
ï»¿

Internet Engineering Task Force (IETF) M. Pritikin
Request for Comments: 8995 Cisco
Category: Standards Track M. Richardson
ISSN: 2070-1721 Sandelman Software Works
 T. Eckert
 Futurewei USA
 M. Behringer

 K. Watsen
 Watsen Networks
 May 2021

 Bootstrapping Remote Secure Key Infrastructure (BRSKI)

Abstract

 This document specifies automated bootstrapping of an Autonomic
 Control Plane. To do this, a Secure Key Infrastructure is
 bootstrapped. This is done using manufacturer-installed X.509
 certificates, in combination with a manufacturer’s authorizing
 service, both online and offline. We call this process the
 Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol.
 Bootstrapping a new device can occur when using a routable address
 and a cloud service, only link-local connectivity, or limited/
 disconnected networks. Support for deployment models with less
 stringent security requirements is included. Bootstrapping is
 complete when the cryptographic identity of the new key
 infrastructure is successfully deployed to the device. The
 established secure connection can be used to deploy a locally issued
 certificate to the device as well.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8995.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Prior Bootstrapping Approaches
 1.2. Terminology
 1.3. Scope of Solution

 1.3.1. Support Environment
 1.3.2. Constrained Environments
 1.3.3. Network Access Controls
 1.3.4. Bootstrapping is Not Booting
 1.4. Leveraging the New Key Infrastructure / Next Steps
 1.5. Requirements for Autonomic Networking Infrastructure (ANI)
 Devices
 2. Architectural Overview
 2.1. Behavior of a Pledge
 2.2. Secure Imprinting Using Vouchers
 2.3. Initial Device Identifier
 2.3.1. Identification of the Pledge
 2.3.2. MASA URI Extension
 2.4. Protocol Flow
 2.5. Architectural Components
 2.5.1. Pledge
 2.5.2. Join Proxy
 2.5.3. Domain Registrar
 2.5.4. Manufacturer Service
 2.5.5. Public Key Infrastructure (PKI)
 2.6. Certificate Time Validation
 2.6.1. Lack of Real-Time Clock
 2.6.2. Infinite Lifetime of IDevID
 2.7. Cloud Registrar
 2.8. Determining the MASA to Contact
 3. Voucher-Request Artifact
 3.1. Nonceless Voucher-Requests
 3.2. Tree Diagram
 3.3. Examples
 3.4. YANG Module
 4. Proxying Details (Pledge -- Proxy -- Registrar)
 4.1. Pledge Discovery of Proxy
 4.1.1. Proxy GRASP Announcements
 4.2. CoAP Connection to Registrar
 4.3. Proxy Discovery and Communication of Registrar
 5. Protocol Details (Pledge -- Registrar -- MASA)
 5.1. BRSKI-EST TLS Establishment Details
 5.2. Pledge Requests Voucher from the Registrar
 5.3. Registrar Authorization of Pledge
 5.4. BRSKI-MASA TLS Establishment Details
 5.4.1. MASA Authentication of Customer Registrar
 5.5. Registrar Requests Voucher from MASA
 5.5.1. MASA Renewal of Expired Vouchers
 5.5.2. MASA Pinning of Registrar
 5.5.3. MASA Check of the Voucher-Request Signature
 5.5.4. MASA Verification of the Domain Registrar
 5.5.5. MASA Verification of the Pledge
 ’prior-signed-voucher-request’
 5.5.6. MASA Nonce Handling
 5.6. MASA and Registrar Voucher Response
 5.6.1. Pledge Voucher Verification
 5.6.2. Pledge Authentication of Provisional TLS Connection
 5.7. Pledge BRSKI Status Telemetry
 5.8. Registrar Audit-Log Request
 5.8.1. MASA Audit-Log Response
 5.8.2. Calculation of domainID
 5.8.3. Registrar Audit-Log Verification
 5.9. EST Integration for PKI Bootstrapping
 5.9.1. EST Distribution of CA Certificates
 5.9.2. EST CSR Attributes
 5.9.3. EST Client Certificate Request
 5.9.4. Enrollment Status Telemetry
 5.9.5. Multiple Certificates
 5.9.6. EST over CoAP
 6. Clarification of Transfer-Encoding
 7. Reduced Security Operational Modes
 7.1. Trust Model
 7.2. Pledge Security Reductions
 7.3. Registrar Security Reductions
 7.4. MASA Security Reductions
 7.4.1. Issuing Nonceless Vouchers

 7.4.2. Trusting Owners on First Use
 7.4.3. Updating or Extending Voucher Trust Anchors
 8. IANA Considerations
 8.1. The IETF XML Registry
 8.2. YANG Module Names Registry
 8.3. BRSKI Well-Known Considerations
 8.3.1. BRSKI .well-known Registration
 8.3.2. BRSKI .well-known Registry
 8.4. PKIX Registry
 8.5. Pledge BRSKI Status Telemetry
 8.6. DNS Service Names
 8.7. GRASP Objective Names
 9. Applicability to the Autonomic Control Plane (ACP)
 9.1. Operational Requirements
 9.1.1. MASA Operational Requirements
 9.1.2. Domain Owner Operational Requirements
 9.1.3. Device Operational Requirements
 10. Privacy Considerations
 10.1. MASA Audit-Log
 10.2. What BRSKI-EST Reveals
 10.3. What BRSKI-MASA Reveals to the Manufacturer
 10.4. Manufacturers and Used or Stolen Equipment
 10.5. Manufacturers and Grey Market Equipment
 10.6. Some Mitigations for Meddling by Manufacturers
 10.7. Death of a Manufacturer
 11. Security Considerations
 11.1. Denial of Service (DoS) against MASA
 11.2. DomainID Must Be Resistant to Second-Preimage Attacks
 11.3. Availability of Good Random Numbers
 11.4. Freshness in Voucher-Requests
 11.5. Trusting Manufacturers
 11.6. Manufacturer Maintenance of Trust Anchors
 11.6.1. Compromise of Manufacturer IDevID Signing Keys
 11.6.2. Compromise of MASA Signing Keys
 11.6.3. Compromise of MASA Web Service
 11.7. YANG Module Security Considerations
 12. References
 12.1. Normative References
 12.2. Informative References
 Appendix A. IPv4 and Non-ANI Operations
 A.1. IPv4 Link-Local Addresses
 A.2. Use of DHCPv4
 Appendix B. mDNS / DNS-SD Proxy Discovery Options
 Appendix C. Example Vouchers
 C.1. Keys Involved
 C.1.1. Manufacturer Certification Authority for IDevID
 Signatures
 C.1.2. MASA Key Pair for Voucher Signatures
 C.1.3. Registrar Certification Authority
 C.1.4. Registrar Key Pair
 C.1.5. Pledge Key Pair
 C.2. Example Process
 C.2.1. Pledge to Registrar
 C.2.2. Registrar to MASA
 C.2.3. MASA to Registrar
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol
 provides a solution for secure zero-touch (automated) bootstrap of
 new (unconfigured) devices that are called "pledges" in this
 document. Pledges have an Initial Device Identifier (IDevID)
 installed in them at the factory.

 "BRSKI", pronounced like "brewski", is a colloquial term for beer in
 Canada and parts of the Midwestern United States [brewski].

 This document primarily provides for the needs of the ISP and
 enterprise-focused Autonomic Networking Integrated Model and Approach

 (ANIMA) Autonomic Control Plane (ACP) [RFC8994]. This bootstrap
 process satisfies the requirement of making all operations secure by
 default per Section 3.3 of [RFC7575]. Other users of the BRSKI
 protocol will need to provide separate applicability statements that
 include privacy and security considerations appropriate to that
 deployment. Section 9 explains the detailed applicability for this
 ACP usage.

 The BRSKI protocol requires a significant amount of communication
 between manufacturer and owner: in its default modes, it provides a
 cryptographic transfer of control to the initial owner. In its
 strongest modes, it leverages sales channel information to identify
 the owner in advance. Resale of devices is possible, provided that
 the manufacturer is willing to authorize the transfer. Mechanisms to
 enable transfers of ownership without manufacturer authorization are
 not included in this version of the protocol, but it could be
 designed into future versions.

 This document describes how a pledge discovers (or are discovered by)
 an element of the network domain that it will belong to and that will
 perform its bootstrap. This element (device) is called the
 "registrar". Before any other operation, the pledge and registrar
 need to establish mutual trust:

 1. Registrar authenticating the pledge: "Who is this device? What
 is its identity?"

 2. Registrar authorizing the pledge: "Is it mine? Do I want it?
 What are the chances it has been compromised?"

 3. Pledge authenticating the registrar: "What is this registrar’s
 identity?"

 4. Pledge authorizing the registrar: "Should I join this network?"

 This document details protocols and messages to answer the above
 questions. It uses a TLS connection and a PKIX-shaped (X.509v3)
 certificate (an IEEE 802.1AR IDevID [IDevID]) of the pledge to answer
 points 1 and 2. It uses a new artifact called a "voucher" that the
 registrar receives from a Manufacturer Authorized Signing Authority
 (MASA) and passes it to the pledge to answer points 3 and 4.

 A proxy provides very limited connectivity between the pledge and the
 registrar.

 The syntactic details of vouchers are described in detail in
 [RFC8366]. This document details automated protocol mechanisms to
 obtain vouchers, including the definition of a "voucher-request"
 message that is a minor extension to the voucher format (see
 Section 3) as defined by [RFC8366].

 BRSKI results in the pledge storing an X.509 root certificate
 sufficient for verifying the registrar identity. In the process, a
 TLS connection is established that can be directly used for
 Enrollment over Secure Transport (EST). In effect, BRSKI provides an
 automated mechanism for "Bootstrap Distribution of CA Certificates"
 described in [RFC7030], Section 4.1.1, wherein the pledge "MUST [...]
 engage a human user to authorize the CA certificate using out-of-band
 data". With BRSKI, the pledge now can automate this process using
 the voucher. Integration with a complete EST enrollment is optional
 but trivial.

 BRSKI is agile enough to support bootstrapping alternative key
 infrastructures, such as a symmetric key solution, but no such system
 is described in this document.

1.1. Prior Bootstrapping Approaches

 To literally "pull yourself up by the bootstraps" is an impossible
 action. Similarly, the secure establishment of a key infrastructure
 without external help is also an impossibility. Today, it is

 commonly accepted that the initial connections between nodes are
 insecure, until key distribution is complete, or that domain-specific
 keying material (often pre-shared keys, including mechanisms like
 Subscriber Identification Module (SIM) cards) is pre-provisioned on
 each new device in a costly and non-scalable manner. Existing
 automated mechanisms are known as non-secured "Trust on First Use
 (TOFU)" [RFC7435], "resurrecting duckling"
 [Stajano99theresurrecting], or "pre-staging".

 Another prior approach has been to try and minimize user actions
 during bootstrapping, but not eliminate all user actions. The
 original EST protocol [RFC7030] does reduce user actions during
 bootstrapping but does not provide solutions for how the following
 protocol steps can be made autonomic (not involving user actions):

 * using the Implicit Trust Anchor (TA) [RFC7030] database to
 authenticate an owner-specific service (not an autonomic solution
 because the URL must be securely distributed),

 * engaging a human user to authorize the CA certificate using out-
 of-band data (not an autonomic solution because the human user is
 involved),

 * using a configured Explicit TA database (not an autonomic solution
 because the distribution of an explicit TA database is not
 autonomic), and

 * using a certificate-less TLS mutual authentication method (not an
 autonomic solution because the distribution of symmetric key
 material is not autonomic).

 These "touch" methods do not meet the requirements for zero-touch.

 There are "call home" technologies where the pledge first establishes
 a connection to a well-known manufacturer service using a common
 client-server authentication model. After mutual authentication,
 appropriate credentials to authenticate the target domain are
 transferred to the pledge. This creates several problems and
 limitations:

 * the pledge requires real-time connectivity to the manufacturer
 service,

 * the domain identity is exposed to the manufacturer service (this
 is a privacy concern), and

 * the manufacturer is responsible for making the authorization
 decisions (this is a liability concern).

 BRSKI addresses these issues by defining extensions to the EST
 protocol for the automated distribution of vouchers.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined for clarity:

 ANI: The Autonomic Networking Infrastructure as defined by
 [RFC8993]. Section 9 details specific requirements for pledges,
 proxies, and registrars when they are part of an ANI.

 Circuit Proxy: A stateful implementation of the Join Proxy. This is
 the assumed type of proxy.

 drop-ship: The physical distribution of equipment containing the
 "factory default" configuration to a final destination. In zero-

 touch scenarios, there is no staging or preconfiguration during
 drop-ship.

 Domain: The set of entities that share a common local trust anchor.
 This includes the proxy, registrar, domain CA, management
 components, and any existing entity that is already a member of
 the domain.

 Domain CA: The domain Certification Authority (CA) provides
 certification functionalities to the domain. At a minimum, it
 provides certification functionalities to a registrar and manages
 the private key that defines the domain. Optionally, it certifies
 all elements.

 domainID: The domain IDentity is a unique value based upon the
 registrar’s CA certificate. Section 5.8.2 specifies how it is
 calculated.

 enrollment: The process where a device presents key material to a
 network and acquires a network-specific identity. For example,
 when a certificate signing request is presented to a CA, and a
 certificate is obtained in response.

 IDevID: An Initial Device Identifier X.509 certificate installed by
 the vendor on new equipment. This is a term from 802.1AR
 [IDevID].

 imprint: The process where a device obtains the cryptographic key
 material to identify and trust future interactions with a network.
 This term is taken from Konrad Lorenz’s work in biology with new
 ducklings: during a critical period, the duckling would assume
 that anything that looks like a mother duck is in fact their
 mother. An equivalent for a device is to obtain the fingerprint
 of the network’s root CA certificate. A device that imprints on
 an attacker suffers a similar fate to a duckling that imprints on
 a hungry wolf. Securely imprinting is a primary focus of this
 document [imprinting]. The analogy to Lorenz’s work was first
 noted in [Stajano99theresurrecting].

 IPIP Proxy: A stateless proxy alternative.

 Join Proxy: A domain entity that helps the pledge join the domain.
 A Join Proxy facilitates communication for devices that find
 themselves in an environment where they are not provided
 connectivity until after they are validated as members of the
 domain. For simplicity, this document sometimes uses the term of
 "proxy" to indicate the Join Proxy. The pledge is unaware that
 they are communicating with a proxy rather than directly with a
 registrar.

 Join Registrar (and Coordinator): A representative of the domain
 that is configured, perhaps autonomically, to decide whether a new
 device is allowed to join the domain. The administrator of the
 domain interfaces with a "Join Registrar (and Coordinator)" to
 control this process. Typically, a Join Registrar is "inside" its
 domain. For simplicity, this document often refers to this as
 just "registrar". Within [RFC8993], it is referred to as the
 "Join Registrar Autonomic Service Agent (ASA)". Other communities
 use the abbreviation "JRC".

 LDevID: A Local Device Identifier X.509 certificate installed by the
 owner of the equipment. This is a term from 802.1AR [IDevID].

 manufacturer: The term manufacturer is used throughout this document
 as the entity that created the device. This is typically the
 original equipment manufacturer (OEM), but in more complex
 situations, it could be a value added retailer (VAR), or possibly
 even a systems integrator. In general, a goal of BRSKI is to
 eliminate small distinctions between different sales channels.
 The reason for this is that it permits a single device, with a
 uniform firmware load, to be shipped directly to all customers.

 This eliminates costs for the manufacturer. This also reduces the
 number of products supported in the field, increasing the chance
 that firmware will be more up to date.

 MASA Audit-Log: An anonymized list of previous owners maintained by
 the MASA on a per-device (per-pledge) basis, as described in
 Section 5.8.1.

 MASA Service: A third-party MASA service on the global Internet.
 The MASA signs vouchers. It also provides a repository for audit-
 log information of privacy-protected bootstrapping events. It
 does not track ownership.

 nonced: A voucher (or request) that contains a nonce (the normal
 case).

 nonceless: A voucher (or request) that does not contain a nonce and
 either relies upon accurate clocks for expiration or does not
 expire.

 offline: When an architectural component cannot perform real-time
 communications with a peer, due to either network connectivity or
 the peer being turned off, the operation is said to be occurring
 offline.

 Ownership Tracker: An Ownership Tracker service on the global
 Internet. The Ownership Tracker uses business processes to
 accurately track ownership of all devices shipped against domains
 that have purchased them. Although optional, this component
 allows vendors to provide additional value in cases where their
 sales and distribution channels allow for accurate tracking of
 such ownership. Tracking information about ownership is indicated
 in vouchers, as described in [RFC8366].

 Pledge: The prospective (unconfigured) device, which has an identity
 installed at the factory.

 (Public) Key Infrastructure: The collection of systems and processes
 that sustains the activities of a public key system. The
 registrar acts as a "Registration Authority"; see [RFC5280] and
 Section 7 of [RFC5272].

 TOFU: Trust on First Use. Used similarly to how it is described in
 [RFC7435]. This is where a pledge device makes no security
 decisions but rather simply trusts the first registrar it is
 contacted by. This is also known as the "resurrecting duckling"
 model.

 Voucher: A signed artifact from the MASA that indicates the
 cryptographic identity of the registrar it should trust to a
 pledge. There are different types of vouchers depending on how
 that trust is asserted. Multiple voucher types are defined in
 [RFC8366].

1.3. Scope of Solution

1.3.1. Support Environment

 This solution (BRSKI) can support large router platforms with multi-
 gigabit inter-connections, mounted in controlled access data centers.
 But this solution is not exclusive to large equipment: it is intended
 to scale to thousands of devices located in hostile environments,
 such as ISP-provided Customer Premises Equipment (CPE) devices that
 are drop-shipped to the end user. The situation where an order is
 fulfilled from a distributed warehouse from a common stock and
 shipped directly to the target location at the request of a domain
 owner is explicitly supported. That stock ("SKU") could be provided
 to a number of potential domain owners, and the eventual domain owner
 will not know a priori which device will go to which location.

 The bootstrapping process can take minutes to complete depending on

 the network infrastructure and device processing speed. The network
 communication itself is not optimized for speed; for privacy reasons,
 the discovery process allows for the pledge to avoid announcing its
 presence through broadcasting.

 Nomadic or mobile devices often need to acquire credentials to access
 the network at the new location. An example of this is mobile phone
 roaming among network operators, or even between cell towers. This
 is usually called "handoff". BRSKI does not provide a low-latency
 handoff, which is usually a requirement in such situations. For
 these solutions, BRSKI can be used to create a relationship (an
 LDevID) with the "home" domain owner. The resulting credentials are
 then used to provide credentials more appropriate for a low-latency
 handoff.

1.3.2. Constrained Environments

 Questions have been posed as to whether this solution is suitable in
 general for Internet of Things (IoT) networks. This depends on the
 capabilities of the devices in question. The terminology of
 [RFC7228] is best used to describe the boundaries.

 The solution described in this document is aimed in general at non-
 constrained (i.e., Class 2+ [RFC7228]) devices operating on a non-
 challenged network. The entire solution as described here is not
 intended to be usable as is by constrained devices operating on
 challenged networks (such as 802.15.4 Low-Power and Lossy Networks
 (LLNs)).

 Specifically, there are protocol aspects described here that might
 result in congestion collapse or energy exhaustion of intermediate
 battery-powered routers in an LLN. Those types of networks should
 not use this solution. These limitations are predominately related
 to the large credential and key sizes required for device
 authentication. Defining symmetric key techniques that meet the
 operational requirements is out of scope, but the underlying protocol
 operations (TLS handshake and signing structures) have sufficient
 algorithm agility to support such techniques when defined.

 The imprint protocol described here could, however, be used by non-
 energy constrained devices joining a non-constrained network (for
 instance, smart light bulbs are usually mains powered and use 802.11
 wireless technology). It could also be used by non-constrained
 devices across a non-energy constrained, but challenged, network
 (such as 802.15.4). The certificate contents, and the process by
 which the four questions above are resolved, do apply to constrained
 devices. It is simply the actual on-the-wire imprint protocol that
 could be inappropriate.

1.3.3. Network Access Controls

 This document presumes that network access control has already
 occurred, is not required, or is integrated by the proxy and
 registrar in such a way that the device itself does not need to be
 aware of the details. Although the use of an X.509 IDevID is
 consistent with IEEE 802.1AR [IDevID], and allows for alignment with
 802.1X network access control methods, its use here is for pledge
 authentication rather than network access control. Integrating this
 protocol with network access control, perhaps as an Extensible
 Authentication Protocol (EAP) method (see [RFC3748]), is out of scope
 for this document.

1.3.4. Bootstrapping is Not Booting

 This document describes "bootstrapping" as the protocol used to
 obtain a local trust anchor. It is expected that this trust anchor,
 along with any additional configuration information subsequently
 installed, is persisted on the device across system restarts
 ("booting"). Bootstrapping occurs only infrequently such as when a
 device is transferred to a new owner or has been reset to factory
 default settings.

1.4. Leveraging the New Key Infrastructure / Next Steps

 As a result of the protocol described herein, bootstrapped devices
 have the domain CA trust anchor in common. An end-entity (EE)
 certificate has optionally been issued from the domain CA. This
 makes it possible to securely deploy functionalities across the
 domain; for example:

 * Device management

 * Routing authentication

 * Service discovery

 The major intended benefit is the ability to use the credentials
 deployed by this protocol to secure the Autonomic Control Plane (ACP)
 [RFC8994].

1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

 The BRSKI protocol can be used in a number of environments. Some of
 the options in this document are the result of requirements that are
 out of the ANI scope. This section defines the base requirements for
 ANI devices.

 For devices that intend to become part of an ANI [RFC8993] that
 includes an Autonomic Control Plane [RFC8994], the BRSKI protocol
 MUST be implemented.

 The pledge must perform discovery of the proxy as described in
 Section 4.1 using the Discovery Unsolicited Link-Local (DULL)
 [RFC8990] M_FLOOD announcements of the GeneRic Autonomic Signaling
 Protocol (GRASP).

 Upon successfully validating a voucher artifact, a status telemetry
 MUST be returned; see Section 5.7.

 An ANIMA ANI pledge MUST implement the EST automation extensions
 described in Section 5.9. They supplement the EST [RFC7030] to
 better support automated devices that do not have an end user.

 The ANI Join Registrar ASA MUST support all the BRSKI and above-
 listed EST operations.

 All ANI devices SHOULD support the BRSKI proxy function, using
 Circuit Proxies over the Autonomic Control Plane (ACP) (see
 Section 4.3).

2. Architectural Overview

 The logical elements of the bootstrapping framework are described in
 this section. Figure 1 provides a simplified overview of the
 components.

 +------------------------+
 +--------------Drop-Ship----------------| Vendor Service |
 | +------------------------+
 | | M anufacturer| |
 | | A uthorized |Ownership|
 | | S igning |Tracker |
 | | A uthority | |
 | +--------------+---------+
 | ^
 | | BRSKI-
 V | MASA
 +-------+ ..|...
 | | . | .
 | | . +------------+ +-----------+ | .
 | | . | | | | | .
 |Pledge | . | Join | | Domain <-------+ .

 | | . | Proxy | | Registrar | .
 | <-------->............<-------> (PKI RA) | .
 | | | BRSKI-EST | | .
 | | . | | +-----+-----+ .
 |IDevID | . +------------+ | e.g., RFC 7030 .
 | | . +-----------------+----------+ .
 | | . | Key Infrastructure | .
 | | . | (e.g., PKI CA) | .
 +-------+ . | | .
 . +----------------------------+ .
 . .
 ..
 "Domain" Components

 Figure 1: Architecture Overview

 We assume a multivendor network. In such an environment, there could
 be a manufacturer service for each manufacturer that supports devices
 following this document’s specification, or an integrator could
 provide a generic service authorized by multiple manufacturers. It
 is unlikely that an integrator could provide ownership tracking
 services for multiple manufacturers due to the required sales channel
 integrations necessary to track ownership.

 The domain is the managed network infrastructure with a key
 infrastructure that the pledge is joining. The domain provides
 initial device connectivity sufficient for bootstrapping through a
 proxy. The domain registrar authenticates the pledge, makes
 authorization decisions, and distributes vouchers obtained from the
 manufacturer service. Optionally, the registrar also acts as a PKI
 CA.

2.1. Behavior of a Pledge

 The pledge goes through a series of steps, which are outlined here at
 a high level.

 / Factory \
 \ default /
 -----+------
 |
 +------v-------+
 | (1) Discover |
 +------------> |
 | +------+-------+
 | |
 | +------v-------+
 | | (2) Identify |
 ^------------+ |
 | rejected +------+-------+
 | |
 | +------v-------+
 | | (3) Request |
 | | Join |
 | +------+-------+
 | |
 | +------v-------+
 | | (4) Imprint |
 ^------------+ |
 | Bad MASA +------+-------+
 | response | send Voucher Status Telemetry
 | +------v-------+
 | | (5) Enroll |<---+ (non-error HTTP codes)
 ^------------+ |___/ (e.g., 202 "Retry-After")
 | Enroll +------+-------+
 | failure |
 | -----v------
 | / Enrolled \
 ^------------+ |
 Factory \------------/

 reset

 Figure 2: Pledge State Diagram

 State descriptions for the pledge are as follows:

 1. Discover a communication channel to a registrar.

 2. Identify itself. This is done by presenting an X.509 IDevID
 credential to the discovered registrar (via the proxy) in a TLS
 handshake. (The registrar credentials are only provisionally
 accepted at this time.)

 3. Request to join the discovered registrar. A unique nonce is
 included, ensuring that any responses can be associated with this
 particular bootstrapping attempt.

 4. Imprint on the registrar. This requires verification of the
 manufacturer-service-provided voucher. A voucher contains
 sufficient information for the pledge to complete authentication
 of a registrar. This document details this step in depth.

 5. Enroll. After imprint, an authenticated TLS (HTTPS) connection
 exists between the pledge and registrar. EST [RFC7030] can then
 be used to obtain a domain certificate from a registrar.

 The pledge is now a member of, and can be managed by, the domain and
 will only repeat the discovery aspects of bootstrapping if it is
 returned to factory default settings.

 This specification details integration with EST enrollment so that
 pledges can optionally obtain a locally issued certificate, although
 any Representational State Transfer (REST) (see [REST]) interface
 could be integrated in future work.

2.2. Secure Imprinting Using Vouchers

 A voucher is a cryptographically protected artifact (using a digital
 signature) to the pledge device authorizing a zero-touch imprint on
 the registrar domain.

 The format and cryptographic mechanism of vouchers is described in
 detail in [RFC8366].

 Vouchers provide a flexible mechanism to secure imprinting: the
 pledge device only imprints when a voucher can be validated. At the
 lowest security levels, the MASA can indiscriminately issue vouchers
 and log claims of ownership by domains. At the highest security
 levels, issuance of vouchers can be integrated with complex sales
 channel integrations that are beyond the scope of this document. The
 sales channel integration would verify actual (legal) ownership of
 the pledge by the domain. This provides the flexibility for a number
 of use cases via a single common protocol mechanism on the pledge and
 registrar devices that are to be widely deployed in the field. The
 MASA services have the flexibility to either leverage the currently
 defined claim mechanisms or experiment with higher or lower security
 levels.

 Vouchers provide a signed but non-encrypted communication channel
 among the pledge, the MASA, and the registrar. The registrar
 maintains control over the transport and policy decisions, allowing
 the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

 Pledge authentication and pledge voucher-request signing is via a
 PKIX-shaped certificate installed during the manufacturing process.
 This is the 802.1AR IDevID, and it provides a basis for
 authenticating the pledge during the protocol exchanges described
 here. There is no requirement for a common root PKI hierarchy. Each
 device manufacturer can generate its own root certificate.

 Specifically, the IDevID enables:

 * Uniquely identifying the pledge by the Distinguished Name (DN) and
 subjectAltName (SAN) parameters in the IDevID. The unique
 identification of a pledge in the voucher objects are derived from
 those parameters as described below. Section 10.3 discusses
 privacy implications of the identifier.

 * Providing a cryptographic authentication of the pledge to the
 registrar (see Section 5.3).

 * Securing auto-discovery of the pledge’s MASA by the registrar (see
 Section 2.8).

