
ï»¿

Internet Engineering Task Force (IETF) J. Uberti

Request for Comments: 8828 Google

Category: Standards Track G. Shieh

ISSN: 2070-1721 January 2021

 WebRTC IP Address Handling Requirements

Abstract

 This document provides information and requirements for how IP

 addresses should be handled by Web Real-Time Communication (WebRTC)

 implementations.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Further information on

 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc8828.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction

 2. Terminology

 3. Problem Statement

 4. Goals

 5. Detailed Design

 5.1. Principles

 5.2. Modes and Recommendations

 6. Implementation Guidance

 6.1. Ensuring Normal Routing

 6.2. Determining Associated Local Addresses

 7. Application Guidance

 8. Security Considerations

 9. IANA Considerations

 10. References

 10.1. Normative References

 10.2. Informative References

 Acknowledgements

 Authors’ Addresses

1. Introduction

 One of WebRTC’s key features is its support of peer-to-peer

 connections. However, when establishing such a connection, which

 involves connection attempts from various IP addresses, WebRTC may

 allow a web application to learn additional information about the

 user compared to an application that only uses the Hypertext Transfer

 Protocol (HTTP) [RFC7230]. This may be problematic in certain cases.

 This document summarizes the concerns and makes recommendations on

 how WebRTC implementations should best handle the trade-off between

 privacy and media performance.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Problem Statement

 In order to establish a peer-to-peer connection, WebRTC

 implementations use Interactive Connectivity Establishment (ICE)

 [RFC8445]. ICE attempts to discover multiple IP addresses using

 techniques such as Session Traversal Utilities for NAT (STUN)

 [RFC5389] and Traversal Using Relays around NAT (TURN) [RFC5766] and

 then checks the connectivity of each local-address-remote-address

 pair in order to select the best one. The addresses that are

 collected usually consist of an endpoint’s private physical or

 virtual addresses and its public Internet addresses.

 These addresses are provided to the web application so that they can

 be communicated to the remote endpoint for its checks. This allows

 the application to learn more about the local network configuration

 than it would from a typical HTTP scenario, in which the web server

 would only see a single public Internet address, i.e., the address

 from which the HTTP request was sent.

 The additional information revealed falls into three categories:

 1. If the client is multihomed, additional public IP addresses for

 the client can be learned. In particular, if the client tries to

 hide its physical location through a Virtual Private Network

 (VPN), and the VPN and local OS support routing over multiple

 interfaces (a "split-tunnel" VPN), WebRTC can discover not only

 the public address for the VPN, but also the ISP public address

 over which the VPN is running.

 2. If the client is behind a Network Address Translator (NAT), the

 client’s private IP addresses, often [RFC1918] addresses, can be

 learned.

 3. If the client is behind a proxy (a client-configured "classical

 application proxy", as defined in [RFC1919], Section 3), but

 direct access to the Internet is permitted, WebRTC’s STUN checks

 will bypass the proxy and reveal the public IP address of the

 client. This concern also applies to the "enterprise TURN

 server" scenario described in [RFC7478], Section 2.3.5.1 if, as

 above, direct Internet access is permitted. However, when the

 term "proxy" is used in this document, it is always in reference

 to an [RFC1919] proxy server.

 Of these three concerns, the first is the most significant, because

 for some users, the purpose of using a VPN is for anonymity.

 However, different VPN users will have different needs, and some VPN

 users (e.g., corporate VPN users) may in fact prefer WebRTC to send

 media traffic directly -- i.e., not through the VPN.

 The second concern is less significant but valid nonetheless. The

 core issue is that web applications can learn about addresses that

 are not exposed to the Internet; typically, these address are IPv4,

 but they can also be IPv6, as in the case of NAT64 [RFC6146]. While

 disclosure of the [RFC4941] IPv6 addresses recommended by [RFC8835]

 is fairly benign due to their intentionally short lifetimes, IPv4

 addresses present some challenges. Although private IPv4 addresses

 often contain minimal entropy (e.g., 192.168.0.2, a fairly common

 address), in the worst case, they can contain 24 bits of entropy with

 an indefinite lifetime. As such, they can be a fairly significant

 fingerprinting surface. In addition, intranet web sites can be

 attacked more easily when their IPv4 address range is externally

 known.

