdP might behave differently and load new JS to perform one
   function or the other.

        +--------------------------------------+
        | Browser                              |
        |                                      |
        | +----------------------------------+ |
        | | https://calling-site.example.com | |
        | |                                  | |
        | |        Calling JS Code           | |
        | |               ^                  | |
        | +---------------|------------------+ |
        |                 | API Calls          |
        |                 v                    |
        |          PeerConnection              |
        |                 ^                    |
        |                 | API Calls          |
        |     +-----------|-------------+      |   +---------------+
        |     |           v             |      |   |               |



        |     |       IdP Proxy         |<-------->|   Identity    |
        |     |                         |      |   |   Provider    |
        |     | https://idp.example.org |      |   |               |
        |     +-------------------------+      |   +---------------+
        |                                      |
        +--------------------------------------+

   When the PeerConnection object wants to interact with the IdP, the
   sequence of events is as follows:

   1.  The browser (the PeerConnection component) instantiates an IdP
       proxy.  This allows the IdP to load whatever JS is necessary into
       the proxy.  The resulting code runs in the IdP’s security
       context.

   2.  The IdP registers an object with the browser that conforms to the
       API defined in [webrtc-api].

   3.  The browser invokes methods on the object registered by the IdP
       proxy to create or verify identity assertions.

   This approach allows us to decouple the browser from any particular
   IdP; the browser need only know how to load the IdP’s JavaScript --
   the location of which is determined based on the IdP’s identity --
   and to call the generic API for requesting and verifying identity
   assertions.  The IdP provides whatever logic is necessary to bridge
   the generic protocol to the IdP’s specific requirements.  Thus, a
   single browser can support any number of identity protocols,
   including being forward compatible with IdPs which did not exist at
   the time the browser was written.

7.3.  Items for Standardization

   There are two parts to this work:

   *  The precise information from the signaling message that must be
      cryptographically bound to the user’s identity and a mechanism for
      carrying assertions in JavaScript Session Establishment Protocol
      (JSEP) messages.  This is specified in Section 7.4.

   *  The interface to the IdP, which is defined in the companion W3C
      WebRTC API specification [webrtc-api].

   The WebRTC API specification also defines JavaScript interfaces that
   the calling application can use to specify which IdP to use.  That
   API also provides access to the assertion-generation capability and
   the status of the validation process.

7.4.  Binding Identity Assertions to JSEP Offer/Answer Transactions

   An identity assertion binds the user’s identity (as asserted by the
   IdP) to the SDP offer/answer exchange and specifically to the media.
   In order to achieve this, the PeerConnection must provide the DTLS-
   SRTP fingerprint to be bound to the identity.  This is provided as a
   JavaScript object (also known as a dictionary or hash) with a single
   "fingerprint" key, as shown below:

   {
     "fingerprint":
       [
         { "algorithm": "sha-256",
           "digest": "4A:AD:B9:B1:3F:...:E5:7C:AB" },
         { "algorithm": "sha-1",
           "digest": "74:E9:76:C8:19:...:F4:45:6B" }
       ]
   }

   The "fingerprint" value is an array of objects.  Each object in the
   array contains "algorithm" and "digest" values, which correspond
   directly to the algorithm and digest values in the "fingerprint"
   attribute of the SDP [RFC8122].



   This object is encoded in a JSON [RFC8259] string for passing to the
   IdP.  The identity assertion returned by the IdP, which is encoded in
   the "identity" attribute, is a JSON object that is encoded as
   described in Section 7.4.1.

   This structure does not need to be interpreted by the IdP or the IdP
   proxy.  It is consumed solely by the RP’s browser.  The IdP merely
   treats it as an opaque value to be attested to.  Thus, new parameters
   can be added to the assertion without modifying the IdP.