 * Signing of a voucher-request by the pledge’s IDevID (see
 Section 3).

 * Providing a cryptographic authentication of the pledge to the MASA
 (see Section 5.5.5).

 Sections 7.2.13 (2009 edition) and 8.10.3 (2018 edition) of [IDevID]
 discuss keyUsage and extendedKeyUsage extensions in the IDevID
 certificate. [IDevID] acknowledges that adding restrictions in the
 certificate limits applicability of these long-lived certificates.
 This specification emphasizes this point and therefore RECOMMENDS
 that no key usage restrictions be included. This is consistent with
 [RFC5280], Section 4.2.1.3, which does not require key usage
 restrictions for end-entity certificates.

2.3.1. Identification of the Pledge

 In the context of BRSKI, pledges have a 1:1 relationship with a
 "serial-number". This serial-number is used both in the serial-
 number field of a voucher or voucher-requests (see Section 3) and in
 local policies on the registrar or MASA (see Section 5).

 There is a (certificate) serialNumber field defined in [RFC5280],
 Section 4.1.2.2. In ASN.1, this is referred to as the
 CertificateSerialNumber. This field is NOT relevant to this
 specification. Do not confuse this field with the serial-number
 defined by this document, or by [IDevID] and [RFC4519], Section 2.31.

 The device serial number is defined in Appendix A.1 of [RFC5280] as
 the X520SerialNumber, with the OID tag id-at-serialNumber.

 The device _serialNumber_ field (X520SerialNumber) is used as follows
 by the pledge to build the *serial-number* that is placed in the
 voucher-request. In order to build it, the fields need to be
 converted into a serial-number of "type string".

 An example of a printable form of the serialNumber field is provided
 in [RFC4519], Section 2.31 ("WI-3005"). That section further
 provides equality and syntax attributes.

 Due to the reality of existing device identity provisioning
 processes, some manufacturers have stored serial-numbers in other
 fields. Registrars SHOULD be configurable, on a per-manufacturer
 basis, to look for serial-number equivalents in other fields.

 As explained in Section 5.5, the registrar MUST again extract the
 serialNumber itself from the pledge’s TLS certificate. It can
 consult the serial-number in the pledge request if there is any
 possible confusion about the source of the serial-number.

2.3.2. MASA URI Extension

 This document defines a new PKIX non-critical certificate extension
 to carry the MASA URI. This extension is intended to be used in the
 IDevID certificate. The URI is represented as described in
 Section 7.4 of [RFC5280].

 The URI provides the authority information. The BRSKI "/.well-known"
 tree [RFC8615] is described in Section 5.

 A complete URI MAY be in this extension, including the "scheme",
 "authority", and "path". The complete URI will typically be used in
 diagnostic or experimental situations. Typically (and in
 consideration to constrained systems), this SHOULD be reduced to only
 the "authority", in which case a scheme of "https://" (see [RFC7230],
 Section 2.7.3) and a "path" of "/.well-known/brski" is to be assumed.

 The registrar can assume that only the "authority" is present in the
 extension, if there are no slash ("/") characters in the extension.

 Section 7.4 of [RFC5280] calls out various schemes that MUST be
 supported, including the Lightweight Directory Access Protocol
 (LDAP), HTTP, and FTP. However, the registrar MUST use HTTPS for the
 BRSKI-MASA connection.

 The new extension is identified as follows:

 <CODE BEGINS>
 MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-mod-MASAURLExtn2016(96) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 -- EXPORTS ALL --

 IMPORTS
 EXTENSION
 FROM PKIX-CommonTypes-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 id-pe FROM PKIX1Explicit-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) } ;

 MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
 ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
 IDENTIFIED BY id-pe-masa-url }

 id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe 32 }

 MASAURLSyntax ::= IA5String

 END
 <CODE ENDS>

 Figure 3: MASAURL ASN.1 Module

 The choice of id-pe is based on guidance found in Section 4.2.2 of
 [RFC5280]: "These extensions may be used to direct applications to
 on-line information about the issuer or the subject". The MASA URL
 is precisely that: online information about the particular subject.

2.4. Protocol Flow

 A representative flow is shown in Figure 4.

 +--------+ +---------+ +------------+ +------------+
Pledge		Circuit		Domain		Vendor
		Join		Registrar		Service
		Proxy		(JRC)		(MASA)
 +--------+ +---------+ +------------+ +------------+
 | | | Internet |
 [discover] | | |
 |<-RFC 4862 IPv6 addr | | |

 |<-RFC 3927 IPv4 addr | Appendix A | Legend |
 |-++++++++++++++++++->| | C - Circuit |
 | optional: mDNS query| Appendix B | Join Proxy |
 | RFCs 6763/6762 (+) | | P - Provisional TLS|
 |<-++++++++++++++++++-| | Connection |
 | GRASP M_FLOOD | | |
 | periodic broadcast| | |
 [identity] | | |
 |<------------------->C<----------------->| |
 | TLS via the Join Proxy | |
 |<--Registrar TLS server authentication---| |
 [PROVISIONAL accept of server cert] | |
 P---X.509 client authentication---------->| |
 [request join] | |
 P---Voucher-Request(w/nonce for voucher)->| |
 P /------------------- | |
 P | [accept device?] |
 P | [contact vendor] |
 P | |--Pledge ID-------->|
 P | |--Domain ID-------->|
 P | |--optional:nonce--->|
 P optional: | [extract DomainID]
 P can occur in advance | [update audit-log]
 P if nonceless | |
 P | |<- voucher ---------|
 P \------------------- | w/nonce if provided|
 P<------voucher---------------------------| |
 [imprint] | |
 |-------voucher status telemetry--------->| |
 | |<-device audit-log--|
 | [verify audit-log and voucher] |
 |<--------------------------------------->| |
 [enroll] | |
 | Continue with enrollment using now | |
 | bidirectionally authenticated TLS | |
 | session per RFC 7030. | |
 [enrolled] | |

 Figure 4: Protocol Time Sequence Diagram

 On initial bootstrap, a new device (the pledge) uses a local service
 auto-discovery (the GeneRic Autonomic Signaling Protocol (GRASP) or
 Multicast DNS (mDNS)) to locate a Join Proxy. The Join Proxy
 connects the pledge to a local registrar (the JRC).

 Having found a candidate registrar, the fledgling pledge sends some
 information about itself to the registrar, including its serial
 number in the form of a voucher-request and its IDevID certificate as
 part of the TLS session.

 The registrar can determine whether it expected such a device to
 appear and locates a MASA. The location of the MASA is usually found
 in an extension in the IDevID. Having determined that the MASA is
 suitable, the entire information from the initial voucher-request
 (including the device’s serial number) is transmitted over the
 Internet in a TLS-protected channel to the manufacturer, along with
 information about the registrar/owner.

 The manufacturer can then apply policy based on the provided
 information, as well as other sources of information (such as sales
 records), to decide whether to approve the claim by the registrar to
 own the device; if the claim is accepted, a voucher is issued that
 directs the device to accept its new owner.

 The voucher is returned to the registrar, but not immediately to the
 device -- the registrar has an opportunity to examine the voucher,
 the MASA’s audit-logs, and other sources of information to determine
 whether the device has been tampered with and whether the bootstrap
 should be accepted.

 No filtering of information is possible in the signed voucher, so

 this is a binary yes-or-no decision. After the registrar has applied
 any local policy to the voucher, if it accepts the voucher, then the
 voucher is returned to the pledge for imprinting.

 The voucher also includes a trust anchor that the pledge uses to
 represent the owner. This is used to successfully bootstrap from an
 environment where only the manufacturer has built-in trust by the
 device to an environment where the owner now has a PKI footprint on
 the device.

 When BRSKI is followed with EST, this single footprint is further
 leveraged into the full owner’s PKI and an LDevID for the device.
 Subsequent reporting steps provide flows of information to indicate
 success/failure of the process.

2.5. Architectural Components

2.5.1. Pledge

 The pledge is the device that is attempting to join. It is assumed
 that the pledge talks to the Join Proxy using link-local network
 connectivity. In most cases, the pledge has no other connectivity
 until the pledge completes the enrollment process and receives some
 kind of network credential.

2.5.2. Join Proxy

 The Join Proxy provides HTTPS connectivity between the pledge and the
 registrar. A Circuit Proxy mechanism is described in Section 4.
 Additional mechanisms, including a Constrained Application Protocol
 (CoAP) mechanism and a stateless IP in IP (IPIP) mechanism, are the
 subject of future work.

2.5.3. Domain Registrar

 The domain’s registrar operates as the BRSKI-MASA client when
 requesting vouchers from the MASA (see Section 5.4). The registrar
 operates as the BRSKI-EST server when pledges request vouchers (see
 Section 5.1). The registrar operates as the BRSKI-EST server
 "Registration Authority" if the pledge requests an end-entity
 certificate over the BRSKI-EST connection (see Section 5.9).

 The registrar uses an Implicit Trust Anchor database for
 authenticating the BRSKI-MASA connection’s MASA TLS server
 certificate. Configuration or distribution of trust anchors is out
 of scope for this specification.

 The registrar uses a different Implicit Trust Anchor database for
 authenticating the BRSKI-EST connection’s pledge TLS Client
 Certificate. Configuration or distribution of the BRSKI-EST client
 trust anchors is out of scope of this specification. Note that the
 trust anchors in / excluded from the database will affect which
 manufacturers’ devices are acceptable to the registrar as pledges,
 and they can also be used to limit the set of MASAs that are trusted
 for enrollment.

2.5.4. Manufacturer Service

 The manufacturer service provides two logically separate functions:
 the MASA as described in Sections 5.5 and 5.6 and an ownership
 tracking/auditing function as described in Sections 5.7 and 5.8.

2.5.5. Public Key Infrastructure (PKI)

 The Public Key Infrastructure (PKI) administers certificates for the
 domain of concern, providing the trust anchor(s) for it and allowing
 enrollment of pledges with domain certificates.

 The voucher provides a method for the distribution of a single PKI
 trust anchor (as the "pinned-domain-cert"). A distribution of the
 full set of current trust anchors is possible using the optional EST

 integration.

 The domain’s registrar acts as a Registration Authority [RFC5272],
 requesting certificates for pledges from the PKI.

 The expectations of the PKI are unchanged from EST [RFC7030]. This
 document does not place any additional architectural requirements on
 the PKI.

2.6. Certificate Time Validation

2.6.1. Lack of Real-Time Clock

 When bootstrapping, many devices do not have knowledge of the current
 time. Mechanisms such as Network Time Protocols cannot be secured
 until bootstrapping is complete. Therefore, bootstrapping is defined
 with a framework that does not require knowledge of the current time.
 A pledge MAY ignore all time stamps in the voucher and in the
 certificate validity periods if it does not know the current time.

 The pledge is exposed to dates in the following five places:
 registrar certificate notBefore, registrar certificate notAfter,
 voucher created-on, and voucher expires-on. Additionally,
 Cryptographic Message Syntax (CMS) signatures contain a signingTime.

 A pledge with a real-time clock in which it has confidence MUST check
 the above time fields in all certificates and signatures that it
 processes.

 If the voucher contains a nonce, then the pledge MUST confirm the
 nonce matches the original pledge voucher-request. This ensures the
 voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

 Long-lived pledge certificates "SHOULD be assigned the
 GeneralizedTime value of 99991231235959Z" for the notAfter field as
 explained in [RFC5280].

 Some deployed IDevID management systems are not compliant with the
 802.1AR requirement for infinite lifetimes and are put in typical <=
 3 year certificate lifetimes. Registrars SHOULD be configurable on a
 per-manufacturer basis to ignore pledge lifetimes when the pledge
 does not follow the recommendations in [RFC5280].

2.7. Cloud Registrar

 There exist operationally open networks wherein devices gain
 unauthenticated access to the Internet at large. In these use cases,
 the management domain for the device needs to be discovered within
 the larger Internet. The case where a device can boot and get access
 to a larger Internet is less likely within the ANIMA ACP scope but
 may be more important in the future. In the ANIMA ACP scope, new
 devices will be quarantined behind a Join Proxy.

 Additionally, there are some greenfield situations involving an
 entirely new installation where a device may have some kind of
 management uplink that it can use (such as via a 3G network, for
 instance). In such a future situation, the device might use this
 management interface to learn that it should configure itself to
 become the local registrar.

 In order to support these scenarios, the pledge MAY contact a well-
 known URI of a cloud registrar if a local registrar cannot be
 discovered or if the pledge’s target use cases do not include a local
 registrar.

 If the pledge uses a well-known URI for contacting a cloud registrar,
 a manufacturer-assigned Implicit Trust Anchor database (see
 [RFC7030]) MUST be used to authenticate that service as described in
 [RFC6125]. The use of a DNS-ID for validation is appropriate, and it

 may include wildcard components on the left-mode side. This is
 consistent with the human-user configuration of an EST server URI in
 [RFC7030], which also depends on [RFC6125].

2.8. Determining the MASA to Contact

 The registrar needs to be able to contact a MASA that is trusted by
 the pledge in order to obtain vouchers.

 The device’s IDevID will normally contain the MASA URL as detailed in
 Section 2.3. This is the RECOMMENDED mechanism.

 In some cases, it can be operationally difficult to ensure the
 necessary X.509 extensions are in the pledge’s IDevID due to the
 difficulty of aligning current pledge manufacturing with software
 releases and development; thus, as a final fallback, the registrar
 MAY be manually configured or distributed with a MASA URL for each
 manufacturer. Note that the registrar can only select the configured
 MASA URL based on the trust anchor -- so manufacturers can only
 leverage this approach if they ensure a single MASA URL works for all
 pledges associated with each trust anchor.

3. Voucher-Request Artifact

 Voucher-requests are how vouchers are requested. The semantics of
 the voucher-request are described below, in the YANG module.

 A pledge forms the "pledge voucher-request", signs it with its
 IDevID, and submits it to the registrar.

 In turn, the registrar forms the "registrar voucher-request", signs
 it with its registrar key pair, and submits it to the MASA.

 The "proximity-registrar-cert" leaf is used in the pledge voucher-
 requests. This provides a method for the pledge to assert the
 registrar’s proximity.

 This network proximity results from the following properties in the
 ACP context: the pledge is connected to the Join Proxy (Section 4)
 using a link-local IPv6 connection. While the Join Proxy does not
 participate in any meaningful sense in the cryptography of the TLS
 connection (such as via a Channel Binding), the registrar can observe
 that the connection is via the private ACP (ULA) address of the Join
 Proxy, and it cannot come from outside the ACP. The pledge must
 therefore be at most one IPv6 link-local hop away from an existing
 node on the ACP.

 Other users of BRSKI will need to define other kinds of assertions if
 the network proximity described above does not match their needs.

 The "prior-signed-voucher-request" leaf is used in registrar voucher-
 requests. If present, it is the signed pledge voucher-request
 artifact. This provides a method for the registrar to forward the
 pledge’s signed request to the MASA. This completes transmission of
 the signed proximity-registrar-cert leaf.

 Unless otherwise signaled (outside the voucher-request artifact), the
 signing structure is as defined for vouchers; see [RFC8366].

3.1. Nonceless Voucher-Requests

 A registrar MAY also retrieve nonceless vouchers by sending nonceless
 voucher-requests to the MASA in order to obtain vouchers for use when
 the registrar does not have connectivity to the MASA. No prior-
 signed-voucher-request leaf would be included. The registrar will
 also need to know the serial number of the pledge. This document
 does not provide a mechanism for the registrar to learn that in an
 automated fashion. Typically, this will be done via the scanning of
 a bar code or QR code on packaging, or via some sales channel
 integration.

3.2. Tree Diagram

 The following tree diagram illustrates a high-level view of a
 voucher-request document. The voucher-request builds upon the
 voucher artifact described in [RFC8366]. The tree diagram is
 described in [RFC8340]. Each node in the diagram is fully described
 by the YANG module in Section 3.4. Please review the YANG module for
 a detailed description of the voucher-request format.

 module: ietf-voucher-request

 grouping voucher-request-grouping
 +-- voucher
 +-- created-on? yang:date-and-time
 +-- expires-on? yang:date-and-time
 +-- assertion? enumeration
 +-- serial-number string
 +-- idevid-issuer? binary
 +-- pinned-domain-cert? binary
 +-- domain-cert-revocation-checks? boolean
 +-- nonce? binary
 +-- last-renewal-date? yang:date-and-time
 +-- prior-signed-voucher-request? binary
 +-- proximity-registrar-cert? binary

 Figure 5: YANG Tree Diagram for a Voucher-Request

3.3. Examples

 This section provides voucher-request examples for illustration
 purposes. These examples show JSON prior to CMS wrapping. JSON
 encoding rules specify that any binary content be base64 encoded
 ([RFC4648], Section 4). The contents of the (base64) encoded
 certificates have been elided to save space. For detailed examples,
 see Appendix C.2. These examples conform to the encoding rules
 defined in [RFC7951].

 Example (1): The following example illustrates a pledge voucher-
 request. The assertion leaf is indicated as
 "proximity", and the registrar’s TLS server certificate
 is included in the proximity-registrar-cert leaf. See
 Section 5.2.

 {
 "ietf-voucher-request:voucher": {
 "assertion": "proximity",
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "serial-number" : "JADA123456789",
 "created-on": "2017-01-01T00:00:00.000Z",
 "proximity-registrar-cert": "base64encodedvalue=="
 }
 }

 Figure 6: JSON Representation of an Example Voucher-Request

 Example (2): The following example illustrates a registrar voucher-
 request. The prior-signed-voucher-request leaf is
 populated with the pledge’s voucher-request (such as
 the prior example). The pledge’s voucher-request is a
 binary CMS-signed object. In the JSON encoding used
 here, it must be base64 encoded. The nonce and
 assertion have been carried forward from the pledge
 request to the registrar request. The serial-number is
 extracted from the pledge’s Client Certificate from the
 TLS connection. See Section 5.5.

 {
 "ietf-voucher-request:voucher": {
 "assertion" : "proximity",
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created-on": "2017-01-01T00:00:02.000Z",

 "idevid-issuer": "base64encodedvalue==",
 "serial-number": "JADA123456789",
 "prior-signed-voucher-request": "base64encodedvalue=="
 }
 }

 Figure 7: JSON Representation of an Example Prior-Signed Voucher-
 Request

 Example (3): The following example illustrates a registrar voucher-
 request. The prior-signed-voucher-request leaf is not
 populated with the pledge’s voucher-request nor is the
 nonce leaf. This form might be used by a registrar
 requesting a voucher when the pledge cannot communicate
 with the registrar (such as when it is powered down or
 still in packaging) and therefore cannot submit a
 nonce. This scenario is most useful when the registrar
 is aware that it will not be able to reach the MASA
 during deployment. See Section 5.5.

 {
 "ietf-voucher-request:voucher": {
 "created-on": "2017-01-01T00:00:02.000Z",
 "idevid-issuer": "base64encodedvalue==",
 "serial-number": "JADA123456789"
 }
 }

 Figure 8: JSON Representation of an Offline Voucher-Request

3.4. YANG Module

 Following is a YANG module [RFC7950] that formally extends a voucher
 [RFC8366] into a voucher-request. This YANG module references
 [ITU.X690].

 <CODE BEGINS> file "ietf-voucher-request@2021-05-20.yang"
 module ietf-voucher-request {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
 prefix vcr;

 import ietf-restconf {
 prefix rc;
 description
 "This import statement is only present to access
 the yang-data extension defined in RFC 8040.";
 reference
 "RFC 8040: RESTCONF Protocol";
 }
 import ietf-voucher {
 prefix vch;
 description
 "This module defines the format for a voucher,
 which is produced by a pledge’s manufacturer or
 delegate (MASA) to securely assign a pledge to
 an ’owner’, so that the pledge may establish a secure
 connection to the owner’s network infrastructure.";
 reference
 "RFC 8366: A Voucher Artifact for
 Bootstrapping Protocols";
 }

 organization
 "IETF ANIMA Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Kent Watsen
 <mailto:kent+ietf@watsen.net>
 Author: Michael H. Behringer

 <mailto:Michael.H.Behringer@gmail.com>
 Author: Toerless Eckert
 <mailto:tte+ietf@cs.fau.de>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>";
 description
 "This module defines the format for a voucher-request.
 It is a superset of the voucher itself.
 It provides content to the MASA for consideration
 during a voucher-request.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8995; see the
 RFC itself for full legal notices.";

 revision 2021-05-20 {
 description
 "Initial version";
 reference
 "RFC 8995: Bootstrapping Remote Secure Key Infrastructure
 (BRSKI)";
 }

 // Top-level statement
 rc:yang-data voucher-request-artifact {
 uses voucher-request-grouping;
 }

 // Grouping defined for future usage

 grouping voucher-request-grouping {
 description
 "Grouping to allow reuse/extensions in future work.";
 uses vch:voucher-artifact-grouping {
 refine "voucher/created-on" {
 mandatory false;
 }
 refine "voucher/pinned-domain-cert" {
 mandatory false;
 description
 "A pinned-domain-cert field is not valid in a
 voucher-request, and any occurrence MUST be ignored.";
 }
 refine "voucher/last-renewal-date" {
 description
 "A last-renewal-date field is not valid in a
 voucher-request, and any occurrence MUST be ignored.";
 }
 refine "voucher/domain-cert-revocation-checks" {
 description
 "The domain-cert-revocation-checks field is not valid in a
 voucher-request, and any occurrence MUST be ignored.";
 }
 refine "voucher/assertion" {

 mandatory false;
 description
 "Any assertion included in registrar voucher-requests
 SHOULD be ignored by the MASA.";
 }
 augment "voucher" {
 description
 "Adds leaf nodes appropriate for requesting vouchers.";
 leaf prior-signed-voucher-request {
 type binary;
 description
 "If it is necessary to change a voucher, or re-sign and
 forward a voucher that was previously provided along a
 protocol path, then the previously signed voucher SHOULD
 be included in this field.

 For example, a pledge might sign a voucher-request
 with a proximity-registrar-cert, and the registrar
 then includes it as the prior-signed-voucher-request
 field. This is a simple mechanism for a chain of
 trusted parties to change a voucher-request, while
 maintaining the prior signature information.

 The registrar and MASA MAY examine the prior-signed
 voucher information for the
 purposes of policy decisions. For example, this
 information could be useful to a MASA to determine
 that both the pledge and registrar agree on proximity
 assertions. The MASA SHOULD remove all
 prior-signed-voucher-request information when
 signing a voucher for imprinting so as to minimize
 the final voucher size.";
 }
 leaf proximity-registrar-cert {
 type binary;
 description
 "An X.509 v3 certificate structure, as specified by
 RFC 5280, Section 4, encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU X.690.

 The first certificate in the registrar TLS server
 certificate_list sequence (the end-entity TLS
 certificate; see RFC 8446) presented by the registrar
 to the pledge. This MUST be populated in a pledge’s
 voucher-request when a proximity assertion is
 requested.";
 reference
 "ITU X.690: Information Technology - ASN.1 encoding
 rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)
 RFC 5280: Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile
 RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 }
 }
 }
 }
 <CODE ENDS>

 Figure 9: YANG Module for Voucher-Request

4. Proxying Details (Pledge -- Proxy -- Registrar)

 This section is normative for uses with an ANIMA ACP. The use of the
 GRASP mechanism is part of the ACP. Other users of BRSKI will need
 to define an equivalent proxy mechanism and an equivalent mechanism

 to configure the proxy.

 The role of the proxy is to facilitate communications. The proxy
 forwards packets between the pledge and a registrar that has been
 provisioned to the proxy via full GRASP ACP discovery.

 This section defines a stateful proxy mechanism that is referred to
 as a "circuit" proxy. This is a form of Application Level Gateway
 (see [RFC2663], Section 2.9).

 The proxy does not terminate the TLS handshake: it passes streams of
 bytes onward without examination. A proxy MUST NOT assume any
 specific TLS version. Please see [RFC8446], Section 9.3 for details
 on TLS invariants.

 A registrar can directly provide the proxy announcements described
 below, in which case the announced port can point directly to the
 registrar itself. In this scenario, the pledge is unaware that there
 is no proxying occurring. This is useful for registrars that are
 servicing pledges on directly connected networks.

 As a result of the proxy discovery process in Section 4.1.1, the port
 number exposed by the proxy does not need to be well known or require
 an IANA allocation.

 During the discovery of the registrar by the Join Proxy, the Join
 Proxy will also learn which kinds of proxy mechanisms are available.
 This will allow the Join Proxy to use the lowest impact mechanism
 that the Join Proxy and registrar have in common.

 In order to permit the proxy functionality to be implemented on the
 maximum variety of devices, the chosen mechanism should use the
 minimum amount of state on the proxy device. While many devices in
 the ANIMA target space will be rather large routers, the proxy
 function is likely to be implemented in the control-plane CPU of such
 a device, with available capabilities for the proxy function similar
 to many class 2 IoT devices.

 The document [ANIMA-STATE] provides a more extensive analysis and
 background of the alternative proxy methods.

4.1. Pledge Discovery of Proxy

 The result of discovery is a logical communication with a registrar,
 through a proxy. The proxy is transparent to the pledge. The
 communication between the pledge and Join Proxy is over IPv6 link-
 local addresses.

 To discover the proxy, the pledge performs the following actions:

 1. MUST: Obtain a local address using IPv6 methods as described in
 "IPv6 Stateless Address Autoconfiguration" [RFC4862]. Use of
 temporary addresses [RFC8981] is encouraged. To limit pervasive
 monitoring [RFC7258], a new temporary address MAY use a short
 lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short).
 Pledges will generally prefer use of IPv6 link-local addresses,
 and discovery of the proxy will be by link-local mechanisms.
 IPv4 methods are described in Appendix A.

 2. MUST: Listen for GRASP M_FLOOD [RFC8990] announcements of the
 objective: "AN_Proxy". See Section 4.1.1 for the details of the
 objective. The pledge MAY listen concurrently for other sources
 of information; see Appendix B.

 Once a proxy is discovered, the pledge communicates with a registrar
 through the proxy using the bootstrapping protocol defined in
 Section 5.

 While the GRASP M_FLOOD mechanism is passive for the pledge, the non-
 normative other methods (mDNS and IPv4 methods) described in
 Appendix B are active. The pledge SHOULD run those methods in

 parallel with listening for the M_FLOOD. The active methods SHOULD
 back off by doubling to a maximum of one hour to avoid overloading
 the network with discovery attempts. Detection of physical link
 status change (Ethernet carrier, for instance) SHOULD reset the back-
 off timers.

 The pledge could discover more than one proxy on a given physical
 interface. The pledge can have a multitude of physical interfaces as
 well: a Layer 2/3 Ethernet switch may have hundreds of physical
 ports.

 Each possible proxy offer SHOULD be attempted up to the point where a
 valid voucher is received: while there are many ways in which the
 attempt may fail, it does not succeed until the voucher has been
 validated.

 The connection attempts via a single proxy SHOULD exponentially back
 off to a maximum of one hour to avoid overloading the network
 infrastructure. The back-off timer for each MUST be independent of
 other connection attempts.

 Connection attempts SHOULD be run in parallel to avoid head-of-queue
 problems wherein an attacker running a fake proxy or registrar could
 intentionally perform protocol actions slowly. Connection attempts
 to different proxies SHOULD be sent with an interval of 3 to 5s. The
 pledge SHOULD continue to listen for additional GRASP M_FLOOD
 messages during the connection attempts.

 Each connection attempt through a distinct Join Proxy MUST have a
 unique nonce in the voucher-request.

 Once a connection to a registrar is established (e.g., establishment
 of a TLS session key), there are expectations of more timely
 responses; see Section 5.2.

 Once all discovered services are attempted (assuming that none
 succeeded), the device MUST return to listening for GRASP M_FLOOD.
 It SHOULD periodically retry any manufacturer-specific mechanisms.
 The pledge MAY prioritize selection order as appropriate for the
 anticipated environment.

4.1.1. Proxy GRASP Announcements

 A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.
 This announcement can be within the same message as the ACP
 announcement detailed in [RFC8994].

