I»e

Internet Engineering Task Force

Request for Comments: 8995
Category:
2070-1721

ISSN:

Abstract

Standards Track

(IETF) M. Pritikin
Cisco

M. Richardson

Sandelman Software Works

T. Eckert

Futurewei USA

M. Behringer

K. Watsen
Watsen Networks
May 2021

Bootstrapping Remote Secure Key Infrastructure (BRSKI)

This document specifies automated bootstrapping of an Autonomic
Control Plane. To do this, a Secure Key Infrastructure is
bootstrapped. This is done using manufacturer-installed X.509
certificates, in combination with a manufacturer’s authorizing
service, both online and offline. We call this process the
Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol.
Bootstrapping a new device can occur when using a routable address
and a cloud service, only link-local connectivity, or limited/
disconnected networks. Support for deployment models with less
stringent security requirements is included. Bootstrapping is
complete when the cryptographic identity of the new key
infrastructure is successfully deployed to the device. The
established secure connection can be used to deploy a locally issued
certificate to the device as well.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8995.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license—-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Prior Bootstrapping Approaches
1.2. Terminology

1.3. Scope of Solution

N

w w ww N N

ISy

(SN G2 INC NG|

ul

ENEEN EEN AN

(GG INC, BN ING BN G, NG B G BNC, Be o RN BN G2 BN B o) WG |
oo

Pledge BRSKI Status Telemetry
Registrar Audit-Log Request

.8.1. MASA Audit-Log Response

.2. Calculation of domainID

.3. Registrar Audit-Log Verification
EST Integration for PKI Bootstrapping
.1. EST Distribution of CA Certificates
EST CSR Attributes

EST Client Certificate Request
Enrollment Status Telemetry

. Multiple Certificates

.9.6. EST over CoAP

Clarification of Transfer-Encoding
Reduced Security Operational Modes

Trust Model

Pledge Security Reductions

Registrar Security Reductions

MASA Security Reductions

.4.1. 1Issuing Nonceless Vouchers

[e0}

O OV W O O
b Wi

N W

1.3.1. Support Environment
1.3.2. Constrained Environments
1.3.3. Network Access Controls
1.3.4. Bootstrapping is Not Booting
.4. Leveraging the New Key Infrastructure / Next Steps
.5. Requirements for Autonomic Networking Infrastructure (ANI)
Devices
Architectural Overview
.1. Behavior of a Pledge
.2. Secure Imprinting Using Vouchers
.3. 1Initial Device Identifier
2.3.1. TIdentification of the Pledge
2.3.2. MASA URI Extension
.4. Protocol Flow
.5. Architectural Components
2.5.1 Pledge
2.5.2 Join Proxy
2.5.3 Domain Registrar
2.5.4 Manufacturer Service
2.5.5. Public Key Infrastructure (PKI)
.6. Certificate Time Validation
2.6.1. Lack of Real-Time Clock
2.6.2. Infinite Lifetime of IDevID
.7. Cloud Registrar
8. Determining the MASA to Contact
Voucher-Request Artifact
.1. Nonceless Voucher—-Requests
.2. Tree Diagram
.3. Examples
.4. YANG Module
Proxying Details (Pledge —-- Proxy —-- Registrar)
.1. Pledge Discovery of Proxy
4.1.1. Proxy GRASP Announcements
.2. CoAP Connection to Registrar
.3. Proxy Discovery and Communication of Registrar
Protocol Details (Pledge —-- Registrar —-- MASA)
.1. BRSKI-EST TLS Establishment Details
2. Pledge Requests Voucher from the Registrar
3. Registrar Authorization of Pledge
4. BRSKI-MASA TLS Establishment Details
5.4.1. MASA Authentication of Customer Registrar
5. Registrar Requests Voucher from MASA
5.5.1. MASA Renewal of Expired Vouchers
5.5.2. MASA Pinning of Registrar
5.5.3. MASA Check of the Voucher-Request Signature
5.5.4. MASA Verification of the Domain Registrar
5.5.5. MASA Verification of the Pledge
"prior-signed-voucher-request’
.5.6. MASA Nonce Handling
MASA and Registrar Voucher Response
.6.1. Pledge Voucher Verification
.6.2. Pledge Authentication of Provisional TLS Connection

.4.2. Trusting Owners on First Use
.4.3. Updating or Extending Voucher Trust Anchors

8. ANA Considerations
8 The IETF XML Registry
8 YANG Module Names Registry

0]

BRSKI Well-Known Considerations

.1. BRSKI .well-known Registration

.2. BRSKI .well-known Registry

PKIX Registry

Pledge BRSKI Status Telemetry

DNS Service Names

GRASP Objective Names

9. Appllcablllty to the Autonomic Control Plane (ACP)
1 Operational Requirements

9.1.1. MASA Operational Requirements

9.1.2. Domain Owner Operational Requirements
9. 1 3.

P

\]O\U‘I;bOOOO(.U[\)HH\]\]
w W

o 00 00

Device Operational Requirements

10.
10.
10.
10.
10.
10.

rivacy Considerations
1 MASA Audit-Log
2 What BRSKI-EST Reveals
3 What BRSKI-MASA Reveals to the Manufacturer
4 Manufacturers and Used or Stolen Equipment
5 Manufacturers and Grey Market Equipment
10.6 Some Mitigations for Meddling by Manufacturers
10.7. Death of a Manufacturer
11. Security Considerations
11.1 Denial of Service (DoS) against MASA
11.2 DomainID Must Be Resistant to Second-Preimage Attacks
11.3 Availability of Good Random Numbers
11.4 Freshness in Voucher-Requests
11.5 Trusting Manufacturers
11.6 Manufacturer Maintenance of Trust Anchors
1.6.1. Compromise of Manufacturer IDevID Signing Keys
1.6.2. Compromise of MASA Signing Keys
6.3. Compromise of MASA Web Service
11.7. YANG Module Security Considerations
12. References
12.1. Normative References
12.2. Informative References
Appendix A. IPv4 and Non-ANI Operations
A.l1. 1IPv4 Link-Local Addresses
A.2. Use of DHCPv4
Appendix B. mDNS / DNS-SD Proxy Discovery Options
Appendix C. Example Vouchers
C.1l. Keys Involved
C.1.1. Manufacturer Certification Authority for IDevID
Signatures

c.1.2 MASA Key Pair for Voucher Signatures
c.1.3 Registrar Certification Authority
C.1.4. Registrar Key Pair
C.1.5. Pledge Key Pair
C.2. Example Process
c.2.1 Pledge to Registrar
C.2.2 Registrar to MASA
C.2.3. MASA to Registrar

Acknowledgements
Authors’ Addresses

Introduction

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol
provides a solution for secure zero-touch (automated) bootstrap of
new (unconfigured) devices that are called "pledges" in this
document. Pledges have an Initial Device Identifier (IDevID)
installed in them at the factory.

"BRSKI", pronounced like "brewski", is a colloquial term for beer in
Canada and parts of the Midwestern United States [brewski].

This document primarily provides for the needs of the ISP and
enterprise—focused Autonomic Networking Integrated Model and Approach

(ANIMA) Autonomic Control Plane (ACP) [RFC8994]. This bootstrap
process satisfies the requirement of making all operations secure by
default per Section 3.3 of [RFC7575]. Other users of the BRSKI
protocol will need to provide separate applicability statements that
include privacy and security considerations appropriate to that
deployment. Section 9 explains the detailed applicability for this
ACP usage.

The BRSKI protocol requires a significant amount of communication
between manufacturer and owner: in its default modes, it provides a
cryptographic transfer of control to the initial owner. 1In its
strongest modes, it leverages sales channel information to identify
the owner in advance. Resale of devices is possible, provided that
the manufacturer is willing to authorize the transfer. Mechanisms to
enable transfers of ownership without manufacturer authorization are
not included in this version of the protocol, but it could be
designed into future versions.

This document describes how a pledge discovers (or are discovered by)
an element of the network domain that it will belong to and that will
perform its bootstrap. This element (device) is called the
"registrar". Before any other operation, the pledge and registrar
need to establish mutual trust:

1. Registrar authenticating the pledge: "Who is this device? What
is its identity?"

2. Registrar authorizing the pledge: "Is it mine? Do I want it?
What are the chances it has been compromised?"

3. Pledge authenticating the registrar: "What is this registrar’s
identity?"

4. Pledge authorizing the registrar: "Should I join this network?"

This document details protocols and messages to answer the above
questions. It uses a TLS connection and a PKIX-shaped (X.509v3)
certificate (an IEEE 802.1AR IDevID [IDevID]) of the pledge to answer
points 1 and 2. It uses a new artifact called a "voucher" that the
registrar receives from a Manufacturer Authorized Signing Authority
(MASA) and passes it to the pledge to answer points 3 and 4.

A proxy provides very limited connectivity between the pledge and the
registrar.

The syntactic details of vouchers are described in detail in
[RFC8366]. This document details automated protocol mechanisms to
obtain vouchers, including the definition of a "voucher-request"
message that is a minor extension to the voucher format (see
Section 3) as defined by [RFC8366].

BRSKI results in the pledge storing an X.509 root certificate
sufficient for verifying the registrar identity. In the process, a
TLS connection is established that can be directly used for
Enrollment over Secure Transport (EST). In effect, BRSKI provides an
automated mechanism for "Bootstrap Distribution of CA Certificates"
described in [RFC7030], Section 4.1.1, wherein the pledge "MUST [...]
engage a human user to authorize the CA certificate using out-of-band
data". With BRSKI, the pledge now can automate this process using
the voucher. Integration with a complete EST enrollment is optional
but trivial.

BRSKI is agile enough to support bootstrapping alternative key
infrastructures, such as a symmetric key solution, but no such system
is described in this document.

.1. Prior Bootstrapping Approaches
To literally "pull yourself up by the bootstraps" is an impossible

action. Similarly, the secure establishment of a key infrastructure
without external help is also an impossibility. Today, it is

commonly accepted that the initial connections between nodes are
insecure, until key distribution is complete, or that domain-specific
keying material (often pre-shared keys, including mechanisms like
Subscriber Identification Module (SIM) cards) is pre-—-provisioned on
each new device in a costly and non-scalable manner. Existing
automated mechanisms are known as non-secured "Trust on First Use
(TOFU) " [RFC7435], "resurrecting duckling"
[Stajano99theresurrecting], or "pre-staging".

Another prior approach has been to try and minimize user actions
during bootstrapping, but not eliminate all user actions. The
original EST protocol [RFC7030] does reduce user actions during
bootstrapping but does not provide solutions for how the following
protocol steps can be made autonomic (not involving user actions):

* using the Implicit Trust Anchor (TA) [RFC7030] database to
authenticate an owner-specific service (not an autonomic solution
because the URL must be securely distributed),

* engaging a human user to authorize the CA certificate using out-
of-band data (not an autonomic solution because the human user is
involved),

* using a configured Explicit TA database (not an autonomic solution
because the distribution of an explicit TA database is not
autonomic), and

* using a certificate-less TLS mutual authentication method (not an
autonomic solution because the distribution of symmetric key
material is not autonomic).

These "touch" methods do not meet the requirements for zero-touch.

There are "call home" technologies where the pledge first establishes
a connection to a well-known manufacturer service using a common
client-server authentication model. After mutual authentication,
appropriate credentials to authenticate the target domain are
transferred to the pledge. This creates several problems and
limitations:

* the pledge requires real-time connectivity to the manufacturer
service,

* the domain identity is exposed to the manufacturer service (this
is a privacy concern), and

* the manufacturer is responsible for making the authorization
decisions (this is a liability concern).

BRSKI addresses these issues by defining extensions to the EST
protocol for the automated distribution of wvouchers.

.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The following terms are defined for clarity:
ANI: The Autonomic Networking Infrastructure as defined by
[RFC8993]. Section 9 details specific requirements for pledges,

proxies, and registrars when they are part of an ANI.

Circuit Proxy: A stateful implementation of the Join Proxy. This is
the assumed type of proxy.

drop—-ship: The physical distribution of equipment containing the
"factory default" configuration to a final destination. In zero-

touch scenarios, there is no staging or preconfiguration during
drop-ship.

Domain: The set of entities that share a common local trust anchor.
This includes the proxy, registrar, domain CA, management
components, and any existing entity that is already a member of
the domain.

Domain CA: The domain Certification Authority (CA) provides
certification functionalities to the domain. At a minimum, it
provides certification functionalities to a registrar and manages
the private key that defines the domain. Optionally, it certifies
all elements.

domainID: The domain IDentity is a unique value based upon the
registrar’s CA certificate. Section 5.8.2 specifies how it is
calculated.

enrollment: The process where a device presents key material to a
network and acquires a network-specific identity. For example,
when a certificate signing request is presented to a CA, and a
certificate is obtained in response.

IDevID: An Initial Device Identifier X.509 certificate installed by

the vendor on new equipment. This is a term from 802.1AR
[IDevID].
imprint: The process where a device obtains the cryptographic key

material to identify and trust future interactions with a network.
This term is taken from Konrad Lorenz’s work in biology with new
ducklings: during a critical period, the duckling would assume
that anything that looks like a mother duck is in fact their
mother. An equivalent for a device is to obtain the fingerprint
of the network’s root CA certificate. A device that imprints on
an attacker suffers a similar fate to a duckling that imprints on
a hungry wolf. Securely imprinting is a primary focus of this
document [imprinting]. The analogy to Lorenz’s work was first
noted in [Stajano99theresurrecting].

IPIP Proxy: A stateless proxy alternative.

Join Proxy: A domain entity that helps the pledge join the domain.
A Join Proxy facilitates communication for devices that find
themselves in an environment where they are not provided
connectivity until after they are validated as members of the
domain. For simplicity, this document sometimes uses the term of
"proxy" to indicate the Join Proxy. The pledge is unaware that
they are communicating with a proxy rather than directly with a
registrar.

Join Registrar (and Coordinator): A representative of the domain
that is configured, perhaps autonomically, to decide whether a new
device is allowed to join the domain. The administrator of the
domain interfaces with a "Join Registrar (and Coordinator)" to
control this process. Typically, a Join Registrar is "inside" its
domain. For simplicity, this document often refers to this as
just "registrar". Within [RFC8993], it is referred to as the
"Join Registrar Autonomic Service Agent (ASA)". Other communities
use the abbreviation "JRC".

IDevID: A Local Device Identifier X.509 certificate installed by the
owner of the equipment. This is a term from 802.1AR [IDevID].

manufacturer: The term manufacturer is used throughout this document
as the entity that created the device. This is typically the
original equipment manufacturer (OEM), but in more complex
situations, it could be a value added retailer (VAR), or possibly
even a systems integrator. In general, a goal of BRSKI is to
eliminate small distinctions between different sales channels.
The reason for this is that it permits a single device, with a
uniform firmware load, to be shipped directly to all customers.

This eliminates costs for the manufacturer. This also reduces the
number of products supported in the field, increasing the chance
that firmware will be more up to date.

MASA Audit-Log: An anonymized list of previous owners maintained by
the MASA on a per-device (per-pledge) basis, as described in
Section 5.8.1.

MASA Service: A third-party MASA service on the global Internet.
The MASA signs vouchers. It also provides a repository for audit-
log information of privacy-protected bootstrapping events. It
does not track ownership.

nonced: A voucher (or request) that contains a nonce (the normal
case) .

nonceless: A voucher (or request) that does not contain a nonce and
either relies upon accurate clocks for expiration or does not
expire.

offline: When an architectural component cannot perform real-time
communications with a peer, due to either network connectivity or
the peer being turned off, the operation is said to be occurring
offline.

Ownership Tracker: An Ownership Tracker service on the global
Internet. The Ownership Tracker uses business processes to
accurately track ownership of all devices shipped against domains
that have purchased them. Although optional, this component
allows vendors to provide additional value in cases where their
sales and distribution channels allow for accurate tracking of
such ownership. Tracking information about ownership is indicated
in vouchers, as described in [RFC8366].

Pledge: The prospective (unconfigured) device, which has an identity
installed at the factory.

(Public) Key Infrastructure: The collection of systems and processes
that sustains the activities of a public key system. The
registrar acts as a "Registration Authority"; see [RFC5280] and
Section 7 of [RFC5272].

TOFU: Trust on First Use. Used similarly to how it is described in
[REC7435]. This is where a pledge device makes no security
decisions but rather simply trusts the first registrar it is
contacted by. This is also known as the "resurrecting duckling"
model.

Voucher: A signed artifact from the MASA that indicates the
cryptographic identity of the registrar it should trust to a

pledge. There are different types of vouchers depending on how
that trust is asserted. Multiple voucher types are defined in
[RFC8366] .

.3. Scope of Solution
.3.1. Support Environment

This solution (BRSKI) can support large router platforms with multi-
gigabit inter-connections, mounted in controlled access data centers.
But this solution is not exclusive to large equipment: it is intended
to scale to thousands of devices located in hostile environments,
such as ISP-provided Customer Premises Equipment (CPE) devices that
are drop-shipped to the end user. The situation where an order is
fulfilled from a distributed warehouse from a common stock and
shipped directly to the target location at the request of a domain
owner is explicitly supported. That stock ("SKU") could be provided
to a number of potential domain owners, and the eventual domain owner
will not know a priori which device will go to which location.

The bootstrapping process can take minutes to complete depending on

the network infrastructure and device processing speed. The network
communication itself is not optimized for speed; for privacy reasons,
the discovery process allows for the pledge to avoid announcing its
presence through broadcasting.

Nomadic or mobile devices often need to acquire credentials to access
the network at the new location. An example of this is mobile phone
roaming among network operators, or even between cell towers. This
is usually called "handoff". BRSKI does not provide a low-latency
handoff, which is usually a requirement in such situations. For
these solutions, BRSKI can be used to create a relationship (an
ILDevID) with the "home" domain owner. The resulting credentials are
then used to provide credentials more appropriate for a low-latency
handoff.

1.3.2. Constrained Environments

Questions have been posed as to whether this solution is suitable in
general for Internet of Things (IoT) networks. This depends on the
capabilities of the devices in question. The terminology of
[RFC7228] is best used to describe the boundaries.

The solution described in this document is aimed in general at non-
constrained (i.e., Class 2+ [RFC7228]) devices operating on a non-—
challenged network. The entire solution as described here is not
intended to be usable as is by constrained devices operating on
challenged networks (such as 802.15.4 Low-Power and Lossy Networks
(LLNs)) .

Specifically, there are protocol aspects described here that might
result in congestion collapse or energy exhaustion of intermediate
battery-powered routers in an LLN. Those types of networks should
not use this solution. These limitations are predominately related
to the large credential and key sizes required for device
authentication. Defining symmetric key techniques that meet the
operational requirements is out of scope, but the underlying protocol
operations (TLS handshake and signing structures) have sufficient
algorithm agility to support such techniques when defined.

The imprint protocol described here could, however, be used by non-
energy constrained devices joining a non-constrained network (for
instance, smart light bulbs are usually mains powered and use 802.11
wireless technology). It could also be used by non-constrained
devices across a non-energy constrained, but challenged, network
(such as 802.15.4). The certificate contents, and the process by
which the four questions above are resolved, do apply to constrained
devices. It is simply the actual on-the-wire imprint protocol that
could be inappropriate.

1.3.3. Network Access Controls

This document presumes that network access control has already
occurred, is not required, or is integrated by the proxy and
registrar in such a way that the device itself does not need to be
aware of the details. Although the use of an X.509 IDevID is
consistent with IEEE 802.1AR [IDevID], and allows for alignment with
802.1X network access control methods, its use here is for pledge
authentication rather than network access control. Integrating this
protocol with network access control, perhaps as an Extensible
Authentication Protocol (EAP) method (see [RFC3748]), is out of scope
for this document.

1.3.4. Bootstrapping is Not Booting

This document describes "bootstrapping" as the protocol used to
obtain a local trust anchor. It is expected that this trust anchor,
along with any additional configuration information subsequently
installed, is persisted on the device across system restarts
("booting"). Bootstrapping occurs only infrequently such as when a
device is transferred to a new owner or has been reset to factory
default settings.

.4. Leveraging the New Key Infrastructure / Next Steps

As a result of the protocol described herein, bootstrapped devices
have the domain CA trust anchor in common. An end-entity (EE)
certificate has optionally been issued from the domain CA. This
makes it possible to securely deploy functionalities across the
domain; for example:

* Device management
* Routing authentication
* Service discovery

The major intended benefit is the ability to use the credentials
deployed by this protocol to secure the Autonomic Control Plane (ACP)
[RFC8994] .

.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

The BRSKI protocol can be used in a number of environments. Some of

the options in this document are the result of requirements that are

out of the ANI scope. This section defines the base requirements for
ANI devices.

For devices that intend to become part of an ANI [RFC8993] that
includes an Autonomic Control Plane [RFC8994], the BRSKI protocol
MUST be implemented.

The pledge must perform discovery of the proxy as described in
Section 4.1 using the Discovery Unsolicited Link-Local (DULL)
[REC8990] M_FLOOD announcements of the GeneRic Autonomic Signaling
Protocol (GRASP).

Upon successfully validating a voucher artifact, a status telemetry
MUST be returned; see Section 5.7.

An ANIMA ANI pledge MUST implement the EST automation extensions
described in Section 5.9. They supplement the EST [RFC7030] to
better support automated devices that do not have an end user.

The ANI Join Registrar ASA MUST support all the BRSKI and above-
listed EST operations.

All ANI devices SHOULD support the BRSKI proxy function, using
Circuit Proxies over the Autonomic Control Plane (ACP) (see
Section 4.3).

Architectural Overview
The logical elements of the bootstrapping framework are described in

this section. Figure 1 provides a simplified overview of the
components.

R +
Fomm Drop-Ship-———————————————- | Vendor Service
t——— +
| M anufacturer |
| A uthorized Ownership|
| S igning Tracker
| A uthority |
Fm—————— Fm————— +
BRSKI-
\% MASA
+—————— b e e e e et e it i et e et e e e e e
| |
| | o + e +
| | | | |
|Pledge | | Join | | Domain <——————- +

|
S S S e S > (PKI RA) |
|

| Key Infrastructure |
| (e.g., PKI CA) |

| | BRSKI-EST |
| . | R R +
IDevID | . + | e.g., RFC 7030
| e o +
R + |
f———————————— +
"Domain" Components
Figure 1: Architecture Overview
We assume a multivendor network. In such an environment, there could

be a manufacturer service for each manufacturer that supports devices
following this document’s specification, or an integrator could
provide a generic service authorized by multiple manufacturers. It
is unlikely that an integrator could provide ownership tracking
services for multiple manufacturers due to the required sales channel
integrations necessary to track ownership.

The domain is the managed network infrastructure with a key
infrastructure that the pledge is joining. The domain provides
initial device connectivity sufficient for bootstrapping through a
proxy. The domain registrar authenticates the pledge, makes
authorization decisions, and distributes vouchers obtained from the
manufacturer service. Optionally, the registrar also acts as a PKI
CA.

.1. Behavior of a Pledge

The pledge goes through a series of steps, which are outlined here at
a high level.

/ Factory \
\ default /

_____ +______
Fm———— L ——————— +
| (1) Discover |
o > |
+—— +—— +
- L ——————— +
| (2) Identify
A +
rejected Fo——— T ——————— +
+t——— Vo——————= +
| (3) Request
| Join
Fm———— Fm————— +
- L ——————— +
| (4) Imprint |
A + |
Bad MASA F——— F—————— +
response | send Voucher Status Telemetry
F———— V——————= +
| (5) Enroll |<———+ (non—-error HTTP codes)
e + I__/ (e.g., 202 "Retry-After")
Enroll +———— t—————— +
failure
_____ ——————
/ Enrolled \

Factory \—— /

reset

Figure 2: Pledge State Diagram
State descriptions for the pledge are as follows:
1. Discover a communication channel to a registrar.

2. Identify itself. This is done by presenting an X.509 IDevID
credential to the discovered registrar (via the proxy) in a TLS
handshake. (The registrar credentials are only provisionally
accepted at this time.)

3. Request to join the discovered registrar. A unique nonce is
included, ensuring that any responses can be associated with this
particular bootstrapping attempt.

4. Imprint on the registrar. This requires verification of the
manufacturer-service-provided voucher. A voucher contains
sufficient information for the pledge to complete authentication
of a registrar. This document details this step in depth.

5. Enroll. After imprint, an authenticated TLS (HTTPS) connection
exists between the pledge and registrar. EST [RFC7030] can then
be used to obtain a domain certificate from a registrar.

The pledge is now a member of, and can be managed by, the domain and
will only repeat the discovery aspects of bootstrapping if it is
returned to factory default settings.

This specification details integration with EST enrollment so that
pledges can optionally obtain a locally issued certificate, although
any Representational State Transfer (REST) (see [REST]) interface
could be integrated in future work.

.2. Secure Imprinting Using Vouchers

A voucher is a cryptographically protected artifact (using a digital
signature) to the pledge device authorizing a zero-touch imprint on
the registrar domain.

The format and cryptographic mechanism of vouchers is described in
detail in [RFC8366].

Vouchers provide a flexible mechanism to secure imprinting: the
pledge device only imprints when a voucher can be validated. At the
lowest security levels, the MASA can indiscriminately issue vouchers
and log claims of ownership by domains. At the highest security
levels, issuance of vouchers can be integrated with complex sales
channel integrations that are beyond the scope of this document. The
sales channel integration would verify actual (legal) ownership of
the pledge by the domain. This provides the flexibility for a number
of use cases via a single common protocol mechanism on the pledge and
registrar devices that are to be widely deployed in the field. The
MASA services have the flexibility to either leverage the currently
defined claim mechanisms or experiment with higher or lower security
levels.

Vouchers provide a signed but non-encrypted communication channel
among the pledge, the MASA, and the registrar. The registrar
maintains control over the transport and policy decisions, allowing
the local security policy of the domain network to be enforced.

.3. Initial Device Identifier

Pledge authentication and pledge voucher-request signing is via a
PKIX-shaped certificate installed during the manufacturing process.
This is the 802.1AR IDevID, and it provides a basis for
authenticating the pledge during the protocol exchanges described
here. There is no requirement for a common root PKI hierarchy. Each
device manufacturer can generate its own root certificate.

Specifically, the IDevID enables:

* Uniquely identifying the pledge by the Distinguished Name (DN) and
subjectAltName (SAN) parameters in the IDevID. The unique
identification of a pledge in the voucher objects are derived from
those parameters as described below. Section 10.3 discusses
privacy implications of the identifier.

* Providing a cryptographic authentication of the pledge to the
registrar (see Section 5.3).

* Securing auto-discovery of the pledge’s MASA by the registrar (see
Section 2.8).

* Signing of a voucher-request by the pledge’s IDevID (see
Section 3).

* Providing a cryptographic authentication of the pledge to the MASA
(see Section 5.5.5).

Sections 7.2.13 (2009 edition) and 8.10.3 (2018 edition) of [IDevID]
discuss keyUsage and extendedKeyUsage extensions in the IDevID
certificate. [IDevID] acknowledges that adding restrictions in the
certificate limits applicability of these long-lived certificates.
This specification emphasizes this point and therefore RECOMMENDS
that no key usage restrictions be included. This is consistent with
[RFC5280], Section 4.2.1.3, which does not require key usage
restrictions for end-entity certificates.

.3.1. TIdentification of the Pledge

In the context of BRSKI, pledges have a 1l:1 relationship with a
"serial-number". This serial-number is used both in the serial-
number field of a voucher or voucher-requests (see Section 3) and in
local policies on the registrar or MASA (see Section 5).

There is a (certificate) serialNumber field defined in [RFC5280],
Section 4.1.2.2. 1In ASN.1l, this is referred to as the
CertificateSerialNumber. This field is NOT relevant to this
specification. Do not confuse this field with the serial-number
defined by this document, or by [IDevID] and [RFC4519], Section 2.31.

The device serial number is defined in Appendix A.l1 of [RFC5280] as
the X520SerialNumber, with the OID tag id-at-serialNumber.

The device _serialNumber_ field (X520SerialNumber) is used as follows
by the pledge to build the *serial-number* that is placed in the
voucher-request. In order to build it, the fields need to be
converted into a serial-number of "type string".

An example of a printable form of the serialNumber field is provided
in [RFC4519], Section 2.31 ("WI-3005"). That section further
provides equality and syntax attributes.

Due to the reality of existing device identity provisioning
processes, some manufacturers have stored serial-numbers in other
fields. Registrars SHOULD be configurable, on a per—-manufacturer
basis, to look for serial-number equivalents in other fields.

As explained in Section 5.5, the registrar MUST again extract the
serialNumber itself from the pledge’s TLS certificate. It can
consult the serial-number in the pledge request if there is any
possible confusion about the source of the serial-number.

.3.2. MASA URI Extension

This document defines a new PKIX non-critical certificate extension
to carry the MASA URI. This extension is intended to be used in the
IDevID certificate. The URI is represented as described in

Section 7.4 of [RFC5280].

2.

4.

The URI provides the authority information. The BRSKI "/.well-known"
tree [RFC8615] is described in Section 5.

