
ï»¿

Internet Engineering Task Force (IETF) T. Herbert
Request for Comments: 8883 Intel
Category: Standards Track September 2020
ISSN: 2070-1721

 ICMPv6 Errors for Discarding Packets Due to Processing Limits

Abstract

 Network nodes may discard packets if they are unable to process
 protocol headers of packets due to processing constraints or limits.
 When such packets are dropped, the sender receives no indication, so
 it cannot take action to address the cause of discarded packets.
 This specification defines several new ICMPv6 errors that can be sent
 by a node that discards packets because it is unable to process the
 protocol headers. A node that receives such an ICMPv6 error may use
 the information to diagnose packet loss and may modify what it sends
 in future packets to avoid subsequent packet discards.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8883.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Extension Header Limits
 1.2. Aggregate Header Limits
 1.3. Nonconformant Packet Discard
 1.4. Terminology
 2. ICMPv6 Errors for Extension Header Limits
 2.1. Format
 2.2. Unrecognized Next Header Type Encountered by Intermediate
 Node (Code 5)
 2.3. Extension Header Too Big (Code 6)
 2.4. Extension Header Chain Too Long (Code 7)
 2.5. Too Many Extension Headers (Code 8)
 2.6. Too Many Options in Extension Header (Code 9)
 2.7. Option Too Big (Code 10)
 3. ICMPv6 Error for Aggregate Header Limits
 3.1. Format

 3.2. Usage
 4. Operation
 4.1. Priority of Reporting
 4.2. Host Response
 5. Applicability and Use Cases
 5.1. Reliability of ICMP
 5.2. Processing Limits
 5.2.1. Long Headers and Header Chains
 5.2.2. At End Hosts
 5.2.3. At Intermediate Nodes
 6. Security Considerations
 7. IANA Considerations
 7.1. Parameter Problem Codes
 7.2. Destination Unreachable Codes
 7.3. ICMP Extension Object Classes and Class Sub-types
 8. References
 8.1. Normative References
 8.2. Informative References
 Acknowledgments
 Author’s Address

1. Introduction

 This document specifies several new ICMPv6 errors that can be sent
 when a node discards a packet due to it being unable to process the
 necessary protocol headers because of processing constraints or
 limits. New ICMPv6 code points are defined to supplement those
 defined in [RFC4443]. Six of the errors are specific to the
 processing of extension headers; another error is used when the
 aggregate protocol headers in a packet exceed the processing limits
 of a node.

1.1. Extension Header Limits

 In IPv6, optional internet-layer information is carried in one or
 more IPv6 extension headers [RFC8200]. Extension headers are placed
 between the IPv6 header and the upper-layer header in a packet. The
 term "header chain" refers collectively to the IPv6 header, extension
 headers, and upper-layer headers occurring in a packet. Individual
 extension headers may have a maximum length of 2048 octets and must
 fit into a single packet. Destination Options and Hop-by-Hop Options
 contain a list of options in type-length-value (TLV) format. Each
 option includes a length of the data field in octets: the minimum
 size of an option (non-pad type) is two octets, and the maximum size
 is 257 octets. The number of options in an extension header is only
 limited by the length of the extension header and the Path MTU from
 the source to the destination. Options may be skipped over by a
 receiver if they are unknown and the Option Type indicates to skip
 (first two high order bits are 00).

 Per [RFC8200], except for Hop-by-Hop Options, extension headers are
 not examined or processed by intermediate nodes. However, in
 deployed networks, many intermediate nodes do examine extension
 headers for various purposes. For instance, a node may examine all
 extension headers to locate the transport header of a packet in order
 to implement transport-layer filtering or to track connections to
 implement a stateful firewall.

 Destination hosts are expected to process all extension headers and
 options in Hop-by-Hop and Destination Options.

 Due to the variable lengths, high maximum lengths, or potential for a
 denial-of-service attack of extension headers, many devices impose
 operational limits on extension headers in packets they process.
 [RFC7045] discusses the requirements of intermediate nodes that
 discard packets because of unrecognized extension headers. [RFC8504]
 discusses limits that may be applied to the number of options in Hop-
 by-Hop Options or Destination Options extension headers. Both
 intermediate nodes and end hosts may apply limits to extension header
 processing. When a limit is exceeded, the typical behavior is to
 silently discard the packet.