 The formal Concise Data Definition Language (CDDL) [RFC8610]
 definition is:

 <CODE BEGINS> file "proxygrasp.cddl"
 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["AN_Proxy", objective-flags, loop-count,
 objective-value]

 ttl = 180000 ; 180,000 ms (3 minutes)
 initiator = ACP address to contact registrar
 objective-flags = sync-only ; as in the GRASP spec
 sync-only = 4 ; M_FLOOD only requires
 ; synchronization
 loop-count = 1 ; one hop only
 objective-value = any ; none

 locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = the v6 LL of the Proxy
 $transport-proto /= IPPROTO_TCP ; note that this can be any value
 ; from the IANA protocol registry,
 ; as per RFC 8990, Section 2.9.5.1,

 ; Note 3.
 port-number = selected by Proxy
 <CODE ENDS>

 Figure 10: CDDL Definition of Proxy Discovery Message

 Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP port
 4443.

 [M_FLOOD, 12340815, h’fe800000000000000000000000000001’, 180000,
 [["AN_Proxy", 4, 1, ""],
 [O_IPv6_LOCATOR,
 h’fe800000000000000000000000000001’, IPPROTO_TCP, 4443]]]

 Figure 11: Example of Proxy Discovery Message

 On a small network, the registrar MAY include the GRASP M_FLOOD
 announcements to locally connected networks.

 The $transport-proto above indicates the method that the pledge-
 proxy-registrar will use. The TCP method described here is
 mandatory, and other proxy methods, such as CoAP methods not defined
 in this document, are optional. Other methods MUST NOT be enabled
 unless the Join Registrar ASA indicates support for them in its own
 announcement.

4.2. CoAP Connection to Registrar

 The use of CoAP to connect from pledge to registrar is out of scope
 for this document and is described in future work. See
 [ANIMA-CONSTRAINED-VOUCHER].

4.3. Proxy Discovery and Communication of Registrar

 The registrar SHOULD announce itself so that proxies can find it and
 determine what kind of connections can be terminated.

 The registrar announces itself using GRASP M_FLOOD messages, with the
 "AN_join_registrar" objective, within the ACP instance. A registrar
 may announce any convenient port number, including use of stock port
 443. ANI proxies MUST support GRASP discovery of registrars.

 The M_FLOOD is formatted as follows:

 [M_FLOOD, 51804321, h’fda379a6f6ee00000200000064000001’, 180000,
 [["AN_join_registrar", 4, 255, "EST-TLS"],
 [O_IPv6_LOCATOR,
 h’fda379a6f6ee00000200000064000001’, IPPROTO_TCP, 8443]]]

 Figure 12: An Example of a Registrar Announcement Message

 The formal CDDL definition is:

 <CODE BEGINS> file "jrcgrasp.cddl"
 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["AN_join_registrar", objective-flags, loop-count,
 objective-value]

 initiator = ACP address to contact registrar
 objective-flags = sync-only ; as in the GRASP spec
 sync-only = 4 ; M_FLOOD only requires
 ; synchronization
 loop-count = 255 ; mandatory maximum
 objective-value = text ; name of the (list of) supported
 ; protocols: "EST-TLS" for RFC 7030.
 <CODE ENDS>

 Figure 13: CDDL Definition for Registrar Announcement Message

 The M_FLOOD message MUST be sent periodically. The default period
 SHOULD be 60 seconds, and the value SHOULD be operator configurable
 but SHOULD NOT be smaller than 60 seconds. The frequency of sending
 MUST be such that the aggregate amount of periodic M_FLOODs from all
 flooding sources causes only negligible traffic across the ACP.

 Here are some examples of locators for illustrative purposes. Only
 the first one ($transport-protocol = 6, TCP) is defined in this
 document and is mandatory to implement.

 locator1 = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]
 locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
 locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

 A protocol of 6 indicates that TCP proxying on the indicated port is
 desired.

 Registrars MUST announce the set of protocols that they support, and
 they MUST support TCP traffic.

 Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

 Registrars MUST support the ANI TLS Circuit Proxy and therefore BRSKI
 across HTTPS/TLS native across the ACP.

 In the ANI, the ACP-secured instance of GRASP [RFC8990] MUST be used
 for discovery of ANI registrar ACP addresses and ports by ANI
 proxies. Therefore, the TCP leg of the proxy connection between the
 ANI proxy and ANI registrar also runs across the ACP.

5. Protocol Details (Pledge -- Registrar -- MASA)

 The pledge MUST initiate BRSKI after boot if it is unconfigured. The
 pledge MUST NOT automatically initiate BRSKI if it has been
 configured or is in the process of being configured.

 BRSKI is described as extensions to EST [RFC7030]. The goal of these
 extensions is to reduce the number of TLS connections and crypto
 operations required on the pledge. The registrar implements the
 BRSKI REST interface within the "/.well-known/brski" URI tree and
 implements the existing EST URIs as described in EST [RFC7030],
 Section 3.2.2. The communication channel between the pledge and the
 registrar is referred to as "BRSKI-EST" (see Figure 1).

 The communication channel between the registrar and MASA is a new
 communication channel, similar to EST, within the newly registered
 "/.well-known/brski" tree. For clarity, this channel is referred to
 as "BRSKI-MASA" (see Figure 1).

 The MASA URI is "https://" authority "/.well-known/brski".

 BRSKI uses existing CMS message formats for existing EST operations.
 BRSKI uses JSON [RFC8259] for all new operations defined here and for
 voucher formats. In all places where a binary value must be carried
 in a JSON string, a base64 format ([RFC4648], Section 4) is to be
 used, as per [RFC7951], Section 6.6.

 While EST ([RFC7030], Section 3.2) does not insist upon use of HTTP
 persistent connections ([RFC7230], Section 6.3), BRSKI-EST
 connections SHOULD use persistent connections. The intention of this
 guidance is to ensure the provisional TLS state occurs only once, and
 that the subsequent resolution of the provision state is not subject
 to a Man-in-the-Middle (MITM) attack during a critical phase.

 If non-persistent connections are used, then both the pledge and the
 registrar MUST remember the certificates that have been seen and also
 sent for the first connection. They MUST check each subsequent
 connection for the same certificates, and each end MUST use the same
 certificates as well. This places a difficult restriction on rolling
 certificates on the registrar.

 Summarized automation extensions for the BRSKI-EST flow are:

 * The pledge either attempts concurrent connections via each
 discovered proxy or times out quickly and tries connections in
 series, as explained at the end of Section 5.1.

 * The pledge provisionally accepts the registrar certificate during
 the TLS handshake as detailed in Section 5.1.

 * The pledge requests a voucher using the new REST calls described
 below. This voucher is then validated.

 * The pledge completes authentication of the server certificate as
 detailed in Section 5.6.1. This moves the BRSKI-EST TLS
 connection out of the provisional state.

 * Mandatory bootstrap steps conclude with voucher status telemetry
 (see Section 5.7).

 The BRSKI-EST TLS connection can now be used for EST enrollment.

 The extensions for a registrar (equivalent to an EST server) are:

 * Client authentication is automated using IDevID as per the EST
 certificate-based client authentication. The subject field’s DN
 encoding MUST include the "serialNumber" attribute with the
 device’s unique serial number as explained in Section 2.3.1.

 * The registrar requests and validates the voucher from the MASA.

 * The registrar forwards the voucher to the pledge when requested.

 * The registrar performs log verifications (described in
 Section 5.8.3) in addition to local authorization checks before
 accepting optional pledge device enrollment requests.

5.1. BRSKI-EST TLS Establishment Details

 The pledge establishes the TLS connection with the registrar through
 the Circuit Proxy (see Section 4), but the TLS handshake is with the
 registrar. The BRSKI-EST pledge is the TLS client, and the BRSKI-EST
 registrar is the TLS server. All security associations established
 are between the pledge and the registrar regardless of proxy
 operations.

 Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is
 REQUIRED on the pledge side. TLS 1.3 (or newer) SHOULD be available
 on the registrar server interface, and the registrar client
 interface, but TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be
 available on the MASA server interface, but TLS 1.2 MAY be used.

 Establishment of the BRSKI-EST TLS connection is as specified in
 "Bootstrap Distribution of CA Certificates" (Section 4.1.1) of
 [RFC7030], wherein the client is authenticated with the IDevID
 certificate, and the EST server (the registrar) is provisionally
 authenticated with an unverified server certificate. Configuration
 or distribution of the trust anchor database used for validating the
 IDevID certificate is out of scope of this specification. Note that
 the trust anchors in / excluded from the database will affect which
 manufacturers’ devices are acceptable to the registrar as pledges and
 can also be used to limit the set of MASAs that are trusted for
 enrollment.

 The signature in the certificate MUST be validated even if a signing
 key cannot (yet) be validated. The certificate (or chain) MUST be
 retained for later validation.

 A self-signed certificate for the registrar is acceptable as the
 voucher can validate it upon successful enrollment.

 The pledge performs input validation of all data received until a

 voucher is verified as specified in Section 5.6.1 and the TLS
 connection leaves the provisional state. Until these operations are
 complete, the pledge could be communicating with an attacker.

 The pledge code needs to be written with the assumption that all data
 is being transmitted at this point to an unauthenticated peer, and
 that received data, while inside a TLS connection, MUST be considered
 untrusted. This particularly applies to HTTP headers and CMS
 structures that make up the voucher.

 A pledge that can connect to multiple registrars concurrently SHOULD
 do so. Some devices may be unable to do so for lack of threading, or
 resource issues. Concurrent connections defeat attempts by a
 malicious proxy from causing a TCP Slowloris-like attack (see
 [slowloris]).

 A pledge that cannot maintain as many connections as there are
 eligible proxies will need to rotate among the various choices,
 terminating connections that do not appear to be making progress. If
 no connection is making progress after 5 seconds, then the pledge
 SHOULD drop the oldest connection and go on to a different proxy: the
 proxy that has been communicated with least recently. If there were
 no other proxies discovered, the pledge MAY continue to wait, as long
 as it is concurrently listening for new proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

 When the pledge bootstraps, it makes a request for a voucher from a
 registrar.

 This is done with an HTTPS POST using the operation path value of
 "/.well-known/brski/requestvoucher".

 The pledge voucher-request Content-Type is as follows.

 application/voucher-cms+json: [RFC8366] defines a "YANG-defined JSON
 document that has been signed using a Cryptographic Message Syntax
 (CMS) structure", and the voucher-request described in Section 3
 is created in the same way. The media type is the same as defined
 in [RFC8366]. This is also used for the pledge voucher-request.
 The pledge MUST sign the request using the credentials in
 Section 2.3.

 Registrar implementations SHOULD anticipate future media types but,
 of course, will simply fail the request if those types are not yet
 known.

 The pledge SHOULD include an "Accept" header field (see [RFC7231],
 Section 5.3.2) indicating the acceptable media type for the voucher
 response. The "application/voucher-cms+json" media type is defined
 in [RFC8366], but constrained voucher formats are expected in the
 future. Registrars and MASA are expected to be flexible in what they
 accept.

 The pledge populates the voucher-request fields as follows:

 created-on: Pledges that have a real-time clock are RECOMMENDED to
 populate this field with the current date and time in yang:date-
 and-time format. This provides additional information to the
 MASA. Pledges that have no real-time clocks MAY omit this field.

 nonce: The pledge voucher-request MUST contain a cryptographically
 strong random or pseudo-random number nonce (see [RFC4086],
 Section 6.2). As the nonce is usually generated very early in the
 boot sequence, there is a concern that the same nonce might be
 generated across multiple boots, or after a factory reset.
 Different nonces MUST be generated for each bootstrapping attempt,
 whether in series or concurrently. The freshness of this nonce
 mitigates against the lack of a real-time clock as explained in
 Section 2.6.1.

 assertion: The pledge indicates support for the mechanism described
 in this document, by putting the value "proximity" in the voucher-
 request, and MUST include the proximity-registrar-cert field
 (below).

 proximity-registrar-cert: In a pledge voucher-request, this is the
 first certificate in the TLS server "certificate_list" sequence
 (see [RFC8446], Section 4.4.2) presented by the registrar to the
 pledge. That is, it is the end-entity certificate. This MUST be
 populated in a pledge voucher-request.

 serial-number: The serial number of the pledge is included in the
 voucher-request from the pledge. This value is included as a
 sanity check only, but it is not to be forwarded by the registrar
 as described in Section 5.5.

 All other fields MAY be omitted in the pledge voucher-request.

 See an example JSON payload of a pledge voucher-request in
 Section 3.3, Example 1.

 The registrar confirms that the assertion is "proximity" and that
 pinned proximity-registrar-cert is the registrar’s certificate. If
 this validation fails, then there is an on-path attacker (MITM), and
 the connection MUST be closed after the returning of an HTTP 401
 error code.

5.3. Registrar Authorization of Pledge

 In a fully automated network, all devices must be securely identified
 and authorized to join the domain.

 A registrar accepts or declines a request to join the domain, based
 on the authenticated identity presented. For different networks,
 examples of automated acceptance may include the allowance of:

 * any device of a specific type (as determined by the X.509 IDevID),

 * any device from a specific vendor (as determined by the X.509
 IDevID),

 * a specific device from a vendor (as determined by the X.509
 IDevID) against a domain acceptlist. (The mechanism for checking
 a shared acceptlist potentially used by multiple registrars is out
 of scope.)

 If validation fails, the registrar SHOULD respond with the HTTP 404
 error code. If the voucher-request is in an unknown format, then an
 HTTP 406 error code is more appropriate. A situation that could be
 resolved with administrative action (such as adding a vendor to an
 acceptlist) MAY be responded to with a 403 HTTP error code.

 If authorization is successful, the registrar obtains a voucher from
 the MASA service (see Section 5.5) and returns that MASA-signed
 voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS Establishment Details

 The BRSKI-MASA TLS connection is a "normal" TLS connection
 appropriate for HTTPS REST interfaces. The registrar initiates the
 connection and uses the MASA URL that is obtained as described in
 Section 2.8. The mechanisms in [RFC6125] SHOULD be used in
 authentication of the MASA using a DNS-ID that matches that which is
 found in the IDevID. Registrars MAY include a mechanism to override
 the MASA URL on a manufacturer-by-manufacturer basis, and within that
 override, it is appropriate to provide alternate anchors. This will
 typically be used by some vendors to establish explicit (or private)
 trust anchors for validating their MASA that is part of a sales
 channel integration.

 Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is

 REQUIRED. TLS 1.3 (or newer) SHOULD be available.

 As described in [RFC7030], the MASA and the registrars SHOULD be
 prepared to support TLS Client Certificate authentication and/or HTTP
 Basic, Digest, or Salted Challenge Response Authentication Mechanism
 (SCRAM) authentication. This connection MAY also have no client
 authentication at all.

 Registrars SHOULD permit trust anchors to be preconfigured on a per-
 vendor (MASA) basis. Registrars SHOULD include the ability to
 configure a TLS Client Certificate on a per-MASA basis, or to use no
 Client Certificate. Registrars SHOULD also permit HTTP Basic and
 Digest authentication to be configured.

 The authentication of the BRSKI-MASA connection does not change the
 voucher-request process, as voucher-requests are already signed by
 the registrar. Instead, this authentication provides access control
 to the audit-log as described in Section 5.8.

 Implementers are advised that contacting the MASA establishes a
 secured API connection with a web service, and that there are a
 number of authentication models being explored within the industry.
 Registrars are RECOMMENDED to fail gracefully and generate useful
 administrative notifications or logs in the advent of unexpected HTTP
 401 (Unauthorized) responses from the MASA.

5.4.1. MASA Authentication of Customer Registrar

 Providing per-customer options requires the customer’s registrar to
 be uniquely identified. This can be done by any stateless method
 that HTTPS supports such as HTTP Basic or Digest authentication (that
 is using a password), but the use of TLS Client Certificate
 authentication is RECOMMENDED.

 Stateful methods involving API tokens, or HTTP Cookies, are not
 recommended.

 It is expected that the setup and configuration of per-customer
 Client Certificates is done as part of a sales ordering process.

 The use of public PKI (i.e., WebPKI) end-entity certificates to
 identify the registrar is reasonable, and if done universally, this
 would permit a MASA to identify a customer’s registrar simply by a
 Fully Qualified Domain Name (FQDN).

 The use of DANE records in DNSSEC-signed zones would also permit use
 of a FQDN to identify customer registrars.

 A third (and simplest, but least flexible) mechanism would be for the
 MASA to simply store the registrar’s certificate pinned in a
 database.

 A MASA without any supply-chain integration can simply accept
 registrars without any authentication or on a blind TOFU basis as
 described in Section 7.4.2.

 This document does not make a specific recommendation on how the MASA
 authenticates the registrar as there are likely different tradeoffs
 in different environments and product values. Even within the ANIMA
 ACP applicability, there is a significant difference between supply-
 chain logistics for $100 CPE devices and $100,000 core routers.

5.5. Registrar Requests Voucher from MASA

 When a registrar receives a pledge voucher-request, it in turn
 submits a registrar voucher-request to the MASA service via an HTTPS
 interface [RFC7231].

 This is done with an HTTP POST using the operation path value of
 "/.well-known/brski/requestvoucher".

 The voucher media type "application/voucher-cms+json" is defined in
 [RFC8366] and is also used for the registrar voucher-request. It is
 a JSON document that has been signed using a CMS structure. The
 registrar MUST sign the registrar voucher-request.

 MASA implementations SHOULD anticipate future media ntypes but, of
 course, will simply fail the request if those types are not yet
 known.

 The voucher-request CMS object includes some number of certificates
 that are input to the MASA as it populates the pinned-domain-cert.
 As [RFC8366] is quite flexible in what may be put into the pinned-
 domain-cert, the MASA needs some signal as to what certificate would
 be effective to populate the field with: it may range from the end-
 entity certificate that the registrar uses to the entire private
 Enterprise CA certificate. More-specific certificates result in a
 tighter binding of the voucher to the domain, while less-specific
 certificates result in more flexibility in how the domain is
 represented by certificates.

 A registrar that is seeking a nonceless voucher for later offline use
 benefits from a less-specific certificate, as it permits the actual
 key pair used by a future registrar to be determined by the pinned
 CA.

 In some cases, a less-specific certificate, such as a public WebPKI
 CA, could be too open and could permit any entity issued a
 certificate by that authority to assume ownership of a device that
 has a voucher pinned. Future work may provide a solution to pin both
 a certificate and a name that would reduce such risk of malicious
 ownership assertions.

 The registrar SHOULD request a voucher with the most specificity
 consistent with the mode that it is operating in. In order to do
 this, when the registrar prepares the CMS structure for the signed
 voucher-request, it SHOULD include only certificates that are a part
 of the chain that it wishes the MASA to pin. This MAY be as small as
 only the end-entity certificate (with id-kp-cmcRA set) that it uses
 as its TLS server certificate, or it MAY be the entire chain,
 including the domain CA.

 The registrar SHOULD include an "Accept" header field (see [RFC7231],
 Section 5.3.2) indicating the response media types that are
 acceptable. This list SHOULD be the entire list presented to the
 registrar in the pledge’s original request (see Section 5.2), but it
 MAY be a subset. The MASA is expected to be flexible in what it
 accepts.

 The registrar populates the voucher-request fields as follows:

 created-on: The registrar SHOULD populate this field with the
 current date and time when the voucher-request is formed. This
 field provides additional information to the MASA.

 nonce: This value, if present, is copied from the pledge voucher-
 request. The registrar voucher-request MAY omit the nonce as per
 Section 3.1.

 serial-number: The serial number of the pledge the registrar would
 like a voucher for. The registrar determines this value by
 parsing the authenticated pledge IDevID certificate; see
 Section 2.3. The registrar MUST verify that the serial-number
 field it parsed matches the serial-number field the pledge
 provided in its voucher-request. This provides a sanity check
 useful for detecting error conditions and logging. The registrar
 MUST NOT simply copy the serial-number field from a pledge
 voucher-request as that field is claimed but not certified.

 idevid-issuer: The Issuer value from the pledge IDevID certificate
 is included to ensure unique interpretation of the serial-number.
 In the case of a nonceless (offline) voucher-request, an

 appropriate value needs to be configured from the same out-of-band
 source as the serial-number.

 prior-signed-voucher-request: The signed pledge voucher-request
 SHOULD be included in the registrar voucher-request. The entire
 CMS-signed structure is to be included and base64 encoded for
 transport in the JSON structure.

 A nonceless registrar voucher-request MAY be submitted to the MASA.
 Doing so allows the registrar to request a voucher when the pledge is
 offline, or when the registrar anticipates not being able to connect
 to the MASA while the pledge is being deployed. Some use cases
 require the registrar to learn the appropriate IDevID serialNumber
 field and appropriate "Accept" header field values from the physical
 device labeling or from the sales channel (which is out of scope for
 this document).

 All other fields MAY be omitted in the registrar voucher-request.

 The proximity-registrar-cert field MUST NOT be present in the
 registrar voucher-request.

 See example JSON payloads of registrar voucher-requests in
 Section 3.3, Examples 2 through 4.

 The MASA verifies that the registrar voucher-request is internally
 consistent but does not necessarily authenticate the registrar
 certificate since the registrar MAY be unknown to the MASA in
 advance. The MASA performs the actions and validation checks
 described in the following subsections before issuing a voucher.

5.5.1. MASA Renewal of Expired Vouchers

 As described in [RFC8366], vouchers are normally short lived to avoid
 revocation issues. If the request is for a previous (expired)
 voucher using the same registrar (that is, a registrar with the same
 domain CA), then the request for a renewed voucher SHOULD be
 automatically authorized. The MASA has sufficient information to
 determine this by examining the request, the registrar
 authentication, and the existing audit-log. The issuance of a
 renewed voucher is logged as detailed in Section 5.6.

 To inform the MASA that existing vouchers are not to be renewed, one
 can update or revoke the registrar credentials used to authorize the
 request (see Sections 5.5.4 and 5.5.3). More flexible methods will
 likely involve sales channel integration and authorizations (details
 are out of scope of this document).

5.5.2. MASA Pinning of Registrar

 A certificate chain is extracted from the registrar’s signed CMS
 container. This chain may be as short as a single end-entity
 certificate, up to the entire registrar certificate chain, including
 the domain CA certificate, as specified in Section 5.5.

 If the domain’s CA is unknown to the MASA, then it is considered a
 temporary trust anchor for the rest of the steps in this section.
 The intention is not to authenticate the message as having come from
 a fully validated origin but to establish the consistency of the
 domain PKI.

 The MASA MAY use the certificate in the chain that is farthest from
 the end-entity certificate of the registrar, as determined by MASA
 policy. A MASA MAY have a local policy in which it only pins the
 end-entity certificate. This is consistent with [RFC8366]. Details
 of the policy will typically depend upon the degree of supply-chain
 integration and the mechanism used by the registrar to authenticate.
 Such a policy would also determine how the MASA will respond to a
 request for a nonceless voucher.

5.5.3. MASA Check of the Voucher-Request Signature

 As described in Section 5.5.2, the MASA has extracted the registrar’s
 domain CA. This is used to validate the CMS signature [RFC5652] on
 the voucher-request.

 Normal PKIX revocation checking is assumed during voucher-request
 signature validation. This CA certificate MAY have Certificate
 Revocation List (CRL) distribution points or Online Certificate
 Status Protocol (OCSP) information [RFC6960]. If they are present,
 the MASA MUST be able to reach the relevant servers belonging to the
 registrar’s domain CA to perform the revocation checks.

 The use of OCSP Stapling is preferred.

5.5.4. MASA Verification of the Domain Registrar

 The MASA MUST verify that the registrar voucher-request is signed by
 a registrar. This is confirmed by verifying that the id-kp-cmcRA
 extended key usage extension field (as detailed in EST [RFC7030],
 Section 3.6.1) exists in the certificate of the entity that signed
 the registrar voucher-request. This verification is only a
 consistency check to ensure that the unauthenticated domain CA
 intended the voucher-request signer to be a registrar. Performing
 this check provides value to the domain PKI by assuring the domain
 administrator that the MASA service will only respect claims from
 authorized registration authorities of the domain.

 Even when a domain CA is authenticated to the MASA, and there is
 strong sales channel integration to understand who the legitimate
 owner is, the above id-kp-cmcRA check prevents arbitrary end-entity
 certificates (such as an LDevID certificate) from having vouchers
 issued against them.

 Other cases of inappropriate voucher issuance are detected by
 examination of the audit-log.

 If a nonceless voucher-request is submitted, the MASA MUST
 authenticate the registrar either as described in EST (see Sections
 3.2.3 and 3.3.2 of [RFC7030]) or by validating the registrar’s
 certificate used to sign the registrar voucher-request using a
 configured trust anchor. Any of these methods reduce the risk of
 DDoS attacks and provide an authenticated identity as an input to
 sales channel integration and authorizations (details are out of
 scope of this document).

 In the nonced case, validation of the registrar’s identity (via TLS
 Client Certificate or HTTP authentication) MAY be omitted if the MASA
 knows that the device policy is to accept audit-only vouchers.

5.5.5. MASA Verification of the Pledge ’prior-signed-voucher-request’

 The MASA MAY verify that the registrar voucher-request includes the
 prior-signed-voucher-request field. If so, the prior-signed-voucher-
 request MUST include a proximity-registrar-cert that is consistent
 with the certificate used to sign the registrar voucher-request.
 Additionally, the voucher-request serial-number leaf MUST match the
 pledge serial-number that the MASA extracts from the signing
 certificate of the prior-signed-voucher-request. The consistency
 check described above entails checking that the proximity-registrar-
 cert Subject Public Key Info (SPKI) Fingerprint exists within the
 registrar voucher-request CMS signature’s certificate chain. This is
 substantially the same as the pin validation described in [RFC7469],
 Section 2.6.

 If these checks succeed, the MASA updates the voucher and audit-log
 assertion leafs with the "proximity" assertion, as defined by
 [RFC8366], Section 5.3.

5.5.6. MASA Nonce Handling

 The MASA does not verify the nonce itself. If the registrar voucher-

 request contains a nonce, and the prior-signed-voucher-request
 exists, then the MASA MUST verify that the nonce is consistent.
 (Recall from above that the voucher-request might not contain a
 nonce; see Sections 5.5 and 5.5.4.)

 The MASA populates the audit-log with the nonce that was verified.
 If a nonceless voucher is issued, then the audit-log is to be
 populated with the JSON value "null".

5.6. MASA and Registrar Voucher Response

 The MASA voucher response to the registrar is forwarded without
 changes to the pledge; therefore, this section applies to both the
 MASA and the registrar. The HTTP signaling described applies to both
 the MASA and registrar responses.

 When a voucher-request arrives at the registrar, if it has a cached
 response from the MASA for the corresponding registrar voucher-
 request, that cached response can be used according to local policy;
 otherwise, the registrar constructs a new registrar voucher-request
 and sends it to the MASA.

 Registrar evaluation of the voucher itself is purely for transparency
 and audit purposes to further inform log verification (see
 Section 5.8.3); therefore, a registrar could accept future voucher
 formats that are opaque to the registrar.

 If the voucher-request is successful, the server (a MASA responding
 to a registrar or a registrar responding to a pledge) response MUST
 contain an HTTP 200 response code. The server MUST answer with a
 suitable 4xx or 5xx HTTP [RFC7230] error code when a problem occurs.
 In this case, the response data from the MASA MUST be a plain text
 human-readable (UTF-8) error message containing explanatory
 information describing why the request was rejected.

 The registrar MAY respond with an HTTP 202 ("the request has been
 accepted for processing, but the processing has not been completed")
 as described in EST [RFC7030], Section 4.2.3, wherein the client
 "MUST wait at least the specified "retry-after" time before repeating
 the same request" (also see [RFC7231], Section 6.6.4). The pledge is
 RECOMMENDED to provide local feedback (blinked LED, etc.) during this
 wait cycle if mechanisms for this are available. To prevent an
 attacker registrar from significantly delaying bootstrapping, the
 pledge MUST limit the Retry-After time to 60 seconds. Ideally, the
 pledge would keep track of the appropriate Retry-After header field
 values for any number of outstanding registrars, but this would
 involve a state table on the pledge. Instead, the pledge MAY ignore
 the exact Retry-After value in favor of a single hard-coded value (a
 registrar that is unable to complete the transaction after the first
 60 seconds has another chance a minute later). A pledge SHOULD be
 willing to maintain a 202 retry-state for up to 4 days, which is
 longer than a long weekend, after which time the enrollment attempt
 fails, and the pledge returns to Discovery state. This allows time
 for an alert to get from the registrar to a human operator who can
 make a decision as to whether or not to proceed with the enrollment.