A complete URI MAY be in this extension, including the "scheme",
"authority", and "path". The complete URI will typically be used in
diagnostic or experimental situations. Typically (and in
consideration to constrained systems), this SHOULD be reduced to only
the "authority", in which case a scheme of "https://" (see [RFC7230],
Section 2.7.3) and a "path" of "/.well-known/brski" is to be assumed.

The registrar can assume that only the "authority" is present in the
extension, if there are no slash ("/") characters in the extension.

Section 7.4 of [RFC5280] calls out various schemes that MUST be
supported, including the Lightweight Directory Access Protocol
(LDAP), HTTP, and FTP. However, the registrar MUST use HTTPS for the
BRSKI-MASA connection.

The new extension is identified as follows:

<CODE BEGINS>

MASAURLExtnModule-2016 { iso(l) identified-organization(3) dod(6)
internet (1) security (5) mechanisms (5) pkix (7)

id-mod (0) id-mod-MASAURLExtn2016(96) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN
—— EXPORTS ALL —-—

IMPORTS
EXTENSION
FROM PKIX-CommonTypes—2009
{ iso(l) identified-organization(3) dod(6) internet (1)
security (5) mechanisms (5) pkix(7) id-mod (0)
id-mod-pkixCommon-02 (57) }

id-pe FROM PKIX1lExplicit-2009
{ iso(l) identified-organization(3) dod(6) internet (1)
security (5) mechanisms (5) pkix(7) id-mod (0)
id-mod-pkixl-explicit-02(51) } ;

MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
IDENTIFIED BY id-pe-masa-url }

id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe 32 }
MASAURLSyntax ::= IA5String
END

<CODE ENDS>

Figure 3: MASAURL ASN.l1 Module
The choice of id-pe is based on guidance found in Section 4.2.2 of
[REC5280]: "These extensions may be used to direct applications to
on—-line information about the issuer or the subject". The MASA URL
is precisely that: online information about the particular subject.

Protocol Flow

A representative flow is shown in Figure 4.

o + o + o + o +

| Pledge | | Circuit | | Domain | | vendor

| | | Join | | Registrar | | service

| | | Proxy | | (JrRC) | | (MASA) |

Fo——————— + Fom + Fom + Fom +
| | | Internet |

[discover] | | |

|<-RFC 4862 IPv6 addr | | !

<-RFC 3927 IPv4 addr Appendix A Legend

—++++++++++++ > C - Circuit
optional: mDNS query| Appendix B Join Proxy

RFCs 6763/6762 (+) P - Provisional TLS
<—t+++++++++++++++H+++— Connection

GRASP M_FLOOD
periodic broadcast
[identity]

TLS via the Join Proxy
<-—-Registrar TLS server authentication--—-
[PROVISIONAL accept of server cert]

P---X.509 client authentication--——-———————- >
[request Jjoin]
P-—-Voucher—-Request (w/nonce for voucher)->

P e
P | [accept device?]
P | [contact vendor]
P | --Pledge ID-——————-— >
P | ——-Domain ID-——————-— >
P | —-optional:nonce—-——->
P optional: [extract DomainID]
P can occur in advance [update audit-log]
P if nonceless
P | <- voucher —--————--——-
P N\ w/nonce if provided
P<—————- voucher------------ - - ————————————
[imprint]
——————— voucher status telemetry-———————->
<-device audit-log—-—
[verify audit-log and voucher]
e >
[enroll]
Continue with enrollment using now
bidirectionally authenticated TLS
session per RFC 7030.
[enrolled]

Figure 4: Protocol Time Sequence Diagram

On initial bootstrap, a new device (the pledge) uses a local service
auto-discovery (the GeneRic Autonomic Signaling Protocol (GRASP) or
Multicast DNS (mDNS)) to locate a Join Proxy. The Join Proxy
connects the pledge to a local registrar (the JRC).

Having found a candidate registrar, the fledgling pledge sends some
information about itself to the registrar, including its serial
number in the form of a voucher-request and its IDevID certificate as
part of the TLS session.

The registrar can determine whether it expected such a device to
appear and locates a MASA. The location of the MASA is usually found
in an extension in the IDevID. Having determined that the MASA is
suitable, the entire information from the initial voucher-request
(including the device’s serial number) is transmitted over the
Internet in a TLS-protected channel to the manufacturer, along with
information about the registrar/owner.

The manufacturer can then apply policy based on the provided
information, as well as other sources of information (such as sales
records), to decide whether to approve the claim by the registrar to
own the device; if the claim is accepted, a voucher is issued that
directs the device to accept its new owner.

The voucher is returned to the registrar, but not immediately to the
device —-- the registrar has an opportunity to examine the wvoucher,
the MASA’s audit-logs, and other sources of information to determine
whether the device has been tampered with and whether the bootstrap
should be accepted.

No filtering of information is possible in the signed wvoucher, so

this is a binary yes-or-no decision. After the registrar has applied
any local policy to the voucher, if it accepts the voucher, then the
voucher is returned to the pledge for imprinting.

The voucher also includes a trust anchor that the pledge uses to
represent the owner. This is used to successfully bootstrap from an
environment where only the manufacturer has built-in trust by the
device to an environment where the owner now has a PKI footprint on
the device.

When BRSKI is followed with EST, this single footprint is further
leveraged into the full owner’s PKI and an LDevID for the device.
Subsequent reporting steps provide flows of information to indicate
success/failure of the process.

.5. Architectural Components
.5.1. Pledge

The pledge is the device that is attempting to join. It is assumed
that the pledge talks to the Join Proxy using link-local network
connectivity. In most cases, the pledge has no other connectivity
until the pledge completes the enrollment process and receives some
kind of network credential.

.5.2. Join Proxy
The Join Proxy provides HTTPS connectivity between the pledge and the
registrar. A Circuit Proxy mechanism is described in Section 4.
Additional mechanisms, including a Constrained Application Protocol
(CoAP) mechanism and a stateless IP in IP (IPIP) mechanism, are the
subject of future work.

.5.3. Domain Registrar

The domain’s registrar operates as the BRSKI-MASA client when

requesting vouchers from the MASA (see Section 5.4). The registrar
operates as the BRSKI-EST server when pledges request vouchers (see
Section 5.1). The registrar operates as the BRSKI-EST server

"Registration Authority" if the pledge requests an end-entity
certificate over the BRSKI-EST connection (see Section 5.9).

The registrar uses an Implicit Trust Anchor database for
authenticating the BRSKI-MASA connection’s MASA TLS server
certificate. Configuration or distribution of trust anchors is out
of scope for this specification.

The registrar uses a different Implicit Trust Anchor database for
authenticating the BRSKI-EST connection’s pledge TLS Client
Certificate. Configuration or distribution of the BRSKI-EST client
trust anchors is out of scope of this specification. Note that the
trust anchors in / excluded from the database will affect which
manufacturers’ devices are acceptable to the registrar as pledges,
and they can also be used to limit the set of MASAs that are trusted
for enrollment.

.5.4. Manufacturer Service

The manufacturer service provides two logically separate functions:
the MASA as described in Sections 5.5 and 5.6 and an ownership
tracking/auditing function as described in Sections 5.7 and 5.8.

.5.5. Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) administers certificates for the
domain of concern, providing the trust anchor(s) for it and allowing
enrollment of pledges with domain certificates.

The voucher provides a method for the distribution of a single PKI
trust anchor (as the "pinned-domain-cert"). A distribution of the
full set of current trust anchors is possible using the optional EST

integration.

The domain’s registrar acts as a Registration Authority [RFC5272],
requesting certificates for pledges from the PKI.

The expectations of the PKI are unchanged from EST [RFC7030]. This
document does not place any additional architectural requirements on
the PKI.

2.6. Certificate Time Validation

2.6.1. Lack of Real-Time Clock

When bootstrapping, many devices do not have knowledge of the current
time. Mechanisms such as Network Time Protocols cannot be secured
until bootstrapping is complete. Therefore, bootstrapping is defined
with a framework that does not require knowledge of the current time.
A pledge MAY ignore all time stamps in the voucher and in the
certificate validity periods if it does not know the current time.

The pledge is exposed to dates in the following five places:
registrar certificate notBefore, registrar certificate notAfter,
voucher created-on, and voucher expires-on. Additionally,
Cryptographic Message Syntax (CMS) signatures contain a signingTime.

A pledge with a real-time clock in which it has confidence MUST check
the above time fields in all certificates and signatures that it
processes.

If the voucher contains a nonce, then the pledge MUST confirm the
nonce matches the original pledge voucher-request. This ensures the
voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

Long-lived pledge certificates "SHOULD be assigned the
GeneralizedTime value of 99991231235959Z" for the notAfter field as
explained in [RFC5280].

Some deployed IDevID management systems are not compliant with the
802.1AR requirement for infinite lifetimes and are put in typical <=
3 year certificate lifetimes. Registrars SHOULD be configurable on a
per-manufacturer basis to ignore pledge lifetimes when the pledge
does not follow the recommendations in [RFC5280].

2.7. Cloud Registrar

There exist operationally open networks wherein devices gain
unauthenticated access to the Internet at large. In these use cases,
the management domain for the device needs to be discovered within
the larger Internet. The case where a device can boot and get access
to a larger Internet is less likely within the ANIMA ACP scope but
may be more important in the future. In the ANIMA ACP scope, new
devices will be quarantined behind a Join Proxy.

Additionally, there are some greenfield situations involving an
entirely new installation where a device may have some kind of
management uplink that it can use (such as via a 3G network, for
instance) . In such a future situation, the device might use this
management interface to learn that it should configure itself to
become the local registrar.

In order to support these scenarios, the pledge MAY contact a well-
known URI of a cloud registrar if a local registrar cannot be
discovered or if the pledge’s target use cases do not include a local
registrar.

If the pledge uses a well-known URI for contacting a cloud registrar,
a manufacturer-assigned Implicit Trust Anchor database (see

[RFC7030]) MUST be used to authenticate that service as described in
[RFC6125]. The use of a DNS-ID for validation is appropriate, and it

may include wildcard components on the left-mode side. This is
consistent with the human-user configuration of an EST server URI in
[RFC7030], which also depends on [RFC6125].

.8. Determining the MASA to Contact

The registrar needs to be able to contact a MASA that is trusted by
the pledge in order to obtain vouchers.

The device’s IDevID will normally contain the MASA URL as detailed in
Section 2.3. This is the RECOMMENDED mechanism.

In some cases, it can be operationally difficult to ensure the
necessary X.509 extensions are in the pledge’s IDevID due to the
difficulty of aligning current pledge manufacturing with software
releases and development; thus, as a final fallback, the registrar
MAY be manually configured or distributed with a MASA URL for each
manufacturer. Note that the registrar can only select the configured
MASA URL based on the trust anchor -- so manufacturers can only
leverage this approach if they ensure a single MASA URL works for all
pledges associated with each trust anchor.

Voucher—-Request Artifact

Voucher-requests are how vouchers are requested. The semantics of
the voucher-request are described below, in the YANG module.

A pledge forms the "pledge voucher-request", signs it with its
IDevID, and submits it to the registrar.

In turn, the registrar forms the "registrar voucher-request", signs
it with its registrar key pair, and submits it to the MASA.

The "proximity-registrar-cert" leaf is used in the pledge voucher-
requests. This provides a method for the pledge to assert the
registrar’s proximity.

This network proximity results from the following properties in the
ACP context: the pledge is connected to the Join Proxy (Section 4)
using a link-local IPv6 connection. While the Join Proxy does not
participate in any meaningful sense in the cryptography of the TLS
connection (such as via a Channel Binding), the registrar can observe
that the connection is via the private ACP (ULA) address of the Join
Proxy, and it cannot come from outside the ACP. The pledge must
therefore be at most one IPv6 link-local hop away from an existing
node on the ACP.

Other users of BRSKI will need to define other kinds of assertions if
the network proximity described above does not match their needs.

The "prior-signed-voucher-request" leaf is used in registrar voucher-
requests. If present, it is the signed pledge voucher-request
artifact. This provides a method for the registrar to forward the
pledge’s signed request to the MASA. This completes transmission of
the signed proximity-registrar-cert leaf.

Unless otherwise signaled (outside the voucher-request artifact), the
signing structure is as defined for vouchers; see [RFC8366].

.1. Nonceless Voucher-Requests

A registrar MAY also retrieve nonceless vouchers by sending nonceless
voucher-requests to the MASA in order to obtain vouchers for use when
the registrar does not have connectivity to the MASA. No prior-
signed-voucher-request leaf would be included. The registrar will

also need to know the serial number of the pledge. This document
does not provide a mechanism for the registrar to learn that in an
automated fashion. Typically, this will be done via the scanning of

a bar code or QR code on packaging, or via some sales channel
integration.

3

3.

.2. Tree Diagram

The following tree diagram illustrates a high-level view of a

voucher-request document. The voucher-request builds upon the
voucher artifact described in [RFC8366]. The tree diagram is
described in [RFC8340]. Each node in the diagram is fully described

by the YANG module in Section 3.4. Please review the YANG module for
a detailed description of the voucher-request format.

module: ietf-voucher-request

grouping voucher-request-grouping
+-— voucher

+-— created-on? yang:date—and-time
+-— expires-on? yang:date—and-time
+-— assertion? enumeration

+-— serial-number string

+-— idevid-issuer? binary

+-— pinned-domain-cert? binary

+-— domain-cert-revocation-checks? boolean

+—— nonce? binary

+-— last-renewal-date? vyang:date—and-time
+-— prior-signed-voucher-request? binary

+-—- proximity-registrar-cert? binary

Figure 5: YANG Tree Diagram for a Voucher—Request
3. Examples
This section provides voucher-request examples for illustration

purposes. These examples show JSON prior to CMS wrapping. JSON
encoding rules specify that any binary content be base64 encoded

([RFC4648], Section 4). The contents of the (base64) encoded
certificates have been elided to save space. For detailed examples,
see Appendix C.2. These examples conform to the encoding rules

defined in [RFC7951].

Example (1): The following example illustrates a pledge voucher-
request. The assertion leaf is indicated as
"proximity", and the registrar’s TLS server certificate
is included in the proximity-registrar-cert leaf. See
Section 5.2.

"ietf-voucher-request:voucher": {
"assertion": "proximity",
"nonce": "62a2e7693d82fcda2624de58fb6722e5",
"serial-number" : "JADA123456789",
"created-on": "2017-01-01T00:00:00.0002z",
"proximity-registrar-cert": "base64encodedvalue=="

Figure 6: JSON Representation of an Example Voucher-Request

Example (2): The following example illustrates a registrar voucher-
request. The prior-signed-voucher-request leaf is
populated with the pledge’s voucher-request (such as
the prior example). The pledge’s voucher-request is a
binary CMS-signed object. In the JSON encoding used
here, it must be base64 encoded. The nonce and
assertion have been carried forward from the pledge
request to the registrar request. The serial-number is
extracted from the pledge’s Client Certificate from the
TLS connection. See Section 5.5.

"ietf-voucher-request:voucher": {
"assertion" : "proximity",
"nonce": "62a2e7693d82fcda2624de58fb6722e5",

"created-on": "2017-01-01T00:00:02.0002",

"idevid-issuer": "baseb4dencodedvalue==",
"serial-number": "JADA123456789",
"prior-signed-voucher-request": "baseb64encodedvalue=="

Figure 7: JSON Representation of an Example Prior-Signed Voucher-

Request
Example (3): The following example illustrates a registrar voucher-
request. The prior-signed-voucher-request leaf is not

populated with the pledge’s voucher-request nor is the
nonce leaf. This form might be used by a registrar
requesting a voucher when the pledge cannot communicate
with the registrar (such as when it is powered down or
still in packaging) and therefore cannot submit a
nonce. This scenario is most useful when the registrar
is aware that it will not be able to reach the MASA
during deployment. See Section 5.5.

"ietf-voucher-request:voucher": {
"created-on": "2017-01-01T00:00:02.0002z",
"idevid-issuer": "baseb4dencodedvalue==",
"serial-number": "JADA123456789"

Figure 8: JSON Representation of an Offline Voucher-Request
3.4. YANG Module

Following is a YANG module [RFC7950] that formally extends a voucher
[RFC8366] into a voucher-request. This YANG module references
[ITU.X690].

<CODE BEGINS> file "ietf-voucher-request@2021-05-20.yang"
module ietf-voucher-request {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
prefix vcr;

import ietf-restconf {
prefix rc;
description
"This import statement is only present to access
the yang-data extension defined in RFC 8040.";
reference
"REFC 8040: RESTCONF Protocol";
}
import ietf-voucher {
prefix vch;
description
"This module defines the format for a wvoucher,
which is produced by a pledge’s manufacturer or
delegate (MASA) to securely assign a pledge to
an 'owner’, so that the pledge may establish a secure
connection to the owner’s network infrastructure.";
reference
"RFC 8366: A Voucher Artifact for
Bootstrapping Protocols";

}

organization
"IETEF ANIMA Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/anima/>
WG List: <mailto:anima@ietf.org>
Author: Kent Watsen

<mailto:kent+ietf@watsen.net>
Author: Michael H. Behringer

<mailto:Michael.H.Behringer@gmail.com>

Author: Toerless Eckert
<mailto:tte+ietf@cs.fau.de>
Author: Max Pritikin
<mailto:pritikin@cisco.com>
Author: Michael Richardson

<mailto:mcr+ietf@sandelman.ca>";
description
"This module defines the format for a voucher-request.
It is a superset of the voucher itself.
It provides content to the MASA for consideration
during a voucher-request.

The key words ’'MUST’, ’'MUST NOT’, ’'REQUIRED’, ’SHALL’, ’SHALL
NOT’, ’SHOULD’, ’SHOULD NOT’, ’'RECOMMENDED’, ’'NOT RECOMMENDED’,
"MAY’, and 'OPTIONAL’ in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.

Copyright (c) 2021 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license—info) .

This version of this YANG module is part of RFC 8995; see the
RFC itself for full legal notices.";

revision 2021-05-20 {
description
"Initial version";
reference
"REFC 8995: Bootstrapping Remote Secure Key Infrastructure
(BRSKI)";
}

// Top—level statement
rc:yang-data voucher-request-artifact {
uses voucher-request-grouping;

}
// Grouping defined for future usage

grouping voucher-request-grouping {
description
"Grouping to allow reuse/extensions in future work.";
uses vch:voucher-artifact-grouping {
refine "voucher/created-on" {
mandatory false;
}
refine "voucher/pinned-domain-cert" {
mandatory false;
description
"A pinned-domain-cert field is not valid in a
voucher-request, and any occurrence MUST be ignored.";
}
refine "voucher/last-renewal-date" {
description
"A last-renewal-date field is not valid in a
voucher-request, and any occurrence MUST be ignored.";
}
refine "voucher/domain-cert-revocation-checks" {
description
"The domain-cert-revocation-checks field is not valid in a
voucher-request, and any occurrence MUST be ignored.";
}

refine "voucher/assertion" {

mandatory false;
description
"Any assertion included in registrar voucher-requests
SHOULD be ignored by the MASA.";
}
augment "voucher" {
description
"Adds leaf nodes appropriate for requesting wvouchers.";
leaf prior-signed-voucher-request {
type binary;
description
"If it is necessary to change a voucher, or re-sign and
forward a voucher that was previously provided along a
protocol path, then the previously signed voucher SHOULD
be included in this field.

For example, a pledge might sign a voucher-request
with a proximity-registrar-cert, and the registrar
then includes it as the prior-signed-voucher-request
field. This is a simple mechanism for a chain of
trusted parties to change a voucher-request, while
maintaining the prior signature information.

The registrar and MASA MAY examine the prior-signed
voucher information for the
purposes of policy decisions. For example, this
information could be useful to a MASA to determine
that both the pledge and registrar agree on proximity
assertions. The MASA SHOULD remove all
prior-signed-voucher-request information when
signing a voucher for imprinting so as to minimize
the final voucher size.";
}
leaf proximity-registrar-cert {
type binary;
description
"An X.509 v3 certificate structure, as specified by
RFC 5280, Section 4, encoded using the ASN.1
distinguished encoding rules (DER), as specified
in ITU X.690.

The first certificate in the registrar TLS server
certificate_list sequence (the end-entity TLS
certificate; see RFC 8446) presented by the registrar
to the pledge. This MUST be populated in a pledge’s
voucher-request when a proximity assertion is
requested.";

reference
"ITU X.690: Information Technology - ASN.1l encoding
rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)
RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile
RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";

}
<CODE ENDS>

Figure 9: YANG Module for Voucher-Request
Proxying Details (Pledge —-- Proxy —-- Registrar)
This section is normative for uses with an ANIMA ACP. The use of the

GRASP mechanism is part of the ACP. Other users of BRSKI will need
to define an equivalent proxy mechanism and an equivalent mechanism

to configure the proxy.

The role of the proxy is to facilitate communications. The proxy
forwards packets between the pledge and a registrar that has been
provisioned to the proxy wvia full GRASP ACP discovery.

This section defines a stateful proxy mechanism that is referred to
as a "circuit" proxy. This is a form of Application Level Gateway
(see [RFC2663], Section 2.9).

The proxy does not terminate the TLS handshake: it passes streams of
bytes onward without examination. A proxy MUST NOT assume any
specific TLS version. Please see [RFC8446], Section 9.3 for details
on TLS invariants.

A registrar can directly provide the proxy announcements described
below, in which case the announced port can point directly to the
registrar itself. 1In this scenario, the pledge is unaware that there
is no proxying occurring. This is useful for registrars that are
servicing pledges on directly connected networks.

As a result of the proxy discovery process in Section 4.1.1, the port
number exposed by the proxy does not need to be well known or require
an IANA allocation.

During the discovery of the registrar by the Join Proxy, the Join
Proxy will also learn which kinds of proxy mechanisms are available.
This will allow the Join Proxy to use the lowest impact mechanism
that the Join Proxy and registrar have in common.

In order to permit the proxy functionality to be implemented on the
maximum variety of devices, the chosen mechanism should use the
minimum amount of state on the proxy device. While many devices in
the ANIMA target space will be rather large routers, the proxy
function is likely to be implemented in the control-plane CPU of such
a device, with available capabilities for the proxy function similar
to many class 2 IoT devices.

The document [ANIMA-STATE] provides a more extensive analysis and
background of the alternative proxy methods.

4.1. Pledge Discovery of Proxy

The result of discovery is a logical communication with a registrar,
through a proxy. The proxy is transparent to the pledge. The
communication between the pledge and Join Proxy is over IPv6 link-
local addresses.

To discover the proxy, the pledge performs the following actions:

1. MUST: Obtain a local address using IPv6 methods as described in
"IPv6 Stateless Address Autoconfiguration" [RFC4862]. Use of
temporary addresses [RFC8981] is encouraged. To limit pervasive
monitoring [RFC7258], a new temporary address MAY use a short
lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short).
Pledges will generally prefer use of IPv6 link-local addresses,
and discovery of the proxy will be by link-local mechanisms.
IPv4 methods are described in Appendix A.

2. MUST: Listen for GRASP M_FLOOD [RFC8990] announcements of the
objective: "AN_Proxy". See Section 4.1.1 for the details of the
objective. The pledge MAY listen concurrently for other sources
of information; see Appendix B.

Once a proxy is discovered, the pledge communicates with a registrar
through the proxy using the bootstrapping protocol defined in
Section 5.

While the GRASP M_FLOOD mechanism is passive for the pledge, the non-
normative other methods (mDNS and IPv4 methods) described in
Appendix B are active. The pledge SHOULD run those methods in

parallel with listening for the M_FLOOD. The active methods SHOULD
back off by doubling to a maximum of one hour to avoid overloading
the network with discovery attempts. Detection of physical link
status change (Ethernet carrier, for instance) SHOULD reset the back-
off timers.

The pledge could discover more than one proxy on a given physical

interface. The pledge can have a multitude of physical interfaces as
well: a Layer 2/3 Ethernet switch may have hundreds of physical
ports.

Each possible proxy offer SHOULD be attempted up to the point where a
valid voucher is received: while there are many ways in which the
attempt may fail, it does not succeed until the voucher has been
validated.

The connection attempts via a single proxy SHOULD exponentially back
off to a maximum of one hour to avoid overloading the network
infrastructure. The back-off timer for each MUST be independent of
other connection attempts.

Connection attempts SHOULD be run in parallel to avoid head-of-queue
problems wherein an attacker running a fake proxy or registrar could
intentionally perform protocol actions slowly. Connection attempts
to different proxies SHOULD be sent with an interval of 3 to 5s. The
pledge SHOULD continue to listen for additional GRASP M_FLOOD
messages during the connection attempts.

Each connection attempt through a distinct Join Proxy MUST have a
unique nonce in the voucher-request.

Once a connection to a registrar is established (e.g., establishment
of a TLS session key), there are expectations of more timely
responses; see Section 5.2.

Once all discovered services are attempted (assuming that none
succeeded), the device MUST return to listening for GRASP M_FLOOD.
It SHOULD periodically retry any manufacturer-specific mechanisms.
The pledge MAY prioritize selection order as appropriate for the
anticipated environment.

4.1.1. Proxy GRASP Announcements

A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.
This announcement can be within the same message as the ACP
announcement detailed in [RFC8994].

The formal Concise Data Definition Language (CDDL) [RFC8610]
definition is:

<CODE BEGINS> file "proxygrasp.cddl"
flood-message = [M_FLOOD, session-id, initiator, ttl,
+[objective, (locator—-option / [1)1]

objective = ["AN_Proxy", objective-flags, loop-count,
objective-value]

ttl = 180000 ; 180,000 ms (3 minutes)
initiator = ACP address to contact registrar
objective-flags = sync-only ; as in the GRASP spec
sync-only = 4 ; M_FLOOD only requires

; synchronization
loop—-count = 1 ; one hop only
objective-value = any ; none

locator-option [O_IPv6_LOCATOR, ipv6-address,

transport—-proto, port-number]

ipvé6-address the v6 LL of the Proxy

$transport-proto /= IPPROTO_TCP ; note that this can be any value
; from the IANA protocol registry,

; as per RFC 8990, Section 2.9.5.1,

; Note 3.
port—-number = selected by Proxy
<CODE ENDS>

Figure 10: CDDL Definition of Proxy Discovery Message

Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP port
4443,

[M_FLOOD, 12340815, h’£e800000000000000000000000000001’, 180000,
[["AN_Proxy", 4, 1, ""I,
[O_IPv6_LOCATOR,
h’ £e800000000000000000000000000001’ , IPPROTO_TCP, 4443]]]

Figure 11: Example of Proxy Discovery Message

On a small network, the registrar MAY include the GRASP M_FLOOD
announcements to locally connected networks.

The $transport-proto above indicates the method that the pledge-
proxy-registrar will use. The TCP method described here is
mandatory, and other proxy methods, such as CoAP methods not defined
in this document, are optional. Other methods MUST NOT be enabled
unless the Join Registrar ASA indicates support for them in its own
announcement.

.2. CoAP Connection to Registrar

The use of CoAP to connect from pledge to registrar is out of scope
for this document and is described in future work. See
[ANIMA-CONSTRAINED-VOUCHER] .

.3. Proxy Discovery and Communication of Registrar

The registrar SHOULD announce itself so that proxies can find it and
determine what kind of connections can be terminated.

The registrar announces itself using GRASP M_FLOOD messages, with the
"AN_join_registrar" objective, within the ACP instance. A registrar

may announce any convenient port number, including use of stock port

443. ANI proxies MUST support GRASP discovery of registrars.

The M_FLOOD is formatted as follows:
[M_FLOOD, 51804321, h’fda379a6f6ee00000200000064000001", 180000,
[["AN_join_registrar", 4, 255, "EST-TLS"],
[O_IPv6_LOCATOR,
h’ £fda379a6f6ee00000200000064000001", IPPROTO_TCP, 8443]]]
Figure 12: An Example of a Registrar Announcement Message
The formal CDDL definition is:
<CODE BEGINS> file "jrcgrasp.cddl"
flood-message = [M_FLOOD, session-id, initiator, ttl,

+[objective, (locator-option / [])1]

objective = ["AN_join_registrar", objective-flags, loop-count,
objective-value]

initiator = ACP address to contact registrar
objective-flags = sync-only ; as in the GRASP spec

sync-only = 4 ; M_FLOOD only requires
; synchronization
loop-count = 255 ; mandatory maximum

objective-value text ; name of the (list of) supported
; protocols: "EST-TLS" for RFC 7030.

<CODE ENDS>

Figure 13: CDDL Definition for Registrar Announcement Message

The M_FLOOD message MUST be sent periodically. The default period
SHOULD be 60 seconds, and the value SHOULD be operator configurable
but SHOULD NOT be smaller than 60 seconds. The frequency of sending
MUST be such that the aggregate amount of periodic M_FLOODs from all
flooding sources causes only negligible traffic across the ACP.

Here are some examples of locators for illustrative purposes. Only
the first one ($transport-protocol = 6, TCP) is defined in this
document and is mandatory to implement.

locatorl = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]
locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

A protocol of 6 indicates that TCP proxying on the indicated port is
desired.