 Private IP addresses can also act as an identifier that allows web

 applications running in isolated browsing contexts (e.g., normal and

 private browsing) to learn that they are running on the same device.

 This could allow the application sessions to be correlated, defeating

 some of the privacy protections provided by isolation. It should be

 noted that private addresses are just one potential mechanism for

 this correlation and this is an area for further study.

 The third concern is the least common, as proxy administrators can

 already control this behavior through organizational firewall policy,

 and generally, forcing WebRTC traffic through a proxy server will

 have negative effects on both the proxy and media quality.

 Note also that these concerns predate WebRTC; Adobe Flash Player has

 provided similar functionality since the introduction of Real-Time

 Media Flow Protocol (RTMFP) support [RFC7016] in 2008.

4. Goals

 WebRTC’s support of secure peer-to-peer connections facilitates

 deployment of decentralized systems, which can have privacy benefits.

 As a result, blunt solutions that disable WebRTC or make it

 significantly harder to use are undesirable. This document takes a

 more nuanced approach, with the following goals:

 * Provide a framework for understanding the problem so that controls

 might be provided to make different trade-offs regarding

 performance and privacy concerns with WebRTC.

 * Using that framework, define settings that enable peer-to-peer

 communications, each with a different balance between performance

 and privacy.

 * Finally, provide recommendations for default settings that provide

 reasonable performance without also exposing addressing

 information in a way that might violate user expectations.

5. Detailed Design

5.1. Principles

 The key principles for our framework are stated below:

 1. By default, WebRTC traffic should follow typical IP routing

 (i.e., WebRTC should use the same interface used for HTTP

 traffic) and only the system’s ’typical’ public addresses (or

 those of an enterprise TURN server, if present) should be visible

 to the application. However, in the interest of optimal media

 quality, it should be possible to enable WebRTC to make use of

 all network interfaces to determine the ideal route.

 2. By default, WebRTC should be able to negotiate direct peer-to-

 peer connections between endpoints (i.e., without traversing a

 NAT or relay server) when such connections are possible. This

 ensures that applications that need true peer-to-peer routing for

 bandwidth or latency reasons can operate successfully.

 3. It should be possible to configure WebRTC to not disclose private

 local IP addresses, to avoid the issues associated with web

 applications learning such addresses. This document does not

 require this to be the default state, as there is no currently

 defined mechanism that can satisfy this requirement as well as

 the aforementioned requirement to allow direct peer-to-peer

 connections.

 4. By default, WebRTC traffic should not be sent through proxy

 servers, due to the media-quality problems associated with

 sending WebRTC traffic over TCP, which is almost always used when

 communicating with such proxies, as well as proxy performance

 issues that may result from proxying WebRTC’s long-lived, high-

 bandwidth connections. However, it should be possible to force

 WebRTC to send its traffic through a configured proxy if desired.

5.2. Modes and Recommendations

 Based on these ideas, we define four specific modes of WebRTC

 behavior, reflecting different media quality/privacy trade-offs:

 Mode 1 - Enumerate all addresses:

 WebRTC MUST use all network interfaces to attempt communication

 with STUN servers, TURN servers, or peers. This will converge on

 the best media path and is ideal when media performance is the

 highest priority, but it discloses the most information.

 Mode 2 - Default route + associated local addresses:

 WebRTC MUST follow the kernel routing table rules, which will

 typically cause media packets to take the same route as the

 application’s HTTP traffic. If an enterprise TURN server is

 present, the preferred route MUST be through this TURN server.

 Once an interface has been chosen, the private IPv4 and IPv6

 addresses associated with this interface MUST be discovered and

 provided to the application as host candidates. This ensures that

 direct connections can still be established in this mode.