 A pledge that retries a request after receiving a 202 message MUST
 resend the same voucher-request. It MUST NOT sign a new voucher-
 request each time, and in particular, it MUST NOT change the nonce
 value.

 In order to avoid infinite redirect loops, which a malicious
 registrar might do in order to keep the pledge from discovering the
 correct registrar, the pledge MUST NOT follow more than one
 redirection (3xx code) to another web origin. EST supports
 redirection but requires user input; this change allows the pledge to
 follow a single redirection without a user interaction.

 A 403 (Forbidden) response is appropriate if the voucher-request is
 not signed correctly or is stale or if the pledge has another
 outstanding voucher that cannot be overridden.

 A 404 (Not Found) response is appropriate when the request is for a
 device that is not known to the MASA.

 A 406 (Not Acceptable) response is appropriate if a voucher of the
 desired type or that uses the desired algorithms (as indicated by the
 "Accept" header fields and algorithms used in the signature) cannot
 be issued as such because the MASA knows the pledge cannot process
 that type. The registrar SHOULD use this response if it determines
 the pledge is unacceptable due to inventory control, MASA audit-logs,
 or any other reason.

 A 415 (Unsupported Media Type) response is appropriate for a request
 that has a voucher-request or "Accept" value that is not understood.

 The voucher response format is as indicated in the submitted "Accept"
 header fields or based on the MASA’s prior understanding of proper
 format for this pledge. Only the "application/voucher-cms+json"
 media type [RFC8366] is defined at this time. The syntactic details
 of vouchers are described in detail in [RFC8366]. Figure 14 shows a
 sample of the contents of a voucher.

 {
 "ietf-voucher:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "assertion": "logged",
 "pinned-domain-cert": "base64encodedvalue==",
 "serial-number": "JADA123456789"
 }
 }

 Figure 14: An Example Voucher

 The MASA populates the voucher fields as follows:

 nonce: The nonce from the pledge if available. See Section 5.5.6.

 assertion: The method used to verify the relationship between the
 pledge and registrar. See Section 5.5.5.

 pinned-domain-cert: A certificate; see Section 5.5.2. This figure
 is illustrative; for an example, see Appendix C.2 where an end-
 entity certificate is used.

 serial-number: The serial-number as provided in the voucher-request.
 Also see Section 5.5.5.

 domain-cert-revocation-checks: Set as appropriate for the pledge’s
 capabilities and as documented in [RFC8366]. The MASA MAY set
 this field to "false" since setting it to "true" would require
 that revocation information be available to the pledge, and this
 document does not make normative requirements for [RFC6961],
 Section 4.4.2.1 of [RFC8446], or equivalent integrations.

 expires-on: This is set for nonceless vouchers. The MASA ensures
 the voucher lifetime is consistent with any revocation or pinned-
 domain-cert consistency checks the pledge might perform. See
 Section 2.6.1. There are three times to consider: (a) a
 configured voucher lifetime in the MASA, (b) the expiry time for
 the registrar’s certificate, and (c) any CRL lifetime. The
 expires-on field SHOULD be before the earliest of these three
 values. Typically, (b) will be some significant time in the
 future, but (c) will typically be short (on the order of a week or
 less). The RECOMMENDED period for (a) is on the order of 20
 minutes, so it will typically determine the life span of the
 resulting voucher. 20 minutes is sufficient time to reach the
 post-provisional state in the pledge, at which point there is an
 established trust relationship between the pledge and registrar.
 The subsequent operations can take as long as required from that
 point onwards. The lifetime of the voucher has no impact on the
 life span of the ownership relationship.

 Whenever a voucher is issued, the MASA MUST update the audit-log
 sufficiently to generate the response as described in Section 5.8.1.
 The internal state requirements to maintain the audit-log are out of
 scope.

5.6.1. Pledge Voucher Verification

 The pledge MUST verify the voucher signature using the manufacturer-
 installed trust anchor(s) associated with the manufacturer’s MASA
 (this is likely included in the pledge’s firmware). Management of
 the manufacturer-installed trust anchor(s) is out of scope of this
 document; this protocol does not update this trust anchor(s).

 The pledge MUST verify that the serial-number field of the signed
 voucher matches the pledge’s own serial-number.

 The pledge MUST verify the nonce information in the voucher. If
 present, the nonce in the voucher must match the nonce the pledge
 submitted to the registrar; vouchers with no nonce can also be
 accepted (according to local policy; see Section 7.2).

 The pledge MUST be prepared to parse and fail gracefully from a
 voucher response that does not contain a pinned-domain-cert field.
 Such a thing indicates a failure to enroll in this domain, and the
 pledge MUST attempt joining with other available Join Proxies.

 The pledge MUST be prepared to ignore additional fields that it does
 not recognize.

5.6.2. Pledge Authentication of Provisional TLS Connection

 Following the process described in [RFC8366], the pledge should
 consider the public key from the pinned-domain-cert as the sole
 temporary trust anchor.

 The pledge then evaluates the TLS server certificate chain that it
 received when the TLS connection was formed using this trust anchor.
 It is possible that the public key in the pinned-domain-cert directly
 matches the public key in the end-entity certificate provided by the
 TLS server.

 If a registrar’s credentials cannot be verified using the pinned-
 domain-cert trust anchor from the voucher, then the TLS connection is
 discarded, and the pledge abandons attempts to bootstrap with this
 discovered registrar. The pledge SHOULD send voucher status
 telemetry (described below) before closing the TLS connection. The
 pledge MUST attempt to enroll using any other proxies it has found.
 It SHOULD return to the same proxy again after unsuccessful attempts
 with other proxies. Attempts should be made at repeated intervals
 according to the back-off timer described earlier. Attempts SHOULD
 be repeated as failure may be the result of a temporary inconsistency
 (an inconsistently rolled registrar key, or some other
 misconfiguration). The inconsistency could also be the result of an
 active MITM attack on the EST connection.

 The registrar MUST use a certificate that chains to the pinned-
 domain-cert as its TLS server certificate.

 The pledge’s PKIX path validation of a registrar certificate’s
 validity period information is as described in Section 2.6.1. Once
 the PKIX path validation is successful, the TLS connection is no
 longer provisional.

 The pinned-domain-cert MAY be installed as a trust anchor for future
 operations such as enrollment (e.g., as recommended per [RFC7030]) or
 trust anchor management or raw protocols that do not need full PKI-
 based key management. It can be used to authenticate any dynamically
 discovered EST server that contains the id-kp-cmcRA extended key
 usage extension as detailed in EST (see [RFC7030], Section 3.6.1);
 but to reduce system complexity, the pledge SHOULD avoid additional

 discovery operations. Instead, the pledge SHOULD communicate
 directly with the registrar as the EST server. The pinned-domain-
 cert is not a complete distribution of the CA certificate response,
 as described in [RFC7030], Section 4.1.3, which is an additional
 justification for the recommendation to proceed with EST key
 management operations. Once a full CA certificate response is
 obtained, it is more authoritative for the domain than the limited
 pinned-domain-cert response.

5.7. Pledge BRSKI Status Telemetry

 The domain is expected to provide indications to the system
 administrators concerning device life-cycle status. To facilitate
 this, it needs telemetry information concerning the device’s status.

 The pledge MUST indicate its pledge status regarding the voucher. It
 does this by sending a status message to the registrar.

 The posted data media type: application/json

 The client sends an HTTP POST to the server at the URI ".well-
 known/brski/voucher_status".

 The format and semantics described below are for version 1. A
 version field is included to permit significant changes to this
 feedback in the future. A registrar that receives a status message
 with a version larger than it knows about SHOULD log the contents and
 alert a human.

 The status field indicates if the voucher was acceptable. Boolean
 values are acceptable, where "true" indicates the voucher was
 acceptable.

 If the voucher was not acceptable, the Reason string indicates why.
 In a failure case, this message may be sent to an unauthenticated,
 potentially malicious registrar; therefore, the Reason string SHOULD
 NOT provide information beneficial to an attacker. The operational
 benefit of this telemetry information is balanced against the
 operational costs of not recording that a voucher was ignored by a
 client that the registrar expected was going to continue joining the
 domain.

 The reason-context attribute is an arbitrary JSON object (literal
 value or hash of values) that provides additional information
 specific to this pledge. The contents of this field are not subject
 to standardization.

 The version and status fields MUST be present. The Reason field
 SHOULD be present whenever the status field is false. The Reason-
 Context field is optional. In the case of a SUCCESS, the Reason
 string MAY be omitted.

 The keys to this JSON object are case sensitive and MUST be
 lowercase. Figure 16 shows an example JSON.

 <CODE BEGINS> file "voucherstatus.cddl"
 voucherstatus-post = {
 "version": uint,
 "status": bool,
 ? "reason": text,
 ? "reason-context" : { $$arbitrary-map }
 }
 }
 <CODE ENDS>

 Figure 15: CDDL for Voucher Status POST

 {
 "version": 1,
 "status":false,
 "reason":"Informative human-readable message",

 "reason-context": { "additional" : "JSON" }
 }

 Figure 16: Example Status Telemetry

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error. The client ignores any response. The server
 SHOULD capture this telemetry information within the server logs.

 Additional standard JSON fields in this POST MAY be added; see
 Section 8.5. A server that sees unknown fields should log them, but
 otherwise ignore them.

5.8. Registrar Audit-Log Request

 After receiving the pledge status telemetry (see Section 5.7), the
 registrar SHOULD request the MASA audit-log from the MASA service.

 This is done with an HTTP POST using the operation path value of
 "/.well-known/brski/requestauditlog".

 The registrar SHOULD HTTP POST the same registrar voucher-request as
 it did when requesting a voucher (using the same Content-Type). It
 is posted to the /requestauditlog URI instead. The idevid-issuer and
 serial-number informs the MASA which log is requested, so the
 appropriate log can be prepared for the response. Using the same
 media type and message minimizes cryptographic and message
 operations, although it results in additional network traffic. The
 relying MASA implementation MAY leverage internal state to associate
 this request with the original, and by now already validated,
 voucher-request so as to avoid an extra crypto validation.

 A registrar MAY request logs at future times. If the registrar
 generates a new request, then the MASA is forced to perform the
 additional cryptographic operations to verify the new request.

 A MASA that receives a request for a device that does not exist, or
 for which the requesting owner was never an owner, returns an HTTP
 404 ("Not found") code.

 It is reasonable for a registrar, that the MASA does not believe to
 be the current owner, to request the audit-log. There are probably
 reasons for this, which are hard to predict in advance. For
 instance, such a registrar may not be aware that the device has been
 resold; it may be that the device has been resold inappropriately,
 and this is how the original owner will learn of the occurrence. It
 is also possible that the device legitimately spends time in two
 different networks.

 Rather than returning the audit-log as a response to the POST (with a
 return code 200), the MASA MAY instead return a 201 ("Created")
 response ([RFC7231], Sections 6.3.2 and 7.1), with the URL to the
 prepared (and idempotent, therefore cachable) audit response in the
 "Location" header field.

 In order to avoid enumeration of device audit-logs, a MASA that
 returns URLs SHOULD take care to make the returned URL unguessable.
 [W3C.capability-urls] provides very good additional guidance. For
 instance, rather than returning URLs containing a database number
 such as https://example.com/auditlog/1234 or the Extended Unique
 Identifier (EUI) of the device such https://example.com/
 auditlog/10-00-00-11-22-33, the MASA SHOULD return a randomly
 generated value (a "slug" in web parlance). The value is used to
 find the relevant database entry.

 A MASA that returns a code 200 MAY also include a "Location" header
 for future reference by the registrar.

5.8.1. MASA Audit-Log Response

 A log data file is returned consisting of all log entries associated

 with the device selected by the IDevID presented in the request. The
 audit-log may be abridged by removal of old or repeated values as
 explained below. The returned data is in JSON format [RFC8259], and
 the Content-Type SHOULD be "application/json".

 The following CDDL [RFC8610] explains the structure of the JSON
 format audit-log response:

 <CODE BEGINS> file "auditlog.cddl"
 audit-log-response = {
 "version": uint,
 "events": [+ event]
 "truncation": {
 ? "nonced duplicates": uint,
 ? "nonceless duplicates": uint,
 ? "arbitrary": uint,
 }
 }

 event = {
 "date": text,
 "domainID": text,
 "nonce": text / null,
 "assertion": "verified" / "logged" / "proximity",
 ? "truncated": uint,
 }
 <CODE ENDS>

 Figure 17: CDDL for Audit-Log Response

 An example:

 {
 "version":"1",
 "events":[
 {
 "date":"2019-05-15T17:25:55.644-04:00",
 "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
 "nonce":"VOUFT-WwrEv0NuAQEHoV7Q",
 "assertion":"proximity",
 "truncated":"0"
 },
 {
 "date":"2017-05-15T17:25:55.644-04:00",
 "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
 "nonce":"f4G6Vi1t8nKo/FieCVgpBg==",
 "assertion":"proximity"
 }
],
 "truncation": {
 "nonced duplicates": "0",
 "nonceless duplicates": "1",
 "arbitrary": "2"
 }
 }

 Figure 18: Example of an Audit-Log Response

 The domainID is a binary SubjectKeyIdentifier value calculated
 according to Section 5.8.2. It is encoded once in base64 in order to
 be transported in this JSON container.

 The date is formatted per [RFC3339], which is consistent with typical
 JavaScript usage of JSON.

 The truncation structure MAY be omitted if all values are zero. Any
 counter missing from the truncation structure is assumed to be zero.

 The nonce is a string, as provided in the voucher-request, and is
 used in the voucher. If no nonce was placed in the resulting
 voucher, then a value of null SHOULD be used in preference to

 omitting the entry. While the nonce is often created as a
 base64-encoded random series of bytes, this should not be assumed.

 Distribution of a large log is less than ideal. This structure can
 be optimized as follows: nonced or nonceless entries for the same
 domainID MAY be abridged from the log leaving only the single most
 recent nonced or nonceless entry for that domainID. In the case of
 truncation, the "event" truncation value SHOULD contain a count of
 the number of events for this domainID that were omitted. The log
 SHOULD NOT be further reduced, but an operational situation could
 exist where maintaining the full log is not possible. In such
 situations, the log MAY be arbitrarily abridged for length, with the
 number of removed entries indicated as "arbitrary".

 If the truncation count exceeds 1024, then the MASA MAY use this
 value without further incrementing it.

 A log where duplicate entries for the same domain have been omitted
 ("nonced duplicates" and/or "nonceless duplicates") could still be
 acceptable for informed decisions. A log that has had "arbitrary"
 truncations is less acceptable, but manufacturer transparency is
 better than hidden truncations.

 A registrar that sees a version value greater than 1 indicates an
 audit-log format that has been enhanced with additional information.
 No information will be removed in future versions; should an
 incompatible change be desired in the future, then a new HTTP
 endpoint will be used.

 This document specifies a simple log format as provided by the MASA
 service to the registrar. This format could be improved by
 distributed consensus technologies that integrate vouchers with
 technologies such as block-chain or hash trees or optimized logging
 approaches. Doing so is out of the scope of this document but is an
 anticipated improvement for future work. As such, the registrar
 SHOULD anticipate new kinds of responses and SHOULD provide operator
 controls to indicate how to process unknown responses.

5.8.2. Calculation of domainID

 The domainID is a binary value (a BIT STRING) that uniquely
 identifies a registrar by the pinned-domain-cert.

 If the pinned-domain-cert certificate includes the
 SubjectKeyIdentifier ([RFC5280], Section 4.2.1.2), then it is used as
 the domainID. If not, the SPKI Fingerprint as described in
 [RFC7469], Section 2.4 is used. This value needs to be calculated by
 both the MASA (to populate the audit-log) and the registrar (to
 recognize itself in the audit-log).

 [RFC5280], Section 4.2.1.2 does not mandate that the
 SubjectKeyIdentifier extension be present in non-CA certificates. It
 is RECOMMENDED that registrar certificates (even if self-signed)
 always include the SubjectKeyIdentifier to be used as a domainID.

 The domainID is determined from the certificate chain associated with
 the pinned-domain-cert and is used to update the audit-log.

5.8.3. Registrar Audit-Log Verification

 Each time the MASA issues a voucher, it appends details of the
 assignment to an internal audit-log for that device. The internal
 audit-log is processed when responding to requests for details as
 described in Section 5.8. The contents of the audit-log can express
 a variety of trust levels, and this section explains what kind of
 trust a registrar can derive from the entries.

 While the audit-log provides a list of vouchers that were issued by
 the MASA, the vouchers are issued in response to voucher-requests,
 and it is the content of the voucher-requests that determines how
 meaningful the audit-log entries are.

 A registrar SHOULD use the log information to make an informed
 decision regarding the continued bootstrapping of the pledge. The
 exact policy is out of scope of this document as it depends on the
 security requirements within the registrar domain. Equipment that is
 purchased preowned can be expected to have an extensive history. The
 following discussion is provided to help explain the value of each
 log element:

 date: The date field provides the registrar an opportunity to divide
 the log around known events such as the purchase date. Depending
 on the context known to the registrar or administrator, events
 before/after certain dates can have different levels of
 importance. For example, for equipment that is expected to be
 new, and thus has no history, it would be a surprise to find prior
 entries.

 domainID: If the log includes an unexpected domainID, then the
 pledge could have imprinted on an unexpected domain. The
 registrar can be expected to use a variety of techniques to define
 "unexpected" ranging from acceptlists of prior domains to anomaly
 detection (e.g., "this device was previously bound to a different
 domain than any other device deployed"). Log entries can also be
 compared against local history logs in search of discrepancies
 (e.g., "this device was re-deployed some number of times
 internally, but the external audit-log shows additional re-
 deployments our internal logs are unaware of").

 nonce: Nonceless entries mean the logged domainID could
 theoretically trigger a reset of the pledge and then take over
 management by using the existing nonceless voucher.

 assertion: The assertion leaf in the voucher and audit-log indicates
 why the MASA issued the voucher. A "verified" entry means that
 the MASA issued the associated voucher as a result of positive
 verification of ownership. However, this entry does not indicate
 whether or not the pledge was actually deployed in the prior
 domain. A "logged" assertion informs the registrar that the prior
 vouchers were issued with minimal verification. A "proximity"
 assertion assures the registrar that the pledge was truly
 communicating with the prior domain and thus provides assurance
 that the prior domain really has deployed the pledge.

 A relatively simple policy is to acceptlist known (internal or
 external) domainIDs and require all vouchers to have a nonce. An
 alternative is to require that all nonceless vouchers be from a
 subset (e.g., only internal) of domainIDs. If the policy is
 violated, a simple action is to revoke any locally issued credentials
 for the pledge in question or to refuse to forward the voucher. The
 registrar MUST then refuse any EST actions and SHOULD inform a human
 via a log. A registrar MAY be configured to ignore (i.e., override
 the above policy) the history of the device, but it is RECOMMENDED
 that this only be configured if hardware-assisted (i.e., Transport
 Performance Metrics (TPM) anchored) Network Endpoint Assessment (NEA)
 [RFC5209] is supported.

5.9. EST Integration for PKI Bootstrapping

 The pledge SHOULD follow the BRSKI operations with EST enrollment
 operations including "CA Certificates Request", "CSR Attributes
 Request", and "Client Certificate Request" or "Server-Side Key
 Generation", etc. This is a relatively seamless integration since
 BRSKI API calls provide an automated alternative to the manual
 bootstrapping method described in [RFC7030]. As noted above, use of
 HTTP-persistent connections simplifies the pledge state machine.

 Although EST allows clients to obtain multiple certificates by
 sending multiple Certificate Signing Requests (CSRs), BRSKI does not
 support this mechanism directly. This is because BRSKI pledges MUST
 use the CSR Attributes request ([RFC7030], Section 4.5). The
 registrar MUST validate the CSR against the expected attributes.

 This implies that client requests will "look the same" and therefore
 result in a single logical certificate being issued even if the
 client were to make multiple requests. Registrars MAY contain more
 complex logic, but doing so is out of scope of this specification.
 BRSKI does not signal any enhancement or restriction to this
 capability.

5.9.1. EST Distribution of CA Certificates

 The pledge SHOULD request the full EST Distribution of CA certificate
 messages; see [RFC7030], Section 4.1.

 This ensures that the pledge has the complete set of current CA
 certificates beyond the pinned-domain-cert (see Section 5.6.2 for a
 discussion of the limitations inherent in having a single certificate
 instead of a full CA certificate response). Although these
 limitations are acceptable during initial bootstrapping, they are not
 appropriate for ongoing PKIX end-entity certificate validation.

5.9.2. EST CSR Attributes

 Automated bootstrapping occurs without local administrative
 configuration of the pledge. In some deployments, it is plausible
 that the pledge generates a certificate request containing only
 identity information known to the pledge (essentially the X.509
 IDevID information) and ultimately receives a certificate containing
 domain-specific identity information. Conceptually, the CA has
 complete control over all fields issued in the end-entity
 certificate. Realistically, this is operationally difficult with the
 current status of PKI CA deployments, where the CSR is submitted to
 the CA via a number of non-standard protocols. Even with all
 standardized protocols used, it could operationally be problematic to
 expect that service-specific certificate fields can be created by a
 CA that is likely operated by a group that has no insight into
 different network services/protocols used. For example, the CA could
 even be outsourced.

 To alleviate these operational difficulties, the pledge MUST request
 the EST "CSR Attributes" from the EST server, and the EST server
 needs to be able to reply with the attributes necessary for use of
 the certificate in its intended protocols/services. This approach
 allows for minimal CA integrations, and instead, the local
 infrastructure (EST server) informs the pledge of the proper fields
 to include in the generated CSR (such as rfc822Name). This approach
 is beneficial to automated bootstrapping in the widest number of
 environments.

 In networks using the BRSKI enrolled certificate to authenticate the
 ACP, the EST CSR Attributes MUST include the ACP domain information
 fields defined in [RFC8994], Section 6.2.2.

 The registrar MUST also confirm that the resulting CSR is formatted
 as indicated before forwarding the request to a CA. If the registrar
 is communicating with the CA using a protocol such as full
 Certificate Management over CMS (CMC), which provides mechanisms to
 override the CSR Attributes, then these mechanisms MAY be used even
 if the client ignores the guidance for the CSR Attributes.

5.9.3. EST Client Certificate Request

 The pledge MUST request a new Client Certificate; see [RFC7030],
 Section 4.2.

5.9.4. Enrollment Status Telemetry

 For automated bootstrapping of devices, the administrative elements
 that provide bootstrapping also provide indications to the system
 administrators concerning device life-cycle status. This might
 include information concerning attempted bootstrapping messages seen
 by the client. The MASA provides logs and the status of credential
 enrollment. Since an end user is assumed per [RFC7030], a final

 success indication back to the server is not included. This is
 insufficient for automated use cases.

 The client MUST send an indicator to the registrar about its
 enrollment status. It does this by using an HTTP POST of a JSON
 dictionary with the attributes described below to the new EST
 endpoint at "/.well-known/brski/enrollstatus".

 When indicating a successful enrollment, the client SHOULD first re-
 establish the EST TLS session using the newly obtained credentials.
 TLS 1.3 supports doing this in-band, but TLS 1.2 does not. The
 client SHOULD therefore always close the existing TLS connection and
 start a new one, using the same Join Proxy.

 In the case of a failed enrollment, the client MUST send the
 telemetry information over the same TLS connection that was used for
 the enrollment attempt, with a Reason string indicating why the most
 recent enrollment failed. (For failed attempts, the TLS connection
 is the most reliable way to correlate server-side information with
 what the client provides.)

 The version and status fields MUST be present. The Reason field
 SHOULD be present whenever the status field is false. In the case of
 a SUCCESS, the Reason string MAY be omitted.

 The reason-context attribute is an arbitrary JSON object (literal
 value or hash of values) that provides additional information
 specific to the failure to unroll from this pledge. The contents of
 this field are not subject to standardization. This is represented
 by the group-socket "$$arbitrary-map" in the CDDL.

 <CODE BEGINS> file "enrollstatus.cddl"
 enrollstatus-post = {
 "version": uint,
 "status": bool,
 ? "reason": text,
 ? "reason-context" : { $$arbitrary-map }
 }
 }
 <CODE ENDS>

 Figure 19: CDDL for Enrollment Status POST

 An example status report can be seen below. It is sent with the
 media type: application/json

 {
 "version": 1,
 "status":true,
 "reason":"Informative human readable message",
 "reason-context": { "additional" : "JSON" }
 }

 Figure 20: Example of Enrollment Status POST

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error.

 Within the server logs, the server MUST capture if this message was
 received over a TLS session with a matching Client Certificate.

5.9.5. Multiple Certificates

 Pledges that require multiple certificates could establish direct EST
 connections to the registrar.

5.9.6. EST over CoAP

 This document describes extensions to EST for the purpose of
 bootstrapping remote key infrastructures. Bootstrapping is relevant
 for CoAP enrollment discussions as well. The definition of EST and

 BRSKI over CoAP is not discussed within this document beyond ensuring
 proxy support for CoAP operations. Instead, it is anticipated that a
 definition of CoAP mappings will occur in subsequent documents such
 as [ACE-COAP-EST] and that CoAP mappings for BRSKI will be discussed
 either there or in future work.

6. Clarification of Transfer-Encoding

 [RFC7030] defines endpoints to include a "Content-Transfer-Encoding"
 heading and payloads to be base64-encoded DER [RFC4648].

 When used within BRSKI, the original EST endpoints remain base64
 encoded [RFC7030] (as clarified by [RFC8951]), but the new BRSKI
 endpoints that send and receive binary artifacts (specifically,
 "/.well-known/brski/requestvoucher") are binary. That is, no
 encoding is used.

 In the BRSKI context, the EST "Content-Transfer-Encoding" header
 field SHOULD be ignored if present. This header field does not need
 to be included.

7. Reduced Security Operational Modes

 A common requirement of bootstrapping is to support less secure
 operational modes for support-specific use cases. This section
 suggests a range of mechanisms that would alter the security
 assurance of BRSKI to accommodate alternative deployment
 architectures and mitigate life-cycle management issues identified in
 Section 10. They are presented here as informative (non-normative)
 design guidance for future standardization activities. Section 9
 provides standardization applicability statements for the ANIMA ACP.
 Other users would expect that subsets of these mechanisms could be
 profiled with accompanying applicability statements similar to the
 one described in Section 9.

 This section is considered non-normative in the generality of the
 protocol. Use of the suggested mechanisms here MUST be detailed in
 specific profiles of BRSKI, such as in Section 9.

7.1. Trust Model

 This section explains the trust relationships detailed in
 Section 2.4:

 +--------+ +---------+ +------------+ +------------+
Pledge		Join		Domain		Manufacturer
		Proxy		Registrar		Service
						(Internet)
 +--------+ +---------+ +------------+ +------------+

 Figure 21: Elements of BRSKI Trust Model

 Pledge: The pledge could be compromised and provide an attack vector
 for malware. The entity is trusted to only imprint using secure
 methods described in this document. Additional endpoint
 assessment techniques are RECOMMENDED but are out of scope of this
 document.

 Join Proxy: Provides proxy functionalities but is not involved in
 security considerations.

 Registrar: When interacting with a MASA, a registrar makes all
 decisions. For Ownership Audit Vouchers (see [RFC8366]), the
 registrar is provided an opportunity to accept MASA decisions.

 Vendor Service, MASA: This form of manufacturer service is trusted
 to accurately log all claim attempts and to provide authoritative
 log information to registrars. The MASA does not know which
 devices are associated with which domains. These claims could be
 strengthened by using cryptographic log techniques to provide
 append only, cryptographic assured, publicly auditable logs.

 Vendor Service, Ownership Validation: This form of manufacturer
 service is trusted to accurately know which device is owned by
 which domain.

7.2. Pledge Security Reductions

 The following is a list of alternative behaviors that the pledge can
 be programmed to implement. These behaviors are not mutually
 exclusive, nor are they dependent upon each other. Some of these
 methods enable offline and emergency (touch-based) deployment use
 cases. Normative language is used as these behaviors are referenced
 in later sections in a normative fashion.

