
ï»¿

Internet Engineering Task Force (IETF) K. Murchison
Request for Comments: 8887 Fastmail
Category: Standards Track August 2020
ISSN: 2070-1721

 A JSON Meta Application Protocol (JMAP) Subprotocol for WebSocket

Abstract

 This document defines a binding for the JSON Meta Application
 Protocol (JMAP) over a WebSocket transport layer. The WebSocket
 binding for JMAP provides higher performance than the current HTTP
 binding for JMAP.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8887.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Conventions Used in This Document
 3. Discovering Support for JMAP over WebSocket
 4. JMAP Subprotocol
 4.1. Authentication
 4.2. Handshake
 4.3. WebSocket Messages
 4.3.1. Handling Invalid Data
 4.3.2. JMAP Requests
 4.3.3. JMAP Responses
 4.3.4. JMAP Request-Level Errors
 4.3.5. JMAP Push Notifications
 4.4. Examples
 5. Security Considerations
 5.1. Connection Confidentiality and Integrity
 5.2. Non-browser Clients
 6. IANA Considerations
 6.1. Registration of the WebSocket JMAP Subprotocol
 7. References
 7.1. Normative References
 7.2. Informative References

 Acknowledgments
 Author’s Address

1. Introduction

 JMAP [RFC8620] over HTTP [RFC7235] requires that every JMAP API
 request be authenticated. Depending on the type of authentication
 used by the JMAP client and the configuration of the JMAP server,
 authentication could be an expensive operation both in time and
 resources. In such circumstances, reauthenticating for every JMAP
 API request may harm performance.

 The WebSocket [RFC6455] binding for JMAP eliminates this performance
 hit by authenticating just the WebSocket handshake request and having
 those credentials remain in effect for the duration of the WebSocket
 connection. This binding supports JMAP API requests and responses,
 with optional support for push notifications.

 Furthermore, the WebSocket binding for JMAP can optionally compress
 [RFC7692] both JMAP API requests and responses. Although compression
 of HTTP responses is ubiquitous, compression of HTTP requests has
 very low, if any, deployment and therefore isn’t a viable option for
 JMAP API requests over HTTP.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology defined in the core JMAP
 specification [RFC8620].

3. Discovering Support for JMAP over WebSocket

 The JMAP capabilities object is returned as part of the standard JMAP
 Session object (see Section 2 of [RFC8620]). Servers supporting this
 specification MUST add a property named
 "urn:ietf:params:jmap:websocket" to the capabilities object. The
 value of this property is an object that MUST contain the following
 information on server capabilities:

 * url: "String"

 The wss-URI (see Section 3 of [RFC6455]) to use for initiating a
 JMAP-over-WebSocket handshake (the "WebSocket URL endpoint"
 colloquially).

 * supportsPush: "Boolean"

 This is true if the server supports push notifications over the
 WebSocket, as described in Section 4.3.5.

 Example:

 "urn:ietf:params:jmap:websocket": {
 "url": "wss://server.example.com/jmap/ws/",
 "supportsPush": true
 }

4. JMAP Subprotocol

 The term WebSocket subprotocol refers to an application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket JMAP subprotocol for carrying JMAP API
 requests, responses, and optional push notifications through a
 WebSocket connection. Binary data is handled per Section 6 of
 [RFC8620] (via a separate HTTP connection or stream) or per a future
 extension to JMAP or this specification.

4.1. Authentication

 A JMAP WebSocket connection is authenticated by presenting a user’s
 credentials in the HTTP request [RFC7235] that initiates the
 WebSocket handshake. See Section 8.2 of [RFC8620] for
 recommendations regarding the selection of HTTP authentication
 schemes.

4.2. Handshake

 The JMAP WebSocket client and JMAP WebSocket server negotiate the use
 of the WebSocket JMAP subprotocol during the WebSocket handshake,
 either via an HTTP/1.1 Upgrade request (see Section 4 of [RFC6455])
 or an HTTP/2 Extended CONNECT request (see Section 5 of [RFC8441]).
 The WebSocket JMAP subprotocol is also intended to run over future
 bindings of HTTP (e.g., HTTP/3) provided that there is a defined
 mechanism for performing a WebSocket handshake over that binding.