 This specification defines six Parameter Problem codes that may be
 sent by a node that discards a packet due to the processing limits of
 extension headers being exceeded. The information in these ICMPv6
 errors may be used for diagnostics to determine why packets are being
 dropped. Additionally, a source node that receives these ICMPv6
 errors may be able to modify its use of extension headers in
 subsequent packets sent to the destination in order to avoid further
 occurrences of packets being discarded.

1.2. Aggregate Header Limits

 Some hardware devices implement a parsing buffer of a fixed size to
 process packets. The parsing buffer is expected to contain all the
 headers (often up to a transport-layer header for filtering) that a
 device needs to examine. If the aggregate length of headers in a
 packet exceeds the size of the parsing buffer, a device will either
 discard the packet or defer processing to a software slow path. In
 any case, no indication of a problem is sent back to the sender.

 This document defines one code for ICMPv6 Destination Unreachable
 that is sent by a node that is unable to process the headers of a
 packet due to the aggregate size of the packet headers exceeding a
 processing limit. The information in this ICMPv6 error may be used
 for diagnostics to determine why packets are being dropped.
 Additionally, a source node that receives this ICMPv6 error may be
 able to modify the headers used in subsequent packets to try to avoid
 further occurrences of packets being discarded.

1.3. Nonconformant Packet Discard

 The ICMP errors defined in this specification may be applicable to
 scenarios in which a node is dropping packets outside the auspices of
 any standard specification. For instance, an intermediate node might
 send a "Headers too long" code in a case where it drops a packet
 because it is unable to parse deeply enough to extract the transport-
 layer information needed for packet filtering. Such behavior might
 be considered nonconformant (with respect to [RFC8200], for
 instance).

 This specification does not advocate behaviors that might be
 considered nonconformant. However, packet discard does occur in real
 deployments, and the intent of this specification is to provide
 visibility as to why packets are being discarded. In the spirit that
 providing some reason is better than a silent drop, the sending of
 ICMP errors is RECOMMENDED even in cases where a node might be
 discarding packets per a nonconformant behavior.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. ICMPv6 Errors for Extension Header Limits

 Six new codes are defined for the Parameter Problem type.

2.1. Format

 The format of the ICMPv6 Parameter Problem message [RFC4443] for an
 extension header limit exceeded error is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Pointer |

 +-+
 | |
 | As much of the invoking packet |
 + as possible without the ICMPv6 packet +
 | exceeding the minimum IPv6 MTU [RFC8200] |

 IPv6 Header Fields:
 Destination Address:
 Copied from the Source Address field of the invoking packet.

 ICMPv6 Fields:
 Type:
 4 (Parameter Problem type)

 Code:
 (pertinent to this specification)

 +----+----------------------------------+
 | 5 | Unrecognized Next Header type |
 | | encountered by intermediate node |
 +----+----------------------------------+
 | 6 | Extension header too big |
 +----+----------------------------------+
 | 7 | Extension header chain too long |
 +----+----------------------------------+
 | 8 | Too many extension headers |
 +----+----------------------------------+
 | 9 | Too many options in extension |
 | | header |
 +----+----------------------------------+
 | 10 | Option too big |
 +----+----------------------------------+

 Table 1

 Pointer:
 Identifies the octet offset within the invoking packet where
 the problem occurred.

 The pointer will point beyond the end of the IPv6 packet if the
 field exceeding the limit is beyond what can fit in the maximum
 size of an ICMPv6 error message. If the pointer is used as an
 offset to read the data in the invoking packet, then a node
 MUST first validate that the pointer value is less than the
 length of the invoking packet data.

2.2. Unrecognized Next Header Type Encountered by Intermediate Node
 (Code 5)

 This code SHOULD be sent by an intermediate node that discards a
 packet because it encounters a Next Header type that is unknown in
 its examination. The ICMPv6 Pointer field is set to the offset of
 the unrecognized Next Header value within the original packet.