 1. The pledge MUST accept nonceless vouchers. This allows for a use
 case where the registrar cannot connect to the MASA at the
 deployment time. Logging and validity periods address the
 security considerations of supporting these use cases.

 2. Many devices already support "trust on first use" for physical
 interfaces such as console ports. This document does not change
 that reality. Devices supporting this protocol MUST NOT support
 "trust on first use" on network interfaces. This is because
 "trust on first use" over network interfaces would undermine the
 logging based security protections provided by this
 specification.

 3. The pledge MAY have an operational mode where it skips voucher
 validation one time, for example, if a physical button is
 depressed during the bootstrapping operation. This can be useful
 if the manufacturer service is unavailable. This behavior SHOULD
 be available via local configuration or physical presence methods
 (such as use of a serial/craft console) to ensure new entities
 can always be deployed even when autonomic methods fail. This
 allows for unsecured imprint.

 4. A craft/serial console could include a command such as "est-
 enroll [2001:db8:0:1]:443" that begins the EST process from the
 point after the voucher is validated. This process SHOULD
 include server certificate verification using an on-screen
 fingerprint.

 It is RECOMMENDED that "trust on first use" or any method of skipping
 voucher validation (including use of a craft serial console) only be
 available if hardware-assisted Network Endpoint Assessment (NEA)
 [RFC5209] is supported. This recommendation ensures that domain
 network monitoring can detect inappropriate use of offline or
 emergency deployment procedures when voucher-based bootstrapping is
 not used.

7.3. Registrar Security Reductions

 A registrar can choose to accept devices using less secure methods.
 They MUST NOT be the default behavior. These methods may be
 acceptable in situations where threat models indicate that low
 security is adequate. This includes situations where security
 decisions are being made by the local administrator:

 1. A registrar MAY choose to accept all devices, or all devices of a
 particular type. The administrator could make this choice in
 cases where it is operationally difficult to configure the
 registrar with the unique identifier of each new device expected.

 2. A registrar MAY choose to accept devices that claim a unique
 identity without the benefit of authenticating that claimed
 identity. This could occur when the pledge does not include an
 X.509 IDevID factory-installed credential. New entities without
 an X.509 IDevID credential MAY form the request per Section 5.2
 using the format per Section 5.5 to ensure the pledge’s serial
 number information is provided to the registrar (this includes
 the IDevID AuthorityKeyIdentifier value, which would be

 statically configured on the pledge). The pledge MAY refuse to
 provide a TLS Client Certificate (as one is not available). The
 pledge SHOULD support HTTP-based or certificate-less TLS
 authentication as described in EST [RFC7030], Section 3.3.2. A
 registrar MUST NOT accept unauthenticated new entities unless it
 has been configured to do so by an administrator that has
 verified that only expected new entities can communicate with a
 registrar (presumably via a physically secured perimeter.)

 3. A registrar MAY submit a nonceless voucher-request to the MASA
 service (by not including a nonce in the voucher-request). The
 resulting vouchers can then be stored by the registrar until they
 are needed during bootstrapping operations. This is for use
 cases where the target network is protected by an air gap and
 therefore cannot contact the MASA service during pledge
 deployment.

 4. A registrar MAY ignore unrecognized nonceless log entries. This
 could occur when used equipment is purchased with a valid history
 of being deployed in air gap networks that required offline
 vouchers.

 5. A registrar MAY accept voucher formats of future types that
 cannot be parsed by the registrar. This reduces the registrar’s
 visibility into the exact voucher contents but does not change
 the protocol operations.

7.4. MASA Security Reductions

 Lower security modes chosen by the MASA service affect all device
 deployments unless the lower security behavior is tied to specific
 device identities. The modes described below can be applied to
 specific devices via knowledge of what devices were sold. They can
 also be bound to specific customers (independent of the device
 identity) by authenticating the customer’s registrar.

7.4.1. Issuing Nonceless Vouchers

 A MASA has the option of not including a nonce in the voucher and/or
 not requiring one to be present in the voucher-request. This results
 in distribution of a voucher that may never expire and, in effect,
 makes the specified domain an always trusted entity to the pledge
 during any subsequent bootstrapping attempts. The log information
 captures when a nonceless voucher is issued so that the registrar can
 make appropriate security decisions when a pledge joins the domain.
 Nonceless vouchers are useful to support use cases where registrars
 might not be online during actual device deployment.

 While a nonceless voucher may include an expiry date, a typical use
 for a nonceless voucher is for it to be long lived. If the device
 can be trusted to have an accurate clock (the MASA will know), then a
 nonceless voucher CAN be issued with a limited lifetime.

 A more typical case for a nonceless voucher is for use with offline
 onboarding scenarios where it is not possible to pass a fresh
 voucher-request to the MASA. The use of a long-lived voucher also
 eliminates concern about the availability of the MASA many years in
 the future. Thus, many nonceless vouchers will have no expiry dates.

 Thus, the long-lived nonceless voucher does not require proof that
 the device is online. Issuing such a thing is only accepted when the
 registrar is authenticated by the MASA and the MASA is authorized to
 provide this functionality to this customer. The MASA is RECOMMENDED
 to use this functionality only in concert with an enhanced level of
 ownership tracking, the details of which are out of scope for this
 document.

 If the pledge device is known to have a real-time clock that is set
 from the factory, use of a voucher validity period is RECOMMENDED.

7.4.2. Trusting Owners on First Use

 A MASA has the option of not verifying ownership before responding
 with a voucher. This is expected to be a common operational model
 because doing so relieves the manufacturer providing MASA services
 from having to track ownership during shipping and throughout the
 supply chain, and it allows for a very low overhead MASA service. A
 registrar uses the audit-log information as an in-depth defense
 strategy to ensure that this does not occur unexpectedly (for
 example, when purchasing new equipment, the registrar would throw an
 error if any audit-log information is reported). The MASA SHOULD
 verify the prior-signed-voucher-request information for pledges that
 support that functionality. This provides a proof-of-proximity check
 that reduces the need for ownership verification. The proof-of-
 proximity comes from the assumption that the pledge and Join Proxy
 are on the same link-local connection.

 A MASA that practices TOFU for registrar identity may wish to
 annotate the origin of the connection by IP address or netblock and
 restrict future use of that identity from other locations. A MASA
 that does this SHOULD take care to not create nuisance situations for
 itself when a customer has multiple registrars or uses outgoing IPv4-
 to-IPv4 NAT (NAT44) connections that change frequently.

7.4.3. Updating or Extending Voucher Trust Anchors

 This section deals with two problems: A MASA that is no longer
 available due to a failed business and a MASA that is uncooperative
 to a secondary sale.

 A manufacturer could offer a management mechanism that allows the
 list of voucher verification trust anchors to be extended.
 [YANG-KEYSTORE] describes one such interface that could be
 implemented using YANG. Pretty much any configuration mechanism used
 today could be extended to provide the needed additional update. A
 manufacturer could even decide to install the domain CA trust anchors
 received during the EST "cacerts" step as voucher verification
 anchors. Some additional signals will be needed to clearly identify
 which keys have voucher validation authority from among those signed
 by the domain CA. This is future work.

 With the above change to the list of anchors, vouchers can be issued
 by an alternate MASA. This could be the previous owner (the seller)
 or some other trusted third party who is mediating the sale. If it
 is a third party, the seller would need to take steps to introduce
 the third-party configuration to the device prior to disconnection.
 The third party (e.g., a wholesaler of used equipment) could,
 however, use a mechanism described in Section 7.2 to take control of
 the device after receiving it physically. This would permit the
 third party to act as the MASA for future onboarding actions. As the
 IDevID certificate probably cannot be replaced, the new owner’s
 registrar would have to support an override of the MASA URL.

 To be useful for resale or other transfers of ownership, one of two
 situations will need to occur. The simplest is that the device is
 not put through any kind of factory default/reset before going
 through onboarding again. Some other secure, physical signal would
 be needed to initiate it. This is most suitable for redeploying a
 device within the same enterprise. This would entail having previous
 configuration in the system until entirely replaced by the new owner,
 and it represents some level of risk.

 For the second scenario, there would need to be two levels of factory
 reset. One would take the system back entirely to manufacturer
 state, including removing any added trust anchors, and the other
 (more commonly used) one would just restore the configuration back to
 a known default without erasing trust anchors. This weaker factory
 reset might leave valuable credentials on the device, and this may be
 unacceptable to some owners.

 As a third option, the manufacturer’s trust anchors could be entirely
 overwritten with local trust anchors. A factory default would never

 restore those anchors. This option comes with a lot of power but is
 also a lot of responsibility: if access to the private part of the
 new anchors are lost, the manufacturer may be unable to help.

8. IANA Considerations

 Per this document, IANA has completed the following actions.

8.1. The IETF XML Registry

 This document registers a URI in the "IETF XML Registry" [RFC3688].
 IANA has registered the following:

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher-request
 Registrant Contact: The ANIMA WG of the IETF.
 XML: N/A; the requested URI is an XML namespace.

8.2. YANG Module Names Registry

 This document registers a YANG module in the "YANG Module Names"
 registry [RFC6020]. IANA has registered the following:

 Name: ietf-voucher-request
 Namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-request
 Prefix: vch
 Reference: RFC 8995

8.3. BRSKI Well-Known Considerations

8.3.1. BRSKI .well-known Registration

 To the "Well-Known URIs" registry at
 https://www.iana.org/assignments/well-known-uris/, this document
 registers the well-known name "brski" with the following filled-in
 template from [RFC8615]:

 URI Suffix: brski
 Change Controller: IETF

 IANA has changed the registration of "est" to now only include
 [RFC7030] and no longer this document. Earlier draft versions of
 this document used "/.well-known/est" rather than "/.well-known/
 brski".

8.3.2. BRSKI .well-known Registry

 IANA has created a new registry entitled: "BRSKI Well-Known URIs".
 The registry has three columns: URI, Description, and Reference. New
 items can be added using the Specification Required [RFC8126]
 process. The initial contents of this registry are:

 +=================+==========================+===========+
 | URI | Description | Reference |
 +=================+==========================+===========+
 | requestvoucher | pledge to registrar, and | RFC 8995 |
 | | from registrar to MASA | |
 +-----------------+--------------------------+-----------+
 | voucher_status | pledge to registrar | RFC 8995 |
 +-----------------+--------------------------+-----------+
 | requestauditlog | registrar to MASA | RFC 8995 |
 +-----------------+--------------------------+-----------+
 | enrollstatus | pledge to registrar | RFC 8995 |
 +-----------------+--------------------------+-----------+

 Table 1: BRSKI Well-Known URIs

8.4. PKIX Registry

 IANA has registered the following:

 a number for id-mod-MASAURLExtn2016(96) from the pkix(7) id-mod(0)

 Registry.

 IANA has assigned a number from the id-pe registry (Structure of
 Management Information (SMI) Security for PKIX Certificate Extension)
 for id-pe-masa-url with the value 32, resulting in an OID of
 1.3.6.1.5.5.7.1.32.

8.5. Pledge BRSKI Status Telemetry

 IANA has created a new registry entitled "BRSKI Parameters" and has
 created, within that registry, a table called: "Pledge BRSKI Status
 Telemetry Attributes". New items can be added using the
 Specification Required process. The following items are in the
 initial registration, with this document (see Section 5.7) as the
 reference:

 * version

 * Status

 * Reason

 * reason-context

8.6. DNS Service Names

 IANA has registered the following service names:

 Service Name: brski-proxy
 Transport Protocol(s): tcp
 Assignee: IESG <iesg@ietf.org>
 Contact: IESG <iesg@ietf.org>
 Description: The Bootstrapping Remote Secure Key Infrastructure
 Proxy
 Reference: RFC 8995

 Service Name: brski-registrar
 Transport Protocol(s): tcp
 Assignee: IESG <iesg@ietf.org>
 Contact: IESG <iesg@ietf.org>
 Description: The Bootstrapping Remote Secure Key Infrastructure
 Registrar
 Reference: RFC 8995

8.7. GRASP Objective Names

 IANA has registered the following GRASP Objective Names:

 IANA has registered the value "AN_Proxy" (without quotes) to the
 "GRASP Objective Names" table in the GRASP Parameter registry. The
 specification for this value is Section 4.1.1 of this document.

 The IANA has registered the value "AN_join_registrar" (without
 quotes) to the "GRASP Objective Names" table in the GRASP Parameter
 registry. The specification for this value is Section 4.3 of this
 document.

9. Applicability to the Autonomic Control Plane (ACP)

 This document provides a solution to the requirements for secure
 bootstrapping as defined in "Using an Autonomic Control Plane for
 Stable Connectivity of Network Operations, Administration, and
 Maintenance (OAM)" [RFC8368], "A Reference Model for Autonomic
 Networking" [RFC8993], and specifically "An Autonomic Control Plane
 (ACP)" [RFC8994]; see Sections 3.2 ("Secure Bootstrap over an
 Unconfigured Network") and 6.2 ("ACP Domain, Certificate, and
 Network").

 The protocol described in this document has appeal in a number of
 other non-ANIMA use cases. Such uses of the protocol will be
 deployed into other environments with different tradeoffs of privacy,

 security, reliability, and autonomy from manufacturers. As such,
 those use cases will need to provide their own applicability
 statements and will need to address unique privacy and security
 considerations for the environments in which they are used.

 The ACP that is bootstrapped by the BRSKI protocol is typically used
 in medium to large Internet service provider organizations.
 Equivalent enterprises that have significant Layer 3 router
 connectivity also will find significant benefit, particularly if the
 enterprise has many sites. (A network consisting of primarily Layer
 2 is not excluded, but the adjacencies that the ACP will create and
 maintain will not reflect the topology until all devices participate
 in the ACP.)

 In the ACP, the Join Proxy is found to be proximal because
 communication between the pledge and the Join Proxy is exclusively on
 IPv6 link-local addresses. The proximity of the Join Proxy to the
 registrar is validated by the registrar using ANI ACP IPv6 ULAs.
 ULAs are not routable over the Internet, so as long as the Join Proxy
 is operating correctly, the proximity assertion is satisfied. Other
 uses of BRSKI will need similar analysis if they use proximity
 assertions.

 As specified in the ANIMA charter, this work "focuses on
 professionally-managed networks." Such a network has an operator and
 can do things like install, configure, and operate the registrar
 function. The operator makes purchasing decisions and is aware of
 what manufacturers it expects to see on its network.

 Such an operator is also capable of performing bootstrapping of a
 device using a serial console (craft console). The zero-touch
 mechanism presented in this and the ACP document [RFC8994] represents
 a significant efficiency: in particular, it reduces the need to put
 senior experts on airplanes to configure devices in person.

 As the technology evolves, there is recognition that not every
 situation may work out, and occasionally a human may still have to
 visit. Given this, some mechanisms are presented in Section 7.2.
 The manufacturer MUST provide at least one of the one-touch
 mechanisms described that permit enrollment to proceed without the
 availability of any manufacturer server (such as the MASA).

 The BRSKI protocol is going into environments where there have
 already been quite a number of vendor proprietary management systems.
 Those are not expected to go away quickly but rather to leverage the
 secure credentials that are provisioned by BRSKI. The connectivity
 requirements of the said management systems are provided by the ACP.

9.1. Operational Requirements

 This section collects operational requirements based upon the three
 roles involved in BRSKI: the MASA, the (domain) owner, and the
 device. It should be recognized that the manufacturer may be
 involved in two roles, as it creates the software/firmware for the
 device and may also be the operator of the MASA.

 The requirements in this section are presented using BCP 14 language
 [RFC2119] [RFC8174]. These do not represent new normative
 statements, just a review of a few such things in one place by role.
 They also apply specifically to the ANIMA ACP use case. Other use
 cases likely have similar, but MAY have different, requirements.

9.1.1. MASA Operational Requirements

 The manufacturer MUST arrange for an online service called the MASA
 to be available. It MUST be available at the URL that is encoded in
 the IDevID certificate extensions described in Section 2.3.2.

 The online service MUST have access to a private key with which to
 sign voucher artifacts [RFC8366]. The public key, certificate, or
 certificate chain MUST be built into the device as part of the

 firmware.

 It is RECOMMENDED that the manufacturer arrange for this signing key
 (or keys) to be escrowed according to typical software source code
 escrow practices [softwareescrow].

 The MASA accepts voucher-requests from domain owners according to an
 operational practice appropriate for the device. This can range from
 any domain owner (first-come first-served, on a TOFU-like basis), to
 full sales channel integration where domain owners need to be
 positively identified by TLS pinned Client Certificates or an HTTP
 authentication process. The MASA creates signed voucher artifacts
 according to its internally defined policies.

 The MASA MUST operate an audit-log for devices that is accessible.
 The audit-log is designed to be easily cacheable, and the MASA MAY
 find it useful to put this content on a Content Delivery Network
 (CDN).

9.1.2. Domain Owner Operational Requirements

 The domain owner MUST operate an EST [RFC7030] server with the
 extensions described in this document. This is the JRC or registrar.
 This JRC/EST server MUST announce itself using GRASP within the ACP.
 This EST server will typically reside with the Network Operations
 Center for the organization.

 The domain owner MAY operate an internal CA that is separate from the
 EST server, or it MAY combine all activities into a single device.
 The determination of the architecture depends upon the scale and
 resiliency requirements of the organization. Multiple JRC instances
 MAY be announced into the ACP from multiple locations to achieve an
 appropriate level of redundancy.

 In order to recognize which devices and which manufacturers are
 welcome on the domain owner’s network, the domain owner SHOULD
 maintain an acceptlist of manufacturers. This MAY extend to
 integration with purchasing departments to know the serial numbers of
 devices.

 The domain owner SHOULD use the resulting overlay ACP network to
 manage devices, replacing legacy out-of-band mechanisms.

 The domain owner SHOULD operate one or more EST servers that can be
 used to renew the domain certificates (LDevIDs), which are deployed
 to devices. These servers MAY be the same as the JRC or MAY be a
 distinct set of devices, as appropriate for resiliency.

 The organization MUST take appropriate precautions against loss of
 access to the CA private key. Hardware security modules and/or
 secret splitting are appropriate.

9.1.3. Device Operational Requirements

 Devices MUST come with built-in trust anchors that permit the device
 to validate vouchers from the MASA.

 Devices MUST come with (unique, per-device) IDevID certificates that
 include their serial numbers and the MASA URL extension.

 Devices are expected to find Join Proxies using GRASP, and then
 connect to the JRC using the protocol described in this document.

 Once a domain owner has been validated with the voucher, devices are
 expected to enroll into the domain using EST. Devices are then
 expected to form ACPs using IPsec over IPv6 link-local addresses as
 described in [RFC8994].

 Once a device has been enrolled, it SHOULD listen for the address of
 the JRC using GRASP, and it SHOULD enable itself as a Join Proxy and
 announce itself on all links/interfaces using GRASP DULL.

 Devices are expected to renew their certificates before they expire.

10. Privacy Considerations

10.1. MASA Audit-Log

 The MASA audit-log includes the domainID for each domain a voucher
 has been issued to. This information is closely related to the
 actual domain identity. A MASA may need additional defenses against
 Denial-of-Service attacks (Section 11.1), and this may involve
 collecting additional (unspecified here) information. This could
 provide sufficient information for the MASA service to build a
 detailed understanding of the devices that have been provisioned
 within a domain.

 There are a number of design choices that mitigate this risk. The
 domain can maintain some privacy since it has not necessarily been
 authenticated and is not authoritatively bound to the supply chain.

 Additionally, the domainID captures only the unauthenticated subject
 key identifier of the domain. A privacy-sensitive domain could
 theoretically generate a new domainID for each device being deployed.
 Similarly, a privacy-sensitive domain would likely purchase devices
 that support proximity assertions from a manufacturer that does not
 require sales channel integrations. This would result in a
 significant level of privacy while maintaining the security
 characteristics provided by the registrar-based audit-log inspection.

10.2. What BRSKI-EST Reveals

 During the provisional phase of the BRSKI-EST connection between the
 pledge and the registrar, each party reveals its certificates to each
 other. For the pledge, this includes the serialNumber attribute, the
 MASA URL, and the identity that signed the IDevID certificate.

 TLS 1.2 reveals the certificate identities to on-path observers,
 including the Join Proxy.

 TLS 1.3 reveals the certificate identities only to the end parties,
 but as the connection is provisional; an on-path attacker (MITM) can
 see the certificates. This includes not just malicious attackers but
 also registrars that are visible to the pledge but are not part of
 the intended domain.

 The certificate of the registrar is rather arbitrary from the point
 of view of the BRSKI protocol. As no validations [RFC6125] are
 expected to be done, the contents could be easily pseudonymized. Any
 device that can see a Join Proxy would be able to connect to the
 registrar and learn the identity of the network in question. Even if
 the contents of the certificate are pseudonymized, it would be
 possible to correlate different connections in different locations
 that belong to the same entity. This is unlikely to present a
 significant privacy concern to ANIMA ACP uses of BRSKI, but it may be
 a concern to other users of BRSKI.

 The certificate of the pledge could be revealed by a malicious Join
 Proxy that performed a MITM attack on the provisional TLS connection.
 Such an attacker would be able to reveal the identity of the pledge
 to third parties if it chose to do so.

 Research into a mechanism to do multistep, multiparty authenticated
 key agreement, incorporating some kind of zero-knowledge proof, would
 be valuable. Such a mechanism would ideally avoid disclosing
 identities until the pledge, registrar, and MASA agree to the
 transaction. Such a mechanism would need to discover the location of
 the MASA without knowing the identity of the pledge or the identity
 of the MASA. This part of the problem may be unsolvable.

10.3. What BRSKI-MASA Reveals to the Manufacturer

 With consumer-oriented devices, the "call-home" mechanism in IoT
 devices raises significant privacy concerns. See [livingwithIoT] and
 [IoTstrangeThings] for exemplars. The ACP usage of BRSKI is not
 targeted at individual usage of IoT devices but rather at the
 enterprise and ISP creation of networks in a zero-touch fashion where
 the "call-home" represents a different class of privacy and life-
 cycle management concerns.

 It needs to be reiterated that the BRSKI-MASA mechanism only occurs
 once during the commissioning of the device. It is well defined, and
 although encrypted with TLS, it could in theory be made auditable as
 the contents are well defined. This connection does not occur when
 the device powers on or is restarted for normal routines. (It is
 conceivable, but remarkably unusual, that a device could be forced to
 go through a full factory reset during an exceptional firmware update
 situation, after which enrollment would have to be repeated, and a
 new connection would occur.)

 The BRSKI call-home mechanism is mediated via the owner’s registrar,
 and the information that is transmitted is directly auditable by the
 device owner. This is in stark contrast to many "call-home"
 protocols where the device autonomously calls home and uses an
 undocumented protocol.

 While the contents of the signed part of the pledge voucher-request
 cannot be changed, they are not encrypted at the registrar. The
 ability to audit the messages by the owner of the network is a
 mechanism to defend against exfiltration of data by a nefarious
 pledge. Both are, to reiterate, encrypted by TLS while in transit.

 The BRSKI-MASA exchange reveals the following information to the
 manufacturer:

 * the identity of the device being enrolled. This is revealed by
 transmission of a signed voucher-request containing the serial-
 number. The manufacturer can usually link the serial number to a
 device model.

 * an identity of the domain owner in the form of the domain trust
 anchor. However, this is not a global PKI-anchored name within
 the WebPKI, so this identity could be pseudonymous. If there is
 sales channel integration, then the MASA will have authenticated
 the domain owner, via either a pinned certificate or perhaps
 another HTTP authentication method, as per Section 5.5.4.

 * the time the device is activated.

 * the IP address of the domain owner’s registrar. For ISPs and
 enterprises, the IP address provides very clear geolocation of the
 owner. No amount of IP address privacy extensions [RFC8981] can
 do anything about this, as a simple whois lookup likely identifies
 the ISP or enterprise from the upper bits anyway. A passive
 attacker who observes the connection definitely may conclude that
 the given enterprise/ISP is a customer of the particular equipment
 vendor. The precise model that is being enrolled will remain
 private.

 Based upon the above information, the manufacturer is able to track a
 specific device from pseudonymous domain identity to the next
 pseudonymous domain identity. If there is sales-channel integration,
 then the identities are not pseudonymous.

 The manufacturer knows the IP address of the registrar, but it cannot
 see the IP address of the device itself. The manufacturer cannot
 track the device to a detailed physical or network location, only to
 the location of the registrar. That is likely to be at the
 enterprise or ISP’s headquarters.

 The above situation is to be distinguished from a residential/
 individual person who registers a device from a manufacturer.
 Individuals do not tend to have multiple offices, and their registrar

 is likely on the same network as the device. A manufacturer that
 sells switching/routing products to enterprises should hardly be
 surprised if additional purchases of switching/routing products are
 made. Deviations from a historical trend or an established baseline
 would, however, be notable.

 The situation is not improved by the enterprise/ISP using
 anonymization services such as Tor [Dingledine], as a TLS 1.2
 connection will reveal the ClientCertificate used, clearly
 identifying the enterprise/ISP involved. TLS 1.3 is better in this
 regard, but an active attacker can still discover the parties
 involved by performing a MITM attack on the first attempt (breaking/
 killing it with a TCP reset (RST)), and then letting subsequent
 connection pass through.

 A manufacturer could attempt to mix the BRSKI-MASA traffic in with
 general traffic on their site by hosting the MASA behind the same
 (set) of load balancers that the company’s normal marketing site is
 hosted behind. This makes a lot of sense from a straight capacity
 planning point of view as the same set of services (and the same set
 of Distributed Denial-of-Service mitigations) may be used.
 Unfortunately, as the BRSKI-MASA connections include TLS
 ClientCertificate exchanges, this may easily be observed in TLS 1.2,
 and a traffic analysis may reveal it even in TLS 1.3. This does not
 make such a plan irrelevant. There may be other organizational
 reasons to keep the marketing site (which is often subject to
 frequent redesigns, outsourcing, etc.) separate from the MASA, which
 may need to operate reliably for decades.

10.4. Manufacturers and Used or Stolen Equipment

 As explained above, the manufacturer receives information each time a
 device that is in factory-default mode does a zero-touch bootstrap
 and attempts to enroll into a domain owner’s registrar.

 The manufacturer is therefore in a position to decline to issue a
 voucher if it detects that the new owner is not the same as the
 previous owner.

 1. This can be seen as a feature if the equipment is believed to
 have been stolen. If the legitimate owner notifies the
 manufacturer of the theft, then when the new owner brings the
 device up, if they use the zero-touch mechanism, the new
 (illegitimate) owner reveals their location and identity.

 2. In the case of used equipment, the initial owner could inform the
 manufacturer of the sale, or the manufacturer may just permit
 resales unless told otherwise. In which case, the transfer of
 ownership simply occurs.

 3. A manufacturer could, however, decide not to issue a new voucher
 in response to a transfer of ownership. This is essentially the
 same as the stolen case, with the manufacturer having decided
 that the sale was not legitimate.

 4. There is a fourth case, if the manufacturer is providing
 protection against stolen devices. The manufacturer then has a
 responsibility to protect the legitimate owner against fraudulent
 claims that the equipment was stolen. In the absence of such
 manufacturer protection, such a claim would cause the
 manufacturer to refuse to issue a new voucher. Should the device
 go through a deep factory reset (for instance, replacement of a
 damaged main board component), the device would not bootstrap.

 5. Finally, there is a fifth case: the manufacturer has decided to
 end-of-line the device, or the owner has not paid a yearly
 support amount, and the manufacturer refuses to issue new
 vouchers at that point. This last case is not new to the
 industry: many license systems are already deployed that have a
 significantly worse effect.

 This section has outlined five situations in which a manufacturer
 could use the voucher system to enforce what are clearly license
 terms. A manufacturer that attempted to enforce license terms via
 vouchers would find it rather ineffective as the terms would only be
 enforced when the device is enrolled, and this is not (to repeat) a
 daily or even monthly occurrence.