Registrars MUST announce the set of protocols that they support, and
they MUST support TCP traffic.

Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

Registrars MUST support the ANI TLS Circuit Proxy and therefore BRSKI
across HTTPS/TLS native across the ACP.

In the ANI, the ACP-secured instance of GRASP [RFC8990] MUST be used
for discovery of ANI registrar ACP addresses and ports by ANI
proxies. Therefore, the TCP leg of the proxy connection between the
ANI proxy and ANI registrar also runs across the ACP.

Protocol Details (Pledge —-- Registrar —-- MASA)
The pledge MUST initiate BRSKI after boot if it is unconfigured. The

pledge MUST NOT automatically initiate BRSKI if it has been
configured or is in the process of being configured.

BRSKI is described as extensions to EST [RFC7030]. The goal of these
extensions is to reduce the number of TLS connections and crypto
operations required on the pledge. The registrar implements the

BRSKI REST interface within the "/.well-known/brski" URI tree and
implements the existing EST URIs as described in EST [RFC7030],
Section 3.2.2. The communication channel between the pledge and the
registrar is referred to as "BRSKI-EST" (see Figure 1).

The communication channel between the registrar and MASA is a new
communication channel, similar to EST, within the newly registered
"/.well-known/brski" tree. For clarity, this channel is referred to
as "BRSKI-MASA" (see Figure 1).

The MASA URI is "https://" authority "/.well-known/brski".

BRSKI uses existing CMS message formats for existing EST operations.
BRSKI uses JSON [RFC8259] for all new operations defined here and for
voucher formats. In all places where a binary value must be carried
in a JSON string, a base64 format ([RFC4648], Section 4) is to be
used, as per [RFC7951], Section 6.6.

While EST ([RFC7030], Section 3.2) does not insist upon use of HTTP
persistent connections ([RFC7230], Section 6.3), BRSKI-EST
connections SHOULD use persistent connections. The intention of this
guidance is to ensure the provisional TLS state occurs only once, and
that the subsequent resolution of the provision state is not subject
to a Man-in-the-Middle (MITM) attack during a critical phase.

If non-persistent connections are used, then both the pledge and the
registrar MUST remember the certificates that have been seen and also
sent for the first connection. They MUST check each subsequent
connection for the same certificates, and each end MUST use the same
certificates as well. This places a difficult restriction on rolling
certificates on the registrar.

Summarized automation extensions for the BRSKI-EST flow are:

* The pledge either attempts concurrent connections via each
discovered proxy or times out quickly and tries connections in
series, as explained at the end of Section 5.1.

* The pledge provisionally accepts the registrar certificate during
the TLS handshake as detailed in Section 5.1.

* The pledge requests a voucher using the new REST calls described
below. This voucher is then validated.

* The pledge completes authentication of the server certificate as
detailed in Section 5.6.1. This moves the BRSKI-EST TLS
connection out of the provisional state.

* Mandatory bootstrap steps conclude with voucher status telemetry
(see Section 5.7).

The BRSKI-EST TLS connection can now be used for EST enrollment.
The extensions for a registrar (equivalent to an EST server) are:

* Client authentication is automated using IDevID as per the EST
certificate-based client authentication. The subject field’s DN
encoding MUST include the "serialNumber" attribute with the
device’s unique serial number as explained in Section 2.3.1.

* The registrar requests and validates the voucher from the MASA.
* The registrar forwards the voucher to the pledge when requested.

* The registrar performs log verifications (described in
Section 5.8.3) in addition to local authorization checks before
accepting optional pledge device enrollment requests.

BRSKI-EST TLS Establishment Details

The pledge establishes the TLS connection with the registrar through
the Circuit Proxy (see Section 4), but the TLS handshake is with the
registrar. The BRSKI-EST pledge is the TLS client, and the BRSKI-EST
registrar is the TLS server. All security associations established
are between the pledge and the registrar regardless of proxy
operations.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is
REQUIRED on the pledge side. TLS 1.3 (or newer) SHOULD be available
on the registrar server interface, and the registrar client
interface, but TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be
available on the MASA server interface, but TLS 1.2 MAY be used.

Establishment of the BRSKI-EST TLS connection is as specified in
"Bootstrap Distribution of CA Certificates" (Section 4.1.1) of
[REC7030], wherein the client is authenticated with the IDevID
certificate, and the EST server (the registrar) is provisionally
authenticated with an unverified server certificate. Configuration
or distribution of the trust anchor database used for validating the
IDevID certificate is out of scope of this specification. Note that
the trust anchors in / excluded from the database will affect which
manufacturers’ devices are acceptable to the registrar as pledges and
can also be used to limit the set of MASAs that are trusted for
enrollment.

The signature in the certificate MUST be validated even if a signing
key cannot (yet) be wvalidated. The certificate (or chain) MUST be

retained for later validation.

A self-signed certificate for the registrar is acceptable as the
voucher can validate it upon successful enrollment.

The pledge performs input validation of all data received until a

voucher is verified as specified in Section 5.6.1 and the TLS
connection leaves the provisional state. Until these operations are
complete, the pledge could be communicating with an attacker.

The pledge code needs to be written with the assumption that all data
is being transmitted at this point to an unauthenticated peer, and
that received data, while inside a TLS connection, MUST be considered
untrusted. This particularly applies to HTTP headers and CMS
structures that make up the voucher.

A pledge that can connect to multiple registrars concurrently SHOULD
do so. Some devices may be unable to do so for lack of threading, or
resource issues. Concurrent connections defeat attempts by a
malicious proxy from causing a TCP Slowloris-like attack (see
[slowloris]) .

A pledge that cannot maintain as many connections as there are
eligible proxies will need to rotate among the various choices,
terminating connections that do not appear to be making progress. If
no connection is making progress after 5 seconds, then the pledge
SHOULD drop the oldest connection and go on to a different proxy: the
proxy that has been communicated with least recently. If there were
no other proxies discovered, the pledge MAY continue to wait, as long
as it is concurrently listening for new proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

When the pledge bootstraps, it makes a request for a voucher from a
registrar.

This is done with an HTTPS POST using the operation path value of
"/ .well-known/brski/requestvoucher".

The pledge voucher-request Content-Type is as follows.

application/voucher—-cms+json: [REC8366] defines a "YANG-defined JSON
document that has been signed using a Cryptographic Message Syntax
(CMS) structure", and the voucher-request described in Section 3
is created in the same way. The media type is the same as defined
in [RFC8366]. This is also used for the pledge voucher-request.
The pledge MUST sign the request using the credentials in
Section 2.3.

Registrar implementations SHOULD anticipate future media types but,
of course, will simply fail the request if those types are not yet
known.

The pledge SHOULD include an "Accept" header field (see [RFC7231],
Section 5.3.2) indicating the acceptable media type for the voucher
response. The "application/voucher-cms+json" media type is defined
in [RFC8366], but constrained voucher formats are expected in the
future. Registrars and MASA are expected to be flexible in what they
accept.

The pledge populates the voucher-request fields as follows:

created-on: Pledges that have a real-time clock are RECOMMENDED to
populate this field with the current date and time in yang:date-
and-time format. This provides additional information to the
MASA. Pledges that have no real-time clocks MAY omit this field.

nonce: The pledge voucher-request MUST contain a cryptographically
strong random or pseudo-random number nonce (see [RFC4086],
Section 6.2). As the nonce is usually generated very early in the
boot sequence, there is a concern that the same nonce might be
generated across multiple boots, or after a factory reset.
Different nonces MUST be generated for each bootstrapping attempt,
whether in series or concurrently. The freshness of this nonce
mitigates against the lack of a real-time clock as explained in
Section 2.6.1.

assertion: The pledge indicates support for the mechanism described
in this document, by putting the value "proximity" in the voucher-
request, and MUST include the proximity-registrar-cert field
(below) .

proximity-registrar-cert: In a pledge voucher-request, this is the
first certificate in the TLS server "certificate_list" sequence
(see [RFC8446], Section 4.4.2) presented by the registrar to the
pledge. That is, it is the end-entity certificate. This MUST be
populated in a pledge voucher-request.

serial-number: The serial number of the pledge is included in the
voucher-request from the pledge. This value is included as a
sanity check only, but it is not to be forwarded by the registrar
as described in Section 5.5.

All other fields MAY be omitted in the pledge voucher-request.

See an example JSON payload of a pledge voucher-request in
Section 3.3, Example 1.

The registrar confirms that the assertion is "proximity" and that
pinned proximity-registrar-cert is the registrar’s certificate. If
this validation fails, then there is an on-path attacker (MITM), and
the connection MUST be closed after the returning of an HTTP 401
error code.

5.3. Registrar Authorization of Pledge

In a fully automated network, all devices must be securely identified
and authorized to join the domain.

A registrar accepts or declines a request to join the domain, based
on the authenticated identity presented. For different networks,
examples of automated acceptance may include the allowance of:

* any device of a specific type (as determined by the X.509 IDevID),

* any device from a specific vendor (as determined by the X.509
IDevID),

* a specific device from a vendor (as determined by the X.509

IDevID) against a domain acceptlist. (The mechanism for checking
a shared acceptlist potentially used by multiple registrars is out
of scope.)

If validation fails, the registrar SHOULD respond with the HTTP 404
error code. If the voucher-request is in an unknown format, then an
HTTP 406 error code is more appropriate. A situation that could be
resolved with administrative action (such as adding a vendor to an
acceptlist) MAY be responded to with a 403 HTTP error code.

If authorization is successful, the registrar obtains a wvoucher from
the MASA service (see Section 5.5) and returns that MASA-signed
voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS Establishment Details

The BRSKI-MASA TLS connection is a "normal" TLS connection
appropriate for HTTPS REST interfaces. The registrar initiates the
connection and uses the MASA URL that is obtained as described in
Section 2.8. The mechanisms in [RFC6125] SHOULD be used in
authentication of the MASA using a DNS-ID that matches that which is

found in the IDevID. Registrars MAY include a mechanism to override
the MASA URL on a manufacturer-by-manufacturer basis, and within that
override, it 1is appropriate to provide alternate anchors. This will

typically be used by some vendors to establish explicit (or private)
trust anchors for validating their MASA that is part of a sales
channel integration.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is

REQUIRED. TLS 1.3 (or newer) SHOULD be available.

As described in [RFC7030], the MASA and the registrars SHOULD be
prepared to support TLS Client Certificate authentication and/or HTTP
Basic, Digest, or Salted Challenge Response Authentication Mechanism
(SCRAM) authentication. This connection MAY also have no client
authentication at all.

Registrars SHOULD permit trust anchors to be preconfigured on a per-
vendor (MASA) basis. Registrars SHOULD include the ability to
configure a TLS Client Certificate on a per—-MASA basis, or to use no
Client Certificate. Registrars SHOULD also permit HTTP Basic and
Digest authentication to be configured.

The authentication of the BRSKI-MASA connection does not change the
voucher-request process, as voucher-requests are already signed by
the registrar. Instead, this authentication provides access control
to the audit-log as described in Section 5.8.

Implementers are advised that contacting the MASA establishes a
secured API connection with a web service, and that there are a
number of authentication models being explored within the industry.
Registrars are RECOMMENDED to fail gracefully and generate useful
administrative notifications or logs in the advent of unexpected HTTP
401 (Unauthorized) responses from the MASA.

.4.1. MASA Authentication of Customer Registrar

Providing per-customer options requires the customer’s registrar to
be uniquely identified. This can be done by any stateless method
that HTTPS supports such as HTTP Basic or Digest authentication (that
is using a password), but the use of TLS Client Certificate
authentication is RECOMMENDED.

Stateful methods involving API tokens, or HTTP Cookies, are not
recommended.

It is expected that the setup and configuration of per-customer
Client Certificates is done as part of a sales ordering process.

The use of public PKI (i.e., WebPKI) end-entity certificates to
identify the registrar is reasonable, and if done universally, this
would permit a MASA to identify a customer’s registrar simply by a
Fully Qualified Domain Name (FQDN).

The use of DANE records in DNSSEC-signed zones would also permit use
of a FODN to identify customer registrars.

A third (and simplest, but least flexible) mechanism would be for the
MASA to simply store the registrar’s certificate pinned in a
database.

A MASA without any supply-chain integration can simply accept
registrars without any authentication or on a blind TOFU basis as
described in Section 7.4.2.

This document does not make a specific recommendation on how the MASA
authenticates the registrar as there are likely different tradeoffs
in different environments and product values. Even within the ANIMA
ACP applicability, there is a significant difference between supply-
chain logistics for $100 CPE devices and $100,000 core routers.

.5. Registrar Requests Voucher from MASA
When a registrar receives a pledge voucher-request, it in turn
submits a registrar voucher-request to the MASA service via an HTTPS

interface [RFC7231].

This is done with an HTTP POST using the operation path value of
"/.well-known/brski/requestvoucher".

The voucher media type "application/voucher-cms+json" is defined in
[RFC8366] and is also used for the registrar voucher-request. It is
a JSON document that has been signed using a CMS structure. The
registrar MUST sign the registrar voucher-request.

MASA implementations SHOULD anticipate future media ntypes but, of
course, will simply fail the request if those types are not yet
known.

The voucher-request CMS object includes some number of certificates
that are input to the MASA as it populates the pinned-domain-cert.
As [RFC8366] is quite flexible in what may be put into the pinned-
domain-cert, the MASA needs some signal as to what certificate would
be effective to populate the field with: it may range from the end-
entity certificate that the registrar uses to the entire private
Enterprise CA certificate. More-specific certificates result in a
tighter binding of the voucher to the domain, while less-specific
certificates result in more flexibility in how the domain is
represented by certificates.

A registrar that is seeking a nonceless voucher for later offline use
benefits from a less-specific certificate, as it permits the actual
key pair used by a future registrar to be determined by the pinned
CA.

In some cases, a less-specific certificate, such as a public WebPKI
CA, could be too open and could permit any entity issued a
certificate by that authority to assume ownership of a device that
has a voucher pinned. Future work may provide a solution to pin both
a certificate and a name that would reduce such risk of malicious
ownership assertions.

The registrar SHOULD request a voucher with the most specificity
consistent with the mode that it is operating in. In order to do
this, when the registrar prepares the CMS structure for the signed
voucher—-request, it SHOULD include only certificates that are a part
of the chain that it wishes the MASA to pin. This MAY be as small as
only the end-entity certificate (with id-kp-cmcRA set) that it uses
as its TLS server certificate, or it MAY be the entire chain,
including the domain CA.

The registrar SHOULD include an "Accept" header field (see [RFC7231],
Section 5.3.2) indicating the response media types that are
acceptable. This list SHOULD be the entire list presented to the
registrar in the pledge’s original request (see Section 5.2), but it
MAY be a subset. The MASA is expected to be flexible in what it
accepts.

The registrar populates the voucher-request fields as follows:

created-on: The registrar SHOULD populate this field with the
current date and time when the voucher-request is formed. This
field provides additional information to the MASA.

nonce: This value, if present, is copied from the pledge voucher-
request. The registrar voucher-request MAY omit the nonce as per
Section 3.1.

serial-number: The serial number of the pledge the registrar would
like a voucher for. The registrar determines this value by
parsing the authenticated pledge IDevID certificate; see
Section 2.3. The registrar MUST verify that the serial-number
field it parsed matches the serial-number field the pledge
provided in its voucher-request. This provides a sanity check
useful for detecting error conditions and logging. The registrar
MUST NOT simply copy the serial-number field from a pledge
voucher-request as that field is claimed but not certified.

idevid-issuer: The Issuer value from the pledge IDevID certificate
is included to ensure unique interpretation of the serial-number.
In the case of a nonceless (offline) wvoucher-request, an

appropriate value needs to be configured from the same out-of-band
source as the serial-number.

prior-signed-voucher-request: The signed pledge voucher-request
SHOULD be included in the registrar voucher-request. The entire
CMS-signed structure is to be included and base64 encoded for
transport in the JSON structure.

A nonceless registrar voucher-request MAY be submitted to the MASA.
Doing so allows the registrar to request a voucher when the pledge is
offline, or when the registrar anticipates not being able to connect
to the MASA while the pledge is being deployed. Some use cases
require the registrar to learn the appropriate IDevID serialNumber
field and appropriate "Accept" header field values from the physical
device labeling or from the sales channel (which is out of scope for
this document) .

All other fields MAY be omitted in the registrar voucher-request.

The proximity-registrar—-cert field MUST NOT be present in the
registrar voucher-request.

See example JSON payloads of registrar voucher-requests in
Section 3.3, Examples 2 through 4.

The MASA verifies that the registrar voucher-request is internally
consistent but does not necessarily authenticate the registrar
certificate since the registrar MAY be unknown to the MASA in
advance. The MASA performs the actions and validation checks
described in the following subsections before issuing a voucher.

5.5.1. MASA Renewal of Expired Vouchers

As described in [RFC8366], vouchers are normally short lived to avoid
revocation issues. If the request is for a previous (expired)
voucher using the same registrar (that is, a registrar with the same
domain CA), then the request for a renewed voucher SHOULD be
automatically authorized. The MASA has sufficient information to
determine this by examining the request, the registrar
authentication, and the existing audit-log. The issuance of a
renewed voucher is logged as detailed in Section 5.6.

To inform the MASA that existing vouchers are not to be renewed, one
can update or revoke the registrar credentials used to authorize the
request (see Sections 5.5.4 and 5.5.3). More flexible methods will
likely involve sales channel integration and authorizations (details
are out of scope of this document).

5.5.2. MASA Pinning of Registrar

A certificate chain is extracted from the registrar’s signed CMS
container. This chain may be as short as a single end-entity
certificate, up to the entire registrar certificate chain, including
the domain CA certificate, as specified in Section 5.5.

If the domain’s CA is unknown to the MASA, then it is considered a
temporary trust anchor for the rest of the steps in this section.
The intention is not to authenticate the message as having come from
a fully validated origin but to establish the consistency of the
domain PKI.

The MASA MAY use the certificate in the chain that is farthest from
the end-entity certificate of the registrar, as determined by MASA
policy. A MASA MAY have a local policy in which it only pins the
end-entity certificate. This is consistent with [RFC8366]. Details
of the policy will typically depend upon the degree of supply-chain
integration and the mechanism used by the registrar to authenticate.
Such a policy would also determine how the MASA will respond to a
request for a nonceless voucher.

5.5.3. MASA Check of the Voucher-Request Signature

As described in Section 5.5.2, the MASA has extracted the registrar’s
domain CA. This is used to validate the CMS signature [RFC5652] on
the voucher-request.

Normal PKIX revocation checking is assumed during voucher-request

signature validation. This CA certificate MAY have Certificate
Revocation List (CRL) distribution points or Online Certificate
Status Protocol (OCSP) information [RFC6960]. If they are present,

the MASA MUST be able to reach the relevant servers belonging to the
registrar’s domain CA to perform the revocation checks.

The use of OCSP Stapling is preferred.
.5.4. MASA Verification of the Domain Registrar

The MASA MUST verify that the registrar voucher-request is signed by
a registrar. This is confirmed by verifying that the id-kp-cmcRA
extended key usage extension field (as detailed in EST [RFC7030],
Section 3.6.1) exists in the certificate of the entity that signed
the registrar voucher-request. This verification is only a
consistency check to ensure that the unauthenticated domain CA
intended the voucher-request signer to be a registrar. Performing
this check provides value to the domain PKI by assuring the domain
administrator that the MASA service will only respect claims from
authorized registration authorities of the domain.

Even when a domain CA is authenticated to the MASA, and there is
strong sales channel integration to understand who the legitimate
owner is, the above id-kp-cmcRA check prevents arbitrary end-entity
certificates (such as an LDevID certificate) from having vouchers
issued against them.

Other cases of inappropriate voucher issuance are detected by
examination of the audit-log.

If a nonceless voucher-request is submitted, the MASA MUST
authenticate the registrar either as described in EST (see Sections
3.2.3 and 3.3.2 of [RFC7030]) or by validating the registrar’s
certificate used to sign the registrar voucher-request using a
configured trust anchor. Any of these methods reduce the risk of
DDoS attacks and provide an authenticated identity as an input to
sales channel integration and authorizations (details are out of
scope of this document) .

In the nonced case, validation of the registrar’s identity (via TLS
Client Certificate or HTTP authentication) MAY be omitted if the MASA
knows that the device policy is to accept audit-only vouchers.

.5.5. MASA Verification of the Pledge ’prior-signed-voucher-request’

The MASA MAY verify that the registrar voucher-request includes the
prior-signed-voucher-request field. 1If so, the prior-signed-voucher-—
request MUST include a proximity-registrar-cert that is consistent
with the certificate used to sign the registrar voucher-request.
Additionally, the voucher-request serial-number leaf MUST match the
pledge serial-number that the MASA extracts from the signing
certificate of the prior-signed-voucher-request. The consistency
check described above entails checking that the proximity-registrar-—
cert Subject Public Key Info (SPKI) Fingerprint exists within the
registrar voucher-request CMS signature’s certificate chain. This is
substantially the same as the pin validation described in [RFC7469],
Section 2.6.

If these checks succeed, the MASA updates the voucher and audit-log
assertion leafs with the "proximity" assertion, as defined by
[RFC8366], Section 5.3.

.5.6. MASA Nonce Handling

The MASA does not verify the nonce itself. If the registrar voucher-

request contains a nonce, and the prior-signed-voucher-request

exists, then the MASA MUST verify that the nonce is consistent.
(Recall from above that the voucher-request might not contain a
nonce; see Sections 5.5 and 5.5.4.)

The MASA populates the audit-log with the nonce that was verified.
If a nonceless voucher is issued, then the audit-log is to be
populated with the JSON value "null".

.6. MASA and Registrar Voucher Response

The MASA voucher response to the registrar is forwarded without
changes to the pledge; therefore, this section applies to both the
MASA and the registrar. The HTTP signaling described applies to both
the MASA and registrar responses.

When a voucher-request arrives at the registrar, if it has a cached
response from the MASA for the corresponding registrar voucher-—
request, that cached response can be used according to local policy;
otherwise, the registrar constructs a new registrar voucher-request
and sends it to the MASA.

Registrar evaluation of the voucher itself is purely for transparency
and audit purposes to further inform log verification (see

Section 5.8.3); therefore, a registrar could accept future voucher
formats that are opaque to the registrar.

If the voucher-request is successful, the server (a MASA responding
to a registrar or a registrar responding to a pledge) response MUST
contain an HTTP 200 response code. The server MUST answer with a
suitable 4xx or 5xx HTTP [RFC7230] error code when a problem occurs.
In this case, the response data from the MASA MUST be a plain text
human-readable (UTF-8) error message containing explanatory
information describing why the request was rejected.

The registrar MAY respond with an HTTP 202 ("the request has been
accepted for processing, but the processing has not been completed")
as described in EST [RFC7030], Section 4.2.3, wherein the client
"MUST wait at least the specified "retry-after" time before repeating

the same request" (also see [RFC7231], Section 6.6.4). The pledge is
RECOMMENDED to provide local feedback (blinked LED, etc.) during this
wait cycle if mechanisms for this are available. To prevent an

attacker registrar from significantly delaying bootstrapping, the
pledge MUST limit the Retry-After time to 60 seconds. Ideally, the
pledge would keep track of the appropriate Retry-After header field
values for any number of outstanding registrars, but this would
involve a state table on the pledge. Instead, the pledge MAY ignore
the exact Retry-After value in favor of a single hard-coded value (a
registrar that is unable to complete the transaction after the first
60 seconds has another chance a minute later). A pledge SHOULD be
willing to maintain a 202 retry-state for up to 4 days, which is
longer than a long weekend, after which time the enrollment attempt
fails, and the pledge returns to Discovery state. This allows time
for an alert to get from the registrar to a human operator who can
make a decision as to whether or not to proceed with the enrollment.

A pledge that retries a request after receiving a 202 message MUST
resend the same voucher-request. It MUST NOT sign a new voucher-—
request each time, and in particular, it MUST NOT change the nonce
value.

In order to avoid infinite redirect loops, which a malicious
registrar might do in order to keep the pledge from discovering the
correct registrar, the pledge MUST NOT follow more than one
redirection (3xx code) to another web origin. EST supports
redirection but requires user input; this change allows the pledge to
follow a single redirection without a user interaction.

A 403 (Forbidden) response is appropriate if the voucher-request is
not signed correctly or is stale or if the pledge has another
outstanding voucher that cannot be overridden.

A 404 (Not Found) response is appropriate when the request is for a
device that is not known to the MASA.

A 406 (Not Acceptable) response is appropriate if a voucher of the
desired type or that uses the desired algorithms (as indicated by the
"Accept" header fields and algorithms used in the signature) cannot
be issued as such because the MASA knows the pledge cannot process
that type. The registrar SHOULD use this response if it determines
the pledge is unacceptable due to inventory control, MASA audit-logs,
or any other reason.

A 415 (Unsupported Media Type) response is appropriate for a request
that has a voucher-request or "Accept" value that is not understood.

The voucher response format is as indicated in the submitted "Accept"
header fields or based on the MASA’s prior understanding of proper
format for this pledge. Only the "application/voucher—-cms+json"
media type [RFC8366] is defined at this time. The syntactic details
of vouchers are described in detail in [RFC8366]. Figure 14 shows a
sample of the contents of a voucher.

{
"ietf-voucher:voucher": {
"nonce": "62a2e7693d82fcda2624de58fb6722e5",
"assertion": "logged",
"pinned-domain-cert": "base64encodedvalue==",
"serial-number": "JADA123456789"

Figure 14: An Example Voucher
The MASA populates the voucher fields as follows:
nonce: The nonce from the pledge if available. See Section 5.5.6.

assertion: The method used to verify the relationship between the
pledge and registrar. See Section 5.5.5.

pinned-domain-cert: A certificate; see Section 5.5.2. This figure
is illustrative; for an example, see Appendix C.2 where an end-
entity certificate is used.

serial-number: The serial-number as provided in the voucher-request.
Also see Section 5.5.5.

domain-cert-revocation—-checks: Set as appropriate for the pledge’s
capabilities and as documented in [RFC8366]. The MASA MAY set
this field to "false" since setting it to "true" would require
that revocation information be available to the pledge, and this
document does not make normative requirements for [RFC6961],
Section 4.4.2.1 of [RFC8446], or equivalent integrations.

expires-on: This is set for nonceless vouchers. The MASA ensures
the voucher lifetime is consistent with any revocation or pinned-
domain-cert consistency checks the pledge might perform. See
Section 2.6.1. There are three times to consider: (a) a
configured voucher lifetime in the MASA, (b) the expiry time for
the registrar’s certificate, and (c) any CRL lifetime. The
expires-on field SHOULD be before the earliest of these three
values. Typically, (b) will be some significant time in the
future, but (c) will typically be short (on the order of a week or
less). The RECOMMENDED period for (a) is on the order of 20
minutes, so it will typically determine the life span of the
resulting voucher. 20 minutes is sufficient time to reach the
post-provisional state in the pledge, at which point there is an
established trust relationship between the pledge and registrar.
The subsequent operations can take as long as required from that
point onwards. The lifetime of the voucher has no impact on the
life span of the ownership relationship.

Whenever a voucher is issued, the MASA MUST update the audit-log
sufficiently to generate the response as described in Section 5.8.1.
The internal state requirements to maintain the audit-log are out of
scope.

5.6.1. Pledge Voucher Verification

The pledge MUST verify the voucher signature using the manufacturer-
installed trust anchor(s) associated with the manufacturer’s MASA
(this is likely included in the pledge’s firmware). Management of
the manufacturer-installed trust anchor(s) is out of scope of this
document; this protocol does not update this trust anchor(s).

The pledge MUST verify that the serial-number field of the signed
voucher matches the pledge’s own serial-number.

The pledge MUST verify the nonce information in the voucher. If
present, the nonce in the voucher must match the nonce the pledge
submitted to the registrar; vouchers with no nonce can also be
accepted (according to local policy; see Section 7.2).

The pledge MUST be prepared to parse and fail gracefully from a
voucher response that does not contain a pinned-domain-cert field.
Such a thing indicates a failure to enroll in this domain, and the
pledge MUST attempt joining with other available Join Proxies.

The pledge MUST be prepared to ignore additional fields that it does
not recognize.

5.6.2. Pledge Authentication of Provisional TLS Connection

Following the process described in [RFC8366], the pledge should
consider the public key from the pinned-domain-cert as the sole
temporary trust anchor.

The pledge then evaluates the TLS server certificate chain that it
received when the TLS connection was formed using this trust anchor.
It is possible that the public key in the pinned-domain-cert directly
matches the public key in the end-entity certificate provided by the
TLS server.

If a registrar’s credentials cannot be verified using the pinned-
domain-cert trust anchor from the voucher, then the TLS connection is
discarded, and the pledge abandons attempts to bootstrap with this
discovered registrar. The pledge SHOULD send voucher status
telemetry (described below) before closing the TLS connection. The
pledge MUST attempt to enroll using any other proxies it has found.
It SHOULD return to the same proxy again after unsuccessful attempts
with other proxies. Attempts should be made at repeated intervals
according to the back-off timer described earlier. Attempts SHOULD
be repeated as failure may be the result of a temporary inconsistency
(an inconsistently rolled registrar key, or some other
misconfiguration). The inconsistency could also be the result of an
active MITM attack on the EST connection.