7.4.1.  Carrying Identity Assertions

   Once an IdP has generated an assertion (see Section 7.6), it is
   attached to the SDP offer/answer message.  This is done by adding a
   new "identity" attribute to the SDP.  The sole contents of this value
   is the identity assertion.  The identity assertion produced by the
   IdP is encoded into a UTF-8 JSON text, then base64-encoded [RFC4648]
   to produce this string.  For example:

   v=0
   o=- 1181923068 1181923196 IN IP4 ua1.example.com
   s=example1
   c=IN IP4 ua1.example.com
   a=fingerprint:sha-1 \
     4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB
   a=identity:\
     eyJpZHAiOnsiZG9tYWluIjoiZXhhbXBsZS5vcmciLCJwcm90b2NvbCI6ImJvZ3Vz\
     In0sImFzc2VydGlvbiI6IntcImlkZW50aXR5XCI6XCJib2JAZXhhbXBsZS5vcmdc\
     IixcImNvbnRlbnRzXCI6XCJhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3l6XCIsXCJz\
     aWduYXR1cmVcIjpcIjAxMDIwMzA0MDUwNlwifSJ9
   a=...
   t=0 0
   m=audio 6056 RTP/SAVP 0
   a=sendrecv
   ...

      |  Note that long lines in the example are folded to meet the
      |  column width constraints of this document; the backslash ("\")
      |  at the end of a line, the carriage return that follows, and
      |  whitespace shall be ignored.

   The "identity" attribute attests to all "fingerprint" attributes in
   the session description.  It is therefore a session-level attribute.

   Multiple "fingerprint" values can be used to offer alternative
   certificates for a peer.  The "identity" attribute MUST include all
   "fingerprint" values that are included in "fingerprint" attributes of
   the session description.

   The RP browser MUST verify that the in-use certificate for a DTLS
   connection is in the set of fingerprints returned from the IdP when
   verifying an assertion.

7.5.  Determining the IdP URI

   In order to ensure that the IdP is under control of the domain owner
   rather than someone who merely has an account on the domain owner’s
   server (e.g., in shared hosting scenarios), the IdP JavaScript is
   hosted at a deterministic location based on the IdP’s domain name.
   Each IdP proxy instance is associated with two values:

   authority:  The authority [RFC3986] at which the IdP’s service is
      hosted.

   protocol:  The specific IdP protocol which the IdP is using.  This is
      a completely opaque IdP-specific string, but allows an IdP to
      implement two protocols in parallel.  This value may be the empty
      string.  If no value for protocol is provided, a value of
      "default" is used.



   Each IdP MUST serve its initial entry page (i.e., the one loaded by
   the IdP proxy) from a well-known URI [RFC8615].  The well-known URI
   for an IdP proxy is formed from the following URI components:

   1.  The scheme, "https:".  An IdP MUST be loaded using HTTPS
       [RFC2818].

   2.  The authority [RFC3986].  As noted above, the authority MAY
       contain a non-default port number or userinfo sub-component.
       Both are removed when determining if an asserted identity matches
       the name of the IdP.

   3.  The path, starting with "/.well-known/idp-proxy/" and appended
       with the IdP protocol.  Note that the separator characters ’/’
       (%2F) and ’\’ (%5C) MUST NOT be permitted in the protocol field,
       lest an attacker be able to direct requests outside of the
       controlled "/.well-known/" prefix.  Query and fragment values MAY
       be used by including ’?’ or ’#’ characters.

   For example, for the IdP "identity.example.com" and the protocol
   "example", the URL would be:

   https://identity.example.com/.well-known/idp-proxy/example

   The IdP MAY redirect requests to this URL, but they MUST retain the
   "https:" scheme.  This changes the effective origin of the IdP, but
   not the domain of the identities that the IdP is permitted to assert
   and validate.  I.e., the IdP is still regarded as authoritative for
   the original domain.

7.5.1.  Authenticating Party

   How an AP determines the appropriate IdP domain is out of scope of
   this specification.  In general, however, the AP has some actual
   account relationship with the IdP, as this identity is what the IdP
   is attesting to.  Thus, the AP somehow supplies the IdP information
   to the browser.  Some potential mechanisms include:

   *  Provided by the user directly.

   *  Selected from some set of IdPs known to the calling site (e.g., a
      button that shows "Authenticate via Facebook Connect").

7.5.2.  Relying Party

   Unlike the AP, the RP need not have any particular relationship with
   the IdP.  Rather, it needs to be able to process whatever assertion
   is provided by the AP.  As the assertion contains the IdP’s identity
   in the "idp" field of the JSON-encoded object (see Section 7.6), the
   URI can be constructed directly from the assertion, and thus the RP
   can directly verify the technical validity of the assertion with no
   user interaction.  Authoritative assertions need only be verifiable.
   Third-party assertions also MUST be verified against local policy, as
   described in Section 8.1.