10.5. Manufacturers and Grey Market Equipment

 Manufacturers of devices often sell different products into different
 regional markets. Which product is available in which market can be
 driven by price differentials, support issues (some markets may
 require manuals and tech support to be done in the local language),
 and government export regulation (such as whether strong crypto is
 permitted to be exported or permitted to be used in a particular
 market). When a domain owner obtains a device from a different
 market (they can be new) and transfers it to a different location,
 this is called a Grey Market.

 A manufacturer could decide not to issue a voucher to an enterprise/
 ISP based upon their location. There are a number of ways that this
 could be determined: from the geolocation of the registrar, from
 sales channel knowledge about the customer, and from what products
 are available or unavailable in that market. If the device has a
 GPS, the coordinates of the device could even be placed into an
 extension of the voucher.

 The above actions are not illegal, and not new. Many manufacturers
 have shipped crypto-weak (exportable) versions of firmware as the
 default on equipment for decades. The first task of an enterprise/
 ISP has always been to login to a manufacturer system, show one’s
 "entitlement" (country information, proof that support payments have
 been made), and receive either a new updated firmware or a license
 key that will activate the correct firmware.

 BRSKI permits the above process to be automated (in an autonomic
 fashion) and therefore perhaps encourages this kind of
 differentiation by reducing the cost of doing it.

 An issue that manufacturers will need to deal with in the above
 automated process is when a device is shipped to one country with one
 set of rules (or laws or entitlements), but the domain registry is in
 another one. Which rules apply is something that will have to be
 worked out: the manufacturer could believe they are dealing with Grey
 Market equipment when they are simply dealing with a global
 enterprise.

10.6. Some Mitigations for Meddling by Manufacturers

 The most obvious mitigation is not to buy the product. Pick
 manufacturers that are up front about their policies and who do not
 change them gratuitously.

 Section 7.4.3 describes some ways in which a manufacturer could
 provide a mechanism to manage the trust anchors and built-in
 certificates (IDevID) as an extension. There are a variety of
 mechanisms, and some may take a substantial amount of work to get
 exactly correct. These mechanisms do not change the flow of the
 protocol described here but rather allow the starting trust
 assumptions to be changed. This is an area for future
 standardization work.

 Replacement of the voucher validation anchors (usually pointing to
 the original manufacturer’s MASA) with those of the new owner permits
 the new owner to issue vouchers to subsequent owners. This would be
 done by having the selling (old) owner run a MASA.

 The BRSKI protocol depends upon a trust anchor and an identity on the
 device. Management of these entities facilitates a few new
 operational modes without making any changes to the BRSKI protocol.
 Those modes include: offline modes where the domain owner operates an

 internal MASA for all devices, resell modes where the first domain
 owner becomes the MASA for the next (resold-to) domain owner, and
 services where an aggregator acquires a large variety of devices and
 then acts as a pseudonymized MASA for a variety of devices from a
 variety of manufacturers.

 Although replacement of the IDevID is not required for all modes
 described above, a manufacturer could support such a thing. Some may
 wish to consider replacement of the IDevID as an indication that the
 device’s warranty is terminated. For others, the privacy
 requirements of some deployments might consider this a standard
 operating practice.

 As discussed at the end of Section 5.8.1, new work could be done to
 use a distributed consensus technology for the audit-log. This would
 permit the audit-log to continue to be useful, even when there is a
 chain of MASA due to changes of ownership.

10.7. Death of a Manufacturer

 A common concern has been that a manufacturer could go out of
 business, leaving owners of devices unable to get new vouchers for
 existing products. Said products might have been previously deployed
 but need to be reinitialized, used, or kept in a warehouse as long-
 term spares.

 The MASA was named the Manufacturer *Authorized* Signing Authority to
 emphasize that it need not be the manufacturer itself that performs
 this. It is anticipated that specialist service providers will come
 to exist that deal with the creation of vouchers in much the same way
 that many companies have outsourced email, advertising, and
 janitorial services.

 Further, it is expected that as part of any service agreement, the
 manufacturer would arrange to escrow appropriate private keys such
 that a MASA service could be provided by a third party. This has
 routinely been done for source code for decades.

11. Security Considerations

 This document details a protocol for bootstrapping that balances
 operational concerns against security concerns. As detailed in the
 introduction, and touched on again in Section 7, the protocol allows
 for reduced security modes. These attempt to deliver additional
 control to the local administrator and owner in cases where less
 security provides operational benefits. This section goes into more
 detail about a variety of specific considerations.

 To facilitate logging and administrative oversight, in addition to
 triggering registrar verification of MASA logs, the pledge reports on
 the voucher parsing status to the registrar. In the case of a
 failure, this information is informative to a potentially malicious
 registrar. This is mandated anyway because of the operational
 benefits of an informed administrator in cases where the failure is
 indicative of a problem. The registrar is RECOMMENDED to verify MASA
 logs if voucher status telemetry is not received.

 To facilitate truly limited clients, EST requires that the client
 MUST support a client authentication model (see [RFC7030],
 Section 3.3.2); Section 7 updates these requirements by stating that
 the registrar MAY choose to accept devices that fail cryptographic
 authentication. This reflects current (poor) practices in shipping
 devices without a cryptographic identity that are NOT RECOMMENDED.

 During the provisional period of the connection, the pledge MUST
 treat all HTTP header and content data as untrusted data. HTTP
 libraries are regularly exposed to non-secured HTTP traffic: mature
 libraries should not have any problems.

 Pledges might chose to engage in protocol operations with multiple
 discovered registrars in parallel. As noted above, they will only do

 so with distinct nonce values, but the end result could be multiple
 vouchers issued from the MASA if all registrars attempt to claim the
 device. This is not a failure, and the pledge chooses whichever
 voucher to accept based on internal logic. The registrars verifying
 log information will see multiple entries and take this into account
 for their analytic purposes.

11.1. Denial of Service (DoS) against MASA

 There are use cases where the MASA could be unavailable or
 uncooperative to the registrar. They include active DoS attacks,
 planned and unplanned network partitions, changes to MASA policy, or
 other instances where MASA policy rejects a claim. These introduce
 an operational risk to the registrar owner in that MASA behavior
 might limit the ability to bootstrap a pledge device. For example,
 this might be an issue during disaster recovery. This risk can be
 mitigated by registrars that request and maintain long-term copies of
 "nonceless" vouchers. In that way, they are guaranteed to be able to
 bootstrap their devices.

 The issuance of nonceless vouchers themselves creates a security
 concern. If the registrar of a previous domain can intercept
 protocol communications, then it can use a previously issued
 nonceless voucher to establish management control of a pledge device
 even after having sold it. This risk is mitigated by recording the
 issuance of such vouchers in the MASA audit-log that is verified by
 the subsequent registrar and by pledges only bootstrapping when in a
 factory default state. This reflects a balance between enabling MASA
 independence during future bootstrapping and the security of
 bootstrapping itself. Registrar control over requesting and auditing
 nonceless vouchers allows device owners to choose an appropriate
 balance.

 The MASA is exposed to DoS attacks wherein attackers claim an
 unbounded number of devices. Ensuring a registrar is representative
 of a valid manufacturer customer, even without validating ownership
 of specific pledge devices, helps to mitigate this. Pledge
 signatures on the pledge voucher-request, as forwarded by the
 registrar in the prior-signed-voucher-request field of the registrar
 voucher-request, significantly reduce this risk by ensuring the MASA
 can confirm proximity between the pledge and the registrar making the
 request. Supply-chain integration ("know your customer") is an
 additional step that MASA providers and device vendors can explore.

11.2. DomainID Must Be Resistant to Second-Preimage Attacks

 The domainID is used as the reference in the audit-log to the domain.
 The domainID is expected to be calculated by a hash that is resistant
 to a second-preimage attack. Such an attack would allow a second
 registrar to create audit-log entries that are fake.

11.3. Availability of Good Random Numbers

 The nonce used by the pledge in the voucher-request SHOULD be
 generated by a Strong Cryptographic Sequence ([RFC4086],
 Section 6.2). TLS has a similar requirement.

 In particular, implementations should pay attention to the advance in
 [RFC4086]; see Sections 3 and, in particular, 3.4. The random seed
 used by a device at boot MUST be unique across all devices and all
 bootstraps. Resetting a device to factory default state does not
 obviate this requirement.

11.4. Freshness in Voucher-Requests

 A concern has been raised that the pledge voucher-request should
 contain some content (a nonce) provided by the registrar and/or MASA
 in order for those actors to verify that the pledge voucher-request
 is fresh.

 There are a number of operational problems with getting a nonce from

 the MASA to the pledge. It is somewhat easier to collect a random
 value from the registrar, but as the registrar is not yet vouched
 for, such a registrar nonce has little value. There are privacy and
 logistical challenges to addressing these operational issues, so if
 such a thing were to be considered, it would have to provide some
 clear value. This section examines the impacts of not having a fresh
 pledge voucher-request.

 Because the registrar authenticates the pledge, a full MITM attack is
 not possible, despite the provisional TLS authentication by the
 pledge (see Section 5.) Instead, we examine the case of a fake
 registrar (Rm) that communicates with the pledge in parallel or in
 close-time proximity with the intended registrar. (This scenario is
 intentionally supported as described in Section 4.1.)

 The fake registrar (Rm) can obtain a voucher signed by the MASA
 either directly or through arbitrary intermediaries. Assuming that
 the MASA accepts the registrar voucher-request (because either the Rm
 is collaborating with a legitimate registrar according to supply-
 chain information or the MASA is in audit-log only mode), then a
 voucher linking the pledge to the registrar Rm is issued.

 Such a voucher, when passed back to the pledge, would link the pledge
 to registrar Rm and permit the pledge to end the provisional state.
 It now trusts the Rm and, if it has any security vulnerabilities
 leverageable by an Rm with full administrative control, can be
 assumed to be a threat against the intended registrar.

 This flow is mitigated by the intended registrar verifying the audit-
 logs available from the MASA as described in Section 5.8. The Rm
 might chose to collect a voucher-request but wait until after the
 intended registrar completes the authorization process before
 submitting it. This pledge voucher-request would be "stale" in that
 it has a nonce that no longer matches the internal state of the
 pledge. In order to successfully use any resulting voucher, the Rm
 would need to remove the stale nonce or anticipate the pledge’s
 future nonce state. Reducing the possibility of this is why the
 pledge is mandated to generate a strong random or pseudo-random
 number nonce.

 Additionally, in order to successfully use the resulting voucher, the
 Rm would have to attack the pledge and return it to a bootstrapping-
 enabled state. This would require wiping the pledge of current
 configuration and triggering a rebootstrapping of the pledge. This
 is no more likely than simply taking control of the pledge directly,
 but if this is a consideration, it is RECOMMENDED that the target
 network take the following steps:

 * Ongoing network monitoring for unexpected bootstrapping attempts
 by pledges.

 * Retrieval and examination of MASA log information upon the
 occurrence of any such unexpected events. The Rm will be listed
 in the logs along with nonce information for analysis.

11.5. Trusting Manufacturers

 The BRSKI extensions to EST permit a new pledge to be completely
 configured with domain-specific trust anchors. The link from built-
 in manufacturer-provided trust anchors to domain-specific trust
 anchors is mediated by the signed voucher artifact.

 If the manufacturer’s IDevID signing key is not properly validated,
 then there is a risk that the network will accept a pledge that
 should not be a member of the network. As the address of the
 manufacturer’s MASA is provided in the IDevID using the extension
 from Section 2.3, the malicious pledge will have no problem
 collaborating with its MASA to produce a completely valid voucher.

 BRSKI does not, however, fundamentally change the trust model from
 domain owner to manufacturer. Assuming that the pledge used its

 IDevID with EST [RFC7030] and BRSKI, the domain (registrar) still
 needs to trust the manufacturer.

 Establishing this trust between domain and manufacturer is outside
 the scope of BRSKI. There are a number of mechanisms that can be
 adopted including:

 * Manually configuring each manufacturer’s trust anchor.

 * A TOFU mechanism. A human would be queried upon seeing a
 manufacturer’s trust anchor for the first time, and then the trust
 anchor would be installed to the trusted store. There are risks
 with this; even if the key to name mapping is validated using
 something like the WebPKI, there remains the possibility that the
 name is a look alike: e.g., dem0.example. vs. demO.example.

 * scanning the trust anchor from a QR code that came with the
 packaging (this is really a manual TOFU mechanism).

 * some sales integration processing where trust anchors are provided
 as part of the sales process, probably included in a digital
 packing "slip", or a sales invoice.

 * consortium membership, where all manufacturers of a particular
 device category (e.g, a light bulb or a cable modem) are signed by
 a CA specifically for this. This is done by CableLabs today. It
 is used for authentication and authorization as part of
 [docsisroot] and [TR069].

 The existing WebPKI provides a reasonable anchor between manufacturer
 name and public key. It authenticates the key. It does not provide
 a reasonable authorization for the manufacturer, so it is not
 directly usable on its own.

11.6. Manufacturer Maintenance of Trust Anchors

 BRSKI depends upon the manufacturer building in trust anchors to the
 pledge device. The voucher artifact that is signed by the MASA will
 be validated by the pledge using that anchor. This implies that the
 manufacturer needs to maintain access to a signing key that the
 pledge can validate.

 The manufacturer will need to maintain the ability to make signatures
 that can be validated for the lifetime that the device could be
 onboarded. Whether this onboarding lifetime is less than the device
 lifetime depends upon how the device is used. An inventory of
 devices kept in a warehouse as spares might not be onboarded for many
 decades.

 There are good cryptographic hygiene reasons why a manufacturer would
 not want to maintain access to a private key for many decades. A
 manufacturer in that situation can leverage a long-term CA anchor,
 built-in to the pledge, and then a certificate chain may be
 incorporated using the normal CMS certificate set. This may increase
 the size of the voucher artifacts, but that is not a significant
 issue in non-constrained environments.

 There are a few other operational variations that manufacturers could
 consider. For instance, there is no reason that every device need
 have the same set of trust anchors preinstalled. Devices built in
 different factories, or on different days, or in any other
 consideration, could have different trust anchors built in, and the
 record of which batch the device is in would be recorded in the asset
 database. The manufacturer would then know which anchor to sign an
 artifact against.

 Aside from the concern about long-term access to private keys, a
 major limiting factor for the shelf life of many devices will be the
 age of the cryptographic algorithms included. A device produced in
 2019 will have hardware and software capable of validating algorithms
 common in 2019 and will have no defense against attacks (both quantum

 and von Neumann brute-force attacks) that have not yet been invented.
 This concern is orthogonal to the concern about access to private
 keys, but this concern likely dominates and limits the life span of a
 device in a warehouse. If any update to the firmware to support new
 cryptographic mechanisms were possible (while the device was in a
 warehouse), updates to trust anchors would also be done at the same
 time.

 The set of standard operating procedures for maintaining high-value
 private keys is well documented. For instance, the WebPKI provides a
 number of options for audits in [cabforumaudit], and the DNSSEC root
 operations are well documented in [dnssecroot].

 It is not clear if manufacturers will take this level of precaution,
 or how strong the economic incentives are to maintain an appropriate
 level of security.

 The next section examines the risk due to a compromised manufacturer
 IDevID signing key. This is followed by examination of the risk due
 to a compromised MASA key. The third section below examines the
 situation where a MASA web server itself is under attacker control,
 but the MASA signing key itself is safe in a not-directly connected
 hardware module.

11.6.1. Compromise of Manufacturer IDevID Signing Keys

 An attacker that has access to the key that the manufacturer uses to
 sign IDevID certificates can create counterfeit devices. Such
 devices can claim to be from a particular manufacturer but can be
 entirely different devices: Trojan horses in effect.

 As the attacker controls the MASA URL in the certificate, the
 registrar can be convinced to talk to the attacker’s MASA. The
 registrar does not need to be in any kind of promiscuous mode to be
 vulnerable.

 In addition to creating fake devices, the attacker may also be able
 to issue revocations for existing certificates if the IDevID
 certificate process relies upon CRL lists that are distributed.

 There does not otherwise seem to be any risk from this compromise to
 devices that are already deployed or that are sitting locally in
 boxes waiting for deployment (local spares). The issue is that
 operators will be unable to trust devices that have been in an
 uncontrolled warehouse as they do not know if those are real devices.

11.6.2. Compromise of MASA Signing Keys

 There are two periods of time in which to consider: when the MASA key
 has fallen into the hands of an attacker and after the MASA
 recognizes that the key has been compromised.

11.6.2.1. Attacker Opportunities with a Compromised MASA Key

 An attacker that has access to the MASA signing key could create
 vouchers. These vouchers could be for existing deployed devices or
 for devices that are still in a warehouse. In order to exploit these
 vouchers, two things need to occur: the device has to go through a
 factory default boot cycle, and the registrar has to be convinced to
 contact the attacker’s MASA.

 If the attacker controls a registrar that is visible to the device,
 then there is no difficulty in delivery of the false voucher. A
 possible practical example of an attack like this would be in a data
 center, at an ISP peering point (whether a public IX or a private
 peering point). In such a situation, there are already cables
 attached to the equipment that lead to other devices (the peers at
 the IX), and through those links, the false voucher could be
 delivered. The difficult part would be to put the device through a
 factory reset. This might be accomplished through social engineering
 of data center staff. Most locked cages have ventilation holes, and

 possibly a long "paperclip" could reach through to depress a factory
 reset button. Once such a piece of ISP equipment has been
 compromised, it could be used to compromise equipment that it was
 connected to (through long haul links even), assuming that those
 pieces of equipment could also be forced through a factory reset.

 The above scenario seems rather unlikely as it requires some element
 of physical access; but if there was a remote exploit that did not
 cause a direct breach, but rather a fault that resulted in a factory
 reset, this could provide a reasonable path.

 The above deals with ANI uses of BRSKI. For cases where IEEE 802.11
 or 802.15.4 is involved, the need to connect directly to the device
 is eliminated, but the need to do a factory reset is not. Physical
 possession of the device is not required as above, provided that
 there is some way to force a factory reset. With some consumer
 devices that have low overall implementation quality, end users might
 be familiar with the need to reset the device regularly.

 The authors are unable to come up with an attack scenario where a
 compromised voucher signature enables an attacker to introduce a
 compromised pledge into an existing operator’s network. This is the
 case because the operator controls the communication between
 registrar and MASA, and there is no opportunity to introduce the fake
 voucher through that conduit.

11.6.2.2. Risks after Key Compromise is Known

 Once the operator of the MASA realizes that the voucher signing key
 has been compromised, it has to do a few things.

 First, it MUST issue a firmware update to all devices that had that
 key as a trust anchor, such that they will no longer trust vouchers
 from that key. This will affect devices in the field that are
 operating, but those devices, being in operation, are not performing
 onboarding operations, so this is not a critical patch.

 Devices in boxes (in warehouses) are vulnerable and remain vulnerable
 until patched. An operator would be prudent to unbox the devices,
 onboard them in a safe environment, and then perform firmware
 updates. This does not have to be done by the end-operator; it could
 be done by a distributor that stores the spares. A recommended
 practice for high-value devices (which typically have a <4hr service
 window) may be to validate the device operation on a regular basis
 anyway.

 If the onboarding process includes attestations about firmware
 versions, then through that process, the operator would be advised to
 upgrade the firmware before going into production. Unfortunately,
 this does not help against situations where the attacker operates
 their own registrar (as listed above).

 The need for short-lived vouchers is explained in [RFC8366],
 Section 6.1. The nonce guarantees freshness, and the short-lived
 nature of the voucher means that the window to deliver a fake voucher
 is very short. A nonceless, long-lived voucher would be the only
 option for the attacker, and devices in the warehouse would be
 vulnerable to such a thing.

 A key operational recommendation is for manufacturers to sign
 nonceless, long-lived vouchers with a different key than what is used
 to sign short-lived vouchers. That key needs significantly better
 protection. If both keys come from a common trust-anchor (the
 manufacturer’s CA), then a compromise of the manufacturer’s CA would
 compromise both keys. Such a compromise of the manufacturer’s CA
 likely compromises all keys outlined in this section.

11.6.3. Compromise of MASA Web Service

 An attacker that takes over the MASA web service can inflict a number
 of attacks. The most obvious one is simply to take the database

 listing of customers and devices and sell the data to other attackers
 who will now know where to find potentially vulnerable devices.

 The second most obvious thing that the attacker can do is to kill the
 service, or make it operate unreliably, making customers frustrated.
 This could have a serious effect on the ability to deploy new
 services by customers and would be a significant issue during
 disaster recovery.

 While the compromise of the MASA web service may lead to the
 compromise of the MASA voucher signing key, if the signing occurs
 offboard (such as in a hardware signing module (HSM)), then the key
 may well be safe, but control over it resides with the attacker.

 Such an attacker can issue vouchers for any device presently in
 service. Said device still needs to be convinced to go through a
 factory reset process before an attack.

 If the attacker has access to a key that is trusted for long-lived
 nonceless vouchers, then they could issue vouchers for devices that
 are not yet in service. This attack may be very hard to verify as it
 would involve doing firmware updates on every device in warehouses (a
 potentially ruinously expensive process); a manufacturer might be
 reluctant to admit this possibility.

11.7. YANG Module Security Considerations

 As described in Section 7.4 (Security Considerations) of [RFC8366],
 the YANG module specified in this document defines the schema for
 data that is subsequently encapsulated by a CMS signed-data content
 type, as described in Section 5 of [RFC5652]. As such, all of the
 YANG-modeled data is protected from modification.

 The use of YANG to define data structures, via the "yang-data"
 statement, is relatively new and distinct from the traditional use of
 YANG to define an API accessed by network management protocols such
 as NETCONF [RFC6241] and RESTCONF [RFC8040]. For this reason, these
 guidelines do not follow the template described by Section 3.7 of
 [RFC8407].

12. References

12.1. Normative References

 [IDevID] IEEE, "IEEE Standard for Local and metropolitan area
 networks - Secure Device Identity", IEEE 802.1AR,
 <https://1.ieee802.org/security/802-1ar>.

 [ITU.X690] ITU-T, "Information Technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015,
 August 2015, <https://www.itu.int/rec/T-REC-X.690>.

 [REST] Fielding, R.F., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000,
 <http://www.ics.uci.edu/˜fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <https://www.rfc-editor.org/info/rfc3927>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519,
 DOI 10.17487/RFC4519, June 2006,
 <https://www.rfc-editor.org/info/rfc4519>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/info/rfc5272>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,

 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8368] Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8951] Richardson, M., Werner, T., and W. Pan, "Clarification of
 Enrollment over Secure Transport (EST): Transfer Encodings
 and ASN.1", RFC 8951, DOI 10.17487/RFC8951, November 2020,
 <https://www.rfc-editor.org/info/rfc8951>.

 [RFC8981] Gont, F., Krishnan, S., Narten, T., and R. Draves,
 "Temporary Address Extensions for Stateless Address

 Autoconfiguration in IPv6", RFC 8981,
 DOI 10.17487/RFC8981, February 2021,
 <https://www.rfc-editor.org/info/rfc8981>.

 [RFC8990] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
 Autonomic Signaling Protocol (GRASP)", RFC 8990,
 DOI 10.17487/RFC8990, May 2021,
 <https://www.rfc-editor.org/rfc/rfc8990>.

 [RFC8994] Eckert, T., Ed., Behringer, M., Ed., and S. Bjarnason, "An
 Autonomic Control Plane (ACP)", RFC 8994,
 DOI 10.17487/RFC8994, May 2021,
 <https://www.rfc-editor.org/rfc/rfc8994>.

12.2. Informative References

 [ACE-COAP-EST]
 van der Stok, P., Kampanakis, P., Richardson, M., and S.
 Raza, "EST over secure CoAP (EST-coaps)", Work in
 Progress, Internet-Draft, draft-ietf-ace-coap-est-18, 6
 January 2020,
 <https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>.

 [ANIMA-CONSTRAINED-VOUCHER]
 Richardson, M., van der Stok, P., Kampanakis, P., and E.
 Dijk, "Constrained Voucher Artifacts for Bootstrapping
 Protocols", Work in Progress, Internet-Draft, draft-ietf-
 anima-constrained-voucher-10, 21 February 2021,
 <https://tools.ietf.org/html/draft-ietf-anima-constrained-
 voucher-10>.

 [ANIMA-STATE]
 Richardson, M., "Considerations for stateful vs stateless
 join router in ANIMA bootstrap", Work in Progress,
 Internet-Draft, draft-richardson-anima-state-for-
 joinrouter-03, 22 September 2020,
 <https://tools.ietf.org/html/draft-richardson-anima-state-
 for-joinrouter-03>.

 [brewski] Urban Dictionary, "brewski", March 2003,
 <https://www.urbandictionary.com/define.php?term=brewski>.

 [cabforumaudit]
 CA/Browser Forum, "Information for Auditors and
 Assessors", August 2019, <https://cabforum.org/
 information-for-auditors-and-assessors/>.

 [Dingledine]
 Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The
 Second-Generation Onion Router", August 2004,
 <https://svn-archive.torproject.org/svn/projects/design-
 paper/tor-design.pdf>.

 [dnssecroot]
 "DNSSEC Practice Statement for the Root Zone ZSK
 Operator", December 2017,
 <https://www.iana.org/dnssec/procedures/zsk-operator/dps-
 zsk-operator-v2.1.pdf>.

 [docsisroot]
 "CableLabs Digital Certificate Issuance Service", February
 2018, <https://www.cablelabs.com/resources/digital-
 certificate-issuance-service/>.

 [imprinting]
 Wikipedia, "Imprinting (psychology)", January 2021,
 <https://en.wikipedia.org/w/
 index.php?title=Imprinting_(psychology)&=999211441>.

 [IoTstrangeThings]
 ESET, "IoT of toys stranger than fiction: Cybersecurity

 and data privacy update", March 2017,
 <https://www.welivesecurity.com/2017/03/03/internet-of-
 things-security-privacy-iot-update/>.

 [livingwithIoT]
 Silicon Republic, "What is it actually like to live in a
 house filled with IoT devices?", February 2018,
 <https://www.siliconrepublic.com/machines/iot-smart-
 devices-reality>.

 [minerva] Richardson, M., "Minerva reference implementation for
 BRSKI", 2020, <https://minerva.sandelman.ca/>.

 [minervagithub]
 "ANIMA Minerva toolkit",
 <https://github.com/ANIMAgus-minerva>.

 [openssl] OpenSSL, "OpenSSL X509 Utility", September 2019,
 <https://www.openssl.org/docs/man1.1.1/man1/openssl-
 x509.html/>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations",
 RFC 2663, DOI 10.17487/RFC2663, August 1999,
 <https://www.rfc-editor.org/info/rfc2663>.

 [RFC5209] Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J.
 Tardo, "Network Endpoint Assessment (NEA): Overview and
 Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008,
 <https://www.rfc-editor.org/info/rfc5209>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/info/rfc6961>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

 [RFC8993] Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,
 L., and J. Nobre, "A Reference Model for Autonomic
 Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,
 <https://www.rfc-editor.org/info/rfc8993>.

 [slowloris]
 Wikipedia, "Slowloris (computer security)", January 2021,
 <https://en.wikipedia.org/w/index.php?title=Slowloris_(com
 puter_security)&oldid=1001473290/>.

 [softwareescrow]
 Wikipedia, "Source code escrow", March 2020,
 <https://en.wikipedia.org/w/
 index.php?title=Source_code_escrow&oldid=948073074>.

 [Stajano99theresurrecting]
 Stajano, F. and R. Anderson, "The Resurrecting Duckling:
 Security Issues for Ad-hoc Wireless Networks", 1999,
 <https://www.cl.cam.ac.uk/˜fms27/papers/1999-StajanoAnd-
 duckling.pdf>.

 [TR069] Broadband Forum, "CPE WAN Management Protocol", TR-069,
 Issue 1, Amendment 6, March 2018, <https://www.broadband-
 forum.org/download/TR-069_Amendment-6.pdf>.

 [W3C.capability-urls]
 Tennison, J., "Good Practices for Capability URLs", W3C
 First Public Working Draft, World Wide Web Consortium WD
 WD-capability-urls-20140218, February 2014,
 <https://www.w3.org/TR/2014/WD-capability-urls>.

 [YANG-KEYSTORE]
 Watsen, K., "A YANG Data Model for a Keystore", Work in
 Progress, Internet-Draft, draft-ietf-netconf-keystore-22,
 18 May 2021, <https://tools.ietf.org/html/draft-ietf-
 netconf-keystore-22>.