 Mode 3 - Default route only:

 This is the same as Mode 2, except that the associated private

 addresses MUST NOT be provided; the only IP addresses gathered are

 those discovered via mechanisms like STUN and TURN (on the default

 route). This may cause traffic to hairpin through a NAT, fall

 back to an application TURN server, or fail altogether, with

 resulting quality implications.

 Mode 4 - Force proxy:

 This is the same as Mode 3, but when the application’s HTTP

 traffic is sent through a proxy, WebRTC media traffic MUST also be

 proxied. If the proxy does not support UDP (as is the case for

 all HTTP and most SOCKS [RFC1928] proxies), or the WebRTC

 implementation does not support UDP proxying, the use of UDP will

 be disabled, and TCP will be used to send and receive media

 through the proxy. Use of TCP will result in reduced media

 quality, in addition to any performance considerations associated

 with sending all WebRTC media through the proxy server.

 Mode 1 MUST NOT be used unless user consent has been provided. The

 details of this consent are left to the implementation; one potential

 mechanism is to tie this consent to getUserMedia (device permissions)

 consent, described in [RFC8827], Section 6.2. Alternatively,

 implementations can provide a specific mechanism to obtain user

 consent.

 In cases where user consent has not been obtained, Mode 2 SHOULD be

 used.

 These defaults provide a reasonable trade-off that permits trusted

 WebRTC applications to achieve optimal network performance but gives

 applications without consent (e.g., 1-way streaming or data-channel

 applications) only the minimum information needed to achieve direct

 connections, as defined in Mode 2. However, implementations MAY

 choose stricter modes if desired, e.g., if a user indicates they want

 all WebRTC traffic to follow the default route.

 Future documents may define additional modes and/or update the

 recommended default modes.

 Note that the suggested defaults can still be used even for

 organizations that want all external WebRTC traffic to traverse a

 proxy or enterprise TURN server, simply by setting an organizational

 firewall policy that allows WebRTC traffic to only leave through the

 proxy or TURN server. This provides a way to ensure the proxy or

 TURN server is used for any external traffic but still allows direct

 connections (and, in the proxy case, avoids the performance issues

 associated with forcing media through said proxy) for intra-

 organization traffic.

6. Implementation Guidance

 This section provides guidance to WebRTC implementations on how to

 implement the policies described above.

6.1. Ensuring Normal Routing

 When trying to follow typical IP routing, as required by Modes 2 and

 3, the simplest approach is to bind() the sockets used for peer-to-

 peer connections to the wildcard addresses (0.0.0.0 for IPv4, :: for

 IPv6), which allows the OS to route WebRTC traffic the same way as it

 would HTTP traffic. STUN and TURN will work as usual, and host

 candidates can still be determined as mentioned below.

6.2. Determining Associated Local Addresses

 When binding to a wildcard address, some extra work is needed to

 determine the associated local address required by Mode 2, which we

 define as the source address that would be used for any packets sent

 to the web application host (assuming that UDP and TCP get the same

 routing treatment). Use of the web-application host as a destination

 ensures the right source address is selected, regardless of where the

 application resides (e.g., on an intranet).

 First, the appropriate remote IPv4/IPv6 address is obtained by

 resolving the host component of the web application URI [RFC3986].

 If the client is behind a proxy and cannot resolve these IPs via DNS,

 the address of the proxy can be used instead. Or, if the web

 application was loaded from a file:// URI [RFC8089] rather than over

 the network, the implementation can fall back to a well-known DNS

 name or IP address.

 Once a suitable remote IP has been determined, the implementation can

 create a UDP socket, bind() it to the appropriate wildcard address,

 and then connect() to the remote IP. Generally, this results in the

 socket being assigned a local address based on the kernel routing

 table, without sending any packets over the network.

 Finally, the socket can be queried using getsockname() or the

 equivalent to determine the appropriate local address.