7.6.  Requesting Assertions

   The input to the identity assertion generation process is the JSON-
   encoded object described in Section 7.4 that contains the set of
   certificate fingerprints the browser intends to use.  This string is
   treated as opaque from the perspective of the IdP.

   The browser also identifies the origin that the PeerConnection is run
   in, which allows the IdP to make decisions based on who is requesting
   the assertion.

   An application can optionally provide a user identifier hint when
   specifying an IdP.  This value is a hint that the IdP can use to
   select amongst multiple identities, or to avoid providing assertions
   for unwanted identities.  The "username" is a string that has no
   meaning to any entity other than the IdP; it can contain any data the



   IdP needs in order to correctly generate an assertion.

   An identity assertion that is successfully provided by the IdP
   consists of the following information:

   idp:  The domain name of an IdP and the protocol string.  This MAY
      identify a different IdP or protocol from the one that generated
      the assertion.

   assertion:  An opaque value containing the assertion itself.  This is
      only interpretable by the identified IdP or the IdP code running
      in the client.

   Figure 5 shows an example assertion formatted as JSON.  In this case,
   the message has presumably been digitally signed/MACed in some way
   that the IdP can later verify it, but this is an implementation
   detail and out of scope of this document.

   {
     "idp":{
       "domain": "example.org",
       "protocol": "bogus"
     },
     "assertion": "{\"identity\":\"bob@example.org\",
                    \"contents\":\"abcdefghijklmnopqrstuvwyz\",
                    \"signature\":\"010203040506\"}"
   }

                        Figure 5: Example Assertion

   For use in signaling, the assertion is serialized into JSON,
   base64-encoded [RFC4648], and used as the value of the "identity"
   attribute.  IdPs SHOULD ensure that any assertions they generate
   cannot be interpreted in a different context.  E.g., they should use
   a distinct format or have separate cryptographic keys for assertion
   generation and other purposes.  Line breaks are inserted solely for
   readability.

7.7.  Managing User Login

   In order to generate an identity assertion, the IdP needs proof of
   the user’s identity.  It is common practice to authenticate users
   (using passwords or multi-factor authentication), then use cookies
   [RFC6265] or HTTP authentication [RFC7617] for subsequent exchanges.

   The IdP proxy is able to access cookies, HTTP authentication data, or
   other persistent session data because it operates in the security
   context of the IdP origin.  Therefore, if a user is logged in, the
   IdP could have all the information needed to generate an assertion.

   An IdP proxy is unable to generate an assertion if the user is not
   logged in, or the IdP wants to interact with the user to acquire more
   information before generating the assertion.  If the IdP wants to
   interact with the user before generating an assertion, the IdP proxy
   can fail to generate an assertion and instead indicate a URL where
   login should proceed.

   The application can then load the provided URL to enable the user to
   enter credentials.  The communication between the application and the
   IdP is described in [webrtc-api].

8.  Verifying Assertions

   The input to identity validation is the assertion string taken from a
   decoded "identity" attribute.

   The IdP proxy verifies the assertion.  Depending on the identity
   protocol, the proxy might contact the IdP server or other servers.
   For instance, an OAuth-based protocol will likely require using the
   IdP as an oracle, whereas with a signature-based scheme it might be
   able to verify the assertion without contacting the IdP, provided



   that it has cached the relevant public key.

   Regardless of the mechanism, if verification succeeds, a successful
   response from the IdP proxy consists of the following information:

   identity:  The identity of the AP from the IdP’s perspective.
      Details of this are provided in Section 8.1.

   contents:  The original unmodified string provided by the AP as input
      to the assertion generation process.

   Figure 6 shows an example response, which is JSON-formatted.

   {
     "identity": "bob@example.org",
     "contents": "{\"fingerprint\":[ ... ]}"
   }

                   Figure 6: Example Verification Result

8.1.  Identity Formats

   The identity provided from the IdP to the RP browser MUST consist of
   a string representing the user’s identity.  This string is in the
   form "<user>@<domain>", where "user" consists of any character, and
   domain is an internationalized domain name [RFC5890] encoded as a
   sequence of U-labels.