 Regardless of the method used for the WebSocket handshake, the client
 MUST first perform a TLS handshake on a JMAP WebSocket URL endpoint
 (Section 3) having the "wss://" scheme (WebSocket over TLS) in
 accordance with the requirements of running the particular binding of
 HTTP over TLS (see [RFC2818] and Section 4.1 of [RFC6455] for
 HTTP/1.1 and Section 9.2 of [RFC7540] for HTTP/2). If the TLS
 handshake fails, the client MUST close the connection. Otherwise,
 the client MUST make an authenticated HTTP request [RFC7235] on the
 encrypted connection and MUST include the value "jmap" in the list of
 protocols for the "Sec-WebSocket-Protocol" header field.

 The reply from the server MUST also contain a corresponding "Sec-
 WebSocket-Protocol" header field with a value of "jmap" in order for
 a JMAP subprotocol connection to be established.

 Once the handshake has successfully completed, the WebSocket
 connection is established and can be used for JMAP API requests,
 responses, and optional push notifications. Other message types MUST
 NOT be transmitted over this connection.

 The credentials used for authenticating the HTTP request to initiate
 the handshake remain in effect for the duration of the WebSocket
 connection. If the authentication credentials for the user expire,
 the server can either treat subsequent requests as if they are
 unauthenticated or close the WebSocket connection. In the latter
 case, the server MAY send a Close frame with a status code of 1008
 (Policy Violation), as defined in Section 7.4.1 of [RFC6455].

4.3. WebSocket Messages

 Data frame messages in the JMAP subprotocol MUST be text frames and
 contain UTF-8 encoded data. The messages MUST be in the form of a
 single JMAP Request object (see Section 3.3 of [RFC8620]), JMAP
 WebSocketPushEnable object (see Section 4.3.5.2), or JMAP
 WebSocketPushDisable object (see Section 4.3.5.3) when sent from the
 client to the server, and MUST be in the form of a single JMAP
 Response object, JSON Problem Details object, or JMAP StateChange
 object (see Sections 3.4, 3.6.1, and 7.1 of [RFC8620], respectively)
 when sent from the server to the client.

 Note that fragmented WebSocket messages (split over multiple text
 frames) MUST be coalesced prior to parsing them as JSON objects.

4.3.1. Handling Invalid Data

 If a client or server receives a binary frame, the endpoint can
 either ignore the frame or close the WebSocket connection. In the
 latter case, the endpoint MAY send a Close frame with a status code
 of 1003 (Unsupported Data), as defined in Section 7.4.1 of [RFC6455].

 If a client receives a message that is not in the form of a JSON
 Problem Details object, a JMAP Response object, or a JMAP StateChange

 object, the client can either ignore the message or close the
 WebSocket connection. In the latter case, the endpoint MAY send a
 Close frame with a status code of 1007 (Invalid frame payload data),
 as defined in Section 7.4.1 of [RFC6455].

 A server MUST return an appropriate JSON Problem Details object
 (Section 4.3.4) for any request-level errors (e.g., an invalid JMAP
 object, an unsupported capability or method call, or exceeding a
 server request limit).

4.3.2. JMAP Requests

 The specification extends the Request object with two additional
 arguments when used over a WebSocket:

 * @type: "String"

 This MUST be the string "Request".

 * id: "String" (optional)

 A client-specified identifier for the request to be echoed back in
 the response to this request.

 JMAP over WebSocket allows the server to process requests out of
 order. The client-specified identifier is used as a mechanism for
 the client to correlate requests and responses.

 Additionally, the "maxConcurrentRequests" limit in the "capabilities"
 object (see Section 2 of [RFC8620]) also applies to requests made on
 the WebSocket connection. When using the WebSocket JMAP subprotocol
 over a binding of HTTP that allows multiplexing of requests (e.g.,
 HTTP/2), this limit applies to the sum of requests made on both the
 JMAP API endpoint and the WebSocket connection.