7. Application Guidance

 The recommendations mentioned in this document may cause certain

 WebRTC applications to malfunction. In order to be robust in all

 scenarios, the following guidelines are provided for applications:

 * Applications SHOULD deploy a TURN server with support for both UDP

 and TCP connections to the server. This ensures that connectivity

 can still be established, even when Mode 3 or 4 is in use,

 assuming the TURN server can be reached.

 * Applications SHOULD detect when they don’t have access to the full

 set of ICE candidates by checking for the presence of host

 candidates. If no host candidates are present, Mode 3 or 4 is in

 use; this knowledge can be useful for diagnostic purposes.

8. Security Considerations

 This document describes several potential privacy and security

 concerns associated with WebRTC peer-to-peer connections and provides

 mechanisms and recommendations for WebRTC implementations to address

 these concerns.

9. IANA Considerations

 This document has no IANA actions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,

 RFC 3986, DOI 10.17487/RFC3986, January 2005,

 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,

 "Session Traversal Utilities for NAT (STUN)", RFC 5389,

 DOI 10.17487/RFC5389, October 2008,

 <https://www.rfc-editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using

 Relays around NAT (TURN): Relay Extensions to Session

 Traversal Utilities for NAT (STUN)", RFC 5766,

 DOI 10.17487/RFC5766, April 2010,

 <https://www.rfc-editor.org/info/rfc5766>.

 [RFC8089] Kerwin, M., "The "file" URI Scheme", RFC 8089,

 DOI 10.17487/RFC8089, February 2017,

 <https://www.rfc-editor.org/info/rfc8089>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8445] Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

 Connectivity Establishment (ICE): A Protocol for Network

 Address Translator (NAT) Traversal", RFC 8445,

 DOI 10.17487/RFC8445, July 2018,

 <https://www.rfc-editor.org/info/rfc8445>.

10.2. Informative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.

 J., and E. Lear, "Address Allocation for Private

 Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,

 February 1996, <https://www.rfc-editor.org/info/rfc1918>.

 [RFC1919] Chatel, M., "Classical versus Transparent IP Proxies",

 RFC 1919, DOI 10.17487/RFC1919, March 1996,

 <https://www.rfc-editor.org/info/rfc1919>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and

 L. Jones, "SOCKS Protocol Version 5", RFC 1928,

 DOI 10.17487/RFC1928, March 1996,

 <https://www.rfc-editor.org/info/rfc1928>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy

 Extensions for Stateless Address Autoconfiguration in

 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,

 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

 NAT64: Network Address and Protocol Translation from IPv6

 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC7016] Thornburgh, M., "Adobe’s Secure Real-Time Media Flow

 Protocol", RFC 7016, DOI 10.17487/RFC7016, November 2013,

 <https://www.rfc-editor.org/info/rfc7016>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

 Protocol (HTTP/1.1): Message Syntax and Routing",

 RFC 7230, DOI 10.17487/RFC7230, June 2014,

 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7478] Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-

 Time Communication Use Cases and Requirements", RFC 7478,

 DOI 10.17487/RFC7478, March 2015,

 <https://www.rfc-editor.org/info/rfc7478>.

 [RFC8827] Rescorla, E., "WebRTC Security Architecture", RFC 8827,

 DOI 10.17487/RFC8827, January 2021,

 <https://www.rfc-editor.org/info/rfc8827>.

 [RFC8835] Alvestrand, H., "Transports for WebRTC", RFC 8835,

 DOI 10.17487/RFC8835, January 2021,

 <https://www.rfc-editor.org/info/rfc8835>.

Acknowledgements

 Several people provided input into this document, including Bernard

 Aboba, Harald Alvestrand, Youenn Fablet, Ted Hardie, Matthew

 Kaufmann, Eric Rescorla, Adam Roach, and Martin Thomson.

Authors’ Addresses

 Justin Uberti

 Google

 747 6th St S

 Kirkland, WA 98033

 United States of America

 Email: justin@uberti.name

 Guo-wei Shieh

 333 Elliott Ave W #500

 Seattle, WA 98119

 United States of America

 Email: guoweis@gmail.com