   The PeerConnection API MUST check this string as follows:

   1.  If the "domain" portion of the string is equal to the domain name
       of the IdP proxy, then the assertion is valid, as the IdP is
       authoritative for this domain.  Comparison of domain names is
       done using the label equivalence rule defined in Section 2.3.2.4
       of [RFC5890].

   2.  If the "domain" portion of the string is not equal to the domain
       name of the IdP proxy, then the PeerConnection object MUST reject
       the assertion unless both:

       1.  the IdP domain is trusted as an acceptable third-party IdP;
           and

       2.  local policy is configured to trust this IdP domain for the
           domain portion of the identity string.

   Any ’@’ or ’%’ characters in the "user" portion of the identity MUST
   be escaped according to the "percent-encoding" rules defined in
   Section 2.1 of [RFC3986].  Characters other than ’@’ and ’%’ MUST NOT
   be percent-encoded.  For example, with a "user" of "user@133" and a
   "domain" of "identity.example.com", the resulting string will be
   encoded as "user%40133@identity.example.com".

   Implementations are cautioned to take care when displaying user
   identities containing escaped ’@’ characters.  If such characters are
   unescaped prior to display, implementations MUST distinguish between
   the domain of the IdP proxy and any domain that might be implied by
   the portion of the "<user>" portion that appears after the escaped
   "@" sign.

9.  Security Considerations

   Much of the security analysis of RTCWEB is contained in [RFC8826] or
   in the discussion of the particular issues above.  In order to avoid
   repetition, this section focuses on (a) residual threats that are not
   addressed by this document and (b) threats produced by failure/
   misbehavior of one of the components in the system.

9.1.  Communications Security

   If HTTPS is not used to secure communications to the signaling



   server, and the identity mechanism used in Section 7 is not used,
   then any on-path attacker can replace the DTLS-SRTP fingerprints in
   the handshake and thus substitute its own identity for that of either
   endpoint.

   Even if HTTPS is used, the signaling server can potentially mount a
   man-in-the-middle attack unless implementations have some mechanism
   for independently verifying keys.  The UI requirements in Section 6.5
   are designed to provide such a mechanism for motivated/security
   conscious users, but are not suitable for general use.  The identity
   service mechanisms in Section 7 are more suitable for general use.
   Note, however, that a malicious signaling service can strip off any
   such identity assertions, though it cannot forge new ones.  Note that
   all of the third-party security mechanisms available (whether X.509
   certificates or a third-party IdP) rely on the security of the third
   party -- this is of course also true of the user’s connection to the
   Web site itself.  Users who wish to assure themselves of security
   against a malicious IdP can only do so by verifying peer credentials
   directly, e.g., by checking the peer’s fingerprint against a value
   delivered out of band.

   In order to protect against malicious content JavaScript, that
   JavaScript MUST NOT be allowed to have direct access to -- or perform
   computations with -- DTLS keys.  For instance, if content JS were
   able to compute digital signatures, then it would be possible for
   content JS to get an identity assertion for a browser’s generated key
   and then use that assertion plus a signature by the key to
   authenticate a call protected under an ephemeral Diffie-Hellman (DH)
   key controlled by the content JS, thus violating the security
   guarantees otherwise provided by the IdP mechanism.  Note that it is
   not sufficient merely to deny the content JS direct access to the
   keys, as some have suggested doing with the WebCrypto API
   [webcrypto].  The JS must also not be allowed to perform operations
   that would be valid for a DTLS endpoint.  By far the safest approach
   is simply to deny the ability to perform any operations that depend
   on secret information associated with the key.  Operations that
   depend on public information, such as exporting the public key, are
   of course safe.

9.2.  Privacy

   The requirements in this document are intended to allow:

   *  Users to participate in calls without revealing their location.

   *  Potential callees to avoid revealing their location and even
      presence status prior to agreeing to answer a call.

   However, these privacy protections come at a performance cost in
   terms of using TURN relays and, in the latter case, delaying ICE.
   Sites SHOULD make users aware of these tradeoffs.