The registrar MUST use a certificate that chains to the pinned-
domain-cert as its TLS server certificate.

The pledge’s PKIX path validation of a registrar certificate’s
validity period information is as described in Section 2.6.1. Once
the PKIX path validation is successful, the TLS connection is no
longer provisional.

The pinned-domain-cert MAY be installed as a trust anchor for future

operations such as enrollment (e.g., as recommended per [RFC7030]) or
trust anchor management or raw protocols that do not need full PKI-
based key management. It can be used to authenticate any dynamically

discovered EST server that contains the id-kp-cmcRA extended key
usage extension as detailed in EST (see [RFC7030], Section 3.6.1);
but to reduce system complexity, the pledge SHOULD avoid additional

discovery operations. Instead, the pledge SHOULD communicate
directly with the registrar as the EST server. The pinned-domain-
cert is not a complete distribution of the CA certificate response,
as described in [RFC7030], Section 4.1.3, which is an additional
justification for the recommendation to proceed with EST key
management operations. Once a full CA certificate response is
obtained, it is more authoritative for the domain than the limited
pinned-domain-cert response.

5.7. Pledge BRSKI Status Telemetry

The domain is expected to provide indications to the system
administrators concerning device life-cycle status. To facilitate
this, it needs telemetry information concerning the device’s status.

The pledge MUST indicate its pledge status regarding the voucher. It
does this by sending a status message to the registrar.

The posted data media type: application/json

The client sends an HTTP POST to the server at the URI ".well-
known/brski/voucher_status".

The format and semantics described below are for version 1. A
version field is included to permit significant changes to this
feedback in the future. A registrar that receives a status message
with a version larger than it knows about SHOULD log the contents and
alert a human.

The status field indicates if the voucher was acceptable. Boolean
values are acceptable, where "true" indicates the voucher was
acceptable.

If the voucher was not acceptable, the Reason string indicates why.
In a failure case, this message may be sent to an unauthenticated,
potentially malicious registrar; therefore, the Reason string SHOULD
NOT provide information beneficial to an attacker. The operational
benefit of this telemetry information is balanced against the
operational costs of not recording that a voucher was ignored by a
client that the registrar expected was going to continue Jjoining the
domain.

The reason-context attribute is an arbitrary JSON object (literal
value or hash of values) that provides additional information
specific to this pledge. The contents of this field are not subject
to standardization.

The version and status fields MUST be present. The Reason field
SHOULD be present whenever the status field is false. The Reason-—
Context field is optional. In the case of a SUCCESS, the Reason
string MAY be omitted.

The keys to this JSON object are case sensitive and MUST be
lowercase. Figure 16 shows an example JSON.

<CODE BEGINS> file "voucherstatus.cddl"
voucherstatus—-post = {

"version": uint,

"status": bool,

? "reason": text,

? "reason-context" : { $Sarbitrary-map }

}
<CODE ENDS>

Figure 15: CDDL for Voucher Status POST
"version": 1,

"status":false,
"reason":"Informative human-readable message",

"reason—-context": { "additional" : "JSON" }

Figure 16: Example Status Telemetry

The server SHOULD respond with an HTTP 200 but MAY simply fail with
an HTTP 404 error. The client ignores any response. The server
SHOULD capture this telemetry information within the server logs.

Additional standard JSON fields in this POST MAY be added; see
Section 8.5. A server that sees unknown fields should log them, but
otherwise ignore them.

5.8. Registrar Audit-Log Request

After receiving the pledge status telemetry (see Section 5.7), the
registrar SHOULD request the MASA audit-log from the MASA service.

This is done with an HTTP POST using the operation path value of
"/.well-known/brski/requestauditlog".

The registrar SHOULD HTTP POST the same registrar voucher-request as
it did when requesting a voucher (using the same Content-Type). It
is posted to the /requestauditlog URI instead. The idevid-issuer and
serial-number informs the MASA which log is requested, so the
appropriate log can be prepared for the response. Using the same
media type and message minimizes cryptographic and message
operations, although it results in additional network traffic. The
relying MASA implementation MAY leverage internal state to associate
this request with the original, and by now already validated,
voucher-request so as to avoid an extra crypto validation.

A registrar MAY request logs at future times. If the registrar
generates a new request, then the MASA is forced to perform the
additional cryptographic operations to verify the new request.

A MASA that receives a request for a device that does not exist, or
for which the requesting owner was never an owner, returns an HTTP
404 ("Not found") code.

It is reasonable for a registrar, that the MASA does not believe to
be the current owner, to request the audit-log. There are probably
reasons for this, which are hard to predict in advance. For
instance, such a registrar may not be aware that the device has been
resold; it may be that the device has been resold inappropriately,
and this is how the original owner will learn of the occurrence. It
is also possible that the device legitimately spends time in two
different networks.

Rather than returning the audit-log as a response to the POST (with a
return code 200), the MASA MAY instead return a 201 ("Created")
response ([RFC7231], Sections 6.3.2 and 7.1), with the URL to the
prepared (and idempotent, therefore cachable) audit response in the
"Location" header field.

In order to avoid enumeration of device audit-logs, a MASA that
returns URLs SHOULD take care to make the returned URL unguessable.
[W3C.capability—-urls] provides very good additional guidance. For
instance, rather than returning URLs containing a database number
such as https://example.com/auditlog/1234 or the Extended Unique
Identifier (EUI) of the device such https://example.com/
auditlog/10-00-00-11-22-33, the MASA SHOULD return a randomly
generated value (a "slug" in web parlance). The value is used to
find the relevant database entry.

A MASA that returns a code 200 MAY also include a "Location" header
for future reference by the registrar.

5.8.1. MASA Audit-Log Response

A log data file is returned consisting of all log entries associated

with the device selected by the IDevID presented in the request. The
audit-log may be abridged by removal of old or repeated values as
explained below. The returned data is in JSON format [RFC8259], and
the Content-Type SHOULD be "application/json".

The following CDDL [RFC8610] explains the structure of the JSON
format audit-log response:

<CODE BEGINS> file "auditlog.cddl"
audit-log-response = {
"version": uint,
"events": [+ event]
"truncation": {
? "nonced duplicates": uint,
? "nonceless duplicates": uint,
? "arbitrary": uint,

event = {
"date": text,
"domainID": text,
"nonce": text / null,
"assertion": "verified" / "logged" / "proximity",
? "truncated": uint,
}
<CODE ENDS>

Figure 17: CDDL for Audit-Log Response
An example:

{
"version":"1",
"events": [
{

"date":"2019-05-15T17:25:55.644-04:00",
"domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
"nonce" : "VOUFT-WwrEvONuAQEHoV7Q",
"assertion":"proximity",
"truncated":"0"

"date":"2017-05-15T17:25:55.644-04:00",
"domainID": "BduJhdHPpfhQLyponf48JzXSGZ38=",
"nonce":"f4G6Vilt8nKo/FieCVgpBg==",
"assertion":"proximity"

}

1,

"truncation": {
"nonced duplicates": "0",
"nonceless duplicates": "1",
"arbitrary": "2"

Figure 18: Example of an Audit-Log Response

The domainID is a binary SubjectKeyIdentifier wvalue calculated
according to Section 5.8.2. It is encoded once in base64 in order to
be transported in this JSON container.

The date is formatted per [RFC3339], which is consistent with typical
JavaScript usage of JSON.

The truncation structure MAY be omitted if all values are zero. Any
counter missing from the truncation structure is assumed to be zero.

The nonce is a string, as provided in the voucher-request, and is
used in the voucher. If no nonce was placed in the resulting
voucher, then a value of null SHOULD be used in preference to

5.

5.

8

8.

omitting the entry. While the nonce is often created as a
baseb4-encoded random series of bytes, this should not be assumed.

Distribution of a large log is less than ideal. This structure can
be optimized as follows: nonced or nonceless entries for the same
domainID MAY be abridged from the log leaving only the single most
recent nonced or nonceless entry for that domainID. In the case of
truncation, the "event" truncation value SHOULD contain a count of
the number of events for this domainID that were omitted. The log
SHOULD NOT be further reduced, but an operational situation could
exist where maintaining the full log is not possible. In such
situations, the log MAY be arbitrarily abridged for length, with the
number of removed entries indicated as "arbitrary".

If the truncation count exceeds 1024, then the MASA MAY use this
value without further incrementing it.

A log where duplicate entries for the same domain have been omitted
("nonced duplicates" and/or "nonceless duplicates") could still be
acceptable for informed decisions. A log that has had "arbitrary"
truncations is less acceptable, but manufacturer transparency is
better than hidden truncations.

A registrar that sees a version value greater than 1 indicates an
audit-log format that has been enhanced with additional information.
No information will be removed in future versions; should an
incompatible change be desired in the future, then a new HTTP
endpoint will be used.

This document specifies a simple log format as provided by the MASA
service to the registrar. This format could be improved by
distributed consensus technologies that integrate vouchers with
technologies such as block-chain or hash trees or optimized logging
approaches. Doing so is out of the scope of this document but is an
anticipated improvement for future work. As such, the registrar
SHOULD anticipate new kinds of responses and SHOULD provide operator
controls to indicate how to process unknown responses.

.2. Calculation of domainID

The domainID is a binary value (a BIT STRING) that uniquely
identifies a registrar by the pinned-domain-cert.

If the pinned-domain-cert certificate includes the
SubjectKeyIdentifier ([RFC5280], Section 4.2.1.2), then it is used as
the domainID. If not, the SPKI Fingerprint as described in
[REFC7469], Section 2.4 is used. This value needs to be calculated by
both the MASA (to populate the audit-log) and the registrar (to
recognize itself in the audit-log).

[RFC5280], Section 4.2.1.2 does not mandate that the
SubjectKeyIdentifier extension be present in non-CA certificates. It
is RECOMMENDED that registrar certificates (even if self-signed)
always include the SubjectKeyIdentifier to be used as a domainID.

The domainID is determined from the certificate chain associated with
the pinned-domain-cert and is used to update the audit-log.

3. Registrar Audit-Log Verification

Each time the MASA issues a voucher, it appends details of the
assignment to an internal audit-log for that device. The internal
audit-log is processed when responding to requests for details as
described in Section 5.8. The contents of the audit-log can express
a variety of trust levels, and this section explains what kind of
trust a registrar can derive from the entries.

While the audit-log provides a list of vouchers that were issued by
the MASA, the vouchers are issued in response to voucher-requests,
and it is the content of the voucher-requests that determines how
meaningful the audit-log entries are.

A registrar SHOULD use the log information to make an informed
decision regarding the continued bootstrapping of the pledge. The
exact policy is out of scope of this document as it depends on the
security requirements within the registrar domain. Equipment that is
purchased preowned can be expected to have an extensive history. The
following discussion is provided to help explain the value of each
log element:

date: The date field provides the registrar an opportunity to divide
the log around known events such as the purchase date. Depending
on the context known to the registrar or administrator, events
before/after certain dates can have different levels of
importance. For example, for equipment that is expected to be
new, and thus has no history, it would be a surprise to find prior

entries.
domainID: If the log includes an unexpected domainID, then the
pledge could have imprinted on an unexpected domain. The

registrar can be expected to use a variety of techniques to define
"unexpected" ranging from acceptlists of prior domains to anomaly
detection (e.g., "this device was previously bound to a different
domain than any other device deployed"). Log entries can also be
compared against local history logs in search of discrepancies
(e.g., "this device was re-deployed some number of times
internally, but the external audit-log shows additional re-—
deployments our internal logs are unaware of").

nonce: Nonceless entries mean the logged domainID could
theoretically trigger a reset of the pledge and then take over
management by using the existing nonceless voucher.

assertion: The assertion leaf in the voucher and audit-log indicates
why the MASA issued the voucher. A "verified" entry means that
the MASA issued the associated voucher as a result of positive
verification of ownership. However, this entry does not indicate
whether or not the pledge was actually deployed in the prior
domain. A "logged" assertion informs the registrar that the prior
vouchers were issued with minimal verification. A "proximity"
assertion assures the registrar that the pledge was truly
communicating with the prior domain and thus provides assurance
that the prior domain really has deployed the pledge.

A relatively simple policy is to acceptlist known (internal or
external) domainIDs and require all vouchers to have a nonce. An
alternative is to require that all nonceless vouchers be from a
subset (e.g., only internal) of domainIDs. If the policy is
violated, a simple action is to revoke any locally issued credentials
for the pledge in question or to refuse to forward the voucher. The
registrar MUST then refuse any EST actions and SHOULD inform a human
via a log. A registrar MAY be configured to ignore (i.e., override
the above policy) the history of the device, but it is RECOMMENDED
that this only be configured if hardware-assisted (i.e., Transport
Performance Metrics (TPM) anchored) Network Endpoint Assessment (NEA)
[REC5209] is supported.

.9. EST Integration for PKI Bootstrapping

The pledge SHOULD follow the BRSKI operations with EST enrollment
operations including "CA Certificates Request", "CSR Attributes
Request", and "Client Certificate Request" or "Server-Side Key
Generation", etc. This is a relatively seamless integration since
BRSKI API calls provide an automated alternative to the manual
bootstrapping method described in [RFC7030]. As noted above, use of
HTTP-persistent connections simplifies the pledge state machine.

Although EST allows clients to obtain multiple certificates by
sending multiple Certificate Signing Requests (CSRs), BRSKI does not
support this mechanism directly. This is because BRSKI pledges MUST
use the CSR Attributes request ([RFC7030], Section 4.5). The
registrar MUST validate the CSR against the expected attributes.

This implies that client requests will "look the same" and therefore
result in a single logical certificate being issued even if the
client were to make multiple requests. Registrars MAY contain more
complex logic, but doing so is out of scope of this specification.
BRSKI does not signal any enhancement or restriction to this
capability.

5.9.1. EST Distribution of CA Certificates

The pledge SHOULD request the full EST Distribution of CA certificate
messages; see [RFC7030], Section 4.1.

This ensures that the pledge has the complete set of current CA
certificates beyond the pinned-domain-cert (see Section 5.6.2 for a
discussion of the limitations inherent in having a single certificate
instead of a full CA certificate response). Although these
limitations are acceptable during initial bootstrapping, they are not
appropriate for ongoing PKIX end-entity certificate wvalidation.

5.9.2. EST CSR Attributes

Automated bootstrapping occurs without local administrative
configuration of the pledge. 1In some deployments, it is plausible
that the pledge generates a certificate request containing only
identity information known to the pledge (essentially the X.509
IDevID information) and ultimately receives a certificate containing
domain-specific identity information. Conceptually, the CA has
complete control over all fields issued in the end-entity
certificate. Realistically, this is operationally difficult with the
current status of PKI CA deployments, where the CSR is submitted to
the CA via a number of non-standard protocols. Even with all
standardized protocols used, it could operationally be problematic to
expect that service-specific certificate fields can be created by a
CA that is likely operated by a group that has no insight into
different network services/protocols used. For example, the CA could
even be outsourced.

To alleviate these operational difficulties, the pledge MUST request
the EST "CSR Attributes" from the EST server, and the EST server
needs to be able to reply with the attributes necessary for use of
the certificate in its intended protocols/services. This approach
allows for minimal CA integrations, and instead, the local
infrastructure (EST server) informs the pledge of the proper fields

to include in the generated CSR (such as rfc822Name). This approach
is beneficial to automated bootstrapping in the widest number of
environments.

In networks using the BRSKI enrolled certificate to authenticate the
ACP, the EST CSR Attributes MUST include the ACP domain information
fields defined in [RFC8994], Section 6.2.2.

The registrar MUST also confirm that the resulting CSR is formatted
as indicated before forwarding the request to a CA. If the registrar
is communicating with the CA using a protocol such as full
Certificate Management over CMS (CMC), which provides mechanisms to
override the CSR Attributes, then these mechanisms MAY be used even
if the client ignores the guidance for the CSR Attributes.

5.9.3. EST Client Certificate Request

The pledge MUST request a new Client Certificate; see [RFC7030],
Section 4.2.

5.9.4. Enrollment Status Telemetry

For automated bootstrapping of devices, the administrative elements
that provide bootstrapping also provide indications to the system
administrators concerning device life-cycle status. This might
include information concerning attempted bootstrapping messages seen
by the client. The MASA provides logs and the status of credential
enrollment. Since an end user is assumed per [RFC7030], a final

success indication back to the server is not included. This is
insufficient for automated use cases.

The client MUST send an indicator to the registrar about its
enrollment status. It does this by using an HTTP POST of a JSON
dictionary with the attributes described below to the new EST
endpoint at "/.well-known/brski/enrollstatus".

When indicating a successful enrollment, the client SHOULD first re-
establish the EST TLS session using the newly obtained credentials.
TLS 1.3 supports doing this in-band, but TLS 1.2 does not. The
client SHOULD therefore always close the existing TLS connection and
start a new one, using the same Join Proxy.

In the case of a failed enrollment, the client MUST send the
telemetry information over the same TLS connection that was used for
the enrollment attempt, with a Reason string indicating why the most
recent enrollment failed. (For failed attempts, the TLS connection
is the most reliable way to correlate server-side information with
what the client provides.)

The version and status fields MUST be present. The Reason field
SHOULD be present whenever the status field is false. In the case of
a SUCCESS, the Reason string MAY be omitted.

The reason-context attribute is an arbitrary JSON object (literal
value or hash of values) that provides additional information
specific to the failure to unroll from this pledge. The contents of
this field are not subject to standardization. This is represented
by the group-socket "$$Sarbitrary-map" in the CDDL.

<CODE BEGINS> file "enrollstatus.cddl"
enrollstatus—-post = {

"version": uint,

"status": bool,

? "reason": text,

? "reason-context" : { $Sarbitrary-map }

}
<CODE ENDS>

Figure 19: CDDL for Enrollment Status POST

An example status report can be seen below. It is sent with the
media type: application/json

{

"version": 1,

"status":true,

"reason":"Informative human readable message",
"reason-context": { "additional" : "JSON" }

Figure 20: Example of Enrollment Status POST

The server SHOULD respond with an HTTP 200 but MAY simply fail with
an HTTP 404 error.

Within the server logs, the server MUST capture if this message was
received over a TLS session with a matching Client Certificate.

.9.5. Multiple Certificates

Pledges that require multiple certificates could establish direct EST
connections to the registrar.

.9.6. EST over CoOAP
This document describes extensions to EST for the purpose of

bootstrapping remote key infrastructures. Bootstrapping is relevant
for CoAP enrollment discussions as well. The definition of EST and

BRSKI over CoAP is not discussed within this document beyond ensuring
proxy support for CoAP operations. Instead, it is anticipated that a
definition of CoAP mappings will occur in subsequent documents such
as [ACE-COAP-EST] and that CoAP mappings for BRSKI will be discussed
either there or in future work.

Clarification of Transfer-Encoding

[REC7030] defines endpoints to include a "Content-Transfer-Encoding"
heading and payloads to be base64-encoded DER [RFC4648].

When used within BRSKI, the original EST endpoints remain base64
encoded [RFC7030] (as clarified by [RFC8951]), but the new BRSKI
endpoints that send and receive binary artifacts (specifically,
"/.well-known/brski/requestvoucher") are binary. That is, no
encoding is used.

In the BRSKI context, the EST "Content-Transfer-Encoding" header
field SHOULD be ignored if present. This header field does not need
to be included.

Reduced Security Operational Modes

A common requirement of bootstrapping is to support less secure
operational modes for support-specific use cases. This section
suggests a range of mechanisms that would alter the security
assurance of BRSKI to accommodate alternative deployment
architectures and mitigate life-cycle management issues identified in
Section 10. They are presented here as informative (non-normative)
design guidance for future standardization activities. Section 9
provides standardization applicability statements for the ANIMA ACP.
Other users would expect that subsets of these mechanisms could be
profiled with accompanying applicability statements similar to the
one described in Section 9.

This section is considered non-normative in the generality of the
protocol. TUse of the suggested mechanisms here MUST be detailed in
specific profiles of BRSKI, such as in Section 9.

.1. Trust Model

This section explains the trust relationships detailed in
Section 2.4:

fo——————— + fo—— + Fom + Fom +
| Pledge | | Join | | Domain | |Manufacturer |
| | | Proxy | | Registrar | | service

| | | | | | | (Internet) |
Fo———— = + o + Fom + Fom +

Figure 21: Elements of BRSKI Trust Model

Pledge: The pledge could be compromised and provide an attack wvector
for malware. The entity is trusted to only imprint using secure
methods described in this document. Additional endpoint
assessment techniques are RECOMMENDED but are out of scope of this
document.

Join Proxy: Provides proxy functionalities but is not involved in
security considerations.

Registrar: When interacting with a MASA, a registrar makes all
decisions. For Ownership Audit Vouchers (see [RFC8366]), the
registrar is provided an opportunity to accept MASA decisions.

Vendor Service, MASA: This form of manufacturer service is trusted
to accurately log all claim attempts and to provide authoritative
log information to registrars. The MASA does not know which
devices are associated with which domains. These claims could be
strengthened by using cryptographic log techniques to provide
append only, cryptographic assured, publicly auditable logs.

Vendor Service, Ownership Validation: This form of manufacturer
service is trusted to accurately know which device is owned by
which domain.

.2. Pledge Security Reductions

The following is a list of alternative behaviors that the pledge can
be programmed to implement. These behaviors are not mutually
exclusive, nor are they dependent upon each other. Some of these
methods enable offline and emergency (touch-based) deployment use
cases. Normative language is used as these behaviors are referenced
in later sections in a normative fashion.

1. The pledge MUST accept nonceless vouchers. This allows for a use
case where the registrar cannot connect to the MASA at the
deployment time. Logging and validity periods address the
security considerations of supporting these use cases.

2. Many devices already support "trust on first use" for physical
interfaces such as console ports. This document does not change
that reality. Devices supporting this protocol MUST NOT support
"trust on first use" on network interfaces. This is because
"trust on first use" over network interfaces would undermine the
logging based security protections provided by this
specification.

3. The pledge MAY have an operational mode where it skips wvoucher
validation one time, for example, if a physical button is
depressed during the bootstrapping operation. This can be useful
if the manufacturer service is unavailable. This behavior SHOULD
be available via local configuration or physical presence methods
(such as use of a serial/craft console) to ensure new entities
can always be deployed even when autonomic methods fail. This
allows for unsecured imprint.

4. A craft/serial console could include a command such as "est-
enroll [2001:db8:0:1]1:443" that begins the EST process from the
point after the voucher is validated. This process SHOULD
include server certificate verification using an on-screen
fingerprint.

It is RECOMMENDED that "trust on first use" or any method of skipping
voucher validation (including use of a craft serial console) only be
available if hardware-assisted Network Endpoint Assessment (NEA)
[RFC5209] is supported. This recommendation ensures that domain
network monitoring can detect inappropriate use of offline or
emergency deployment procedures when voucher-based bootstrapping is
not used.

.3. Registrar Security Reductions

A registrar can choose to accept devices using less secure methods.
They MUST NOT be the default behavior. These methods may be
acceptable in situations where threat models indicate that low
security is adequate. This includes situations where security
decisions are being made by the local administrator:

1. A registrar MAY choose to accept all devices, or all devices of a
particular type. The administrator could make this choice in
cases where it is operationally difficult to configure the
registrar with the unique identifier of each new device expected.

2. A registrar MAY choose to accept devices that claim a unique
identity without the benefit of authenticating that claimed
identity. This could occur when the pledge does not include an
X.509 IDevID factory-installed credential. New entities without
an X.509 IDevID credential MAY form the request per Section 5.2
using the format per Section 5.5 to ensure the pledge’s serial
number information is provided to the registrar (this includes
the IDevID AuthorityKeyIdentifier wvalue, which would be

7.

7.

4.

4.

4

statically configured on the pledge). The pledge MAY refuse to
provide a TLS Client Certificate (as one is not available). The
pledge SHOULD support HTTP-based or certificate-less TLS
authentication as described in EST [RFC7030], Section 3.3.2. A
registrar MUST NOT accept unauthenticated new entities unless it
has been configured to do so by an administrator that has
verified that only expected new entities can communicate with a
registrar (presumably via a physically secured perimeter.)

3. A registrar MAY submit a nonceless voucher-request to the MASA
service (by not including a nonce in the voucher-request). The
resulting vouchers can then be stored by the registrar until they
are needed during bootstrapping operations. This is for use
cases where the target network is protected by an air gap and
therefore cannot contact the MASA service during pledge
deployment.

4. A registrar MAY ignore unrecognized nonceless log entries. This
could occur when used equipment is purchased with a wvalid history
of being deployed in air gap networks that required offline
vouchers.

5. A registrar MAY accept voucher formats of future types that
cannot be parsed by the registrar. This reduces the registrar’s
visibility into the exact voucher contents but does not change
the protocol operations.

MASA Security Reductions

Lower security modes chosen by the MASA service affect all device
deployments unless the lower security behavior is tied to specific
device identities. The modes described below can be applied to
specific devices via knowledge of what devices were sold. They can
also be bound to specific customers (independent of the device
identity) by authenticating the customer’s registrar.

1. Issuing Nonceless Vouchers

A MASA has the option of not including a nonce in the voucher and/or
not requiring one to be present in the voucher-request. This results
in distribution of a voucher that may never expire and, in effect,
makes the specified domain an always trusted entity to the pledge
during any subsequent bootstrapping attempts. The log information
captures when a nonceless voucher is issued so that the registrar can
make appropriate security decisions when a pledge joins the domain.
Nonceless vouchers are useful to support use cases where registrars
might not be online during actual device deployment.

While a nonceless voucher may include an expiry date, a typical use
for a nonceless voucher is for it to be long lived. TIf the device
can be trusted to have an accurate clock (the MASA will know), then a
nonceless voucher CAN be issued with a limited lifetime.

A more typical case for a nonceless voucher is for use with offline
onboarding scenarios where it is not possible to pass a fresh
voucher-request to the MASA. The use of a long-lived voucher also
eliminates concern about the availability of the MASA many years in
the future. Thus, many nonceless vouchers will have no expiry dates.

Thus, the long-lived nonceless voucher does not require proof that
the device is online. Issuing such a thing is only accepted when the
registrar is authenticated by the MASA and the MASA is authorized to
provide this functionality to this customer. The MASA is RECOMMENDED
to use this functionality only in concert with an enhanced level of
ownership tracking, the details of which are out of scope for this
document.

If the pledge device is known to have a real-time clock that is set
from the factory, use of a voucher validity period is RECOMMENDED.

.2. Trusting Owners on First Use

A MASA has the option of not verifying ownership before responding
with a voucher. This is expected to be a common operational model
because doing so relieves the manufacturer providing MASA services
from having to track ownership during shipping and throughout the
supply chain, and it allows for a very low overhead MASA service. A
registrar uses the audit-log information as an in-depth defense
strategy to ensure that this does not occur unexpectedly (for
example, when purchasing new equipment, the registrar would throw an
error if any audit-log information is reported). The MASA SHOULD
verify the prior-signed-voucher-request information for pledges that
support that functionality. This provides a proof-of-proximity check
that reduces the need for ownership verification. The proof-of-
proximity comes from the assumption that the pledge and Join Proxy
are on the same link-local connection.

A MASA that practices TOFU for registrar identity may wish to
annotate the origin of the connection by IP address or netblock and
restrict future use of that identity from other locations. A MASA
that does this SHOULD take care to not create nuisance situations for
itself when a customer has multiple registrars or uses outgoing IPv4-
to-IPv4 NAT (NAT44) connections that change frequently.

7.4.3. Updating or Extending Voucher Trust Anchors

This section deals with two problems: A MASA that is no longer
available due to a failed business and a MASA that is uncooperative
to a secondary sale.

A manufacturer could offer a management mechanism that allows the
list of voucher verification trust anchors to be extended.
[YANG-KEYSTORE] describes one such interface that could be
implemented using YANG. Pretty much any configuration mechanism used
today could be extended to provide the needed additional update. A
manufacturer could even decide to install the domain CA trust anchors
received during the EST "cacerts" step as voucher verification
anchors. Some additional signals will be needed to clearly identify
which keys have voucher validation authority from among those signed
by the domain CA. This is future work.

With the above change to the list of anchors, vouchers can be issued
by an alternate MASA. This could be the previous owner (the seller)
or some other trusted third party who is mediating the sale. If it
is a third party, the seller would need to take steps to introduce
the third-party configuration to the device prior to disconnection.
The third party (e.g., a wholesaler of used equipment) could,
however, use a mechanism described in Section 7.2 to take control of
the device after receiving it physically. This would permit the
third party to act as the MASA for future onboarding actions. As the
IDevID certificate probably cannot be replaced, the new owner’s
registrar would have to support an override of the MASA URL.