4.3.3. JMAP Responses

 The specification extends the Response object with two additional
 arguments when used over a WebSocket:

 * @type: "String"

 This MUST be the string "Response".

 * requestId: "String" (optional; MUST be returned if an identifier
 is included in the request)

 The client-specified identifier in the corresponding request.

4.3.4. JMAP Request-Level Errors

 The specification extends the Problem Details object for request-
 level errors (see Section 3.6.1 of [RFC8620]) with two additional
 arguments when used over a WebSocket:

 * @type: "String"

 This MUST be the string "RequestError".

 * requestId: "String" (optional; MUST be returned if given in the
 request)

 The client-specified identifier in the corresponding request.

4.3.5. JMAP Push Notifications

 JMAP-over-WebSocket servers that support push notifications on the
 WebSocket will advertise a "supportsPush" property with a value of
 true in the "urn:ietf:params:jmap:websocket" server capabilities
 object.

4.3.5.1. Notification Format

 All push notifications take the form of a standard StateChange object
 (see Section 7.1 of [RFC8620]).

 The specification extends the StateChange object with one additional
 argument when used over a WebSocket:

 * pushState: "String" (optional)

 A (preferably short) string that encodes the entire server state
 visible to the user (not just the objects returned in this call).

 The purpose of the "pushState" token is to allow a client to
 immediately get any changes that occurred while it was
 disconnected (see Section 4.3.5.2). If the server does not
 support "pushState" tokens, the client will have to issue a series
 of "/changes" requests (see Section 5.2 of [RFC8620]) upon
 reconnection to update its state to match that of the server.

4.3.5.2. Enabling Notifications

 A client enables push notifications from the server for the current
 connection by sending a WebSocketPushEnable object to the server. A
 WebSocketPushEnable object has the following properties:

 * @type: "String"

 This MUST be the string "WebSocketPushEnable".

 * dataTypes: "String[]|null"

 A list of data type names (e.g., "Mailbox" or "Email") that the
 client is interested in. A StateChange notification will only be
 sent if the data for one of these types changes. Other types are
 omitted from the TypeState object. If null, changes will be
 pushed for all supported data types.

 * pushState: "String" (optional)

 The last "pushState" token that the client received from the
 server. Upon receipt of a "pushState" token, the server SHOULD
 immediately send all changes since that state token.

4.3.5.3. Disabling Notifications

 A client disables push notifications from the server for the current
 connection by sending a WebSocketPushDisable object to the server. A
 WebSocketPushDisable object has the following property:

 * @type: "String"

 This MUST be the string "WebSocketPushDisable".

4.4. Examples

 The following examples show WebSocket JMAP opening handshakes, a JMAP
 Core/echo request and response, and a subsequent closing handshake.
 The examples assume that the JMAP WebSocket URL endpoint has been
 advertised in the JMAP Session object as having a path of "/jmap/ws/"
 and that TLS negotiation has already succeeded. Note that folding of
 header fields is for editorial purposes only.

 WebSocket JMAP connection via HTTP/1.1 with push notifications for
 mail [RFC8621] is enabled. This example assumes that the client has
 cached pushState "aaa" from a previous connection.

 [[From Client]] [[From Server]]

 GET /jmap/ws/ HTTP/1.1
 Host: server.example.com

 Upgrade: websocket
 Connection: Upgrade
 Authorization: Basic Zm9vOmJhcg==
 Sec-WebSocket-Key:
 dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Protocol: jmap
 Sec-WebSocket-Version: 13
 Origin: https://www.example.com

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept:
 s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: jmap

 [WebSocket connection established]

 WS_DATA
 {
 "@type": "WebSocketPushEnable",
 "dataTypes": ["Mailbox", "Email"],
 "pushState": "aaa"
 }

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a456": {
 "Mailbox": "d35ecb040aab"
 }
 },
 "pushState": "bbb"
 }

 WS_DATA
 {
 "@type": "Request",
 "id": "R1",
 "using": ["urn:ietf:params:jmap:core"],
 "methodCalls": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
 }

 WS_DATA
 {
 "@type": "Response",
 "requestId": "R1",
 "methodResponses": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
 }

 WS_DATA
 The quick brown fox jumps
 over the lazy dog.