   Note that the protections provided here assume a non-malicious
   calling service.  As the calling service always knows the user’s
   status and (absent the use of a technology like Tor) their IP
   address, they can violate the user’s privacy at will.  Users who wish
   privacy against the calling sites they are using must use separate
   privacy-enhancing technologies such as Tor. Combined WebRTC/Tor
   implementations SHOULD arrange to route the media as well as the
   signaling through Tor. Currently this will produce very suboptimal
   performance.

   Additionally, any identifier which persists across multiple calls is
   potentially a problem for privacy, especially for anonymous calling
   services.  Such services SHOULD instruct the browser to use separate
   DTLS keys for each call and also to use TURN throughout the call.
   Otherwise, the other side will learn linkable information that would
   allow them to correlate the browser across multiple calls.
   Additionally, browsers SHOULD implement the privacy-preserving CNAME
   generation mode of [RFC7022].



9.3.  Denial of Service

   The consent mechanisms described in this document are intended to
   mitigate denial-of-service (DoS) attacks in which an attacker uses
   clients to send large amounts of traffic to a victim without the
   consent of the victim.  While these mechanisms are sufficient to
   protect victims who have not implemented WebRTC at all, WebRTC
   implementations need to be more careful.

   Consider the case of a call center which accepts calls via WebRTC.
   An attacker proxies the call center’s front-end and arranges for
   multiple clients to initiate calls to the call center.  Note that
   this requires user consent in many cases, but because the data
   channel does not need consent, they can use that directly.  Since ICE
   will complete, browsers can then be induced to send large amounts of
   data to the victim call center if it supports the data channel at
   all.  Preventing this attack requires that automated WebRTC
   implementations implement sensible flow control and have the ability
   to triage out (i.e., stop responding to ICE probes on) calls which
   are behaving badly, and especially to be prepared to remotely
   throttle the data channel in the absence of plausible audio and video
   (which the attacker cannot control).

   Another related attack is for the signaling service to swap the ICE
   candidates for the audio and video streams, thus forcing a browser to
   send video to the sink that the other victim expects will contain
   audio (perhaps it is only expecting audio!), potentially causing
   overload.  Muxing multiple media flows over a single transport makes
   it harder to individually suppress a single flow by denying ICE
   keepalives.  Either media-level (RTCP) mechanisms must be used or the
   implementation must deny responses entirely, thus terminating the
   call.

   Yet another attack, suggested by Magnus Westerlund, is for the
   attacker to cross-connect offers and answers as follows.  It induces
   the victim to make a call and then uses its control of other users’
   browsers to get them to attempt a call to someone.  It then
   translates their offers into apparent answers to the victim, which
   looks like large-scale parallel forking.  The victim still responds
   to ICE responses, and now the browsers all try to send media to the
   victim.  Implementations can defend themselves from this attack by
   only responding to ICE Binding Requests for a limited number of
   remote ufrags (this is the reason for the requirement that the JS not
   be able to control the ufrag and password).  [RFC8834], Section 13
   documents a number of potential RTCP-based DoS attacks and
   countermeasures.

   Note that attacks based on confusing one end or the other about
   consent are possible even in the face of the third-party identity
   mechanism as long as major parts of the signaling messages are not
   signed.  On the other hand, signing the entire message severely
   restricts the capabilities of the calling application, so there are
   difficult tradeoffs here.

9.4.  IdP Authentication Mechanism

   This mechanism relies for its security on the IdP and on the
   PeerConnection correctly enforcing the security invariants described
   above.  At a high level, the IdP is attesting that the user
   identified in the assertion wishes to be associated with the
   assertion.  Thus, it must not be possible for arbitrary third parties
   to get assertions tied to a user or to produce assertions that RPs
   will accept.

9.4.1.  PeerConnection Origin Check

   Fundamentally, the IdP proxy is just a piece of HTML and JS loaded by
   the browser, so nothing stops a Web attacker from creating their own
   IFRAME, loading the IdP proxy HTML/JS, and requesting a signature
   over their own keys rather than those generated in the browser.
   However, that proxy would be in the attacker’s origin, not the IdP’s



   origin.  Only the browser itself can instantiate a context that
   (a) is in the IdP’s origin and (b) exposes the correct API surface.
   Thus, the IdP proxy on the sender’s side MUST ensure that it is
   running in the IdP’s origin prior to issuing assertions.