To be useful for resale or other transfers of ownership, one of two
situations will need to occur. The simplest is that the device is
not put through any kind of factory default/reset before going

through onboarding again. Some other secure, physical signal would
be needed to initiate it. This is most suitable for redeploying a
device within the same enterprise. This would entail having previous

configuration in the system until entirely replaced by the new owner,
and it represents some level of risk.

For the second scenario, there would need to be two levels of factory
reset. One would take the system back entirely to manufacturer
state, including removing any added trust anchors, and the other
(more commonly used) one would just restore the configuration back to
a known default without erasing trust anchors. This weaker factory
reset might leave valuable credentials on the device, and this may be
unacceptable to some owners.

As a third option, the manufacturer’s trust anchors could be entirely
overwritten with local trust anchors. A factory default would never

8.

8

8.

8.

8.

1.

L2,

3.

.3.

3

4.

restore those anchors. This option comes with a lot of power but is
also a lot of responsibility: if access to the private part of the
new anchors are lost, the manufacturer may be unable to help.

IANA Considerations
Per this document, IANA has completed the following actions.
The IETF XML Registry

This document registers a URI in the "IETF XML Registry" [RFC3688].
IANA has registered the following:

URI: wurn:ietf:params:xml:ns:yang:ietf-voucher-request
Registrant Contact: The ANIMA WG of the IETF.
XML: N/A; the requested URI is an XML namespace.

YANG Module Names Registry

This document registers a YANG module in the "YANG Module Names"
registry [RFC6020]. IANA has registered the following:

Name: ietf-voucher-request

Namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-request
Prefix: wvch

Reference: RFC 8995

BRSKI Well-Known Considerations
1. BRSKI .well-known Registration

To the "Well-Known URIs" registry at
https://www.iana.org/assignments/well-known-uris/, this document
registers the well-known name "brski" with the following filled-in
template from [RFC8615]:

URI Suffix: brski
Change Controller: IETF

IANA has changed the registration of "est" to now only include
[RFC7030] and no longer this document. Earlier draft versions of
this document used "/.well-known/est" rather than "/.well-known/
brski".

.2. BRSKI .well-known Registry
IANA has created a new registry entitled: "BRSKI Well-Known URIs".

The registry has three columns: URI, Description, and Reference. New
items can be added using the Specification Required [RFC8126]

process. The initial contents of this registry are:

+ + + +
| URI | Description | Reference |
+ + + +
| requestvoucher | pledge to registrar, and | RFC 8995 |
| | from registrar to MASA |

- - +————— +
| voucher_status | pledge to registrar | RFC 8995 |
o o o +
| requestauditlog | registrar to MASA | RFC 8995 |
F———————— +———— F——————— +
| enrollstatus | pledge to registrar | RFC 8995 |
- - +————— +

Table 1: BRSKI Well-Known URIs
PKIX Registry
IANA has registered the following:

a number for id-mod-MASAURLExtn2016(96) from the pkix(7) id-mod(0)

Registry.

IANA has assigned a number from the id-pe registry (Structure of
Management Information (SMI) Security for PKIX Certificate Extension)
for id-pe-masa-url with the wvalue 32, resulting in an OID of
1.3.6.1.5.5.7.1.32.

8.5. Pledge BRSKI Status Telemetry

IANA has created a new registry entitled "BRSKI Parameters" and has
created, within that registry, a table called: "Pledge BRSKI Status

Telemetry Attributes". New items can be added using the
Specification Required process. The following items are in the
initial registration, with this document (see Section 5.7) as the
reference:

* version
* Status
* Reason
* reason-context
8.6. DNS Service Names
IANA has registered the following service names:

Service Name: Dbrski-proxy

Transport Protocol(s): tcp

Assignee: IESG <iesgQ@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: The Bootstrapping Remote Secure Key Infrastructure
Proxy

Reference: RFC 8995

Service Name: brski-registrar

Transport Protocol(s): tcp

Assignee: IESG <iesgQRietf.org>

Contact: IESG <iesg@ietf.org>

Description: The Bootstrapping Remote Secure Key Infrastructure
Registrar

Reference: RFC 8995

8.7. GRASP Objective Names
IANA has registered the following GRASP Objective Names:

IANA has registered the value "AN_Proxy" (without quotes) to the
"GRASP Objective Names" table in the GRASP Parameter registry. The
specification for this wvalue is Section 4.1.1 of this document.

The IANA has registered the value "AN_join_registrar" (without
quotes) to the "GRASP Objective Names" table in the GRASP Parameter
registry. The specification for this value is Section 4.3 of this
document.

9. Applicability to the Autonomic Control Plane (ACP)

This document provides a solution to the requirements for secure
bootstrapping as defined in "Using an Autonomic Control Plane for
Stable Connectivity of Network Operations, Administration, and
Maintenance (OAM)" [RFC8368], "A Reference Model for Autonomic
Networking”™ [RFC8993], and specifically "An Autonomic Control Plane
(ACP)" [RFC8994]; see Sections 3.2 ("Secure Bootstrap over an
Unconfigured Network") and 6.2 ("ACP Domain, Certificate, and
Network") .

The protocol described in this document has appeal in a number of
other non-ANIMA use cases. Such uses of the protocol will be
deployed into other environments with different tradeoffs of privacy,

security, reliability, and autonomy from manufacturers. As such,
those use cases will need to provide their own applicability
statements and will need to address unique privacy and security
considerations for the environments in which they are used.

The ACP that is bootstrapped by the BRSKI protocol is typically used
in medium to large Internet service provider organizations.
Equivalent enterprises that have significant Layer 3 router
connectivity also will find significant benefit, particularly if the
enterprise has many sites. (A network consisting of primarily Layer
2 1is not excluded, but the adjacencies that the ACP will create and
maintain will not reflect the topology until all devices participate
in the ACP.)

In the ACP, the Join Proxy is found to be proximal because
communication between the pledge and the Join Proxy is exclusively on
IPv6 link-local addresses. The proximity of the Join Proxy to the
registrar is validated by the registrar using ANI ACP IPv6 ULAs.

ULAs are not routable over the Internet, so as long as the Join Proxy
is operating correctly, the proximity assertion is satisfied. Other
uses of BRSKI will need similar analysis if they use proximity
assertions.

As specified in the ANIMA charter, this work "focuses on
professionally-managed networks." Such a network has an operator and
can do things like install, configure, and operate the registrar
function. The operator makes purchasing decisions and is aware of
what manufacturers it expects to see on its network.

Such an operator is also capable of performing bootstrapping of a
device using a serial console (craft console). The zero-touch
mechanism presented in this and the ACP document [RFC8994] represents
a significant efficiency: in particular, it reduces the need to put
senior experts on airplanes to configure devices in person.

As the technology evolves, there is recognition that not every
situation may work out, and occasionally a human may still have to
visit. Given this, some mechanisms are presented in Section 7.2.
The manufacturer MUST provide at least one of the one-touch
mechanisms described that permit enrollment to proceed without the
availability of any manufacturer server (such as the MASA).

The BRSKI protocol is going into environments where there have
already been quite a number of vendor proprietary management systems.
Those are not expected to go away quickly but rather to leverage the
secure credentials that are provisioned by BRSKI. The connectivity
requirements of the said management systems are provided by the ACP.

9.1. Operational Requirements

This section collects operational requirements based upon the three
roles involved in BRSKI: the MASA, the (domain) owner, and the
device. It should be recognized that the manufacturer may be
involved in two roles, as it creates the software/firmware for the
device and may also be the operator of the MASA.

The requirements in this section are presented using BCP 14 language
[RFC2119] [RFC8174]. These do not represent new normative
statements, just a review of a few such things in one place by role.
They also apply specifically to the ANIMA ACP use case. Other use
cases likely have similar, but MAY have different, requirements.

9.1.1. MASA Operational Requirements

The manufacturer MUST arrange for an online service called the MASA
to be available. It MUST be available at the URL that is encoded in
the IDevID certificate extensions described in Section 2.3.2.

The online service MUST have access to a private key with which to
sign voucher artifacts [RFC8366]. The public key, certificate, or
certificate chain MUST be built into the device as part of the

firmware.

It is RECOMMENDED that the manufacturer arrange for this signing key
(or keys) to be escrowed according to typical software source code
escrow practices [softwareescrow].

The MASA accepts voucher-requests from domain owners according to an
operational practice appropriate for the device. This can range from
any domain owner (first-come first-served, on a TOFU-like basis), to
full sales channel integration where domain owners need to be
positively identified by TLS pinned Client Certificates or an HTTP
authentication process. The MASA creates signed voucher artifacts
according to its internally defined policies.

The MASA MUST operate an audit-log for devices that is accessible.
The audit-log is designed to be easily cacheable, and the MASA MAY
find it useful to put this content on a Content Delivery Network
(CDN) .

.1.2. Domain Owner Operational Requirements

The domain owner MUST operate an EST [RFC7030] server with the
extensions described in this document. This is the JRC or registrar.
This JRC/EST server MUST announce itself using GRASP within the ACP.
This EST server will typically reside with the Network Operations
Center for the organization.

The domain owner MAY operate an internal CA that is separate from the
EST server, or it MAY combine all activities into a single device.
The determination of the architecture depends upon the scale and
resiliency requirements of the organization. Multiple JRC instances
MAY be announced into the ACP from multiple locations to achieve an
appropriate level of redundancy.

In order to recognize which devices and which manufacturers are
welcome on the domain owner’s network, the domain owner SHOULD
maintain an acceptlist of manufacturers. This MAY extend to
integration with purchasing departments to know the serial numbers of
devices.

The domain owner SHOULD use the resulting overlay ACP network to
manage devices, replacing legacy out-of-band mechanisms.

The domain owner SHOULD operate one or more EST servers that can be
used to renew the domain certificates (LDevIDs), which are deployed
to devices. These servers MAY be the same as the JRC or MAY be a
distinct set of devices, as appropriate for resiliency.

The organization MUST take appropriate precautions against loss of
access to the CA private key. Hardware security modules and/or
secret splitting are appropriate.

.1.3. Device Operational Requirements

Devices MUST come with built-in trust anchors that permit the device
to validate vouchers from the MASA.

Devices MUST come with (unique, per-device) IDevID certificates that
include their serial numbers and the MASA URL extension.

Devices are expected to find Join Proxies using GRASP, and then
connect to the JRC using the protocol described in this document.

Once a domain owner has been validated with the voucher, devices are
expected to enroll into the domain using EST. Devices are then
expected to form ACPs using IPsec over IPv6 link-local addresses as
described in [RFC8994].

Once a device has been enrolled, it SHOULD listen for the address of
the JRC using GRASP, and it SHOULD enable itself as a Join Proxy and
announce itself on all links/interfaces using GRASP DULL.

10.

10.

10

10.

Devices are expected to renew their certificates before they expire.
Privacy Considerations
1. MASA Audit-Log

The MASA audit-log includes the domainID for each domain a wvoucher
has been issued to. This information is closely related to the
actual domain identity. A MASA may need additional defenses against
Denial-of-Service attacks (Section 11.1), and this may involve
collecting additional (unspecified here) information. This could
provide sufficient information for the MASA service to build a
detailed understanding of the devices that have been provisioned
within a domain.

There are a number of design choices that mitigate this risk. The
domain can maintain some privacy since it has not necessarily been
authenticated and is not authoritatively bound to the supply chain.

Additionally, the domainID captures only the unauthenticated subject
key identifier of the domain. A privacy-sensitive domain could
theoretically generate a new domainID for each device being deployed.
Similarly, a privacy-sensitive domain would likely purchase devices
that support proximity assertions from a manufacturer that does not
require sales channel integrations. This would result in a
significant level of privacy while maintaining the security
characteristics provided by the registrar-based audit-log inspection.

.2. What BRSKI-EST Reveals

During the provisional phase of the BRSKI-EST connection between the

pledge and the registrar, each party reveals its certificates to each
other. For the pledge, this includes the serialNumber attribute, the
MASA URL, and the identity that signed the IDevID certificate.

TLS 1.2 reveals the certificate identities to on-path observers,
including the Join Proxy.

TLS 1.3 reveals the certificate identities only to the end parties,
but as the connection is provisional; an on-path attacker (MITM) can
see the certificates. This includes not just malicious attackers but
also registrars that are visible to the pledge but are not part of
the intended domain.

The certificate of the registrar is rather arbitrary from the point
of view of the BRSKI protocol. As no validations [RFC6125] are
expected to be done, the contents could be easily pseudonymized. Any
device that can see a Join Proxy would be able to connect to the
registrar and learn the identity of the network in question. Even if
the contents of the certificate are pseudonymized, it would be
possible to correlate different connections in different locations
that belong to the same entity. This is unlikely to present a
significant privacy concern to ANIMA ACP uses of BRSKI, but it may be
a concern to other users of BRSKI.

The certificate of the pledge could be revealed by a malicious Join
Proxy that performed a MITM attack on the provisional TLS connection.
Such an attacker would be able to reveal the identity of the pledge
to third parties if it chose to do so.

Research into a mechanism to do multistep, multiparty authenticated
key agreement, incorporating some kind of zero-knowledge proof, would
be valuable. Such a mechanism would ideally avoid disclosing
identities until the pledge, registrar, and MASA agree to the
transaction. Such a mechanism would need to discover the location of
the MASA without knowing the identity of the pledge or the identity
of the MASA. This part of the problem may be unsolvable.

3. What BRSKI-MASA Reveals to the Manufacturer

With consumer-oriented devices, the "call-home" mechanism in IoT
devices raises significant privacy concerns. See [livingwithIoT] and
[IoTstrangeThings] for exemplars. The ACP usage of BRSKI is not
targeted at individual usage of IoT devices but rather at the
enterprise and ISP creation of networks in a zero-touch fashion where
the "call-home" represents a different class of privacy and life-
cycle management concerns.

It needs to be reiterated that the BRSKI-MASA mechanism only occurs
once during the commissioning of the device. It is well defined, and
although encrypted with TLS, it could in theory be made auditable as
the contents are well defined. This connection does not occur when
the device powers on or is restarted for normal routines. (It is
conceivable, but remarkably unusual, that a device could be forced to
go through a full factory reset during an exceptional firmware update
situation, after which enrollment would have to be repeated, and a
new connection would occur.)

The BRSKI call-home mechanism is mediated via the owner’s registrar,
and the information that is transmitted is directly auditable by the
device owner. This is in stark contrast to many "call-home"
protocols where the device autonomously calls home and uses an
undocumented protocol.

While the contents of the signed part of the pledge voucher-request
cannot be changed, they are not encrypted at the registrar. The
ability to audit the messages by the owner of the network is a
mechanism to defend against exfiltration of data by a nefarious
pledge. Both are, to reiterate, encrypted by TLS while in transit.

The BRSKI-MASA exchange reveals the following information to the
manufacturer:

* the identity of the device being enrolled. This is revealed by
transmission of a signed voucher-request containing the serial-
number. The manufacturer can usually link the serial number to a
device model.

* an identity of the domain owner in the form of the domain trust
anchor. However, this is not a global PKI-anchored name within
the WebPKI, so this identity could be pseudonymous. If there is
sales channel integration, then the MASA will have authenticated
the domain owner, via either a pinned certificate or perhaps
another HTTP authentication method, as per Section 5.5.4.

* the time the device is activated.

* the IP address of the domain owner’s registrar. For ISPs and
enterprises, the IP address provides very clear geolocation of the
owner. No amount of IP address privacy extensions [RFC8981] can
do anything about this, as a simple whois lookup likely identifies
the ISP or enterprise from the upper bits anyway. A passive
attacker who observes the connection definitely may conclude that
the given enterprise/ISP is a customer of the particular equipment
vendor. The precise model that is being enrolled will remain
private.

Based upon the above information, the manufacturer is able to track a
specific device from pseudonymous domain identity to the next
pseudonymous domain identity. If there is sales-channel integration,
then the identities are not pseudonymous.

The manufacturer knows the IP address of the registrar, but it cannot
see the IP address of the device itself. The manufacturer cannot
track the device to a detailed physical or network location, only to
the location of the registrar. That is likely to be at the
enterprise or ISP’s headquarters.

The above situation is to be distinguished from a residential/
individual person who registers a device from a manufacturer.
Individuals do not tend to have multiple offices, and their registrar

10.

is likely on the same network as the device. A manufacturer that
sells switching/routing products to enterprises should hardly be
surprised if additional purchases of switching/routing products are
made. Deviations from a historical trend or an established baseline
would, however, be notable.

The situation is not improved by the enterprise/ISP using
anonymization services such as Tor [Dingledine], as a TLS 1.2
connection will reveal the ClientCertificate used, clearly
identifying the enterprise/ISP involved. TLS 1.3 is better in this
regard, but an active attacker can still discover the parties
involved by performing a MITM attack on the first attempt (breaking/
killing it with a TCP reset (RST)), and then letting subsequent
connection pass through.

A manufacturer could attempt to mix the BRSKI-MASA traffic in with
general traffic on their site by hosting the MASA behind the same
(set) of load balancers that the company’s normal marketing site is
hosted behind. This makes a lot of sense from a straight capacity
planning point of view as the same set of services (and the same set
of Distributed Denial-of-Service mitigations) may be used.
Unfortunately, as the BRSKI-MASA connections include TLS
ClientCertificate exchanges, this may easily be observed in TLS 1.2,
and a traffic analysis may reveal it even in TLS 1.3. This does not
make such a plan irrelevant. There may be other organizational
reasons to keep the marketing site (which is often subject to
frequent redesigns, outsourcing, etc.) separate from the MASA, which
may need to operate reliably for decades.

4. Manufacturers and Used or Stolen Equipment

As explained above, the manufacturer receives information each time a
device that is in factory-default mode does a zero-touch bootstrap
and attempts to enroll into a domain owner’s registrar.

The manufacturer is therefore in a position to decline to issue a
voucher if it detects that the new owner is not the same as the
previous owner.

1. This can be seen as a feature if the equipment is believed to
have been stolen. If the legitimate owner notifies the
manufacturer of the theft, then when the new owner brings the
device up, if they use the zero-touch mechanism, the new
(illegitimate) owner reveals their location and identity.

2. In the case of used equipment, the initial owner could inform the
manufacturer of the sale, or the manufacturer may just permit
resales unless told otherwise. In which case, the transfer of
ownership simply occurs.

3. A manufacturer could, however, decide not to issue a new voucher
in response to a transfer of ownership. This is essentially the
same as the stolen case, with the manufacturer having decided
that the sale was not legitimate.

4. There is a fourth case, if the manufacturer is providing
protection against stolen devices. The manufacturer then has a
responsibility to protect the legitimate owner against fraudulent
claims that the equipment was stolen. In the absence of such
manufacturer protection, such a claim would cause the
manufacturer to refuse to issue a new voucher. Should the device
go through a deep factory reset (for instance, replacement of a
damaged main board component), the device would not bootstrap.

5. Finally, there is a fifth case: the manufacturer has decided to
end-of-line the device, or the owner has not paid a yearly
support amount, and the manufacturer refuses to issue new
vouchers at that point. This last case is not new to the
industry: many license systems are already deployed that have a
significantly worse effect.

10.

10.

This section has outlined five situations in which a manufacturer
could use the voucher system to enforce what are clearly license
terms. A manufacturer that attempted to enforce license terms via
vouchers would find it rather ineffective as the terms would only be
enforced when the device is enrolled, and this is not (to repeat) a
daily or even monthly occurrence.

5. Manufacturers and Grey Market Equipment

Manufacturers of devices often sell different products into different
regional markets. Which product is available in which market can be
driven by price differentials, support issues (some markets may
require manuals and tech support to be done in the local language),
and government export regulation (such as whether strong crypto is
permitted to be exported or permitted to be used in a particular
market). When a domain owner obtains a device from a different
market (they can be new) and transfers it to a different location,
this is called a Grey Market.

A manufacturer could decide not to issue a voucher to an enterprise/
ISP based upon their location. There are a number of ways that this
could be determined: from the geolocation of the registrar, from
sales channel knowledge about the customer, and from what products
are available or unavailable in that market. If the device has a
GPS, the coordinates of the device could even be placed into an
extension of the wvoucher.

The above actions are not illegal, and not new. Many manufacturers
have shipped crypto-weak (exportable) versions of firmware as the
default on equipment for decades. The first task of an enterprise/
ISP has always been to login to a manufacturer system, show one’s
"entitlement" (country information, proof that support payments have
been made), and receive either a new updated firmware or a license
key that will activate the correct firmware.

BRSKI permits the above process to be automated (in an autonomic
fashion) and therefore perhaps encourages this kind of
differentiation by reducing the cost of doing it.

An issue that manufacturers will need to deal with in the above
automated process is when a device is shipped to one country with one
set of rules (or laws or entitlements), but the domain registry is in
another one. Which rules apply is something that will have to be
worked out: the manufacturer could believe they are dealing with Grey
Market equipment when they are simply dealing with a global
enterprise.

6. Some Mitigations for Meddling by Manufacturers

The most obvious mitigation is not to buy the product. Pick
manufacturers that are up front about their policies and who do not
change them gratuitously.

Section 7.4.3 describes some ways in which a manufacturer could
provide a mechanism to manage the trust anchors and built-in
certificates (IDevID) as an extension. There are a variety of
mechanisms, and some may take a substantial amount of work to get
exactly correct. These mechanisms do not change the flow of the
protocol described here but rather allow the starting trust
assumptions to be changed. This is an area for future
standardization work.

Replacement of the voucher validation anchors (usually pointing to
the original manufacturer’s MASA) with those of the new owner permits
the new owner to issue vouchers to subsequent owners. This would be
done by having the selling (old) owner run a MASA.

The BRSKI protocol depends upon a trust anchor and an identity on the
device. Management of these entities facilitates a few new
operational modes without making any changes to the BRSKI protocol.
Those modes include: offline modes where the domain owner operates an

10.

11.

internal MASA for all devices, resell modes where the first domain
owner becomes the MASA for the next (resold-to) domain owner, and
services where an aggregator acquires a large variety of devices and
then acts as a pseudonymized MASA for a variety of devices from a
variety of manufacturers.

Although replacement of the IDevID is not required for all modes
described above, a manufacturer could support such a thing. Some may
wish to consider replacement of the IDevID as an indication that the
device’s warranty is terminated. For others, the privacy
requirements of some deployments might consider this a standard
operating practice.

As discussed at the end of Section 5.8.1, new work could be done to
use a distributed consensus technology for the audit-log. This would
permit the audit-log to continue to be useful, even when there is a
chain of MASA due to changes of ownership.

7. Death of a Manufacturer

A common concern has been that a manufacturer could go out of
business, leaving owners of devices unable to get new vouchers for
existing products. Said products might have been previously deployed
but need to be reinitialized, used, or kept in a warehouse as long-
term spares.

The MASA was named the Manufacturer *Authorized* Signing Authority to
emphasize that it need not be the manufacturer itself that performs
this. It is anticipated that specialist service providers will come
to exist that deal with the creation of vouchers in much the same way
that many companies have outsourced email, advertising, and
janitorial services.

Further, it is expected that as part of any service agreement, the
manufacturer would arrange to escrow appropriate private keys such
that a MASA service could be provided by a third party. This has
routinely been done for source code for decades.

Security Considerations

This document details a protocol for bootstrapping that balances
operational concerns against security concerns. As detailed in the
introduction, and touched on again in Section 7, the protocol allows
for reduced security modes. These attempt to deliver additional
control to the local administrator and owner in cases where less
security provides operational benefits. This section goes into more
detail about a variety of specific considerations.

To facilitate logging and administrative oversight, in addition to
triggering registrar verification of MASA logs, the pledge reports on
the voucher parsing status to the registrar. In the case of a
failure, this information is informative to a potentially malicious
registrar. This is mandated anyway because of the operational
benefits of an informed administrator in cases where the failure is
indicative of a problem. The registrar is RECOMMENDED to verify MASA
logs if voucher status telemetry is not received.

To facilitate truly limited clients, EST requires that the client
MUST support a client authentication model (see [RFC7030],

Section 3.3.2); Section 7 updates these requirements by stating that
the registrar MAY choose to accept devices that fail cryptographic
authentication. This reflects current (poor) practices in shipping
devices without a cryptographic identity that are NOT RECOMMENDED.

During the provisional period of the connection, the pledge MUST
treat all HTTP header and content data as untrusted data. HTTP
libraries are regularly exposed to non-secured HTTP traffic: mature
libraries should not have any problems.

Pledges might chose to engage in protocol operations with multiple
discovered registrars in parallel. As noted above, they will only do

11.

11

11.

11.

so with distinct nonce values, but the end result could be multiple
vouchers issued from the MASA if all registrars attempt to claim the
device. This is not a failure, and the pledge chooses whichever
voucher to accept based on internal logic. The registrars verifying
log information will see multiple entries and take this into account
for their analytic purposes.

1. Denial of Service (DoS) against MASA

There are use cases where the MASA could be unavailable or
uncooperative to the registrar. They include active DoS attacks,
planned and unplanned network partitions, changes to MASA policy, or
other instances where MASA policy rejects a claim. These introduce
an operational risk to the registrar owner in that MASA behavior
might limit the ability to bootstrap a pledge device. For example,
this might be an issue during disaster recovery. This risk can be
mitigated by registrars that request and maintain long-term copies of
"nonceless" vouchers. In that way, they are guaranteed to be able to
bootstrap their devices.

The issuance of nonceless vouchers themselves creates a security
concern. If the registrar of a previous domain can intercept
protocol communications, then it can use a previously issued
nonceless voucher to establish management control of a pledge device
even after having sold it. This risk is mitigated by recording the
issuance of such vouchers in the MASA audit-log that is verified by
the subsequent registrar and by pledges only bootstrapping when in a
factory default state. This reflects a balance between enabling MASA
independence during future bootstrapping and the security of
bootstrapping itself. Registrar control over requesting and auditing
nonceless vouchers allows device owners to choose an appropriate
balance.

The MASA is exposed to DoS attacks wherein attackers claim an
unbounded number of devices. Ensuring a registrar is representative
of a valid manufacturer customer, even without validating ownership
of specific pledge devices, helps to mitigate this. Pledge
signatures on the pledge voucher-request, as forwarded by the
registrar in the prior-signed-voucher-request field of the registrar
voucher-request, significantly reduce this risk by ensuring the MASA
can confirm proximity between the pledge and the registrar making the
request. Supply-chain integration ("know your customer") is an
additional step that MASA providers and device vendors can explore.

.2. DomainID Must Be Resistant to Second-Preimage Attacks

The domainID is used as the reference in the audit-log to the domain.
The domainID is expected to be calculated by a hash that is resistant
to a second-preimage attack. Such an attack would allow a second
registrar to create audit-log entries that are fake.

3. Availability of Good Random Numbers

The nonce used by the pledge in the voucher-request SHOULD be
generated by a Strong Cryptographic Sequence ([RFC4086],
Section 6.2). TLS has a similar requirement.

In particular, implementations should pay attention to the advance in
[RFC4086]; see Sections 3 and, in particular, 3.4. The random seed
used by a device at boot MUST be unique across all devices and all
bootstraps. Resetting a device to factory default state does not
obviate this requirement.

4. Freshness in Voucher-Requests

A concern has been raised that the pledge voucher-request should
contain some content (a nonce) provided by the registrar and/or MASA
in order for those actors to verify that the pledge voucher-request

is fresh.

There are a number of operational problems with getting a nonce from

11.

the MASA to the pledge. It is somewhat easier to collect a random
value from the registrar, but as the registrar is not yet vouched
for, such a registrar nonce has little value. There are privacy and
logistical challenges to addressing these operational issues, so if
such a thing were to be considered, it would have to provide some
clear value. This section examines the impacts of not having a fresh
pledge voucher-request.

Because the registrar authenticates the pledge, a full MITM attack is
not possible, despite the provisional TLS authentication by the
pledge (see Section 5.) Instead, we examine the case of a fake
registrar (Rm) that communicates with the pledge in parallel or in
close-time proximity with the intended registrar. (This scenario is
intentionally supported as described in Section 4.1.)

The fake registrar (Rm) can obtain a voucher signed by the MASA
either directly or through arbitrary intermediaries. Assuming that
the MASA accepts the registrar voucher-request (because either the Rm
is collaborating with a legitimate registrar according to supply-
chain information or the MASA is in audit-log only mode), then a
voucher linking the pledge to the registrar Rm is issued.

Such a voucher, when passed back to the pledge, would link the pledge
to registrar Rm and permit the pledge to end the provisional state.
It now trusts the Rm and, if it has any security vulnerabilities
leverageable by an Rm with full administrative control, can be
assumed to be a threat against the intended registrar.

This flow is mitigated by the intended registrar verifying the audit-
logs available from the MASA as described in Section 5.8. The Rm
might chose to collect a voucher-request but wait until after the
intended registrar completes the authorization process before

submitting it. This pledge voucher-request would be "stale" in that
it has a nonce that no longer matches the internal state of the
pledge. In order to successfully use any resulting voucher, the Rm

would need to remove the stale nonce or anticipate the pledge’s

future nonce state. Reducing the possibility of this is why the
pledge is mandated to generate a strong random or pseudo-—random

number nonce.