 Note that this code is sent by intermediate nodes and SHOULD NOT be
 sent by a final destination. If a final destination node observes an
 unrecognized header, then it SHOULD send an ICMP Parameter Problem
 message with an ICMP Code value of 1 ("unrecognized Next Header type
 encountered") as specified in [RFC8200].

2.3. Extension Header Too Big (Code 6)

 An ICMPv6 Parameter Problem with code for "Extension header too big"
 SHOULD be sent when a node discards a packet because the size of an
 extension header exceeds its processing limit. The ICMPv6 Pointer
 field is set to the offset of the first octet in the extension header
 that exceeds the limit.

2.4. Extension Header Chain Too Long (Code 7)

 An ICMPv6 Parameter Problem with code for "Extension header chain too

 long" SHOULD be sent when a node discards a packet with an extension
 header chain that exceeds a limit on the total size in octets of the
 header chain. The ICMPv6 Pointer is set to the first octet beyond
 the limit.

2.5. Too Many Extension Headers (Code 8)

 An ICMPv6 Parameter Problem with code for "Too many extension
 headers" SHOULD be sent when a node discards a packet with an
 extension header chain that exceeds a limit on the number of
 extension headers in the chain. The ICMPv6 Pointer is set to the
 offset of the first octet of the first extension header that is
 beyond the limit.

2.6. Too Many Options in Extension Header (Code 9)

 An ICMPv6 Parameter Problem with code for "Too many options in
 extension header" SHOULD be sent when a node discards a packet with
 an extension header that has a number of options that exceeds the
 processing limits of the node. This code is applicable for
 Destination Options and Hop-by-Hop Options. The ICMPv6 Pointer field
 is set to the first octet of the first option that exceeds the limit.

2.7. Option Too Big (Code 10)

 An ICMPv6 Parameter Problem with code for "Option too big" is sent in
 two different cases: when the length of an individual Hop-by-Hop or
 Destination Option exceeds a limit, or when the length or number of
 consecutive Hop-by-Hop or Destination padding options exceeds a
 limit. In a case where the length of an option exceeds a processing
 limit, the ICMPv6 Pointer field is set to the offset of the first
 octet of the option that exceeds the limit. In cases where the
 length or number of padding options exceeds a limit, the ICMPv6
 Pointer field is set to the offset of the first octet of the padding
 option that exceeds the limit.

 Possible limits related to padding include:

 * The number of consecutive PAD1 options in Destination Options or
 Hop-by-Hop Options is limited to seven octets [RFC8504].

 * The length of PADN options in Destination Options or Hop-by-Hop
 Options is limited seven octets [RFC8504].

 * The aggregate length of a set of consecutive PAD1 or PADN options
 in Destination Options or Hop-by-Hop Options is limited to seven
 octets.

3. ICMPv6 Error for Aggregate Header Limits

 One code is defined for the Destination Unreachable type for
 aggregate header limits.

 This ICMP error may be applied to other headers in a packet than just
 the IPv6 header or IPv6 extension headers. Therefore, a Destination
 Unreachable type with a multi-part ICMPv6 message format is used in
 lieu of the Parameter Problem type, which only indicates errors
 concerning IPv6 headers.

3.1. Format

 The error for aggregate header limits employs a multi-part ICMPv6
 message format as defined in [RFC4884]. The extension object class
 "Extended Information" is defined to contain objects for ancillary
 information pertaining to an ICMP Destination Unreachable error.
 Within this object class, the sub-type "Pointer" is defined, which
 contains a Pointer field with similar semantics to the Pointer field
 in ICMP Parameter Problem errors.

 The format of the ICMPv6 message for an aggregate header limit
 exceeded is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 | Type | Code | Checksum | |
 +-+ I
 | Length | Unused | C
 +-+ M
 | | P
 ˜ As much of the invoking packet ˜
 | as possible without the ICMPv6 packet |
 | exceeding the minimum IPv6 MTU [RFC8200] |/
 +-+/
 |Version| Reserved | Checksum |\
 +-+ E
 | Length | Class-Num | C-Type | X
 +-+ T
 | Pointer | |
 +-+/

 IPv6 Header Fields:
 Destination Address:
 Copied from the Source Address field of the invoking packet.