Appendix A. IPv4 and Non-ANI Operations

 The specification of BRSKI in Section 4 intentionally covers only the
 mechanisms for an IPv6 pledge using link-local addresses. This
 section describes non-normative extensions that can be used in other
 environments.

A.1. IPv4 Link-Local Addresses

 Instead of an IPv6 link-local address, an IPv4 address may be
 generated using "Dynamic Configuration of IPv4 Link-Local Addresses"
 [RFC3927].

 In the case where an IPv4 link-local address is formed, the bootstrap
 process would continue, as in an IPv6 case, by looking for a
 (circuit) proxy.

A.2. Use of DHCPv4

 The pledge MAY obtain an IP address via DHCP ([RFC2131]. The DHCP-
 provided parameters for the Domain Name System can be used to perform
 DNS operations if all local discovery attempts fail.

Appendix B. mDNS / DNS-SD Proxy Discovery Options

 Pledge discovery of the proxy (Section 4.1) MAY be performed with
 DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762] to

 discover the proxy at "_brski-proxy._tcp.local.".

 Proxy discovery of the registrar (Section 4.3) MAY be performed with
 DNS-based Service Discovery over Multicast DNS to discover registrars
 by searching for the service "_brski-registrar._tcp.local.".

 To prevent unacceptable levels of network traffic, when using mDNS,
 the congestion avoidance mechanisms specified in [RFC6762], Section 7
 MUST be followed. The pledge SHOULD listen for an unsolicited
 broadcast response as described in [RFC6762]. This allows devices to
 avoid announcing their presence via mDNS broadcasts and instead
 silently join a network by watching for periodic unsolicited
 broadcast responses.

 Discovery of the registrar MAY also be performed with DNS-based
 Service Discovery by searching for the service "_brski-
 registrar._tcp.example.com". In this case, the domain "example.com"
 is discovered as described in [RFC6763], Section 11 (Appendix A.2 of
 this document suggests the use of DHCP parameters).

 If no local proxy or registrar service is located using the GRASP
 mechanisms or the above-mentioned DNS-based Service Discovery
 methods, the pledge MAY contact a well-known manufacturer-provided
 bootstrapping server by performing a DNS lookup using a well-known
 URI such as "brski-registrar.manufacturer.example.com". The details
 of the URI are manufacturer specific. Manufacturers that leverage
 this method on the pledge are responsible for providing the registrar
 service. Also see Section 2.7.

 The current DNS services returned during each query are maintained
 until bootstrapping is completed. If bootstrapping fails and the
 pledge returns to the Discovery state, it picks up where it left off
 and continues attempting bootstrapping. For example, if the first
 Multicast DNS _bootstrapks._tcp.local response doesn’t work, then the
 second and third responses are tried. If these fail, the pledge
 moves on to normal DNS-based Service Discovery.

Appendix C. Example Vouchers

 Three entities are involved in a voucher: the MASA issues (signs) it,
 the registrar’s public key is mentioned in it, and the pledge
 validates it. In order to provide reproducible examples, the public
 and private keys for an example MASA and registrar are listed first.

 The keys come from an open source reference implementation of BRSKI,
 called "Minerva" [minerva]. It is available on GitHub
 [minervagithub]. The keys presented here are used in the unit and
 integration tests. The MASA code is called "highway", the registrar
 code is called "fountain", and the example client is called "reach".

 The public key components of each are presented as base64
 certificates and are decoded by openssl’s x509 utility so that the
 extensions can be seen. This was version 1.1.1c of the library and
 utility of [openssl].

C.1. Keys Involved

 The manufacturer has a CA that signs the pledge’s IDevID. In
 addition, the Manufacturer’s signing authority (the MASA) signs the
 vouchers, and that certificate must distributed to the devices at
 manufacturing time so that vouchers can be validated.

C.1.1. Manufacturer Certification Authority for IDevID Signatures

 This private key is the CA that signs IDevID certificates:

 <CODE BEGINS> file "vendor.key"
 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDCAYkoLW1IEA5SKKhMMdkTK7sJxk5ybKqYq9Yr5aR7tNwqXyLGS7z8G
 8S4w/UJ58BqgBwYFK4EEACKhZANiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
 L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP

 juF8QkoAbT8pMrY83MS8y76wZ7AalNQ=
 -----END EC PRIVATE KEY-----
 <CODE ENDS>

 This public key validates IDevID certificates:

 file: examples/vendor.key

 <CODE BEGINS> file "vendor.cert"
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1216069925 (0x487bc125)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = highway-test.example.com CA
 Validity
 Not Before: Apr 13 20:34:24 2021 GMT
 Not After : Apr 13 20:34:24 2023 GMT
 Subject: CN = highway-test.example.com CA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (384 bit)
 pub:
 04:2e:e7:fc:a4:b4:96:c5:2e:33:02:f3:b8:7b:6f:
 ec:93:ad:e1:6e:17:c1:b0:7b:02:87:2f:89:92:d2:
 bd:1d:54:04:2e:6e:a0:d4:41:c4:eb:8e:fa:57:ad:
 70:a9:4e:88:e2:2c:2c:e0:a7:c7:f3:91:c5:03:91:
 9f:4b:0f:f3:3d:d0:b0:e2:a6:22:cd:20:e9:0f:8e:
 e1:7c:42:4a:00:6d:3f:29:32:b6:3c:dc:c4:bc:cb:
 be:b0:67:b0:1a:94:d4
 ASN1 OID: secp384r1
 NIST CURVE: P-384
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:
 8C:53:8A:08
 X509v3 Authority Key Identifier:
 keyid:5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:
 80:76:8C:53:8A:08

 Signature Algorithm: ecdsa-with-SHA256
 30:64:02:30:60:37:a0:66:89:80:27:e1:0d:e5:43:9a:62:f1:
 02:bc:0f:72:6d:a9:e9:cb:84:a5:c6:44:d3:41:9e:5d:ce:7d:
 46:16:6e:15:de:f7:cc:e8:3e:61:f9:03:7c:20:c4:b7:02:30:
 7f:e9:f3:12:bb:06:c6:24:00:2b:41:aa:21:6b:d8:25:ed:81:
 07:11:ef:66:8f:06:bf:c8:be:f0:58:74:24:45:39:4d:04:fc:
 31:69:6f:cf:db:fe:61:7b:c3:24:31:ff
 -----BEGIN CERTIFICATE-----
 MIIB3TCCAWSgAwIBAgIESHvBJTAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
 d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjAzNDI0WhcNMjMwNDEz
 MjAzNDI0WjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0Ew
 djAQBgcqhkjOPQIBBgUrgQQAIgNiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
 L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP
 juF8QkoAbT8pMrY83MS8y76wZ7AalNSjYzBhMA8GA1UdEwEB/wQFMAMBAf8wDgYD
 VR0PAQH/BAQDAgEGMB0GA1UdDgQWBBReDKlSWozfqQ8DFOmW8YB2jFOKCDAfBgNV
 HSMEGDAWgBReDKlSWozfqQ8DFOmW8YB2jFOKCDAKBggqhkjOPQQDAgNnADBkAjBg
 N6BmiYAn4Q3lQ5pi8QK8D3JtqenLhKXGRNNBnl3OfUYWbhXe98zoPmH5A3wgxLcC
 MH/p8xK7BsYkACtBqiFr2CXtgQcR72aPBr/IvvBYdCRFOU0E/DFpb8/b/mF7wyQx
 /w==
 -----END CERTIFICATE-----
 <CODE ENDS>

C.1.2. MASA Key Pair for Voucher Signatures

 The MASA is the Manufacturer Authorized Signing Authority. This key
 pair signs vouchers. An example TLS certificate (see Section 5.4)
 HTTP authentication is not provided as it is a common form.

 This private key signs the vouchers that are presented below:

 <CODE BEGINS> file "masa.key"
 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJQYJHNy8pkiLJ6CcvxMGoAoGCCqGSM49
 AwEHoUQDQgAEqgQVo0S54kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+
 gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpQ==
 -----END EC PRIVATE KEY-----
 <CODE ENDS>

 This public key validates vouchers, and it has been signed by the CA
 above:

 file: examples/masa.key

 <CODE BEGINS> file "masa.cert"
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 193399345 (0xb870a31)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = highway-test.example.com CA
 Validity
 Not Before: Apr 13 21:40:16 2021 GMT
 Not After : Apr 13 21:40:16 2023 GMT
 Subject: CN = highway-test.example.com MASA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:aa:04:15:a3:44:b9:e2:44:f8:c9:f9:1b:07:1b:
 a6:74:73:9c:1e:ba:6c:a9:b3:a9:30:a9:a2:32:59:
 f7:a0:1d:47:01:6d:b9:30:95:7e:82:a8:b8:b4:c1:
 5f:48:9d:22:13:0b:7c:92:cc:df:59:72:b8:ac:b8:
 09:4b:69:a7:a5
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:FALSE
 Signature Algorithm: ecdsa-with-SHA256
 30:66:02:31:00:ae:cb:61:2d:d4:5c:8d:6e:86:aa:0b:06:1d:
 c6:d3:60:ba:32:73:36:25:d3:23:85:49:87:1c:ce:94:23:79:
 1a:9e:41:55:24:1d:15:22:a1:48:bb:0a:c0:ab:3c:13:73:02:
 31:00:86:3c:67:b3:95:a2:e2:e5:f9:ad:f9:1d:9c:c1:34:32:
 78:f5:cf:ea:d5:47:03:9f:00:bf:d0:59:cb:51:c2:98:04:81:
 24:8a:51:13:50:b1:75:b2:2f:9d:a8:b4:f4:b9
 -----BEGIN CERTIFICATE-----
 MIIBcDCB9qADAgECAgQLhwoxMAoGCCqGSM49BAMCMCYxJDAiBgNVBAMMG2hpZ2h3
 YXktdGVzdC5leGFtcGxlLmNvbSBDQTAeFw0yMTA0MTMyMTQwMTZaFw0yMzA0MTMy
 MTQwMTZaMCgxJjAkBgNVBAMMHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBNQVNB
 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqgQVo0S54kT4yfkbBxumdHOcHrps
 qbOpMKmiMln3oB1HAW25MJV+gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpaMQMA4w
 DAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNpADBmAjEArsthLdRcjW6GqgsGHcbT
 YLoyczYl0yOFSYcczpQjeRqeQVUkHRUioUi7CsCrPBNzAjEAhjxns5Wi4uX5rfkd
 nME0Mnj1z+rVRwOfAL/QWctRwpgEgSSKURNQsXWyL52otPS5
 -----END CERTIFICATE-----
 <CODE ENDS>

C.1.3. Registrar Certification Authority

 This CA enrolls the pledge once it is authorized, and it also signs
 the registrar’s certificate.

 <CODE BEGINS> file "ownerca_secp384r1.key"
 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDCHnLI0MSOLf8XndiZqoZdqblcPR5YSoPGhPOuFxWy1gFi9HbWv8b/R
 EGdRgGEVSjKgBwYFK4EEACKhZANiAAQbf1m6F8MavGaNjGzgw/oxcQ9l9iKRvbdW
 gAfb37h6pUVNeYpGlxlZljGxj2l9Mr48yD5bY7VG9qjVb5v5wPPTuRQ/ckdRpHbd
 0vC/9cqPMAF/+MJf0/UgA0SLi/IHbLQ=

 -----END EC PRIVATE KEY-----
 <CODE ENDS>

 The public key is indicated in a pledge voucher-request to show
 proximity.

 file: examples/ownerca_secp384r1.key

 <CODE BEGINS> file "ownerca_secp384r1.cert"
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 694879833 (0x296b0659)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: DC = ca, DC = sandelman,
 CN = fountain-test.example.com Unstrung Fountain Root CA
 Validity
 Not Before: Feb 25 21:31:45 2020 GMT
 Not After : Feb 24 21:31:45 2022 GMT
 Subject: DC = ca, DC = sandelman,
 CN = fountain-test.example.com Unstrung Fountain Root CA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (384 bit)
 pub:
 04:1b:7f:59:ba:17:c3:1a:bc:66:8d:8c:6c:e0:c3:
 fa:31:71:0f:65:f6:22:91:bd:b7:56:80:07:db:df:
 b8:7a:a5:45:4d:79:8a:46:97:19:59:96:31:b1:8f:
 69:7d:32:be:3c:c8:3e:5b:63:b5:46:f6:a8:d5:6f:
 9b:f9:c0:f3:d3:b9:14:3f:72:47:51:a4:76:dd:d2:
 f0:bf:f5:ca:8f:30:01:7f:f8:c2:5f:d3:f5:20:03:
 44:8b:8b:f2:07:6c:b4
 ASN1 OID: secp384r1
 NIST CURVE: P-384
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:
 87:B3:74:26
 X509v3 Authority Key Identifier:
 keyid:B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:
 10:BC:87:B3:74:26

 Signature Algorithm: ecdsa-with-SHA256
 30:64:02:30:20:83:06:ce:8d:98:a4:54:7a:66:4c:4a:3a:70:
 c2:52:36:5a:52:8d:59:7d:20:9b:2a:69:14:58:87:38:d8:55:
 79:dd:fd:29:38:95:1e:91:93:76:b4:f5:66:29:44:b4:02:30:
 6f:38:f9:af:12:ed:30:d5:85:29:7c:b1:16:58:bd:67:91:43:
 c4:0d:30:f9:d8:1c:ac:2f:06:dd:bc:d5:06:42:2c:84:a2:04:
 ea:02:a4:5f:17:51:26:fb:d9:2f:d2:5c
 -----BEGIN CERTIFICATE-----
 MIICazCCAfKgAwIBAgIEKWsGWTAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
 GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
 YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
 Fw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0xEjAQBgoJkiaJk/IsZAEZ
 FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoGA1UEAwwzZm91bnRh
 aW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBSb290IENBMHYw
 EAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYikb23VoAH
 29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR23dLw
 v/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
 DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0j
 BBgwFoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMG
 zo2YpFR6ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBv
 OPmvEu0w1YUpfLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lw=
 -----END CERTIFICATE-----
 <CODE ENDS>

C.1.4. Registrar Key Pair

 The registrar is the representative of the domain owner. This key
 signs registrar voucher-requests and terminates the TLS connection
 from the pledge.

 <CODE BEGINS> file "jrc_prime256v1.key"
 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIFZodk+PC5Mu24+ra0sbOjKzan+dW5rvDAR7YuJUOC1YoAoGCCqGSM49
 AwEHoUQDQgAElmVQcjS6n+Xd5l/28IFv6UiegQwSBztGj5dkK2MAjQIPV8l8lH+E
 jLIOYdbJiI0VtEIf1/Jqt+TOBfinTNOLOg==
 -----END EC PRIVATE KEY-----
 <CODE ENDS>

 The public key is indicated in a pledge voucher-request to show
 proximity.

 <CODE BEGINS> file "jrc_prime256v1.cert"
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1066965842 (0x3f989b52)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: DC = ca, DC = sandelman,
 CN = fountain-test.example.com Unstrung Fountain Root CA
 Validity
 Not Before: Feb 25 21:31:54 2020 GMT
 Not After : Feb 24 21:31:54 2022 GMT
 Subject: DC = ca, DC = sandelman,
 CN = fountain-test.example.com
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:96:65:50:72:34:ba:9f:e5:dd:e6:5f:f6:f0:81:
 6f:e9:48:9e:81:0c:12:07:3b:46:8f:97:64:2b:63:
 00:8d:02:0f:57:c9:7c:94:7f:84:8c:b2:0e:61:d6:
 c9:88:8d:15:b4:42:1f:d7:f2:6a:b7:e4:ce:05:f8:
 a7:4c:d3:8b:3a
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Extended Key Usage: critical
 CMC Registration Authority
 X509v3 Key Usage: critical
 Digital Signature
 Signature Algorithm: ecdsa-with-SHA256
 30:65:02:30:66:4f:60:4c:55:48:1e:96:07:f8:dd:1f:b9:c8:
 12:8d:45:36:87:9b:23:c0:bc:bb:f1:cb:3d:26:15:56:6f:5f:
 1f:bf:d5:1c:0e:6a:09:af:1b:76:97:99:19:23:fd:7e:02:31:
 00:bc:ac:c3:41:b0:ba:0d:af:52:f9:9c:6e:7a:7f:00:1d:23:
 c8:62:01:61:bc:4b:c5:c0:47:99:35:0a:0c:77:61:44:01:4a:
 07:52:70:57:00:75:ff:be:07:0e:98:cb:e5
 -----BEGIN CERTIFICATE-----
 MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
 GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
 YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
 Fw0yMDAyMjUyMTMxNTRaFw0yMjAyMjQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZ
 FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRh
 aW4tdGVzdC5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZl
 UHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRC
 H9fyarfkzgX4p0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1Ud
 DwEB/wQEAwIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaH
 myPAvLvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAd
 I8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U=
 -----END CERTIFICATE-----
 <CODE ENDS>

C.1.5. Pledge Key Pair

 The pledge has an IDevID key pair built in at manufacturing time:

 <CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.key"
 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIBHNh6r8QRevRuo+tEmBJeFjQKf6bpFA/9NGoltv+9sNoAoGCCqGSM49
 AwEHoUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLx
 FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw==
 -----END EC PRIVATE KEY-----
 <CODE ENDS>

 The certificate is used by the registrar to find the MASA.

 <CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.cert"
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 521731815 (0x1f18fee7)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = highway-test.example.com CA
 Validity
 Not Before: Apr 27 18:29:30 2021 GMT
 Not After : Dec 31 00:00:00 2999 GMT
 Subject: serialNumber = 00-D0-E5-F2-00-02
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:03:a3:75:43:87:b3:7c:c0:0a:9a:87:9c:ad:f6:
 f4:38:13:1c:d4:0c:84:1f:e0:40:4e:41:79:f0:5b:
 13:4b:20:71:b3:44:9b:49:62:f1:16:30:ce:bb:00:
 7d:80:b1:a7:d9:3b:13:50:9b:a6:27:a5:4f:c3:96:
 7f:4c:fe:21:27
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 45:88:CC:96:96:00:64:37:B0:BA:23:65:64:64:54:08:
 06:6C:56:AD
 X509v3 Basic Constraints:
 CA:FALSE
 1.3.6.1.5.5.7.1.32:
 ..highway-test.example.com:9443
 Signature Algorithm: ecdsa-with-SHA256
 30:65:02:30:62:2a:db:be:34:f7:1b:cb:85:de:26:8e:43:00:
 f9:0d:88:c8:77:a8:dd:3c:08:40:54:bc:ec:3d:b6:dc:70:2b:
 c3:7f:ca:19:21:9a:a0:ab:c5:51:8e:aa:df:36:de:8b:02:31:
 00:b2:5d:59:f8:47:c7:ed:03:97:a8:c0:c7:a8:81:fa:a8:86:
 ed:67:64:37:51:7a:6e:9c:a3:82:4d:6d:ad:bc:f3:35:9e:9d:
 6a:a2:6d:7f:7f:25:1c:03:ef:f0:ba:9b:71
 -----BEGIN CERTIFICATE-----
 MIIBrzCCATWgAwIBAgIEHxj+5zAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
 d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwIBcNMjEwNDI3MTgyOTMwWhgPMjk5OTEy
 MzEwMDAwMDBaMBwxGjAYBgNVBAUTETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZI
 zj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsT
 SyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYE
 FEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYd
 aGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDaAAwZQIw
 YirbvjT3G8uF3iaOQwD5DYjId6jdPAhAVLzsPbbccCvDf8oZIZqgq8VRjqrfNt6L
 AjEAsl1Z+EfH7QOXqMDHqIH6qIbtZ2Q3UXpunKOCTW2tvPM1np1qom1/fyUcA+/w
 uptx
 -----END CERTIFICATE-----
 <CODE ENDS>

C.2. Example Process

 The JSON examples below are wrapped at 60 columns. This results in
 strings that have newlines in them, which makes them invalid JSON as
 is. The strings would otherwise be too long, so they need to be
 unwrapped before processing.

 For readability, the output of the asn1parse has been truncated at 68
 columns rather than wrapped.

C.2.1. Pledge to Registrar

 As described in Section 5.2, the pledge will sign a pledge voucher-
 request containing the registrar’s public key in the proximity-
 registrar-cert field. The base64 has been wrapped at 60 characters
 for presentation reasons.

 <CODE BEGINS> file "vr_00-D0-E5-F2-00-02.b64"
 MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBglghkgBZQMEAgEwggOJBgkqhkiG
 9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
 cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0Mzoy
 My43NDctMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJu
 b25jZSI6Ii1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFy
 LWNlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUVFEQWpC
 dE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZn
 bHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MFlXbHVMWFJsYzNRdVpYaGhi
 WEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5
 TURBeU1qVXlNVE14TlRSYUZ3MHlNakF5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lh
 SmsvSXNaQUVaRmdKallURVpNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJq
 RWlNQ0FHQTFVRUF3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpN
 Qk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dkNC
 YitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU5GYlJDSDlm
 eWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU1Bb0dDQ3NHQVFVRkJ3
 TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaGtqT1BRUURBZ05vQURCbEFqQm1U
 MkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteVBBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212
 RzNhWG1Sa2ovWDRDTVFDOHJNTkJzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVr
 MUNneDNZVVFCU2dkU2NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIE
 DYOv2TAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5j
 b20gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBgNVBAUM
 ETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ez
 fMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VP
 w5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQC
 MAAwKwYIKwYBBQUHASAEHxYdaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYI
 KoZIzj0EAwIDZwAwZAIwTmlG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXp
 BczfwF2kllNuujigAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjO
 J4ShqnexMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5l
 eGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJ
 KoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMjNaMC8GCSqGSIb3DQEJ
 BDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1errtoCtTAKBggqhkjOPQQDAgRH
 MEUCIQCmYuCE61HFQXH/E16GDOCsVquDtgr+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2
 vZFQAKXUbimkiHKzXBA8md0VHbU=
 <CODE ENDS>

 The ASN1 decoding of the artifact:

 file: examples/vr_00-D0-E5-F2-00-02.b64

 0:d=0 hl=4 l=1648 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
 15:d=1 hl=4 l=1633 cons: cont [0]
 19:d=2 hl=4 l=1629 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=3 hl=4 l= 905 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l= 890 cons: cont [0]
 60:d=5 hl=4 l= 886 prim: OCTET STRING :{"ietf-voucher-request:v
 950:d=3 hl=4 l= 434 cons: cont [0]
 954:d=4 hl=4 l= 430 cons: SEQUENCE
 958:d=5 hl=4 l= 309 cons: SEQUENCE
 962:d=6 hl=2 l= 3 cons: cont [0]
 964:d=7 hl=2 l= 1 prim: INTEGER :02
 967:d=6 hl=2 l= 4 prim: INTEGER :0D83AFD9
 973:d=6 hl=2 l= 10 cons: SEQUENCE
 975:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 985:d=6 hl=2 l= 38 cons: SEQUENCE
 987:d=7 hl=2 l= 36 cons: SET
 989:d=8 hl=2 l= 34 cons: SEQUENCE
 991:d=9 hl=2 l= 3 prim: OBJECT :commonName

 996:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com
 1025:d=6 hl=2 l= 32 cons: SEQUENCE
 1027:d=7 hl=2 l= 13 prim: UTCTIME :210413203739Z
 1042:d=7 hl=2 l= 15 prim: GENERALIZEDTIME :29991231000000Z
 1059:d=6 hl=2 l= 28 cons: SEQUENCE
 1061:d=7 hl=2 l= 26 cons: SET
 1063:d=8 hl=2 l= 24 cons: SEQUENCE
 1065:d=9 hl=2 l= 3 prim: OBJECT :serialNumber
 1070:d=9 hl=2 l= 17 prim: UTF8STRING :00-D0-E5-F2-00-02
 1089:d=6 hl=2 l= 89 cons: SEQUENCE
 1091:d=7 hl=2 l= 19 cons: SEQUENCE
 1093:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 1102:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 1112:d=7 hl=2 l= 66 prim: BIT STRING
 1180:d=6 hl=2 l= 89 cons: cont [3]
 1182:d=7 hl=2 l= 87 cons: SEQUENCE
 1184:d=8 hl=2 l= 29 cons: SEQUENCE
 1186:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident
 1191:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:04144588CC9696
 1215:d=8 hl=2 l= 9 cons: SEQUENCE
 1217:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 1222:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000
 1226:d=8 hl=2 l= 43 cons: SEQUENCE
 1228:d=9 hl=2 l= 8 prim: OBJECT :1.3.6.1.5.5.7.1.32
 1238:d=9 hl=2 l= 31 prim: OCTET STRING [HEX DUMP]:161D6869676877
 1271:d=5 hl=2 l= 10 cons: SEQUENCE
 1273:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1283:d=5 hl=2 l= 103 prim: BIT STRING
 1388:d=3 hl=4 l= 260 cons: SET
 1392:d=4 hl=4 l= 256 cons: SEQUENCE
 1396:d=5 hl=2 l= 1 prim: INTEGER :01
 1399:d=5 hl=2 l= 46 cons: SEQUENCE
 1401:d=6 hl=2 l= 38 cons: SEQUENCE
 1403:d=7 hl=2 l= 36 cons: SET
 1405:d=8 hl=2 l= 34 cons: SEQUENCE
 1407:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1412:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com
 1441:d=6 hl=2 l= 4 prim: INTEGER :0D83AFD9
 1447:d=5 hl=2 l= 11 cons: SEQUENCE
 1449:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1460:d=5 hl=2 l= 105 cons: cont [0]
 1462:d=6 hl=2 l= 24 cons: SEQUENCE
 1464:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1475:d=7 hl=2 l= 11 cons: SET
 1477:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 1488:d=6 hl=2 l= 28 cons: SEQUENCE
 1490:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1501:d=7 hl=2 l= 15 cons: SET
 1503:d=8 hl=2 l= 13 prim: UTCTIME :210413214323Z
 1518:d=6 hl=2 l= 47 cons: SEQUENCE
 1520:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 1531:d=7 hl=2 l= 34 cons: SET
 1533:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:49C21C9889B223
 1567:d=5 hl=2 l= 10 cons: SEQUENCE
 1569:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1579:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:3045022100A662

 The JSON contained in the voucher-request:

 {"ietf-voucher-request:voucher":{"assertion":"proximity","cr
 eated-on":"2021-04-13T17:43:23.747-04:00","serial-number":"0
 0-D0-E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","proximit
 y-registrar-cert":"MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDA
 jBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZ
 WxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zd
 HJ1bmcgRm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNTRaFw0yMjAyM
 jQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkA
 RkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRhaW4tdGVzdC5leGFtcGxlL
 mNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZlUHI0up/l3eZf9vCBb
 +lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p
 0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1UdDwEB/wQEA

 wIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaHmyPAv
 Lvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAdI
 8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U="}}

C.2.2. Registrar to MASA

 As described in Section 5.5, the registrar will sign a registrar
 voucher-request and will include the pledge’s voucher-request in the
 prior-signed-voucher-request.