   Note that this check only asserts that the browser (or some other
   entity with access to the user’s authentication data) attests to the
   request and hence to the fingerprint.  It does not demonstrate that
   the browser has access to the associated private key, and therefore
   an attacker can attach their own identity to another party’s keying
   material, thus making a call which comes from Alice appear to come
   from the attacker.  See [RFC8844] for defenses against this form of
   attack.

9.4.2.  IdP Well-Known URI

   As described in Section 7.5, the IdP proxy HTML/JS landing page is
   located at a well-known URI based on the IdP’s domain name.  This
   requirement prevents an attacker who can write some resources at the
   IdP (e.g., on one’s Facebook wall) from being able to impersonate the
   IdP.

9.4.3.  Privacy of IdP-Generated Identities and the Hosting Site

   Depending on the structure of the IdP’s assertions, the calling site
   may learn the user’s identity from the perspective of the IdP.  In
   many cases, this is not an issue because the user is authenticating
   to the site via the IdP in any case -- for instance, when the user
   has logged in with Facebook Connect and is then authenticating their
   call with a Facebook identity.  However, in other cases, the user may
   not have already revealed their identity to the site.  In general,
   IdPs SHOULD either verify that the user is willing to have their
   identity revealed to the site (e.g., through the usual IdP
   permissions dialog) or arrange that the identity information is only
   available to known RPs (e.g., social graph adjacencies) but not to
   the calling site.  The "domain" field of the assertion request can be
   used to check that the user has agreed to disclose their identity to
   the calling site; because it is supplied by the PeerConnection it can
   be trusted to be correct.

9.4.4.  Security of Third-Party IdPs

   As discussed above, each third-party IdP represents a new universal
   trust point and therefore the number of these IdPs needs to be quite
   limited.  Most IdPs, even those which issue unqualified identities
   such as Facebook, can be recast as authoritative IdPs (e.g.,
   123456@facebook.com).  However, in such cases, the user interface
   implications are not entirely desirable.  One intermediate approach
   is to have special (potentially user configurable) UI for large
   authoritative IdPs, thus allowing the user to instantly grasp that
   the call is being authenticated by Facebook, Google, etc.

9.4.4.1.  Confusable Characters

   Because a broad range of characters are permitted in identity
   strings, it may be possible for attackers to craft identities which
   are confusable with other identities (see [RFC6943] for more on this
   topic).  This is a problem with any identifier space of this type
   (e.g., email addresses).  Those minting identifiers should avoid
   mixed scripts and similar confusable characters.  Those presenting
   these identifiers to a user should consider highlighting cases of
   mixed script usage (see [RFC5890], Section 4.4).  Other best
   practices are still in development.

9.4.5.  Web Security Feature Interactions

   A number of optional Web security features have the potential to
   cause issues for this mechanism, as discussed below.

9.4.5.1.  Popup Blocking



   When popup blocking is in use, the IdP proxy is unable to generate
   popup windows, dialogs, or any other form of user interactions.  This
   prevents the IdP proxy from being used to circumvent user
   interaction.  The "LOGINNEEDED" message allows the IdP proxy to
   inform the calling site of a need for user login, providing the
   information necessary to satisfy this requirement without resorting
   to direct user interaction from the IdP proxy itself.

9.4.5.2.  Third Party Cookies

   Some browsers allow users to block third party cookies (cookies
   associated with origins other than the top-level page) for privacy
   reasons.  Any IdP which uses cookies to persist logins will be broken
   by third-party cookie blocking.  One option is to accept this as a
   limitation; another is to have the PeerConnection object disable
   third-party cookie blocking for the IdP proxy.

10.  IANA Considerations

   This specification defines the "identity" SDP attribute per the
   procedures of Section 8.2.4 of [RFC4566].  The required information
   for the registration is included here:

   Contact Name:  IESG (iesg@ietf.org)

   Attribute Name:  identity

   Long Form:  identity

   Type of Attribute:  session

   Charset Considerations:  This attribute is not subject to the charset
      attribute.

   Purpose:  This attribute carries an identity assertion, binding an
      identity to the transport-level security session.

   Appropriate Values:  See Section 5 of RFC 8827.

   Mux Category:  NORMAL

   This section registers the "idp-proxy" well-known URI from [RFC8615].

   URI suffix:  idp-proxy

   Change controller:  IETF
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