 ICMPv6 Fields:
 Type:
 1 - Destination Unreachable

 Code: (pertinent to this specification)
 8 - Headers too long

 Length:
 Length of the padded invoking packet data measured in 64-bit
 words. The ICMP extension structure immediately follows the
 padded invoking packet data.

 Invoking Packet:
 Contains as much of the invoking packet as possible without the
 ICMPv6 packet exceeding the minimum IPv6 MTU. The invoking
 packet data MUST be zero padded to the nearest 64-bit boundary
 [RFC4884]. If the original invoking packet did not contain 128
 octets, the invoking packet data MUST be zero padded to 128
 octets.

 ICMP Extension Fields:
 Version:
 2 - per [RFC4884]

 Reserved:
 0

 Checksum:
 The one’s complement checksum of the ICMP extension [RFC4884]

 Length:
 8 - length of the object header and Pointer field

 Class-Num:
 4 - Extended Information

 C-Type:
 1 - Pointer

 Pointer:
 Identifies the octet offset within the invoking packet where a
 limit was exceeded.

 The pointer will point beyond the end of the invoking packet
 data if the field exceeding the limit is beyond what can fit in
 the maximum size of an ICMPv6 error message with the ICMP
 extension. If the pointer is used as an offset to read the

 data in the invoking packet, then a node MUST first validate
 that the pointer value is less than the length of the invoking
 packet data.

3.2. Usage

 An ICMPv6 Destination Unreachable error with code for "Headers too
 long" SHOULD be sent when a node discards a packet because the
 aggregate length of the headers in the packet exceeds the processing
 limits of the node. The Pointer in the extended ICMPv6 structure is
 set to the offset of the first octet that exceeds the limit.

 This error is sent in response to a node dropping a packet because
 the aggregate header chain exceeds the processing limits of a node.
 The aggregate header chain may be composed of protocol headers other
 than an IPv6 header and IPv6 extension headers. For instance, in the
 case of a node parsing a UDP encapsulation protocol, the
 encapsulating UDP header would be considered to be in the aggregate
 header chain.

 As noted in Section 4.1, the ICMPv6 Destination Unreachable error
 with code for "Headers too long" has the lowest precedence of the
 ICMP errors discussed in this specification. If a packet contains an
 error corresponding to a Parameter Problem code, then a node SHOULD
 send the Parameter Problem error instead of sending the ICMPv6
 Destination Unreachable error with code for "Headers too long".

4. Operation

 Nodes that send or receive ICMPv6 errors due to header processing
 limits MUST comply with ICMPv6 processing as specified in [RFC4443].

4.1. Priority of Reporting

 More than one ICMPv6 error may be applicable to report for a packet.
 For instance, the number of extension headers in a packet might
 exceed a limit, and the aggregate length of protocol headers might
 also exceed a limit. Only one ICMPv6 error SHOULD be sent for a
 packet, so a priority is defined to determine which error to report.

 The RECOMMENDED reporting priority of ICMPv6 errors for processing
 limits is listed from highest to lowest priority:

 1. Existing ICMP errors defined in [RFC4443].

 2. "Unrecognized Next Header type encountered by intermediate node"

 3. "Extension header too big"

 4. "Option too big" for length or number of consecutive padding
 options exceeding a limit.

 5. "Option too big" for the length of an option exceeding a limit.

 6. "Too many options in an extension header"

 7. "Extension header chain too long" headers exceeding a limit.

 8. "Too many extension headers"

 9. "Headers too long"

4.2. Host Response

 When a source host receives an ICMPv6 error for a processing limit
 being exceeded, it SHOULD verify the ICMPv6 error is valid and take
 appropriate action as suggested below.

 The general validations for ICMP as described in [RFC4443] are
 applicable. The packet in the ICMP data SHOULD be validated to match
 the upper-layer process or connection that generated the original

 packet. Other validation checks that are specific to the upper
 layers may be performed and are out of the scope of this
 specification.