 <CODE BEGINS> file "parboiled_vr_00-D0-E5-F2-00-02.b64"
 MIIPYwYJKoZIhvcNAQcCoIIPVDCCD1ACAQExDTALBglghkgBZQMEAgEwggl4BgkqhkiG
 9w0BBwGggglpBIIJZXsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
 cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QyMTo0Mzoy
 My43ODdaIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2Ui
 OiItX1hFOXpLOXE4TGwxcXlsTXRMS2VnIiwicHJpb3Itc2lnbmVkLXZvdWNoZXItcmVx
 dWVzdCI6Ik1JSUdjQVlKS29aSWh2Y05BUWNDb0lJR1lUQ0NCbDBDQVFFeERUQUxCZ2xn
 aGtnQlpRTUVBZ0V3Z2dPSkJna3Foa2lHOXcwQkJ3R2dnZ042QklJRGRuc2lhV1YwWmkx
 MmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVkyaGxjaUk2ZXlKaGMzTmxjblJwYjI0aU9p
 SndjbTk0YVcxcGRIa2lMQ0pqY21WaGRHVmtMVzl1SWpvaU1qQXlNUzB3TkMweE0xUXhO
 em8wTXpveU15NDNORGN0TURRNk1EQWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0
 UkRBdFJUVXRSakl0TURBdE1ESWlMQ0p1YjI1alpTSTZJaTFmV0VVNWVrczVjVGhNYkRG
 eGVXeE5kRXhMWldjaUxDSndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9p
 Sk5TVWxDTDBSRFEwRlpTMmRCZDBsQ1FXZEpSVkExYVdKVmFrRkxRbWRuY1docmFrOVFV
 VkZFUVdwQ2RFMVNTWGRGUVZsTFExcEpiV2xhVUhsTVIxRkNSMUpaUTFreVJYaEhWRUZZ
 UW1kdlNtdHBZVXByTDBseldrRkZXa1puYkhwWlZ6VnJXbGQ0ZEZsWE5IaFFSRUUyUW1k
 T1ZrSkJUVTFOTWxwMlpGYzFNRmxYYkhWTVdGSnNZek5SZFZwWWFHaGlXRUp6V2xNMWFt
 SXlNR2RXVnpWNlpFaEtNV0p0WTJkU2JUa3hZbTVTYUdGWE5HZFZiVGwyWkVOQ1JGRlVR
 V1ZHZHpCNVRVUkJlVTFxVlhsTlZFMTRUbFJTWVVaM01IbE5ha0Y1VFdwUmVVMVVUWGhP
 VkZKaFRVWk5lRVZxUVZGQ1oyOUthMmxoU21zdlNYTmFRVVZhUm1kS2FsbFVSVnBOUW1O
 SFEyZHRVMHB2YlZRNGFYaHJRVkpyVjBOWVRtaGliVkpzWWtjeGFHSnFSV2xOUTBGSFFU
 RlZSVUYzZDFwYWJUa3hZbTVTYUdGWE5IUmtSMVo2WkVNMWJHVkhSblJqUjNoc1RHMU9k
 bUpVUWxwTlFrMUhRbmx4UjFOTk5EbEJaMFZIUTBOeFIxTk5ORGxCZDBWSVFUQkpRVUpL
 V214VlNFa3dkWEF2YkRObFdtWTVka05DWWl0c1NXNXZSVTFGWjJNM1VtOHJXRnBEZEdw
 QlNUQkRSREZtU21aS1VpOW9TWGw1UkcxSVYzbFphVTVHWWxKRFNEbG1lV0Z5Wm10Nlox
 ZzBjREI2VkdsNmNXcExha0Z2VFVKWlIwRXhWV1JLVVVWQ0wzZFJUVTFCYjBkRFEzTkhR
 VkZWUmtKM1RXTk5RVFJIUVRGVlpFUjNSVUl2ZDFGRlFYZEpTR2RFUVV0Q1oyZHhhR3Rx
 VDFCUlVVUkJaMDV2UVVSQ2JFRnFRbTFVTWtKTlZsVm5aV3huWmpRelVpczFlVUpMVGxK
 VVlVaHRlVkJCZGt4MmVIbDZNRzFHVmxwMldIZ3JMekZTZDA5aFoyMTJSek5oV0cxU2Ey
 b3ZXRFJEVFZGRE9ISk5Ua0p6VEc5T2NqRk1OVzVITlRabWQwRmtTVGhvYVVGWFJ6aFRP
 RmhCVWpWck1VTm5lRE5aVlZGQ1UyZGtVMk5HWTBGa1ppc3JRbmMyV1hrclZUMGlmWDJn
 Z2dHeU1JSUJyakNDQVRXZ0F3SUJBZ0lFRFlPdjJUQUtCZ2dxaGtqT1BRUURBakFtTVNR
 d0lnWURWUVFEREJ0b2FXZG9kMkY1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnUTBFd0lC
 Y05NakV3TkRFek1qQXpOek01V2hnUE1qazVPVEV5TXpFd01EQXdNREJhTUJ3eEdqQVlC
 Z05WQkFVTUVUQXdMVVF3TFVVMUxVWXlMVEF3TFRBeU1Ga3dFd1lIS29aSXpqMENBUVlJ
 S29aSXpqMERBUWNEUWdBRUE2TjFRNGV6Zk1BS21vZWNyZmIwT0JNYzFBeUVIK0JBVGtG
 NThGc1RTeUJ4czBTYlNXTHhGakRPdXdCOWdMR24yVHNUVUp1bUo2VlB3NVovVFA0aEo2
 TlpNRmN3SFFZRFZSME9CQllFRkVXSXpKYVdBR1Ezc0xvalpXUmtWQWdHYkZhdE1Ba0dB
 MVVkRXdRQ01BQXdLd1lJS3dZQkJRVUhBU0FFSHhZZGFHbG5hSGRoZVMxMFpYTjBMbVY0
 WVcxd2JHVXVZMjl0T2prME5ETXdDZ1lJS29aSXpqMEVBd0lEWndBd1pBSXdUbWxHOHNY
 a0tHTmJ3YktRY1lNYXBGYm1TYm5ISFVSRlVvRnVScXZiZ1lYN0ZsWHBCY3pmd0Yya2xs
 TnV1amlnQWpBb3cxa2M0cjU1RW1pSCtPTUVYakJObFdsQlNaQzVRdUpqRWYwSnNteHNz
 YytwdWNqT0o0U2hxbmV4TUV5N2JqQXhnZ0VFTUlJQkFBSUJBVEF1TUNZeEpEQWlCZ05W
 QkFNTUcyaHBaMmgzWVhrdGRHVnpkQzVsZUdGdGNHeGxMbU52YlNCRFFRSUVEWU92MlRB
 TEJnbGdoa2dCWlFNRUFnR2dhVEFZQmdrcWhraUc5dzBCQ1FNeEN3WUpLb1pJaHZjTkFR
 Y0JNQndHQ1NxR1NJYjNEUUVKQlRFUEZ3MHlNVEEwTVRNeU1UUXpNak5hTUM4R0NTcUdT
 SWIzRFFFSkJERWlCQ0JKd2h5WWliSWplcWVSM2JPYUxVUnpNbEdyYzNGMlgra3ZKMWVy
 cnRvQ3RUQUtCZ2dxaGtqT1BRUURBZ1JITUVVQ0lRQ21ZdUNFNjFIRlFYSC9FMTZHRE9D
 c1ZxdUR0Z3IrUS82L0R1LzlRa3pBN2dJZ2Y3TUZoQUlQVzJQTndSYTJ2WkZRQUtYVWJp
 bWtpSEt6WEJBOG1kMFZIYlU9In19oIIEbzCCAfwwggGCoAMCAQICBD+Ym1IwCgYIKoZI
 zj0EAwIwbTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVs
 bWFuMTwwOgYDVQQDDDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tIFVuc3RydW5nIEZv
 dW50YWluIFJvb3QgQ0EwHhcNMjAwMjI1MjEzMTU0WhcNMjIwMjI0MjEzMTU0WjBTMRIw
 EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xIjAgBgNV
 BAMMGWZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMB
 BwNCAASWZVByNLqf5d3mX/bwgW/pSJ6BDBIHO0aPl2QrYwCNAg9XyXyUf4SMsg5h1smI
 jRW0Qh/X8mq35M4F+KdM04s6oyowKDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDHDAOBgNV
 HQ8BAf8EBAMCB4AwCgYIKoZIzj0EAwIDaAAwZQIwZk9gTFVIHpYH+N0fucgSjUU2h5sj
 wLy78cs9JhVWb18fv9UcDmoJrxt2l5kZI/1+AjEAvKzDQbC6Da9S+Zxuen8AHSPIYgFh
 vEvFwEeZNQoMd2FEAUoHUnBXAHX/vgcOmMvlMIICazCCAfKgAwIBAgIEKWsGWTAKBggq
 hkjOPQQDAjBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5k

 ZWxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcg
 Rm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0x
 EjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoG
 A1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBS
 b290IENBMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYi
 kb23VoAH29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR2
 3dLwv/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
 DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0jBBgw
 FoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMGzo2YpFR6
 ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBvOPmvEu0w1YUp
 fLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lwxggFLMIIBRwIBATB1
 MG0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8
 MDoGA1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFp
 biBSb290IENBAgQ/mJtSMAsGCWCGSAFlAwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG
 9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIxMDQxMzIxNDMyM1owLwYJKoZIhvcNAQkEMSIE
 IEnOrdWjlG70K74IhCJ7UXi+wPS+r2C8DFEqjabGP+G8MAoGCCqGSM49BAMCBEcwRQIh
 AMhO3M+tSWb2wKTBOXPArN+XvjSzAhaQA/uLj3qhPwi/AiBDDthf6mjMuirqXE0yjMif
 C2UY9oNUFF9Nl0wEQpBBAA==
 <CODE ENDS>

 The ASN1 decoding of the artifact:

 file: examples/parboiled_vr_00_D0-E5-02-00-2D.b64

 0:d=0 hl=4 l=3939 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
 15:d=1 hl=4 l=3924 cons: cont [0]
 19:d=2 hl=4 l=3920 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=3 hl=4 l=2424 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l=2409 cons: cont [0]
 60:d=5 hl=4 l=2405 prim: OCTET STRING :{"ietf-voucher-request:v
 2469:d=3 hl=4 l=1135 cons: cont [0]
 2473:d=4 hl=4 l= 508 cons: SEQUENCE
 2477:d=5 hl=4 l= 386 cons: SEQUENCE
 2481:d=6 hl=2 l= 3 cons: cont [0]
 2483:d=7 hl=2 l= 1 prim: INTEGER :02
 2486:d=6 hl=2 l= 4 prim: INTEGER :3F989B52
 2492:d=6 hl=2 l= 10 cons: SEQUENCE
 2494:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 2504:d=6 hl=2 l= 109 cons: SEQUENCE
 2506:d=7 hl=2 l= 18 cons: SET
 2508:d=8 hl=2 l= 16 cons: SEQUENCE
 2510:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2522:d=9 hl=2 l= 2 prim: IA5STRING :ca
 2526:d=7 hl=2 l= 25 cons: SET
 2528:d=8 hl=2 l= 23 cons: SEQUENCE
 2530:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2542:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2553:d=7 hl=2 l= 60 cons: SET
 2555:d=8 hl=2 l= 58 cons: SEQUENCE
 2557:d=9 hl=2 l= 3 prim: OBJECT :commonName
 2562:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 2615:d=6 hl=2 l= 30 cons: SEQUENCE
 2617:d=7 hl=2 l= 13 prim: UTCTIME :200225213154Z
 2632:d=7 hl=2 l= 13 prim: UTCTIME :220224213154Z
 2647:d=6 hl=2 l= 83 cons: SEQUENCE
 2649:d=7 hl=2 l= 18 cons: SET
 2651:d=8 hl=2 l= 16 cons: SEQUENCE
 2653:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2665:d=9 hl=2 l= 2 prim: IA5STRING :ca
 2669:d=7 hl=2 l= 25 cons: SET
 2671:d=8 hl=2 l= 23 cons: SEQUENCE
 2673:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2685:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2696:d=7 hl=2 l= 34 cons: SET
 2698:d=8 hl=2 l= 32 cons: SEQUENCE

 2700:d=9 hl=2 l= 3 prim: OBJECT :commonName
 2705:d=9 hl=2 l= 25 prim: UTF8STRING :fountain-test.example.co
 2732:d=6 hl=2 l= 89 cons: SEQUENCE
 2734:d=7 hl=2 l= 19 cons: SEQUENCE
 2736:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 2745:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 2755:d=7 hl=2 l= 66 prim: BIT STRING
 2823:d=6 hl=2 l= 42 cons: cont [3]
 2825:d=7 hl=2 l= 40 cons: SEQUENCE
 2827:d=8 hl=2 l= 22 cons: SEQUENCE
 2829:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Extended Key Usag
 2834:d=9 hl=2 l= 1 prim: BOOLEAN :255
 2837:d=9 hl=2 l= 12 prim: OCTET STRING [HEX DUMP]:300A06082B0601
 2851:d=8 hl=2 l= 14 cons: SEQUENCE
 2853:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage
 2858:d=9 hl=2 l= 1 prim: BOOLEAN :255
 2861:d=9 hl=2 l= 4 prim: OCTET STRING [HEX DUMP]:03020780
 2867:d=5 hl=2 l= 10 cons: SEQUENCE
 2869:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 2879:d=5 hl=2 l= 104 prim: BIT STRING
 2985:d=4 hl=4 l= 619 cons: SEQUENCE
 2989:d=5 hl=4 l= 498 cons: SEQUENCE
 2993:d=6 hl=2 l= 3 cons: cont [0]
 2995:d=7 hl=2 l= 1 prim: INTEGER :02
 2998:d=6 hl=2 l= 4 prim: INTEGER :296B0659
 3004:d=6 hl=2 l= 10 cons: SEQUENCE
 3006:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3016:d=6 hl=2 l= 109 cons: SEQUENCE
 3018:d=7 hl=2 l= 18 cons: SET
 3020:d=8 hl=2 l= 16 cons: SEQUENCE
 3022:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3034:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3038:d=7 hl=2 l= 25 cons: SET
 3040:d=8 hl=2 l= 23 cons: SEQUENCE
 3042:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3054:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3065:d=7 hl=2 l= 60 cons: SET
 3067:d=8 hl=2 l= 58 cons: SEQUENCE
 3069:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3074:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 3127:d=6 hl=2 l= 30 cons: SEQUENCE
 3129:d=7 hl=2 l= 13 prim: UTCTIME :200225213145Z
 3144:d=7 hl=2 l= 13 prim: UTCTIME :220224213145Z
 3159:d=6 hl=2 l= 109 cons: SEQUENCE
 3161:d=7 hl=2 l= 18 cons: SET
 3163:d=8 hl=2 l= 16 cons: SEQUENCE
 3165:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3177:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3181:d=7 hl=2 l= 25 cons: SET
 3183:d=8 hl=2 l= 23 cons: SEQUENCE
 3185:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3197:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3208:d=7 hl=2 l= 60 cons: SET
 3210:d=8 hl=2 l= 58 cons: SEQUENCE
 3212:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3217:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 3270:d=6 hl=2 l= 118 cons: SEQUENCE
 3272:d=7 hl=2 l= 16 cons: SEQUENCE
 3274:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 3283:d=8 hl=2 l= 5 prim: OBJECT :secp384r1
 3290:d=7 hl=2 l= 98 prim: BIT STRING
 3390:d=6 hl=2 l= 99 cons: cont [3]
 3392:d=7 hl=2 l= 97 cons: SEQUENCE
 3394:d=8 hl=2 l= 15 cons: SEQUENCE
 3396:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 3401:d=9 hl=2 l= 1 prim: BOOLEAN :255
 3404:d=9 hl=2 l= 5 prim: OCTET STRING [HEX DUMP]:30030101FF
 3411:d=8 hl=2 l= 14 cons: SEQUENCE
 3413:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage
 3418:d=9 hl=2 l= 1 prim: BOOLEAN :255
 3421:d=9 hl=2 l= 4 prim: OCTET STRING [HEX DUMP]:03020106

 3427:d=8 hl=2 l= 29 cons: SEQUENCE
 3429:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident
 3434:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:0414B9A5F6CB11
 3458:d=8 hl=2 l= 31 cons: SEQUENCE
 3460:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Ide
 3465:d=9 hl=2 l= 24 prim: OCTET STRING [HEX DUMP]:30168014B9A5F6
 3491:d=5 hl=2 l= 10 cons: SEQUENCE
 3493:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3503:d=5 hl=2 l= 103 prim: BIT STRING
 3608:d=3 hl=4 l= 331 cons: SET
 3612:d=4 hl=4 l= 327 cons: SEQUENCE
 3616:d=5 hl=2 l= 1 prim: INTEGER :01
 3619:d=5 hl=2 l= 117 cons: SEQUENCE
 3621:d=6 hl=2 l= 109 cons: SEQUENCE
 3623:d=7 hl=2 l= 18 cons: SET
 3625:d=8 hl=2 l= 16 cons: SEQUENCE
 3627:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3639:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3643:d=7 hl=2 l= 25 cons: SET
 3645:d=8 hl=2 l= 23 cons: SEQUENCE
 3647:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3659:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3670:d=7 hl=2 l= 60 cons: SET
 3672:d=8 hl=2 l= 58 cons: SEQUENCE
 3674:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3679:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 3732:d=6 hl=2 l= 4 prim: INTEGER :3F989B52
 3738:d=5 hl=2 l= 11 cons: SEQUENCE
 3740:d=6 hl=2 l= 9 prim: OBJECT :sha256
 3751:d=5 hl=2 l= 105 cons: cont [0]
 3753:d=6 hl=2 l= 24 cons: SEQUENCE
 3755:d=7 hl=2 l= 9 prim: OBJECT :contentType
 3766:d=7 hl=2 l= 11 cons: SET
 3768:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 3779:d=6 hl=2 l= 28 cons: SEQUENCE
 3781:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 3792:d=7 hl=2 l= 15 cons: SET
 3794:d=8 hl=2 l= 13 prim: UTCTIME :210413214323Z
 3809:d=6 hl=2 l= 47 cons: SEQUENCE
 3811:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 3822:d=7 hl=2 l= 34 cons: SET
 3824:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:49CEADD5A3946E
 3858:d=5 hl=2 l= 10 cons: SEQUENCE
 3860:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3870:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:3045022100C84E

 The JSON contained in the voucher-request. Note that the previous
 voucher-request is in the prior-signed-voucher-request attribute.

 {"ietf-voucher-request:voucher":{"assertion":"proximity","cr
 eated-on":"2021-04-13T21:43:23.787Z","serial-number":"00-D0-
 E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","prior-signed-
 voucher-request":"MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBg
 lghkgBZQMEAgEwggOJBgkqhkiG9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaG
 VyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLC
 JjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0MzoyMy43NDctMDQ6MDAiLC
 JzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6Ii
 1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFyLW
 NlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUV
 FEQWpCdE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYU
 prL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MF
 lXbHVMWFJsYzNRdVpYaGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm
 5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5TURBeU1qVXlNVE14TlRSYUZ3MHlNak
 F5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lhSmsvSXNaQUVaRmdKallURV
 pNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFVRU
 F3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQn
 lxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dk
 NCYitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU
 5GYlJDSDlmeWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU
 1Bb0dDQ3NHQVFVRkJ3TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaG
 tqT1BRUURBZ05vQURCbEFqQm1UMkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteV

 BBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212RzNhWG1Sa2ovWDRDTVFDOHJNTk
 JzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVrMUNneDNZVVFCU2dkU2
 NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIEDYOv2TAKBg
 gqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb2
 0gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBg
 NVBAUMETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQ
 cDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFj
 DOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAG
 Q3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYdaGlnaH
 dheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDZwAwZAIwTm
 lG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXpBczfwF2kllNuuj
 igAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjOJ4Shqn
 exMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC
 5leGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w
 0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMj
 NaMC8GCSqGSIb3DQEJBDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1
 errtoCtTAKBggqhkjOPQQDAgRHMEUCIQCmYuCE61HFQXH/E16GDOCsVquDtg
 r+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2vZFQAKXUbimkiHKzXBA8md0VHb
 U="}}

C.2.3. MASA to Registrar

 The MASA will return a voucher to the registrar, which is to be
 relayed to the pledge.

 <CODE BEGINS> file "voucher_00-D0-E5-F2-00-02.b64"
 MIIGIgYJKoZIhvcNAQcCoIIGEzCCBg8CAQExDTALBglghkgBZQMEAgEwggN4BgkqhkiG
 9w0BBwGgggNpBIIDZXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0aW9uIjoi
 bG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMjEtMDQtMTNUMTc6NDM6MjQuNTg5LTA0OjAw
 Iiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2UiOiItX1hF
 OXpLOXE4TGwxcXlsTXRMS2VnIiwicGlubmVkLWRvbWFpbi1jZXJ0IjoiTUlJQi9EQ0NB
 WUtnQXdJQkFnSUVQNWliVWpBS0JnZ3Foa2pPUFFRREFqQnRNUkl3RUFZS0NaSW1pWlB5
 TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pBRVpGZ2x6WVc1a1pXeHRZVzR4UERB
 NkJnTlZCQU1NTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnVlc1emRI
 SjFibWNnUm05MWJuUmhhVzRnVW05dmRDQkRRVEFlRncweU1EQXlNalV5TVRNeE5UUmFG
 dzB5TWpBeU1qUXlNVE14TlRSYU1GTXhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVa
 TUJjR0NnbVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVpTUNBR0ExVUVBd3daWm05
 MWJuUmhhVzR0ZEdWemRDNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0ND
 cUdTTTQ5QXdFSEEwSUFCSlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1ha
 Q3RqQUkwQ0QxZkpmSlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFq
 S2pBb01CWUdBMVVkSlFFQi93UU1NQW9HQ0NzR0FRVUZCd01jTUE0R0ExVWREd0VCL3dR
 RUF3SUhnREFLQmdncWhrak9QUVFEQWdOb0FEQmxBakJtVDJCTVZVZ2VsZ2Y0M1IrNXlC
 S05SVGFIbXlQQXZMdnh5ejBtRlZadlh4Ky8xUndPYWdtdkczYVhtUmtqL1g0Q01RQzhy
 TU5Cc0xvTnIxTDVuRzU2ZndBZEk4aGlBV0c4UzhYQVI1azFDZ3gzWVVRQlNnZFNjRmNB
 ZGYrK0J3Nll5K1U9In19oIIBdDCCAXAwgfagAwIBAgIEC4cKMTAKBggqhkjOPQQDAjAm
 MSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjE0
 MDE2WhcNMjMwNDEzMjE0MDE2WjAoMSYwJAYDVQQDDB1oaWdod2F5LXRlc3QuZXhhbXBs
 ZS5jb20gTUFTQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABKoEFaNEueJE+Mn5Gwcb
 pnRznB66bKmzqTCpojJZ96AdRwFtuTCVfoKouLTBX0idIhMLfJLM31lyuKy4CUtpp6Wj
 EDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDaQAwZgIxAK7LYS3UXI1uhqoLBh3G
 02C6MnM2JdMjhUmHHM6UI3kankFVJB0VIqFIuwrAqzwTcwIxAIY8Z7OVouLl+a35HZzB
 NDJ49c/q1UcDnwC/0FnLUcKYBIEkilETULF1si+dqLT0uTGCAQUwggEBAgEBMC4wJjEk
 MCIGA1UEAwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBAgQLhwoxMAsGCWCGSAFl
 AwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIx
 MDQxMzIxNDMyNFowLwYJKoZIhvcNAQkEMSIEIFUUjg4WYVO+MpX122Qfk/7zm/G6/B59
 HD/xrVR0lGIjMAoGCCqGSM49BAMCBEgwRgIhAOhUfxbH2dwpB2BrTDcsYSjRkCCk/WE6
 Mdt+y4z5KD9IAiEAphwdIUb40A0noNIUpH7N2lTyAFZgyn1lNHTteY9DmYI=
 <CODE ENDS>

 The ASN1 decoding of the artifact:

 file: examples/voucher_00-D0-E5-F2-00-02.b64

 0:d=0 hl=4 l=1570 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
 15:d=1 hl=4 l=1555 cons: cont [0]
 19:d=2 hl=4 l=1551 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256

 41:d=3 hl=4 l= 888 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l= 873 cons: cont [0]
 60:d=5 hl=4 l= 869 prim: OCTET STRING :{"ietf-voucher:voucher":
 933:d=3 hl=4 l= 372 cons: cont [0]
 937:d=4 hl=4 l= 368 cons: SEQUENCE
 941:d=5 hl=3 l= 246 cons: SEQUENCE
 944:d=6 hl=2 l= 3 cons: cont [0]
 946:d=7 hl=2 l= 1 prim: INTEGER :02
 949:d=6 hl=2 l= 4 prim: INTEGER :0B870A31
 955:d=6 hl=2 l= 10 cons: SEQUENCE
 957:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 967:d=6 hl=2 l= 38 cons: SEQUENCE
 969:d=7 hl=2 l= 36 cons: SET
 971:d=8 hl=2 l= 34 cons: SEQUENCE
 973:d=9 hl=2 l= 3 prim: OBJECT :commonName
 978:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com
 1007:d=6 hl=2 l= 30 cons: SEQUENCE
 1009:d=7 hl=2 l= 13 prim: UTCTIME :210413214016Z
 1024:d=7 hl=2 l= 13 prim: UTCTIME :230413214016Z
 1039:d=6 hl=2 l= 40 cons: SEQUENCE
 1041:d=7 hl=2 l= 38 cons: SET
 1043:d=8 hl=2 l= 36 cons: SEQUENCE
 1045:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1050:d=9 hl=2 l= 29 prim: UTF8STRING :highway-test.example.com
 1081:d=6 hl=2 l= 89 cons: SEQUENCE
 1083:d=7 hl=2 l= 19 cons: SEQUENCE
 1085:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 1094:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 1104:d=7 hl=2 l= 66 prim: BIT STRING
 1172:d=6 hl=2 l= 16 cons: cont [3]
 1174:d=7 hl=2 l= 14 cons: SEQUENCE
 1176:d=8 hl=2 l= 12 cons: SEQUENCE
 1178:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 1183:d=9 hl=2 l= 1 prim: BOOLEAN :255
 1186:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000
 1190:d=5 hl=2 l= 10 cons: SEQUENCE
 1192:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1202:d=5 hl=2 l= 105 prim: BIT STRING
 1309:d=3 hl=4 l= 261 cons: SET
 1313:d=4 hl=4 l= 257 cons: SEQUENCE
 1317:d=5 hl=2 l= 1 prim: INTEGER :01
 1320:d=5 hl=2 l= 46 cons: SEQUENCE
 1322:d=6 hl=2 l= 38 cons: SEQUENCE
 1324:d=7 hl=2 l= 36 cons: SET
 1326:d=8 hl=2 l= 34 cons: SEQUENCE
 1328:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1333:d=9 hl=2 l= 27 prim: UTF8STRING :highway-test.example.com
 1362:d=6 hl=2 l= 4 prim: INTEGER :0B870A31
 1368:d=5 hl=2 l= 11 cons: SEQUENCE
 1370:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1381:d=5 hl=2 l= 105 cons: cont [0]
 1383:d=6 hl=2 l= 24 cons: SEQUENCE
 1385:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1396:d=7 hl=2 l= 11 cons: SET
 1398:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 1409:d=6 hl=2 l= 28 cons: SEQUENCE
 1411:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1422:d=7 hl=2 l= 15 cons: SET
 1424:d=8 hl=2 l= 13 prim: UTCTIME :210413214324Z
 1439:d=6 hl=2 l= 47 cons: SEQUENCE
 1441:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 1452:d=7 hl=2 l= 34 cons: SET
 1454:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:55148E0E166153
 1488:d=5 hl=2 l= 10 cons: SEQUENCE
 1490:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1500:d=5 hl=2 l= 72 prim: OCTET STRING [HEX DUMP]:3046022100E854

Acknowledgements

 We would like to thank the various reviewers for their input, in
 particular William Atwood, Brian Carpenter, Fuyu Eleven, Eliot Lear,
 Sergey Kasatkin, Anoop Kumar, Tom Petch, Markus Stenberg, Peter van
 der Stok, and Thomas Werner.

 Significant reviews were done by Jari Arkko, Christian Huitema, and
 Russ Housley.

 Henk Birkholz contributed the CDDL for the audit-log response.

 This document started its life as a two-page idea from Steinthor
 Bjarnason.

 In addition, significant review comments were provided by many IESG
 members, including Adam Roach, Alexey Melnikov, Alissa Cooper,
 Benjamin Kaduk, Ã\211ric Vyncke, Roman Danyliw, and Magnus Westerlund.

Authors’ Addresses

 Max Pritikin
 Cisco

 Email: pritikin@cisco.com

 Michael C. Richardson
 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Toerless Eckert
 Futurewei Technologies Inc. USA
 2330 Central Expy
 Santa Clara, CA 95050
 United States of America

 Email: tte+ietf@cs.fau.de

 Michael H. Behringer

 Email: Michael.H.Behringer@gmail.com

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