Additionally, in order to successfully use the resulting voucher, the
Rm would have to attack the pledge and return it to a bootstrapping-
enabled state. This would require wiping the pledge of current
configuration and triggering a rebootstrapping of the pledge. This
is no more likely than simply taking control of the pledge directly,
but if this is a consideration, it is RECOMMENDED that the target
network take the following steps:

* Ongoing network monitoring for unexpected bootstrapping attempts
by pledges.

* Retrieval and examination of MASA log information upon the
occurrence of any such unexpected events. The Rm will be listed
in the logs along with nonce information for analysis.

5. Trusting Manufacturers

The BRSKI extensions to EST permit a new pledge to be completely
configured with domain-specific trust anchors. The link from built-
in manufacturer-provided trust anchors to domain-specific trust
anchors is mediated by the signed voucher artifact.

If the manufacturer’s IDevID signing key is not properly validated,
then there is a risk that the network will accept a pledge that
should not be a member of the network. As the address of the
manufacturer’s MASA is provided in the IDevID using the extension
from Section 2.3, the malicious pledge will have no problem
collaborating with its MASA to produce a completely valid voucher.

BRSKI does not, however, fundamentally change the trust model from
domain owner to manufacturer. Assuming that the pledge used its

11.

IDevID with EST [RFC7030] and BRSKI, the domain (registrar) still
needs to trust the manufacturer.

Establishing this trust between domain and manufacturer is outside
the scope of BRSKI. There are a number of mechanisms that can be
adopted including:

* Manually configuring each manufacturer’s trust anchor.

* A TOFU mechanism. A human would be queried upon seeing a
manufacturer’s trust anchor for the first time, and then the trust
anchor would be installed to the trusted store. There are risks
with this; even if the key to name mapping is validated using
something like the WebPKI, there remains the possibility that the
name is a look alike: e.g., demO.example. vs. demO.example.

* scanning the trust anchor from a QR code that came with the
packaging (this is really a manual TOFU mechanism).

* some sales integration processing where trust anchors are provided
as part of the sales process, probably included in a digital
packing "slip", or a sales invoice.

* consortium membership, where all manufacturers of a particular
device category (e.g, a light bulb or a cable modem) are signed by
a CA specifically for this. This is done by Cablelabs today. It
is used for authentication and authorization as part of
[docsisroot] and [TRO069].

The existing WebPKI provides a reasonable anchor between manufacturer
name and public key. It authenticates the key. It does not provide
a reasonable authorization for the manufacturer, so it is not
directly usable on its own.

6. Manufacturer Maintenance of Trust Anchors

BRSKI depends upon the manufacturer building in trust anchors to the
pledge device. The voucher artifact that is signed by the MASA will
be validated by the pledge using that anchor. This implies that the
manufacturer needs to maintain access to a signing key that the
pledge can validate.

The manufacturer will need to maintain the ability to make signatures
that can be validated for the lifetime that the device could be
onboarded. Whether this onboarding lifetime is less than the device
lifetime depends upon how the device is used. An inventory of
devices kept in a warehouse as spares might not be onboarded for many
decades.

There are good cryptographic hygiene reasons why a manufacturer would
not want to maintain access to a private key for many decades. A
manufacturer in that situation can leverage a long-term CA anchor,
built-in to the pledge, and then a certificate chain may be
incorporated using the normal CMS certificate set. This may increase
the size of the voucher artifacts, but that is not a significant
issue in non-constrained environments.

There are a few other operational variations that manufacturers could
consider. For instance, there is no reason that every device need
have the same set of trust anchors preinstalled. Devices built in
different factories, or on different days, or in any other
consideration, could have different trust anchors built in, and the
record of which batch the device is in would be recorded in the asset
database. The manufacturer would then know which anchor to sign an
artifact against.

Aside from the concern about long-term access to private keys, a
major limiting factor for the shelf life of many devices will be the
age of the cryptographic algorithms included. A device produced in
2019 will have hardware and software capable of validating algorithms
common in 2019 and will have no defense against attacks (both quantum

11.

11.

11.

and von Neumann brute-force attacks) that have not yet been invented.
This concern is orthogonal to the concern about access to private
keys, but this concern likely dominates and limits the life span of a
device in a warehouse. If any update to the firmware to support new
cryptographic mechanisms were possible (while the device was in a
warehouse), updates to trust anchors would also be done at the same
time.

The set of standard operating procedures for maintaining high-value
private keys is well documented. For instance, the WebPKI provides a
number of options for audits in [cabforumaudit], and the DNSSEC root
operations are well documented in [dnssecroot].

It is not clear if manufacturers will take this level of precaution,
or how strong the economic incentives are to maintain an appropriate
level of security.

The next section examines the risk due to a compromised manufacturer
IDevID signing key. This is followed by examination of the risk due
to a compromised MASA key. The third section below examines the
situation where a MASA web server itself is under attacker control,
but the MASA signing key itself is safe in a not-directly connected
hardware module.

6.1. Compromise of Manufacturer IDevID Signing Keys

An attacker that has access to the key that the manufacturer uses to
sign IDevID certificates can create counterfeit devices. Such
devices can claim to be from a particular manufacturer but can be
entirely different devices: Trojan horses in effect.

As the attacker controls the MASA URL in the certificate, the
registrar can be convinced to talk to the attacker’s MASA. The
registrar does not need to be in any kind of promiscuous mode to be
vulnerable.

In addition to creating fake devices, the attacker may also be able
to issue revocations for existing certificates if the IDevID
certificate process relies upon CRL lists that are distributed.

There does not otherwise seem to be any risk from this compromise to
devices that are already deployed or that are sitting locally in
boxes waiting for deployment (local spares). The issue is that
operators will be unable to trust devices that have been in an
uncontrolled warehouse as they do not know if those are real devices.

6.2. Compromise of MASA Signing Keys

There are two periods of time in which to consider: when the MASA key
has fallen into the hands of an attacker and after the MASA
recognizes that the key has been compromised.

6.2.1. Attacker Opportunities with a Compromised MASA Key

An attacker that has access to the MASA signing key could create
vouchers. These vouchers could be for existing deployed devices or
for devices that are still in a warehouse. 1In order to exploit these
vouchers, two things need to occur: the device has to go through a
factory default boot cycle, and the registrar has to be convinced to
contact the attacker’s MASA.

If the attacker controls a registrar that is visible to the device,
then there is no difficulty in delivery of the false voucher. A
possible practical example of an attack like this would be in a data
center, at an ISP peering point (whether a public IX or a private
peering point). In such a situation, there are already cables
attached to the equipment that lead to other devices (the peers at
the IX), and through those links, the false voucher could be
delivered. The difficult part would be to put the device through a
factory reset. This might be accomplished through social engineering
of data center staff. Most locked cages have ventilation holes, and

11.

11

possibly a long "paperclip" could reach through to depress a factory
reset button. Once such a piece of ISP equipment has been
compromised, it could be used to compromise equipment that it was
connected to (through long haul links even), assuming that those
pieces of equipment could also be forced through a factory reset.

The above scenario seems rather unlikely as it requires some element
of physical access; but if there was a remote exploit that did not
cause a direct breach, but rather a fault that resulted in a factory
reset, this could provide a reasonable path.

The above deals with ANI uses of BRSKI. For cases where IEEE 802.11
or 802.15.4 is involved, the need to connect directly to the device
is eliminated, but the need to do a factory reset is not. Physical
possession of the device is not required as above, provided that
there is some way to force a factory reset. With some consumer
devices that have low overall implementation quality, end users might
be familiar with the need to reset the device regularly.

The authors are unable to come up with an attack scenario where a
compromised voucher signature enables an attacker to introduce a
compromised pledge into an existing operator’s network. This is the
case because the operator controls the communication between
registrar and MASA, and there is no opportunity to introduce the fake
voucher through that conduit.

6.2.2. Risks after Key Compromise is Known

Once the operator of the MASA realizes that the voucher signing key
has been compromised, it has to do a few things.

First, it MUST issue a firmware update to all devices that had that
key as a trust anchor, such that they will no longer trust vouchers
from that key. This will affect devices in the field that are
operating, but those devices, being in operation, are not performing
onboarding operations, so this is not a critical patch.

Devices in boxes (in warehouses) are vulnerable and remain vulnerable
until patched. An operator would be prudent to unbox the devices,
onboard them in a safe environment, and then perform firmware
updates. This does not have to be done by the end-operator; it could
be done by a distributor that stores the spares. A recommended
practice for high-value devices (which typically have a <4hr service
window) may be to validate the device operation on a regular basis
anyway.

If the onboarding process includes attestations about firmware
versions, then through that process, the operator would be advised to
upgrade the firmware before going into production. Unfortunately,
this does not help against situations where the attacker operates
their own registrar (as listed above).

The need for short-lived vouchers is explained in [RFC8366],

Section 6.1. The nonce guarantees freshness, and the short-lived
nature of the voucher means that the window to deliver a fake voucher
is very short. A nonceless, long-lived voucher would be the only
option for the attacker, and devices in the warehouse would be
vulnerable to such a thing.

A key operational recommendation is for manufacturers to sign
nonceless, long-lived vouchers with a different key than what is used
to sign short-lived vouchers. That key needs significantly better
protection. If both keys come from a common trust—-anchor (the
manufacturer’s CA), then a compromise of the manufacturer’s CA would
compromise both keys. Such a compromise of the manufacturer’s CA
likely compromises all keys outlined in this section.

.6.3. Compromise of MASA Web Service

An attacker that takes over the MASA web service can inflict a number
of attacks. The most obvious one is simply to take the database

11.

12.

12.

listing of customers and devices and sell the data to other attackers
who will now know where to find potentially vulnerable devices.

The second most obvious thing that the attacker can do is to kill the
service, or make it operate unreliably, making customers frustrated.
This could have a serious effect on the ability to deploy new
services by customers and would be a significant issue during
disaster recovery.

While the compromise of the MASA web service may lead to the
compromise of the MASA voucher signing key, if the signing occurs
offboard (such as in a hardware signing module (HSM)), then the key
may well be safe, but control over it resides with the attacker.

Such an attacker can issue vouchers for any device presently in
service. Said device still needs to be convinced to go through a
factory reset process before an attack.

If the attacker has access to a key that is trusted for long-lived
nonceless vouchers, then they could issue vouchers for devices that
are not yet in service. This attack may be very hard to verify as it
would involve doing firmware updates on every device in warehouses (a
potentially ruinously expensive process); a manufacturer might be
reluctant to admit this possibility.

7. YANG Module Security Considerations

As described in Section 7.4 (Security Considerations) of [RFC8366],
the YANG module specified in this document defines the schema for
data that is subsequently encapsulated by a CMS signed-data content
type, as described in Section 5 of [RFC5652]. As such, all of the
YANG-modeled data is protected from modification.

The use of YANG to define data structures, via the "yang-data"
statement, is relatively new and distinct from the traditional use of
YANG to define an API accessed by network management protocols such
as NETCONF [RFC6241] and RESTCONF [RFC8040]. For this reason, these
guidelines do not follow the template described by Section 3.7 of
[REFC8407] .

References
1. Normative References
[IDevID] IEEE, "IEEE Standard for Local and metropolitan area

networks - Secure Device Identity", IEEE 802.1AR,
<https://1.ieee802.0rg/security/802-1lar>.

[ITU.X690] ITU-T, "Information Technology - ASN.l encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER) ", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015,
August 2015, <https://www.itu.int/rec/T-REC-X.690>.

[REST] Fielding, R.F., "Architectural Styles and the Design of
Network-based Software Architectures", 2000,
<http://www.ics.uci.edu/ fielding/pubs/dissertation/
fielding_dissertation.pdf>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc—editor.org/info/rfc2119>.

[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/info/rfc3339>.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc—-editor.org/info/rfc3688>.

[REC3748]

[REFC3927]

[RFC4086]

[REFC4519]

[RFC4648]

[RFC4862]

[REFC5272]

[RFC5280]

[REFC5652]

[REFC6020]

[RFC6125]

[REFC6241]

[REC6762]

[REC6763]

[REFC7030]

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, Ed., "Extensible Authentication Protocol
(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
<https://www.rfc—editor.org/info/rfc3748>.

Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
Configuration of IPv4 Link-Local Addresses", RFC 3927,
DOI 10.17487/RFC3927, May 2005,
<https://www.rfc—editor.org/info/rfc3927>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
<https://www.rfc—editor.org/info/rfc4086>.

Sciberras, A., Ed., "Lightweight Directory Access Protocol
(LDAP) : Schema for User Applications", RFC 4519,

DOI 10.17487/RFC4519, June 2006,
<https://www.rfc-editor.org/info/rfc4519>.

Josefsson, S., "The Basel6, Base32, and Baseb6t4 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/info/rfc4648>.

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862,

DOI 10.17487/RFC4862, September 2007,
<https://www.rfc—editor.org/info/rfc4862>.

Schaad, J. and M. Myers, "Certificate Management over CMS
(CMC)"™, RFC 5272, DOI 10.17487/RFC5272, June 2008,
<https://www.rfc—editor.org/info/rfc5272>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile"™, RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc—editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.

Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, <https://www.rfc-editor.org/info/rfc6125>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
DOI 10.17487/RFC6762, February 2013,
<https://www.rfc—editor.org/info/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service
Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
<https://www.rfc-editor.org/info/rfc6763>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
"Enrollment over Secure Transport", RFC 7030,

[REFC7230]

[REFC7231]

[REC7469]

[REFC7950]

[REC7951]

[RFC8040]

[REC8174]

[RFC8259]

[RFC8366]

[RFC8368]

[REFC8407]

[RFC8446]

[REFC8610]

[REC8951]

[REFC8981]

DOI 10.17487/RFC7030, October 2013,
<https://www.rfc-editor.org/info/rfc7030>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1l.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,

DOI 10.17487/RFC7231, June 2014,
<https://www.rfc-editor.org/info/rfc7231>.

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
2015, <https://www.rfc—editor.org/info/rfc7469>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,
<https://www.rfc-editor.org/info/rfc7951>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc—editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,

DOI 10.17487/RFC8259, December 2017,
<https://www.rfc-editor.org/info/rfc8259>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
"A Voucher Artifact for Bootstrapping Protocols",

RFC 8366, DOI 10.17487/RFC8366, May 2018,
<https://www.rfc-editor.org/info/rfc8366>.

Eckert, T., Ed. and M. Behringer, "Using an Autonomic
Control Plane for Stable Connectivity of Network
Operations, Administration, and Maintenance (OAM)",
RFC 8368, DOI 10.17487/RFC8368, May 2018,
<https://www.rfc-editor.org/info/rfc8368>.

Bierman, A., "Guidelines for Authors and Reviewers of
Documents Containing YANG Data Models", BCP 216, RFC 8407,
DOI 10.17487/RFC8407, October 2018,
<https://www.rfc—editor.org/info/rfc8407>.

Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc—editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
Definition Language (CDDL): A Notational Convention to
Express Concise Binary Object Representation (CBOR) and
JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
June 2019, <https://www.rfc—-editor.org/info/rfc8610>.

Richardson, M., Werner, T., and W. Pan, "Clarification of
Enrollment over Secure Transport (EST): Transfer Encodings
and ASN.1", RFC 8951, DOI 10.17487/RFC8951, November 2020,
<https://www.rfc-editor.org/info/rfc8951>.

Gont, F., Krishnan, S., Narten, T., and R. Draves,
"Temporary Address Extensions for Stateless Address

12

Autoconfiguration in IPv6", RFC 8981,
DOI 10.17487/RFC8981, February 2021,
<https://www.rfc—editor.org/info/rfc8981>.

[RFC8990] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
Autonomic Signaling Protocol (GRASP)", RFC 8990,
DOI 10.17487/RFC8990, May 2021,
<https://www.rfc-editor.org/rfc/rfc8990>.

[RFC8994] Eckert, T., Ed., Behringer, M., Ed., and S. Bjarnason, "An
Autonomic Control Plane (ACP)", RFC 8994,
DOI 10.17487/RFC8994, May 2021,
<https://www.rfc-editor.org/rfc/rfc8994>.

2. Informative References

[ACE-COAP-EST]
van der Stok, P., Kampanakis, P., Richardson, M., and S.
Raza, "EST over secure CoAP (EST-coaps)", Work in
Progress, Internet-Draft, draft-ietf-ace-coap-est-18, 6
January 2020,
<https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>.

[ANIMA-CONSTRAINED-VOUCHER]
Richardson, M., van der Stok, P., Kampanakis, P., and E.
Dijk, "Constrained Voucher Artifacts for Bootstrapping
Protocols", Work in Progress, Internet-Draft, draft-ietf-
anima-constrained-voucher-10, 21 February 2021,
<https://tools.ietf.org/html/draft-ietf-anima-constrained-
voucher-10>.

[ANIMA-STATE]
Richardson, M., "Considerations for stateful vs stateless
join router in ANIMA bootstrap", Work in Progress,
Internet-Draft, draft-richardson—-anima-state—-for-
joinrouter-03, 22 September 2020,
<https://tools.ietf.org/html/draft-richardson-anima-state-
for-joinrouter-03>.

[brewski] Urban Dictionary, "brewski", March 2003,
<https://www.urbandictionary.com/define.php?term=brewski>.

[cabforumaudit]
CA/Browser Forum, "Information for Auditors and
Assessors", August 2019, <https://cabforum.org/
information—-for—-auditors—and—-assessors/>.

[Dingledine]
Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The
Second-Generation Onion Router", August 2004,
<https://svn—-archive.torproject.org/svn/projects/design-
paper/tor—-design.pdf>.

[dnssecroot]
"DNSSEC Practice Statement for the Root Zone ZSK
Operator", December 2017,
<https://www.iana.org/dnssec/procedures/zsk—-operator/dps—
zsk—-operator-v2.1l.pdf>.

[docsisroot]
"CableLabs Digital Certificate Issuance Service", February
2018, <https://www.cablelabs.com/resources/digital-
certificate-issuance-service/>.

[imprinting]
Wikipedia, "Imprinting (psychology)", January 2021,
<https://en.wikipedia.org/w/
index.php?title=Imprinting_(psychology) &=999211441>.

[IToTstrangeThings]
ESET, "IoT of toys stranger than fiction: Cybersecurity

and data privacy update", March 2017,
<https://www.welivesecurity.com/2017/03/03/internet-of-
things—-security-privacy-iot—-update/>.

[livingwithIoT]
Silicon Republic, "What is it actually like to live in a
house filled with IoT devices?", February 2018,
<https://www.siliconrepublic.com/machines/iot-smart—
devices-reality>.

[minerval Richardson, M., "Minerva reference implementation for
BRSKI", 2020, <https://minerva.sandelman.ca/>.

[minervagithub]
"ANIMA Minerva toolkit",
<https://github.com/ANIMAgus—minerva>.

[openssl] OpenSSL, "OpenSSL X509 Utility", September 2019,
<https://www.openssl.org/docs/manl.1l.1/manl/openssl-
x509.html/>.

[RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, DOI 10.17487/RFC2131, March 1997,
<https://www.rfc-editor.org/info/rfc2131>.

[RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
Translator (NAT) Terminology and Considerations",
RFC 2663, DOI 10.17487/RFC2663, August 1999,
<https://www.rfc—editor.org/info/rfc2663>.

[REFC52009] Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J.
Tardo, "Network Endpoint Assessment (NEA): Overview and
Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008,
<https://www.rfc—editor.org/info/rfc5209>.

[RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
Galperin, S., and C. Adams, "X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP",
RFC 6960, DOI 10.17487/RFC6960, June 2013,
<https://www.rfc—editor.org/info/rfc6960>.

[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension”, RFC 6961,
DOI 10.17487/RFC6961, June 2013,
<https://www.rfc—editor.org/info/rfc6961>.

[RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
Constrained-Node Networks", RFC 7228,
DOI 10.17487/RFC7228, May 2014,
<https://www.rfc-editor.org/info/rfc7228>.

[RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
2014, <https://www.rfc-editor.org/info/rfc7258>.

[REC7435] Dukhovni, V., "Opportunistic Security: Some Protection
Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
December 2014, <https://www.rfc-editor.org/info/rfc7435>.

[RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
Networking: Definitions and Design Goals", RFC 7575,
DOI 10.17487/RFC7575, June 2015,
<https://www.rfc—editor.org/info/rfc7575>.

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc—editor.org/info/rfc8126>.

[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.

[RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
<https://www.rfc-editor.org/info/rfc8615>.

[RFC8993] Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,
L., and J. Nobre, "A Reference Model for Autonomic
Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,
<https://www.rfc—-editor.org/info/rfc8993>.

[slowloris]
Wikipedia, "Slowloris (computer security)", January 2021,
<https://en.wikipedia.org/w/index.php?title=Slowloris_ (com
puter_security) &0ldid=1001473290/>.

[softwareescrow]

Wikipedia, "Source code escrow", March 2020,
<https://en.wikipedia.org/w/
index.php?title=Source_code_escrow&oldid=948073074>.

[Stajano99theresurrecting]
Stajano, F. and R. Anderson, "The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks", 1999,
<https://www.cl.cam.ac.uk/ fms27/papers/1999-StajanocAnd-
duckling.pdf>.

[TRO69] Broadband Forum, "CPE WAN Management Protocol", TR-069,
Issue 1, Amendment 6, March 2018, <https://www.broadband-
forum.org/download/TR-069_Amendment-6.pdf>.

[W3C.capability-urls]
Tennison, J., "Good Practices for Capability URLs", W3C
First Public Working Draft, World Wide Web Consortium WD
WD-capability-urls-20140218, February 2014,
<https://www.w3.0rg/TR/2014/WD-capability-urls>.

[YANG-KEYSTORE]
Watsen, K., "A YANG Data Model for a Keystore", Work in
Progress, Internet-Draft, draft-ietf-netconf-keystore-22,
18 May 2021, <https://tools.ietf.org/html/draft-ietf-
netconf-keystore-22>.

Appendix A. IPv4 and Non-ANI Operations

The specification of BRSKI in Section 4 intentionally covers only the

mechanisms for an IPv6 pledge using link-local addresses. This
section describes non-normative extensions that can be used in other
environments.

A.l. IPv4 Link-Local Addresses

Instead of an IPv6 link-local address, an IPv4 address may be
generated using "Dynamic Configuration of IPv4 Link-Local Addresses"
[RFC3927].

In the case where an IPv4 link-local address is formed, the bootstrap
process would continue, as in an IPv6 case, by looking for a
(circuit) proxy.

A.2. Use of DHCPv4
The pledge MAY obtain an IP address via DHCP ([RFC2131]. The DHCP-
provided parameters for the Domain Name System can be used to perform
DNS operations if all local discovery attempts fail.

Appendix B. mDNS / DNS-SD Proxy Discovery Options

Pledge discovery of the proxy (Section 4.1) MAY be performed with
DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762] to

discover the proxy at "_brski-proxy._tcp.local.".

Proxy discovery of the registrar (Section 4.3) MAY be performed with
DNS-based Service Discovery over Multicast DNS to discover registrars
by searching for the service "_brski-registrar._tcp.local.".

To prevent unacceptable levels of network traffic, when using mDNS,
the congestion avoidance mechanisms specified in [RFC6762], Section 7
MUST be followed. The pledge SHOULD listen for an unsolicited
broadcast response as described in [RFC6762]. This allows devices to
avoid announcing their presence via mDNS broadcasts and instead
silently join a network by watching for periodic unsolicited
broadcast responses.

Discovery of the registrar MAY also be performed with DNS-based
Service Discovery by searching for the service "_brski-
registrar._tcp.example.com". 1In this case, the domain "example.com"
is discovered as described in [RFC6763], Section 11 (Appendix A.2 of
this document suggests the use of DHCP parameters).

If no local proxy or registrar service is located using the GRASP
mechanisms or the above-mentioned DNS-based Service Discovery
methods, the pledge MAY contact a well-known manufacturer-provided
bootstrapping server by performing a DNS lookup using a well-known
URI such as "brski-registrar.manufacturer.example.com". The details
of the URI are manufacturer specific. Manufacturers that leverage
this method on the pledge are responsible for providing the registrar
service. Also see Section 2.7.

The current DNS services returned during each query are maintained
until bootstrapping is completed. If bootstrapping fails and the
pledge returns to the Discovery state, it picks up where it left off
and continues attempting bootstrapping. For example, if the first
Multicast DNS _bootstrapks._tcp.local response doesn’t work, then the
second and third responses are tried. If these fail, the pledge
moves on to normal DNS-based Service Discovery.

Appendix C. Example Vouchers

Three entities are involved in a voucher: the MASA issues (signs) it,
the registrar’s public key is mentioned in it, and the pledge

validates it. 1In order to provide reproducible examples, the public
and private keys for an example MASA and registrar are listed first.

The keys come from an open source reference implementation of BRSKI,
called "Minerva" [minerval. It is available on GitHub
[minervagithub]. The keys presented here are used in the unit and
integration tests. The MASA code is called "highway", the registrar
code is called "fountain", and the example client is called "reach".

The public key components of each are presented as base64
certificates and are decoded by openssl’s x509 utility so that the
extensions can be seen. This was version 1l.1.1c of the library and
utility of [openssl].

C.1. Keys Involved
The manufacturer has a CA that signs the pledge’s IDevID. 1In
addition, the Manufacturer’s signing authority (the MASA) signs the
vouchers, and that certificate must distributed to the devices at
manufacturing time so that vouchers can be validated.

C.1.1. Manufacturer Certification Authority for IDevID Signatures
This private key is the CA that signs IDevID certificates:
<CODE BEGINS> file "vendor.key"
MIGkAGEBBDCAYkoLW1IEA5SKKhMMdkTK7sJIxk5ybKqYq9Yr5aR7tNwgXyLGS7z8G

854w/UJ58BqgBwYFK4EEACKhZANiAAQu5/ykt JbFLIMC87h7b+yTreFuF 8GwewKH
L4mS0r0dVAQubgDUQCTr jvpXrXCpTojiLlCzgp8fzkcUDkZ9LD/MI0LDipi LNIOKP

JuF8QkoAbT8pMrY83MS8y76wZ7AalNQ=

<CODE ENDS>

This public key validates IDevID certificates:
file: examples/vendor.key

<CODE BEGINS> file "vendor.cert"
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1216069925 (0x487bcl25)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = highway-test.example.com CA
Validity
Not Before: Apr 13 20:34:24 2021 GMT
Not After : Apr 13 20:34:24 2023 GMT
Subject: CN = highway-test.example.com CA
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public—-Key: (384 bit)
pub:
04:2e:e7:fc:a4:04:96:c5:2e:33:02:£f3:b8:7b:6f:
ec:93:ad:el:6e:17:cl:00:7b:02:87:2£:89:92:d2:
bd:1d:54:04:2e:6e:a0:d4:41:c4:eb:8e:fa:57:ad:
70:a9:4e:88:e2:2c:2c:e0:a7:¢c7:£3:91:c5:03:91:
9f:4b:0£f:£3:3d:d0:b0:e2:a6:22:cd:20:e9:0f:8e:
el:7c:42:4a:00:6d:3£:29:32:b6:3c:dc:cd:bc:cb:
be:b0:67:b0:1a:94:d4
ASN1l OID: secp384rl
NIST CURVE: P-384
X509v3 extensions:
X509v3 Basic Constraints: critical
CA: TRUE
X509v3 Key Usage: critical
Certificate Sign, CRL Sign
X509v3 Subject Key Identifier:
S5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:
8C:53:8A:08
X509v3 Authority Key Identifier:
keyid:5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:
80:76:8C:53:8A:08

Signature Algorithm: ecdsa-with-SHA256
30:64:02:30:60:37:20:66:89:80:27:e1:0d:e5:43:9a:62:f1:
02:bc:0f:72:6d:a9:e9:¢cb:84:a5:¢c6:44:d3:41:9e:5d:ce:7d:
46:16:6e:15:de:f7:cc:e8:3e:61:£9:03:7c:20:c4:b7:02:30:
T7£:€9:£3:12:bb:06:c6:24:00:2b:41:aa:21:6b:d8:25:ed:81:
07:11:ef:66:8£:06:bf:c8:be:£f0:58:74:24:45:39:4d:04:fc:
31:69:6f:cf:db:fe:61:7b:c3:24:31:ff

MIIB3TCCAWSgAwIBAgIESHvBJITAKBggqhk JOPQODA JAMMSQwIgYDVQQODDBtoaWdo
d2F5LXR1c3QuZXhhbXBsZS5jb20gQ0EwHhcNMJEWNDE zMjAzND I 0WhcNMjMwNDE z
MjAzNDIOWIJAMMSQwIgYDVQQODDBt oaWdod2F5LXR1c3QuzZXhhbXBsZS5jb20gQ0Ew
djAQBgcghk JOPQIBBgUrgQQAIgNiAAQuS/ykt JbFLIMC87h7b+yTreFuF 8GwewKH
L4mS0r0dVAQubgDUQcTr jvpXrXCpTojiLCzgp8fzkcUDkKkZ9LD/MO0LDipi LNIOKP
JuF8QkoAbT8pMrY83MS8y76wZ7AalNSjYzBhMASGA1UJEWER/wQFMAMBAf8wDgYD
VROPAQH/BAQDAgEGMBOGA1UdDgQWBBReDK1SWoz fgQ8DFOmMW8YB2 JFOKCDAfBgNV
HSMEGDAWgBReDK1SWozfqQ8DFOMW8YB2 JFOKCDAKBggghk JOPQODAGNNADBKA jBg
N6BmiYAn4031Q05pi8QK8D3JtgenLhKXGRNNBnl30fUYWbhXe98zoPmH5A3wgxLcC
MH/p8xK7BsYkKACtBgiFr2CXtgQcR72aPBr/IvvBYdCRFOUOE/DFpb8/b/mF 7TwyQx

<CODE ENDS>
C.1.2. MASA Key Pair for Voucher Signatures
The MASA is the Manufacturer Authorized Signing Authority. This key

pair signs vouchers. An example TLS certificate (see Section 5.4)
HTTP authentication is not provided as it is a common form.