 The ICMPv6 error SHOULD be logged with sufficient detail for
 debugging packet loss. The details of the error, including the
 addresses and the offending extension header or data, should be
 retained. This, for instance, would be useful for debugging when a
 node is misconfigured and unexpectedly discarding packets or when a
 new extension header is being deployed.

 A host MAY modify its usage of protocol headers in subsequent packets
 to avoid repeated occurrences of the same error.

 For ICMPv6 errors caused by extension header limits being exceeded:

 * An error SHOULD be reported to an application if the application
 enabled extension headers for its traffic. In response, the
 application may terminate communications if extension headers are
 required, stop using extension headers in packets to the
 destination indicated by the ICMPv6 error, or attempt to modify
 its use of headers or extension headers to avoid further packet
 discards.

 * A host system SHOULD take appropriate action if it is creating
 packets with extension headers on behalf of the application. If
 the offending extension header is not required for communication,
 the host may either stop sending it or otherwise modify its use in
 subsequent packets sent to the destination indicated in the ICMPv6
 error.

5. Applicability and Use Cases

5.1. Reliability of ICMP

 ICMP is fundamentally an unreliable protocol and, in real deployment,
 it may consistently fail over some paths. As with any other use of
 ICMP, it is assumed that the errors defined in this document are only
 the best effort to be delivered. No protocol should be implemented
 that relies on reliable delivery of ICMP messages. If necessary,
 alternative or additional mechanisms may be employed to augment the
 processes used to deduce the reason that packets are being discarded.
 For instance, ICMP error messages may be correlated with information
 attained through Packetization Layer Path MTU Discovery (PLPMTUD)
 [RFC4821] or Happy Eyeballs for IPv6 [RFC8305]. Details of the
 interaction with alternative mechanisms are out of scope of this
 specification.

5.2. Processing Limits

 This section discusses the trends and motivations of processing
 limits that warrant ICMP errors.

5.2.1. Long Headers and Header Chains

 The trend towards longer and more complex headers and header chains
 needing to be processed by end nodes, as well as intermediate nodes,
 is driven by:

 * Increasing prevalence of deep packet inspection in middleboxes.
 In particular, many intermediate nodes now parse network-layer
 encapsulation protocols or transport-layer protocols.

 * Deployment of routing headers. For instance, [RFC8754] defines an
 extension header format that includes a list of IPv6 addresses
 which may consume a considerable number of bytes.

 * Development of in situ OAM headers that allow a rich set of
 measurements to be gathered in the data path at the cost of
 additional header overhead, which may be significant [OAM-IPV6].

 * Other emerging use cases of Hop-by-Hop and Destination Options.

5.2.2. At End Hosts

 End hosts may implement limits on processing extension headers as
 described in [RFC8504]. Host implementations are usually software
 stacks that typically don’t have inherent processing limitations.
 Limits imposed by a software stack are more likely to be for denial-
 of-service mitigation or performance.

5.2.3. At Intermediate Nodes

 Hardware devices that process packet headers may have limits as to
 how many headers or bytes of headers they can process. For instance,
 a middlebox hardware implementation might have a parsing buffer that
 contains some number of bytes of packet headers to process. Parsing
 buffers typically have a fixed size such as 64, 128, or 256 bytes.
 In addition, hardware implementations (and some software
 implementations) often don’t have loop constructs. Processing of a
 TLV list might be implemented as an unrolled loop so that the number
 of TLVs that can be processed is limited.

6. Security Considerations

 The security considerations for ICMPv6 described in [RFC4443] are
 applicable. The ICMP errors described in this document MAY be
 filtered by firewalls in accordance with [RFC4890].

 In some circumstances, the sending of ICMP errors might conceptually
 be exploited as a means to covertly deduce the processing
 capabilities of nodes. Accordingly, an implementation SHOULD allow a
 configurable policy to withhold sending of the ICMP errors described
 in this specification in environments where the security of ICMP
 errors is a concern.