 WS_DATA
 {
 "@type": "RequestError",
 "requestId": null,
 "type":
 "urn:ietf:params:jmap:error:notJSON",
 "status": 400,
 "detail":
 "The request did not parse as I-JSON."
 }

 [A new email is received]

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a123": {
 "Email": "0af7a512ce70"
 }
 }
 "pushState": "ccc"
 }

 WS_CLOSE

 WS_CLOSE

 [WebSocket connection closed]

 WebSocket JMAP connection on an HTTP/2 stream that also negotiates
 compression [RFC7692]:

 [[From Client]] [[From Server]]

 SETTINGS
 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 HEADERS + END_HEADERS
 :method = CONNECT
 :protocol = websocket
 :scheme = https
 :path = /jmap/ws/
 :authority = server.example.com
 origin: https://example.com
 authorization = Basic Zm9vOmJhcg==
 sec-websocket-protocol = jmap
 sec-websocket-version = 13
 sec-websocket-extensions =
 permessage-deflate
 origin = https://www.example.com

 HEADERS + END_HEADERS
 :status = 200
 sec-websocket-protocol = jmap
 sec-websocket-extensions =
 permessage-deflate

 [WebSocket connection established]

 DATA
 WS_DATA
 [compressed text]

 DATA
 WS_DATA
 [compressed text]

 ...

 DATA + END_STREAM

 WS_CLOSE

 DATA + END_STREAM
 WS_CLOSE

 [WebSocket connection closed]
 [HTTP/2 stream closed]

5. Security Considerations

 The security considerations for both WebSocket (see Section 10 of
 [RFC6455]) and JMAP (see Section 8 of [RFC8620]) apply to the
 WebSocket JMAP subprotocol. Specific security considerations are
 described below.

5.1. Connection Confidentiality and Integrity

 To ensure the confidentiality and integrity of data sent and received
 via JMAP over WebSocket, the WebSocket connection MUST use TLS 1.2
 [RFC5246] or later, following the recommendations in BCP 195
 [RFC7525]. Servers SHOULD support TLS 1.3 [RFC8446] or later.

5.2. Non-browser Clients

 JMAP over WebSocket can be used by clients both running inside and
 outside of a web browser. As such, the security considerations in
 Sections 10.2 and 10.1 of [RFC6455] apply to those respective
 environments.

6. IANA Considerations

6.1. Registration of the WebSocket JMAP Subprotocol

 Per this specification, IANA has registered the following in the
 "WebSocket Subprotocol Name Registry" within the "WebSocket Protocol
 Registries".

 Subprotocol Identifier: jmap

 Subprotocol Common Name: WebSocket Transport for JMAP (JSON Meta
 Application Protocol)

 Subprotocol Definition: RFC 8887

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7692] Yoshino, T., "Compression Extensions for WebSocket",
 RFC 7692, DOI 10.17487/RFC7692, December 2015,
 <https://www.rfc-editor.org/info/rfc7692>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8441] McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8620] Jenkins, N. and C. Newman, "The JSON Meta Application
 Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July
 2019, <https://www.rfc-editor.org/info/rfc8620>.

7.2. Informative References

 [RFC8621] Jenkins, N. and C. Newman, "The JSON Meta Application
 Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/RFC8621,
 August 2019, <https://www.rfc-editor.org/info/rfc8621>.

Acknowledgments

 The author would like to thank the following individuals for
 contributing their ideas and support for writing this specification:
 Neil Jenkins, Robert Mueller, and Chris Newman.

Author’s Address

 Kenneth Murchison
 Fastmail US LLC
 1429 Walnut Street, Suite 1201
 Philadelphia, PA 19102
 United States of America

 Email: murch@fastmailteam.com
 URI: http://www.fastmail.com/