This private key signs the vouchers that are presented below:
<CODE BEGINS> file "masa.key"

MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJIQYJHNy8pkiLJI6CcvxMGOAOGCCgGSM49
AwEHOUQDQQAEqgQVo0S54kT4y fkbBxumdHOcHrpsgbOpMKmiM1n30oB1l1HAW25MJV+
ggi4tMFfSJ0iEwt 8ksz fWXK4rLgJS2mnpQ==

<CODE ENDS>

This public key validates vouchers, and it has been signed by the CA
above:

file: examples/masa.key

<CODE BEGINS> file "masa.cert"
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 193399345 (0xb870a31l)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = highway-test.example.com CA
Validity
Not Before: Apr 13 21:40:16 2021 GMT
Not After : Apr 13 21:40:16 2023 GMT
Subject: CN = highway-test.example.com MASA
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:2a:04:15:a23:44:09:e2:44:£8:¢c9:£f9:1b:07:1b:
a6:74:73:9c:1le:ba:6c:a9:03:a29:30:a29:a22:32:59:
£7:40:1d:47:01:6d:09:30:95:7e:82:a8:b8:b4d:cl:
5f£:48:9d:22:13:0b:7¢c:92:cc:df:59:72:b8:ac:b8:
09:4b:69:a7:a5
ASN1l OID: prime256vl
NIST CURVE: P-256
X509v3 extensions:
X509v3 Basic Constraints: critical
CA:FALSE
Signature Algorithm: ecdsa-with-SHA256
30:66:02:31:00:ae:cb:61:2d:d4:5c:8d:6e:86:aa:0b:06:1d:
c6:d3:60:0a:32:73:36:25:d3:23:85:49:87:1c:ce:94:23:79:
la:9e:41:55:24:1d:15:22:al1:48:bb:0a:c0:ab:3c:13:73:02:
31:00:86:3c:67:b3:95:a2:e2:e5:f9:ad:£9:1d:9c:cl:34:32:
78:f5:cf:ea:d5:47:03:9£:00:b£f:d0:59:cb:51:c2:98:04:81:
24:8a:51:13:50:b1:75:b2:2f:9d:a8:b4:£4:b9

MITBcDCB9gADAgECAgQLhwoxMAOGCCgGSM4 9BAMCMCYxJDA1BgNVBAMMG2hpZ2h3
YXktdGVzdC51eGFtcGx1LmNvbSBDQTAeFwOyMTAOMTMyMTQWMT ZaFwOyMzAOMTMy
MTQwWMTZaMCgxJ jAkBgNVBAMMHWhpZ2h3YXktdGVzdC51eGFtcGx1LmNvbSBNQVNB
MFkwEWYHK0ZIz3j0CAQYIKoZIzjO0DAQCcDQgAEqQgQVo0S54k T4y fkbBxumdHOCHrps
agbOpMKmiM1n30B1HAW25MJIV+gqidtMF£SJ0iEwt 8kszfWXK4rLgJS2mnpaMQOMA4w
DAYDVROTAQH/BAIWADAKBggghk JOPQODAGNpADBmMA jEArsthLdRc jW6GggsGHebT
YLoyczY1l0yOFSYcczpQjeRgqeQVUkHRUioU17CsCrPBNzAJEAh jxns5Wi4uX5rfkd
nMEOMn j1z+rVRwOfAL/QWCctRwpgEgSSKURNQsSXWyL520tPS5

<CODE ENDS>
.1.3. Registrar Certification Authority

This CA enrolls the pledge once it is authorized, and it also signs
the registrar’s certificate.

<CODE BEGINS> file "ownerca_secp384rl.key"

MIGKAgEBBDCHNnLIOMSOLf8XndiZgoZdgblcPR5YSoPGhPOUFxWylgFi9HbWv8b/R
EGdRgGEVS jKgBwYFK4EEACKhZANiAAQbf1m6F8MavGaNjGzgw/oxcQ919iKRvbdW
gAfb37h6pUVNeYpGlx1Z1jGxj219Mr48yD5bY7VGIqjVb5v5wPPTURQ/ ckdRpHbd
0vC/9cgPMAF /+MJf0/UgA0SLi/IHbLQ=

<CODE ENDS>

The public key is indicated in a pledge voucher-request to show
proximity.

file: examples/ownerca_secp384rl.key

<CODE BEGINS> file "ownerca_secp384rl.cert"
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 694879833 (0x296b0659)
Signature Algorithm: ecdsa-with-SHA256

Issuer: DC = ca, DC = sandelman,
CN = fountain-test.example.com Unstrung Fountain Root CA
Validity

Not Before: Feb 25 21:31:45 2020 GMT
Not After : Feb 24 21:31:45 2022 GMT
Subject: DC = ca, DC = sandelman,
CN = fountain-test.example.com Unstrung Fountain Root CA
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (384 bit)
pub:
04:1b:7f:59:ba:17:c3:1la:bc:66:8d:8c:6c:e0:c3:
fa:31:71:0£:65:£6:22:91:bd:b7:56:80:07:db:df:
b8:7a:a5:45:4d:79:8a:46:97:19:59:96:31:b1:8f:
69:7d:32:be:3c:c8:3e:5b:63:05:46:f6:a8:d5:6f:
9:£9:c0:£3:d3:09:14:3f:72:47:51:a4:76:dd:d2:
fO:bf:f5:ca:8£:30:01:7f:£8:¢c2:5f:d3:£5:20:03:
44:8b:8b:£f2:07:6c:b4
ASN1 OID: secp384rl
NIST CURVE: P-384
X509v3 extensions:
X509v3 Basic Constraints: critical
CA: TRUE
X509v3 Key Usage: critical
Certificate Sign, CRL Sign
X509v3 Subject Key Identifier:
B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:
87:B3:74:26
X509v3 Authority Key Identifier:
keyid:B9:AL5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:
10:BC:87:B3:74:26

Signature Algorithm: ecdsa-with-SHA256
30:64:02:30:20:83:06:ce:8d:98:a4:54:7a:66:4c:4a:3a:70:
c2:52:36:5a:52:8d:59:7d:20:90:2a:69:14:58:87:38:d8:55:
79:dd:£d:29:38:95:1e:91:93:76:0b4:£5:66:29:44:04:02:30:
6f:38:f9:af:12:ed:30:d5:85:29:7c:b1:16:58:bd:67:91:43:
c4:0d:30:£f9:d8:1c:ac:2f:06:dd:bc:d5:06:42:2c:84:a2:04:
ea:02:a4:5f£:17:51:26:fb:d9:2f:d2:5c

MIICazCCAfKgAwIBAgIEKWSGWTAKBggghk JOPQQODAJBtMRIWEAYKCZImiZPyLGQOB
GRYCY2ExGTAXBgoJdkiaJdk/IsZAEZFglzYW5S5kZWxt YW4XPDAG6BgNVBAMMM2 ZvdW50
YW1uLXR1c3QuZXhhbXBsZS5jb20gVW5zdHJI1lbmcgRm91bnRhaW4gUm9OvdCBDQTAe
FwOyMDAyMjUyMTMxNDVaFwOyMjAyMjQyMTMxNDVaMGOXE jAQBgoJkiadk/IsZAEZ
FgJjYTEZMBcGCgmSJomT 81ixkARKWCXNhbmR1bG1lhbjES8MDoGAl1UEAwWwWZzZm91bnRh
aW4tdGVzdC51eGFtcGx1LmNvbSBVbnNOcnVuZyBGb3VudGFpbiBSb290IENBMHYwW
EAYHK0ZIzJjOCAQYFKAEEACIDYgAEG39ZuhfDGrxmjY¥xs4MP6MXEPZfYikb23VoAH
29+4eqVFTXmKRpCcZWZYxsYOpfTK+PMg+W201RvaolW+b+cDz07kUP3JHUaR23dLw
v/XKjzABf/jCX9P1IANEi4vyB2y002MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DWEB/wWQEAWIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJILKcIxnwQvIezdCYwHwYDVRO j
BBgwFoAUuaX2yxHhB6RILKcIxnwQvIezdCYwWCgYIKoZIz jOEAWIDZWAWZAIWIIMG
z02YPFR6ZkxKONDCUJZaUolZfSChbKmkUWIC42FV53f0p0JUekZN2tPVMKUSOA jBv
OPmvEUOW1YUpfLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTGAGREF1EmM+9kv0lw=

<CODE ENDS>

.1.4. Registrar Key Pair

The registrar is the representative of the domain owner. This key
signs registrar voucher-requests and terminates the TLS connection
from the pledge.

<CODE BEGINS> file "jrc_prime256vl.key"

MHcCAQEEIFZodk+PC5Mu24+ra0sbOjKzan+dW5rvDAR7YuJUOC1YoA0GCCGSM4 9
AWEHOUQDQQAE1mMVQc jS6n+Xd51/28IFv6UiegQwSBztGj5dkK2MAJQIPVE181H+E
JLIOYdbJiIOVtEIf1l/Jqt+TOBfinTNOLOg==

<CODE ENDS>

The public key is indicated in a pledge voucher-request to show
proximity.

<CODE BEGINS> file "jrc_prime256vl.cert"
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1066965842 (0x3f989b52)
Signature Algorithm: ecdsa-with-SHA256

Issuer: DC = ca, DC = sandelman,
CN = fountain-test.example.com Unstrung Fountain Root CA
Validity

Not Before: Feb 25 21:31:54 2020 GMT
Not After : Feb 24 21:31:54 2022 GMT
Subject: DC = ca, DC = sandelman,
CN = fountain-test.example.com
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:96:65:50:72:34:ba:9f:e5:dd:e6:5f:£6:£0:81:
6£:29:48:9e:81:0c:12:07:30:46:8£:97:64:2b:63:
00:8d:02:0£:57:¢c9:7¢c:94:7£:84:8c:b2:0e:61:d6:
c9:88:8d:15:b4:42:1f:d7:f2:6a:b7:ed4:ce:05:£8:
a7:4c:d3:8b:3a
ASN1 OID: prime256vl
NIST CURVE: P-256
X509v3 extensions:
X509v3 Extended Key Usage: critical
CMC Registration Authority
X509v3 Key Usage: critical
Digital Signature
Signature Algorithm: ecdsa-with-SHA256
30:65:02:30:66:4£:60:4c:55:48:1e:96:07:£8:dd:1£f:09:c8:
12:8d:45:36:87:90:23:c0:bc:bb:fl:cb:3d:26:15:56:6f:5f:
1f:bf:d5:1c:0e:6a:09:af:1b:76:97:99:19:23:fd:7e:02:31:
0O0:bc:ac:c3:41:b0:ba:0d:af:52:£9:9c:6e:7a:7£:00:1d:23:
c8:62:01:61:bc:4b:c5:c0:47:99:35:0a:0c:77:61:44:01:4a:
07:52:70:57:00:75:ff:be:07:0e:98:cb:eb

MIIB/DCCAYKgAwWIBAGIEP5ibUjAKBggghk JOPQODAJBtMRIWEAYKCZImiZPyLGQOB
GRYCY2ExGTAXBgoJdkiaJdk/IsZAEZFglzYW5S5kZWxt YW4xXPDAGBgNVBAMMM2 ZvdW50
YW1uLXR1c3QuZXhhbXBsZS5jb20gViW5zdHI1lbmcgRm91bnRhaW4gUmOvdCBDQTAe
FwOyMDAYMjUyMTMxNTRaFwOyMjAyMjQyMTMxNTRaMFME jAQBgoJkiadk/IsZAEZ
FgJjYTEZMBcGCgmSJomT 8 ixkARKWCXNhbmR1bG1hbjEiMCAGALIUEAWWZZm91bnRh
aw4tdGvzdC51eGFtcGx1LmNvbTBZMBMGBygGSM4 9AgEGCCgGSM4 9AwWEHAOIABJIZ1
UHIOup/13eZf9vCBb+1InoEMEgc7Ro+XZCtJAIOCD1fJfIJR/hIyyDmHWyYiNFbRC
H9fyarfkzgX4p0zTizgjKjAoMBYGA1UdJQEBR/wQMMAOGCCsGAQUFBWMcMA4GAL1Ud
DWEB/wWQEAwWIHgDAKBggghk JOPQODAGNOADB1A jBmT2BMVUgelgf43R+5yBKNRTaH
myPAVLVXyz0mFVZvXx+/1RwOagmvG3aXmRk j/X4CMQC8rMNBsLoNr1L5nG56fwAd
I8hiAWG8S8XAR5k1Cgx3YUQOBSgdScFcAdf++Bw6Yy+U=

<CODE ENDS>
C.1.5. Pledge Key Pair

The pledge has an IDevID key pair built in at manufacturing time:

<CODE BEGINS> file "idevid_ 00-DO-E5-F2-00-02.key"

MHCCAQEEIBHNh6r8QRevRuo+tEmBJeF jOKf 6bpFA/INGoltv+9sNoAoGCCgGSM4 9
AWEHOUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMclAYEH+BATkF58FsTSyBxs0SbSWLx
FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw==

<CODE ENDS>
The certificate is used by the registrar to find the MASA.

<CODE BEGINS> file "idevid_00-DO-E5-F2-00-02.cert"
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 521731815 (0x1f18fee?)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = highway-test.example.com CA
Validity
Not Before: Apr 27 18:29:30 2021 GMT
Not After : Dec 31 00:00:00 2999 GMT
Subject: serialNumber = 00-DO-E5-F2-00-02
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:03:23:75:43:87:b3:7c:c0:0a:9a:87:9c:ad:f6:
£4:38:13:1c:d4:0c:84:1f:e0:40:4e:41:79:f0:5b:
13:4b:20:71:03:44:90:49:62:f1:16:30:ce:bb:00:
7d:80:01:247:d9:3b:13:50:9b:a6:27:a5:4f:c3:96:
T7f:d4c:fe:21:27

ASN1l OID: prime256vl

NIST CURVE: P-256

X509v3 extensions:

X509v3 Subject Key Identifier:
45:88:CC:96:96:00:64:37:B0:BA:23:65:64:64:54:08:
06:6C:56:AD

X509v3 Basic Constraints:

CA:FALSE

1.3.6.1.5.5.7.1.32:
..highway-test.example.com: 9443
Signature Algorithm: ecdsa-with-SHA256

30:65:02:30:62:2a:db:be:34:f7:1b:cb:85:de:26:8e:43:00:
£9:0d:88:¢c8:77:a8:dd:3c:08:40:54:bc:ec:3d:b6:dc:70:2b:
c3:7f:ca:19:21:9%9a:a0:ab:c5:51:8e:aa:df:36:de:8b:02:31:
00:02:5d:59:£8:47:c7:ed:03:97:a8:c0:c7:a8:81:fa:a8:86:
ed:67:64:37:51:7a:6e:9c:a3:82:4d:6d:ad:bc:£3:35:9e:9d:
6a:a2:6d:7f£:7£:25:1c:03:ef:£f0:ba:9p:71

MIIBrzCCATWgAwIBAgIEHxj+52zAKBggghk JOPQQDAJAMMSQwIgYDVQQDDBtoaWdo
d2F5LXR1c3QuZzZXhhbXBsZS5jb20gQ0EwIBCNMJEWND I 3MTgyOTMwWhgPMjk50TEyY
MzEwWMDAwWMDBaMBwxG jAYBgNVBAUTETAWLUQWLUULLUYyLTAWLTAYMFKkwEWYHK0OZI
zjJOCAQYIKoZIzjODAQcDQgAEAG6N1Q4ezfMAKmoecrfb0OBMclAyEH+BATkF58FsT
SyBxs0SbSWLXF jDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4A4hJ6NZMFcwHQYDVROOBBYE
FEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGAlUJdEWQCMAAWKWY IKwYBBQUHASAEHXYd
aGlnaHdheS10ZXNOLmV4YW1lwbGUuY29t0OjkONDMwCgYIKoZIzjOEAWIDaAAWZQIwW
YirbviT3G8uF3iaOQwD5DY jId6jdPAhAVLzsPbbccCvDf80Z2IZqgg8VRIjgqriNt6L
AJEAs11Z+EfH7QOXgMDHQIH6qIbtZ2Q3UXpunKOCTW2tvPMlnplgoml/fyUcA+/w
uptx

<CODE ENDS>

.2. Example Process
The JSON examples below are wrapped at 60 columns. This results in
strings that have newlines in them, which makes them invalid JSON as
is. The strings would otherwise be too long, so they need to be

unwrapped before processing.

For readability, the output of the asnlparse has been truncated at 68
columns rather than wrapped.

.2.1. Pledge to Registrar

As described in Section 5.2, the pledge will sign a pledge voucher-—
request containing the registrar’s public key in the proximity-
registrar-cert field. The base64 has been wrapped at 60 characters
for presentation reasons.

<CODE BEGINS> file "vr_00-DO-E5-F2-00-02.b64"
MITIGCAYJK0OZIhvcNAQcCoIIGYTCCBl10OCAQExXDTALBglghkgBZOMEAgEWggOJBgkghkiG
9wOBBwWGgggN6BIIDAnsiaWVv0Zil2b3VijaGVyLXJ1lcXV1c3Q06dm91Y2hlciI6beyJhc3N1
cnRpb24i0iJwem94aWlpdHkiLCJjecmVhdGVKLWOUI joiMjAYMSOwNCOxM1QxNzoOMzoy
My43NDctMDQ6MDAILCJIzZXIpYWwtbnVtYmVyI joiMDAtRDAtRTUtRJItMDAtMDIiLCJu
b25JZSI6Ii1fWEUSeks5cThMbDFxeWXNdEXLZWciLCJIJwem94aWlpdHktcmVnaXNOcmEy
LWN1lcnQiOiJNSULICLORDQOFZS2dBd01CQWAJRVAlaWJIVakFLOmdncWhrak 9QUVFEQWpC
dE1SSXdFQV1LOlpJdbW1laUHIMRIFCR1JZQ1kyRXhHVEFYQOmdvSmt pYUprLO1lzWkFFWkZn
bHpZVzVrWld4dF1XNHhQREE2QmdOVkJBTUINM1p2ZFcl1MF1XbHVMWEJsYzNRdVpYaGhi
WEJzW1IM1amIyMGAWVzV6ZEhKMWJItY2dSbTkxYm5SaGFXNGAVbT12ZENCRFFUQWVGdzBS5
TURBeUl1gVX1INVE14T1RSYUZ3MHINakF5TWpReUlUTXhOVFJhTUZNeEVQQVFCZ29Ka21lh
SmsvSXNaQUVaRmdKallURVpNOmMNHQ2dtUOpvbVQ4aXhrQVJIrVONYTmhibVJIsYkcxaGJqg
RWINQOFHQTFVRUF3dlpabTkxY¥Ym5SaGFXNHRkR1Z6ZEM1bGVHRNRJR3hsTG10dmJUQ1pN
Qk1HON1xRINNND1BZOVHQONxXxRINNND1BdAOVIQTBJQUIKWmMxVSEkwdXAvODNI1WmMY5dkNC
YitsSW5vRULFZ2M3Um8rWFpDdGpBSTBDRDFMSMZKUL90SX15RG1IV31Z2aU5GY1JDSD1m
eWFyZmt 621g0cDB6VGl6cWpLakFvIUJZROEXVWRKUUVCL3dRTU1BbOdDQ3NHQVEVRkJ3
TWNNQTRHQTFVZER3RUIVA1IFFQXdJSGAEQUtCZ2dxaGtgqT1BRUURBZ05vQURCOEFgQOmM1U
MkJNV1IVNZWxnZjQzUisleUJLT1JUYUhteVBBdkx2eH16MGlGV1p2WHgrLzFSd09hz212
RzNhWG1Sa20vWDRDTVEDOHJINTkJzTGO0C JFMNWSHNTZmdOFkSThoaUFXRzhTOFhBU jVr
MUNneDNZVVFCU2dkU2NGYOFkZisrQnc2WXkrVT0ifX2gggGyMIIBr jCCATWgAWIBAGIE
DYOv2TAKBggghk JOPQQODA JAMMSQwIgYDVQQODDBt caWdod2F5LXR1c3QuzZXhhbXBsZS5]
b20gQO0EWIBCNMJEWNDEzMjAzNzM5WhgPM jk 5O0TEyMz EwMDAwWMDBaMBwxG jAYBgNVBAUM
ETAWLUQWLUUlLUYyLTAWLTAYMFkwEWYHK0ZIzjOCAQYIK0ZIzjODAQCDQUAEAG6NL1Q4ez
fMAKmoecrfb00OBMclAYEH+BATKF58FsTSyBxs0SbSWLXEF jDOuUwB9gLGn2TsTUJumJ6VP
w5Z/TP4hJ6NZMFcwHQYDVROOBBYEFEWI zJaWAGQ3sLo jZWRkVAgGbFatMAKGA1UdEwWQC
MAAWKwYIKwYBBQUHASAEHxYdaGlnaHdheS10ZXNOLmV4YW1lwbGUuY29t0OjkONDMwCgYI
KoZIzjO0EAWIDZWAWZAIWTmM1G8sXkKGNbwbKQcYMapFbmSbnHHURFUoFURgqvbgYX7F1Xp
BczfwF2k1l1NuujigAjAowlkc4r55Emi H+OMEX JBN1IW1BSZC5QudjEfO0Jsmxssc+pucjo
J4ShgnexMEy 7bjAxggEEMI IBAAIBATAUMCYxJDAIBgNVBAMMG2hpZ2h3YXktdGVzdC51
eGFtcGx1LmNvbSBDQQIEDYOVv2TALBglghkgBZOMEAgGgaTAYBgkghkiGOw0OBCOMxCwYJ
KoZIhvcNAQcBMBWGCSOGSIb3DQEJBTEPFWwOyMTAOMTMyMTQzM jNaMC8GCSgGSIb3DQEJ
BDEiBCBJwhyYibIjegeR3b0OaLURzM1Grc3F2X+kvJlerrtoCtTAKBggghk JOPQODAgRH
MEUCIQCmYuUCE61HFQXH/E16GDOCsVquDtgr+Q/6/Du/9QkzA7gIgf 7T MFhAIPW2PNwRa?2
VvZFQAKXUbimkiHKzXBA8mdOVHbU=

<CODE ENDS>

The ASN1l decoding of the artifact:

file: examples/vr_00-DO-E5-F2-00-02.b64

989:
991:

hl=2 1= 34 cons: SEQUENCE
hl=2 1= 3 prim: OBJECT :commonName

0:d=0 hl=4 1=1648 cons: SEQUENCE

4:d=1 hl=2 1= 9 prim: OBJECT :pkcs7-signedData
15:d=1 hl=4 1=1633 cons: cont [0]

19:d=2 hl=4 1=1629 cons: SEQUENCE
23:d=3 hl=2 1= 1 prim: INTEGER :01
26:d=3 hl=2 1= 13 cons: SET
28:d=4 hl=2 1= 11 cons: SEQUENCE

30:d=5 hl=2 1= 9 prim: OBJECT :sha256

41:d=3 hl=4 1= 905 cons: SEQUENCE

45:d=4 hl=2 1= 9 prim: OBJECT :pkcs7-data
56:d=4 hl=4 1= 890 cons: cont [0]

60:d=5 hl=4 1= 886 prim: OCTET STRING :{"ietf-voucher-request:v
950:d=3 hl=4 1= 434 cons: cont [0]
954:d=4 hl=4 1= 430 cons: SEQUENCE
958:d=5 hl=4 1= 309 cons: SEQUENCE
962:d=6 hl=2 1= 3 cons: cont [O]
964:d=7 hl=2 1= 1 prim: INTEGER :02
967:d=6 hl=2 1= 4 prim: INTEGER :0D83AFDY9
973:d=6 hl=2 1= 10 cons: SEQUENCE
975:d=7 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
985:d=6 hl=2 1= 38 cons: SEQUENCE
987:d=7 hl=2 1= 36 cons: SET

d=8
d=9

996:d=9 hl=2 1= 27 prim: UTF8STRING :highway-test.example.com
1025:d=6 hl=2 1= 32 cons: SEQUENCE
1027:d=7 hl=2 1= 13 prim: UTCTIME :210413203739Z
1042:d=7 hl=2 1= 15 prim: GENERALIZEDTIME :29991231000000Z
1059:d=6 hl=2 1= 28 cons: SEQUENCE
1061:d=7 hl=2 1= 26 cons: SET
1063:d=8 hl=2 1= 24 cons: SEQUENCE
1065:d=9 hl=2 1= 3 prim: OBJECT :serialNumber
1070:d=9 hl=2 1= 17 prim: UTF8STRING :00-DO-E5-F2-00-02
1089:d=6 hl=2 1= 89 cons: SEQUENCE
1091:d=7 hl=2 1= 19 cons: SEQUENCE
1093:d=8 hl=2 1= 7 prim: OBJECT :id-ecPublicKey
1102:d=8 hl=2 1= 8 prim: OBJECT :prime256vl
1112:d=7 hl=2 1= 66 prim: BIT STRING
1180:d=6 hl=2 1= 89 cons: cont [3]
1182:d=7 hl=2 1= 87 cons: SEQUENCE
1184:d=8 hl=2 1= 29 cons: SEQUENCE
1186:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Subject Key Ident
1191:d=9 hl=2 1= 22 prim: OCTET STRING [HEX DUMP]:04144588CC9696
1215:d=8 hl=2 1= 9 cons: SEQUENCE
1217:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Basic Constraints
1222:d=9 hl=2 1= 2 prim: OCTET STRING [HEX DUMP] :3000
1226:d=8 hl=2 1= 43 cons: SEQUENCE
1228:d=9 hl=2 1= 8 prim: OBJECT :1.3.6.1.5.5.7.1.32
1238:d=9 hl=2 1= 31 prim: OCTET STRING [HEX DUMP]:161D6869676877
1271:d=5 hl=2 1= 10 cons: SEQUENCE
1273:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
1283:d=5 hl=2 1= 103 prim: BIT STRING
1388:d=3 hl=4 1= 260 cons: SET
1392:d=4 hl=4 1= 256 cons: SEQUENCE
1396:d=5 hl=2 1= 1 prim: INTEGER :01
1399:d=5 hl=2 1= 46 cons: SEQUENCE
1401:d=6 hl=2 1= 38 cons: SEQUENCE
1403:d=7 hl=2 1= 36 cons: SET
1405:d=8 hl=2 1= 34 cons: SEQUENCE
1407:d=9 hl=2 1= 3 prim: OBJECT :commonName
1412:d=9 hl=2 1= 27 prim: UTF8STRING thighway-test.example.com
1441:d=6 hl=2 1= 4 prim: INTEGER :0D83AFD9
1447:d=5 hl=2 1= 11 cons: SEQUENCE
1449:d=6 hl=2 1= 9 prim: OBJECT :sha256
1460:d=5 hl=2 1= 105 cons: cont [0]
1462:d=6 hl=2 1= 24 cons: SEQUENCE
1464:d=7 hl=2 1= 9 prim: OBJECT :contentType
1475:d=7 hl=2 1= 11 cons: SET
1477:d=8 hl=2 1= 9 prim: OBJECT :pkcs7-data
1488:d=6 hl=2 1= 28 cons: SEQUENCE
1490:d=7 hl=2 1= 9 prim: OBJECT :signingTime
1501:d=7 hl=2 1= 15 cons: SET
1503:d=8 hl=2 1= 13 prim: UTCTIME :2104132143237
1518:d=6 hl=2 1= 47 cons: SEQUENCE
1520:d=7 hl=2 1= 9 prim: OBJECT :messageDigest
1531:d=7 hl=2 1= 34 cons: SET
1533:d=8 hl=2 1= 32 prim: OCTET STRING [HEX DUMP] :49C21C9889B223
1567:d=5 hl=2 1= 10 cons: SEQUENCE
1569:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
1579:d=5 hl=2 1= 71 prim: OCTET STRING [HEX DUMP] :3045022100A662

The JSON contained in the voucher-request:

{"ietf-voucher-request:voucher":{"assertion":"proximity", "cr
eated-on":"2021-04-13T17:43:23.747-04:00", "serial-number":"0
0-DO-E5-F2-00-02", "nonce":"-_XE9zK9g8LllgylMtLKeg", "proximit
y-registrar—-cert":"MIIB/DCCAYKgAwWIBAgIEPS5ibUjAKBggghk JOPQQDA
JBtMRIWEAYKCZImiZPyLGQBGRYCY2EXGTAXBgoJdkiaJk/IsSZAEZFglzYW5kZ
Wxt YW4xPDA6BgNVBAMMM2 ZvdW50YWI1uLXR1c3QuZXhhbXBsZS5jb20gViWw5zd
HJ1bmcgRm91bnRhaW4gUm9vdCBDQTAeFw0yMDAYMjUYMTMxNTRaFw0yMjAyM
jQYMTMxNTRaMFMxE jAQBgoJkiaJk/IsZAEZFgJjYTEZMBCGCgmSJomT 8 ixkA
RkWCXNhbmR1bGlhbjEiMCAGAIlUEAWWZZm91bnRhaW4tdGVzdC51eGFtcGx1L
mNvbTBZMBMGBygGSM4 9AgEGCCGSM4 9AwWEHAOIABJZ1UHIOup/13eZf9vCBb
+1InoEMEgc7Ro+XZCt JAIOCD1fJfJR/hIyyDmHWYyYiNFbRCHOfyarfkzgX4p
0zTizgqjKJjAOMBYGA1UdJQEBR/WQMMAOGCCsGAQUFBWMcMA4GA1UJDWEB/wQEA

C.