7. IANA Considerations

7.1. Parameter Problem Codes

 IANA has assigned the following codes in the "Type 4 - Parameter
 Problem" registry within the ICMPv6 Parameters registry [IANA-ICMP]:

 +======+==================================+
 | Code | Name |
 +======+==================================+
 | 5 | Unrecognized Next Header type |
 | | encountered by intermediate node |
 +------+----------------------------------+
 | 6 | Extension header too big |
 +------+----------------------------------+
 | 7 | Extension header chain too long |
 +------+----------------------------------+
 | 8 | Too many extension headers |
 +------+----------------------------------+
 | 9 | Too many options in extension |
 | | header |
 +------+----------------------------------+
 | 10 | Option too big |
 +------+----------------------------------+

 Table 2

7.2. Destination Unreachable Codes

 IANA has assigned the following code in the "Type 1 - Destination
 Unreachable" registry within the ICMPv6 Parameters registry
 [IANA-ICMP]:

 +======+==================+
 | Code | Name |
 +======+==================+

 | 8 | Headers too long |
 +------+------------------+

 Table 3

7.3. ICMP Extension Object Classes and Class Sub-types

 IANA has assigned the following Class value in the "ICMP Extension
 Object Classes and Class Sub-types" registry within the ICMP
 Parameters registry [IANA-ICMPEXT]:

 +=============+======================+
 | Class Value | Class Name |
 +=============+======================+
 | 4 | Extended Information |
 +-------------+----------------------+

 Table 4

 IANA has created a sub-type registry for the "Extended Information"
 ICMP extension object class. The registration procedure for this
 registry is "Standards Action". The sub-type value of 0 is reserved;
 values greater than zero may be assigned.

 IANA has assigned the following sub-type within the "Sub-types -
 Class 4 - Extended Information" registry within the ICMP Parameters
 registry:

 +=======+=============+
 | Value | Description |
 +=======+=============+
 | 1 | Pointer |
 +-------+-------------+

 Table 5

8. References

8.1. Normative References

 [IANA-ICMP]
 IANA, "Internet Control Message Protocol version 6
 (ICMPv6) Parameters",
 <https://www.iana.org/assignments/icmpv6-parameters/>.

 [IANA-ICMPEXT]
 IANA, "Internet Control Message Protocol (ICMP)
 Parameters",
 <https://www.iana.org/assignments/icmp-parameters/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 DOI 10.17487/RFC4884, April 2007,
 <https://www.rfc-editor.org/info/rfc4884>.

 [RFC7045] Carpenter, B. and S. Jiang, "Transmission and Processing
 of IPv6 Extension Headers", RFC 7045,
 DOI 10.17487/RFC7045, December 2013,
 <https://www.rfc-editor.org/info/rfc7045>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

8.2. Informative References

 [OAM-IPV6] Bhandari, S., Brockners, F., Pignataro, C., Gredler, H.,
 Leddy, J., Youell, S., Mizrahi, T., Kfir, A., Gafni, B.,
 Lapukhov, P., Spiegel, M., Krishnan, S., Asati, R., and M.
 Smith, "In-situ OAM IPv6 Options", Work in Progress,
 Internet-Draft, draft-ietf-ippm-ioam-ipv6-options-03, 18
 September 2020, <https://tools.ietf.org/html/draft-ietf-
 ippm-ioam-ipv6-options-03>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC4890] Davies, E. and J. Mohacsi, "Recommendations for Filtering
 ICMPv6 Messages in Firewalls", RFC 4890,
 DOI 10.17487/RFC4890, May 2007,
 <https://www.rfc-editor.org/info/rfc4890>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

 [RFC8504] Chown, T., Loughney, J., and T. Winters, "IPv6 Node
 Requirements", BCP 220, RFC 8504, DOI 10.17487/RFC8504,
 January 2019, <https://www.rfc-editor.org/info/rfc8504>.

 [RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
 Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
 (SRH)", RFC 8754, DOI 10.17487/RFC8754, March 2020,
 <https://www.rfc-editor.org/info/rfc8754>.

Acknowledgments

 The author would like to thank Ron Bonica, Bob Hinden, Nick Hilliard,
 Michael Richardson, Mark Smith, Suresh Krishnan, and Ole Tran for
 their comments and suggestions that improved this document.

Author’s Address

 Tom Herbert
 Intel
 Santa Clara, CA
 United States of America

 Email: tom@quantonium.net