2

wIHgDAKBggghk jOPQODAGNOADB1A JBmT2BMVUgelgf43R+5yBKNRTaHmyPAv
LvxyzO0mFVZvXx+/1RwOagmvG3aXmRk j/X4CMQC8rMNBsLoNr1L5nG56fwAdT
8hiAWG8S8XAR5k1Cgx3YUQBSgAScFcAdf++Bw6Yy+U="}}

.2. Registrar to MASA

As described in Section 5.5, the registrar will sign a registrar
voucher-request and will include the pledge’s voucher-request in the
prior-signed-voucher-request.

<CODE BEGINS> file "parboiled _vr_00-DO-E5-F2-00-02.b64"

MIIPYwYJKoZIhvcNAQcCoIIPVDCCD1ACAQEXDTALBglghkgBZOMEAgEwWggl4BgkghkiG
IwOBBWGggglpBIIJZXsi1iaWV0Z2i1l2b3VjaGVyLXJ1lcXV1c306dm91Y2hlciI6éeyJhc3NL
cnRpb24i0iJwcm94aWlpdHkiLCJ jecmVhdGVKLWOUI joiMjAYMSOwNCOxM1QyMToOMzoy
My430Ddaliwic2VyaWFsLW51bWJ1lciI6I jAwWLUQWLUUILUYyLTAWLTAyIiwibmOuY2Ui
OiItX1hFOXpLOXE4TGwxcX1sTXRMS2VnIiwicHIpb3Itc2lnbmVkLXZvdWNoZXItcmVx
dWVzdCI6Ik1JSUA]JQV1IKS29aSWh2Y05BUWNDbO1JR11UQONCbDBDQVFFeERUQUxCZ2xn
aGtnQlpRTUVBZ0V3Z2dPSkJdna3Fo0a2lHOXcwQkJ3R2dnZ042Qk1JRGRuUc21hV1YwiWmkx
MmIzVmphR1Z5TFhKbGNYVmx jM1E2ZG05MVkyaGxjaUk22zX1KaGMz Tmx jblIwYjI0aU9p
SndjbTk0YVexcGRIa21MQO0pgY21WaGRHVMEMVz11SWpvaUlgQX1NUzB3TkMweEOxUXhO
em8wTXpveUlS5NDNORGNOTURRNkIEQWIMQOOp6W1hKcF1Xd3RiblZ0WW1WeUlgb21NREF O
UkRBAFJUVXRSak1l0TURBAELIESWIMQOplYjIlalpTSTZJaTFmVOVVNWVrczVjVGhNYkRG
eGVXeES5kRXhMW1djaUxDSndjbTk0YVexcGRIa3RjbVZuYVhOMGNtRN1MV05sY25RaU%p
SkS5TVWxDTDBSRFEWR1pTMmMRCZDBsQlFXZEpSVKEXYVAKVmME rRkxRbWRuY1ldocmFrOVEV
VkZFUVAwQ2RFMVNTWGRGUVZSTFExCcEpiV2xhVUhsTVIxRkNSMUpaUTFreVJYaEhWRUZZ
UW1lkd1NtdHBZVXByTDBseldrRkZXalpuYkhwiWlZ6VnJIXbGQOZEZSWESTIaFFSRUUyUWlk
T1ZrSkJUVTFOTWxwWM1pGYzFNRmxYYKhWTVAGSnNZek5SZF ZwWWFHaG1XRUp6V2xNMWEt
SX1INR2RXVnpWN1pFaEtNVOpOWTJkU2JUa3hZbTVTIYUAGWESHZFZiVGwyWkVOQ1JGR1VR
V1ZHZHpCNVRVUkJ1VTFxV1hsT1ZFMTRUbFJTWVVaM01lIbE5haO0Y1VEFdwUmVVMVVUWGhP
VKZKaFRVWk51RVZxUVZGQloyOUthMmxoU21zd1NYTmFRVVZhUmlkS2F sbFVSVnBOUW10
SFEyZHRVMHB2Y1ZRNGFYaHJRVkpyVIiBOWVRtaGliVkpzWWt jeGFHSNnFSV2xOUTBGSFFU
R1ZSVUYzZDFwYWJUa3hZbTVIYUAGWESIUmt SMVo2WkVNMWJIHVkhSb1JqUjNoclRHMU 9k
bUpVUWxwT1FrMUhRbmx4UjFOTKk5EPEJaMFZIUTBOeFIxTk50RGxXxCZDBWSVEFUQkpRVUPL
V214VINFa3dkWEF2YKRObFAtWIVkaO5DWW10c1INXNXZSVTFGWjINM1VtOHJIXRnBEZEdw
Q1INUQkRSREZtU21aS1VpOWITWGW1UkcxSVYzbFphVIVHWWXKRENEDG11V0Z5Wm10Nlox
ZzBJREI2VkdsNmNXcExha0Z2VEVKW1IwWRXhWV1JLVVVWQOwzZFJUVTIFCY jBKRFEzTkhR
VKkZWUmt KM1RXTk SRVFJIUVRGV1pFUJNSVU12ZDFGRIFYZEPTR2RFUVV0QloyZHhhR3Rx
VDFCU1VVUkJaMDV2UVVSQ2JFRNnFROTFVIWtKT1ZsVm5aV3huWmpRelVpczF1VUpMVGxK
VV1VaHR1VkJCZGt AMmMVIbDZNRzFHVMxwM1dIZ3JMekZTZDA5aFoyMTJSek50V0cxU2Ey
b3ZXRFJEVFZGRE9ISk5Ual0p6VECS5T2NgRk10VzZVIT1RabWOwRmt TVGhvYVVGWE J6aFRP
RmhCVWpWck1lVIm51RESaV1ZGQlUyZGtVMk5HWIBGalppc3JRbmMyV1hrclZUMG1ImWDJIn
Z2dHeUlJSUJyakNDQVRXZOF3SUJBZ01FRF1PdjJUQUtCZ2dxaGtgT1BRUURBakFt TVNR
dO1lnWURWUVFEREJOb2FXZG9kMkY1TFhSbGMzUXVaWGhoY1hCclpTNWpiMjBnUTBFJO1C
Y05NakV3TkRFek1gQXp0Oek01V2hnUE1gqazVPVEVSTXpFdO1EQXANREJhTUJ3eEdgQV1C
ZOSWQkFVTUVUQXAMVVFE3TFVVMUXVWX1MVEF3TFRBeU1Ga3dFdl11IS29aSXpgMENBUV1J
S29aSXpgMERBUWNEUWABRUEZ2T jFRNGV6Zk1BS21vZWNYyZmIwTOJINYzFBeUVIKOJBVGtG
NThGclRTeUJ4czBTY1NXTHhGakRPAXdCOWAMR24yVHNUVUplbUo2V1B3NVovVFAOaEo02
T1pNRmN3SFFZRFZSMEO9CQ11FRkVXSXpKYVdABR1EzcOxvalpXUmtWQWAHYkZhdE1BaOdB
MVVKRXARQO01BQOXdLd11JS3dZQkJRVUhBUOFFSHhZZGFHbG5hSGROZVMXMFpYT jBMbVYO
WVcxd2JHVXVZMj1l0T2prMESETXdADZ11JS29aSXpgMEVBAO1EWNdBd1pBSXdUbWxHOHNY
a0tHTmJI3YktRY1IINYXBGYmITYmS5ISFVSRIVVRNVScXZ1iZ11YNOZsWHBCY3pmdOYya2xs
TnV1lamlnQWpBb3cxa2M0cjULRW1pSCtPTUVYakJObFdsQ1lNaQzVRAUpgRWYwSnNteHNz
YytwdWNgT0o0U2hxbmV4TUVS5N2Jg0XhnZ0OVFTULJQkFBSUJBVEF1TUNZeEpEQW1CZ05W
QkFNTUcyaHBaMmgzWVhrdGRHVnpkQzVsZUdGAGNHeGxMbUS2Y1INCRFFRSUVEWU92M1RB
TEJnbGdoa2dCW1FNRUFnNR2dhVEFZQOmdrcWhraUc5dzBCQ1lFNeEN3WUpLblpJdaHZ jTkFR
YOJINQndHQINxRINJY JNEUUVKQI1RFUEZ3MHINVEEWTVRNeU1UUXpNak5hTUM4ARONT cUdT
SWIzZRFFFSKJERW1ICQOJKA2h5WW1iSWplcWVSM2JPYUxVUnpNbEdyYzNGM1lgra3ZKMWVy
cnRvQ3RUQUtCZ2dxaGtgT1BRUURBZ1JITUVVQO1RQ21ZAUNFNJFIRIFYSCO9FMTZHREOD
clZxdUROZ3IrUS82LO0R1Lz1Ra3pBN2dJZ2Y3TUZoQU1QOVzJIQTndSYTJI2WKkZRQUtLYVWJIp
bWtpSEt 6WEJBOG1kMFZIY1U9In190ITEbzCCAfwwggGCoAMCAQICBD+Ym1IwCgYIKoZI
zJOEAWIWbTESMBAGCgmMSJomT 81ixk ARKWAMNhMRKkWEWYKCZImiZPyLGOBGRYJC2FUZGVs
PWEFuUMTwwOgYDVQQODDDNmb3VudGFpbil0ZXNOLmV4YWlwbGUuY29t IFVuc3RydW5SnIEZv
dW50YW1uIFJIvb3QgQOEWHhcNMjAWMII1MIEZMTUOWheNMjIwMjIOMIEZMTUOWJBTMRIw
EAYKCZImiZPyLGQBGRYCY2ExXGTAXBgoJdkiaJdk/IsZAEZFglzYW5kZWxt YWAxI JAgBgNV
BAMMGWZvdW50YW1uLXR1c3QuzXhhbXBsZzS5jb20wWTATBgcghk jOPQIBBggghk JOPOMB
BwWNCAASWZVBYNLgf5d3mX/bwgW/pSJIJ6BDBIHO0aP12QrYwCNAGIXyXyUf4SMsg5hlsmT
JRWOQh/X8mg35M4F+KdM04 s 60y owKDAWBGNVHSUBA £ SEDDAKBggrBgEFBQCDHDAOBGNY
HQO8BAf8EBAMCB4AWCgYIK0ZIzjOEAWIDaAAWZQIWZkIgTFVIHpYH+NOfucgSjUU2h5s]
wLy78cs9JhViwb18fv9UcDmoJrxt215kZI/1+AjJEAVKzDQbC6Da9S+Zxuen8AHSPIYgFh
VEVEFWEeZNQOMd2FEAUOHUNBXAHX/vgcOmMv1MIICazCCAfKgAwWIBAgIEKWsSGWTAKBggg
hk JOPQQODA jBtMRIWEAYKCZImi ZPyLGOBGRYCY2EXGTAXBgoJdkiaJdk/IsZAEZFglzYW5k

ZWxt YW4xPDA6BgNVBAMMM2 ZvdW50YWI1uLXR1c3QuzZXhhbXBsZS53b20gViW5zdHJIlbmeg
Rm91bnRhaW4gUm9vdCBDQTAeFw0OyMDAYyMjUyMTMxNDVaFwOyMjAyMjQyMTMxNDVaMGOx
EJAQBgoJkiadk/IsSZAEZFgJJYTEZMBcGCgmSJomT81xkARKWCXNhbmR1bGlhbjE8MDoG
AlUEAwwzZm91bnRhaWdtdGVzdC51eGFtcGx1LmNvbSBVbnNOcnVuZyBGb3VudGEFpbiBS
b290IENBMHYWEAYHK0ZIZzjOCAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZ Y1
kb23VoAH29+4eqgVFTXmKRPpCZWZYxsYIpfTK+PMg+W201RvaolW+b+cDz07kUP3JHUaR2
3dLwv/XKjzABf/jCX9P1IANEi4vyB2y002MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DWEB/WQEAWIBBJjAdBgNVHQAEFgQUuaX2yxHhB6RJILKcIxnwQvIezdCYwHwWYDVRO jBBgw
FoAUuaX2yxHhB6RJILKcIxnwQvIezdCYwWCgYIKoZIz jOEAWIDZWAWZAIWIIMGZ02YPFR6
ZkxKOnDCUjZaUolZfSCbKmkUWIc42FV53£f0p0JUekZN2tPVmMKUSOA jBvOPmvEUOwlYUp
fLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAGREF1EmM+9kv01lwxggFLMIIBRWIBATBI1
MGOxEJjAQBgoJkiaJdk/IsZAEZFgJjYTEZMBcGCgmSJomT81ixk ARKWCXNhbmR1bG1lhbjES
MDOGALlUEAwWwzZm91bnRhaW4tdGVzdC51eGFtcGx1LmNvbSBVbnNOcnVuzZyBGb3VudGFEFp
biBSb290IENBAgGQ/mJt SMASGCWCGSAF1AwWQCAaBpMBgGCSqGSIb3DQEJAZELBgkghkiG
9WwOBBWEWHAYJK0OZIThvcNAQkFMQO8XDTIxMDQxMz IxNDMyMlowLwYJKoZIhvcNAQKEMSIE
IEnOrdWjlG70K74IhCJ7UXi+wPS+r2C8DFEqjabGP+G8MA0GCCgGSM4 9BAMCBECWRQTIh
AMhO3M+t SWb2wKTBOXPArN+XviSzAhaQA/uLj3ghPwi/AiBDDthf6miMuirgXEOQyjMif
C2UY90NUFFON10OwEQPBBAA==

<CODE ENDS>

The ASN1 decoding of the artifact:

file: examples/parboiled_vr_00_DO-E5-02-00-2D.b64

0:d=0 hl=4 1=3939 cons: SEQUENCE

4:d=1 hl=2 1= 9 prim: OBJECT :pkcs7-signedData

15:d=1 hl=4 1=3924 cons: cont [0]

19:d=2 hl=4 1=3920 cons: SEQUENCE

23:d=3 hl=2 1= 1 prim: INTEGER :01

26:d=3 hl=2 1= 13 cons: SET

28:d=4 hl=2 1= 11 cons: SEQUENCE

30:d=5 hl=2 1= 9 prim: OBJECT :sha256

41:d=3 hl=4 1=2424 cons: SEQUENCE

45:d=4 hl=2 1= 9 prim: OBJECT :pkcs7-data

56:d=4 hl=4 1=2409 cons: cont [0]

60:d=5 hl=4 1=2405 prim: OCTET STRING :{"ietf-voucher-request:v
2469:d=3 hl=4 1=1135 cons: cont [0]
2473:d=4 hl=4 1= 508 cons: SEQUENCE
2477:d=5 hl=4 1= 386 cons: SEQUENCE
2481:d=6 hl=2 1= 3 cons: cont [O]
2483:d=7 hl=2 1= 1 prim: INTEGER :02
2486:d=6 hl=2 1= 4 prim: INTEGER :3F989B52
2492:d=6 hl=2 1= 10 cons: SEQUENCE
2494:d=7 hl=2 1= 8 prim: OBJECT recdsa-with—-SHA256
2504:d=6 hl=2 1= 109 cons: SEQUENCE
2506:d=7 hl=2 1= 18 cons: SET
2508:d=8 hl=2 1= 16 cons: SEQUENCE
2510:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
2522:d=9 hl=2 1= 2 prim: IAS5STRING :ca
2526:d=7 hl=2 1= 25 cons: SET
2528:d=8 hl=2 1= 23 cons: SEQUENCE
2530:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
2542:d=9 hl=2 1= 9 prim: IAS5STRING :sandelman
2553:d=7 hl=2 1= 60 cons: SET
2555:d=8 hl=2 1= 58 cons: SEQUENCE
2557:d=9 hl=2 1= 3 prim: OBJECT :commonName
2562:d=9 hl=2 1= 51 prim: UTF8STRING :fountain-test.example.co
2615:d=6 hl=2 1= 30 cons: SEQUENCE
2617:d=7 hl=2 1= 13 prim: UTCTIME :2002252131547
2632:d=7 hl=2 1= 13 prim: UTCTIME :220224213154%7
2647:d=6 hl=2 1= 83 cons: SEQUENCE
2649:d=7 hl=2 1= 18 cons: SET
2651:d=8 hl=2 1= 16 cons: SEQUENCE
2653:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
2665:d=9 hl=2 1= 2 prim: IAS5STRING :ca
2669:d=7 hl=2 1= 25 cons: SET
2671:d=8 hl=2 1= 23 cons: SEQUENCE
2673:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
2685:d=9 hl=2 1= 9 prim: IAS5STRING :sandelman
2696:d=7 hl=2 1= 34 cons: SET
2698:d=8 hl=2 1= 32 cons: SEQUENCE

2700:d=9 hl=2 1= 3 prim: OBJECT :commonName
2705:d=9 hl=2 1= 25 prim: UTF8STRING :fountain-test.example.co
2732:d=6 hl=2 1= 89 cons: SEQUENCE

2734:d=7 hl=2 1= 19 cons: SEQUENCE

2736:d=8 hl=2 1= 7 prim: OBJECT :id-ecPublicKey
2745:d=8 hl=2 1= 8 prim: OBJECT :prime256vl
2755:d=7 hl=2 1= 66 prim: BIT STRING

2823:d=6 hl=2 1= 42 cons: cont [3]

2825:d=7 hl=2 1= 40 cons: SEQUENCE

2827:d=8 hl=2 1= 22 cons: SEQUENCE

2829:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Extended Key Usag
2834:d=9 hl=2 1= 1 prim: BOOLEAN :255

2837:d=9 hl=2 1= 12 prim: OCTET STRING [HEX DUMP] :300A06082B0601
2851:d=8 hl=2 1= 14 cons: SEQUENCE

2853:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Key Usage
2858:d=9 hl=2 1= 1 prim: BOOLEAN :255

2861:d=9 hl=2 1= 4 prim: OCTET STRING [HEX DUMP] :03020780
2867:d=5 hl=2 1= 10 cons: SEQUENCE

2869:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
2879:d=5 hl=2 1= 104 prim: BIT STRING

2985:d=4 hl=4 1= 619 cons: SEQUENCE

2989:d=5 hl=4 1= 498 cons: SEQUENCE

2993:d=6 hl=2 1= 3 cons: cont [0]

2995:d=7 hl=2 1= 1 prim: INTEGER :02

2998:d=6 hl=2 1= 4 prim: INTEGER :296B0659

3004:d=6 hl=2 1= 10 cons: SEQUENCE

3006:d=7 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
3016:d=6 hl=2 1= 109 cons: SEQUENCE

3018:d=7 hl=2 1= 18 cons: SET

3020:d=8 hl=2 1= 16 cons: SEQUENCE

3022:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
3034:d=9 hl=2 1= 2 prim: IAS5STRING rca

3038:d=7 hl=2 1= 25 cons: SET

3040:d=8 hl=2 1= 23 cons: SEQUENCE

3042:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
3054:d=9 hl=2 1= 9 prim: IAS5STRING :sandelman

3065:d=7 hl=2 1= 60 cons: SET

3067:d=8 hl=2 1= 58 cons: SEQUENCE

3069:d=9 hl=2 1= 3 prim: OBJECT :commonName
3074:d=9 hl=2 1= 51 prim: UTF8STRING :fountain-test.example.co
3127:d=6 hl=2 1= 30 cons: SEQUENCE

3129:d=7 hl=2 1= 13 prim: UTCTIME :200225213145%7
3144:d=7 hl=2 1= 13 prim: UTCTIME :22022421314572
3159:d=6 hl=2 1= 109 cons: SEQUENCE

3161:d=7 hl=2 1= 18 cons: SET

3163:d=8 hl=2 1= 16 cons: SEQUENCE

3165:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
3177:d=9 hl=2 1= 2 prim: IAS5STRING :ca

3181:d=7 hl=2 1= 25 cons: SET

3183:d=8 hl=2 1= 23 cons: SEQUENCE

3185:d=9 hl=2 1= 10 prim: OBJECT :domainComponent
3197:d=9 hl=2 1= 9 prim: IAS5STRING :sandelman

3208:d=7 hl=2 1= 60 cons: SET

3210:d=8 hl=2 1= 58 cons: SEQUENCE

3212:d=9 hl=2 1= 3 prim: OBJECT :commonName
3217:d=9 hl=2 1= 51 prim: UTF8STRING :fountain-test.example.co
3270:d=6 hl=2 1= 118 cons: SEQUENCE

3272:d=7 hl=2 1= 16 cons: SEQUENCE

3274:d=8 hl=2 1= 7 prim: OBJECT :id-ecPublicKey
3283:d=8 hl=2 1= 5 prim: OBJECT :secp384rl

3290:d=7 hl=2 1= 98 prim: BIT STRING

3390:d=6 hl=2 1= 99 cons: cont [3]

3392:d=7 hl=2 1= 97 cons: SEQUENCE

3394:d=8 hl=2 1= 15 cons: SEQUENCE

3396:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Basic Constraints
3401:d=9 hl=2 1= 1 prim: BOOLEAN :255

3404:d=9 hl=2 1= 5 prim: OCTET STRING [HEX DUMP] :30030101FF
3411:d=8 hl=2 1= 14 cons: SEQUENCE

3413:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Key Usage
3418:d=9 hl=2 1= 1 prim: BOOLEAN :255

3421:d=9 hl=2 1= 4 prim: OCTET STRING [HEX DUMP] :03020106

3427:d=8 hl=2 1= 29 cons: SEQUENCE

3429:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Subject Key Ident
3434:d=9 hl=2 1= 22 prim: OCTET STRING [HEX DUMP] :0414B9A5F6CB11
3458:d=8 hl=2 1= 31 cons: SEQUENCE

3460:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Authority Key Ide
3465:d=9 hl=2 1= 24 prim: OCTET STRING [HEX DUMP]:30168014B9A5F6
3491:d=5 hl=2 1= 10 cons: SEQUENCE

3493:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
3503:d=5 hl=2 1= 103 prim: BIT STRING

3608:d=3 hl=4 1= 331 cons: SET

3612:d=4 hl=4 1= 327 cons: SEQUENCE

3616:d=5 hl=2 1= 1 prim: INTEGER :01

3619:d=5 hl=2 1= 117 cons: SEQUENCE

3621:d=6 hl=2 1= 109 cons: SEQUENCE

3623:d=7 hl=2 1= 18 cons: SET

3625:d=8 hl=2 1= 16 cons: SEQUENCE

3627:d=9 hl=2 1= 10 prim: OBJECT :domainComponent

3639:d=9 hl=2 1= 2 prim: IAS5STRING :ca

3643:d=7 hl=2 1= 25 cons: SET

3645:d=8 hl=2 1= 23 cons: SEQUENCE

3647:d=9 hl=2 1= 10 prim: OBJECT :domainComponent

3659:d=9 hl=2 1= 9 prim: IAS5STRING :sandelman

3670:d=7 hl=2 1= 60 cons: SET

3672:d=8 hl=2 1= 58 cons: SEQUENCE

3674:d=9 hl=2 1= 3 prim: OBJECT :commonName

3679:d=9 hl=2 1= 51 prim: UTF8STRING :fountain-test.example.co
3732:d=6 hl=2 1= 4 prim: INTEGER :3F989B52

3738:d=5 hl=2 1= 11 cons: SEQUENCE

3740:d=6 hl=2 1= 9 prim: OBJECT :sha256

3751:d=5 hl=2 1= 105 cons: cont [O]

3753:d=6 hl=2 1= 24 cons: SEQUENCE

3755:d=7 hl=2 1= 9 prim: OBJECT :contentType

3766:d=7 hl=2 1= 11 cons: SET

3768:d=8 hl=2 1= 9 prim: OBJECT :pkcs7-data

3779:d=6 hl=2 1= 28 cons: SEQUENCE

3781:d=7 hl=2 1= 9 prim: OBJECT :signingTime

3792:d=7 hl=2 1= 15 cons: SET

3794:d=8 hl=2 1= 13 prim: UTCTIME :2104132143237

3809:d=6 hl=2 1= 47 cons: SEQUENCE

3811:d=7 hl=2 1= 9 prim: OBJECT :messageDigest

3822:d=7 hl=2 1= 34 cons: SET

3824:d=8 hl=2 1= 32 prim: OCTET STRING [HEX DUMP] :49CEADD5A3946E
3858:d=5 hl=2 1= 10 cons: SEQUENCE

3860:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
3870:d=5 hl=2 1= 71 prim: OCTET STRING [HEX DUMP]:3045022100C84E

The JSON contained in the voucher-request. Note that the previous
voucher—-request is in the prior-signed-voucher-request attribute.

{"ietf-voucher-request:voucher":{"assertion":"proximity", "cr
eated-on":"2021-04-13T21:43:23.7872Z","serial-number":"00-D0—
E5-F2-00-02", "nonce":"—_XE9zK99g8LllgylMtLKeg", "prior-signed-
voucher-request" : "MIIGcAYJK0ZIhvcNAQcCoIIGYTCCB1O0CAQEXDTALBg
1ghkgBZQMEAGEwggOJBgkghkiGO9wOBBwGgggN6BIIDdnsiaWv0Zzil2b3VijaG
VyLXJ1lcXV1c306dm91Y2hlciI6eyJhc3NlcnRpb24i0iJwem94aWlpdHkiLC
JjemVhdGVKLWOUI joiMjAyMSOwNCOxM1QxNzoOMzoyMy43NDctMDQ6MDA1LC
JzZXJIpYWwtbnVtYmVyI joiMDAtRDAtRTUtRIJItMDAtMDIiLCJub25jZ2STI6T1
1fWEU5eks5cThMbDFxeWXNdEXLZWciLCIJwcecm94aWlpdHktcmVnaXNOcmEyLW
N1lcnQiOiJNSULICLORDQOFZS2dBd01CQWAJRVAlaWJVakFLOmdncWhrak 9QUV
FEQWpCdE1SSXdFQV1LQlpJbWlaUHIMRIFCR1JZQ1kyRXhHVEFYQmdvSmtpYU
PrLOlzWkFFWkZnbHpZVzVrWld4dF1XNHhQREE2QmdOVkJBTUINM1p2ZFc1MF
1XbHVMWEJsYzNRdAVpYaGhiWEJzW1IM1amIyMGAWVzV6ZEhKMWJtY2dSbTkxYm
55aGFXNGAVDbT12ZENCRFFUQWVGdAzB5TURBeUlgVX1INVE14T1IRSYUZ3MH1Nak
FS5TWpReUlUTXhOVEFJhTUZNeEVgQVFEFCZ29Ka21lhSmsvSXNaQUVaRmdKallURV
PNOmMNHQ2dtUOpvbVQ4aXhrQVJIrVONYTmhibVJIsYkcxaGIJgRWINQOFHQTFVRU
F3dlpabTkxY¥Ym5SaGFXNHRkR1Z6ZEM1bGVHRNRJR3hsTG10dmJUQlpNQk 1HONn
1xRINNND1BZOVHQONxXRINNND1BdAOVIQTBIQUIKWMXVSEkwdXAvbDN1WmY 5dk
NCYitsSWS5VRU1IFZ2M3Um8rWEFpDdGpBSTBDRDFMSMZKU1 90SX15RG1IV31ZaU
5GY1JDSD1meWFyZmt 6Z21g0cDB6VGl6cWpLakFvIUJZROEXVWRKUUVCL3dRTU
1Bb0dDQ3NHQVFVRkJI3TWNNQTRHQTFVZER3RUIVAIFFQXdJSGAEQUtCZ2dxaG
tgT1BRUURBZO05vQURCOEFgQOmM1UMKJINV1IVNZWxnZ jQzUisl1leUJLT1JUYUhteV

C.

2.

BBdkx2eH16MG1GV1p2WHgrLzFSd09hZ212RzNhWG1Sa20vWDRDTVEDOHJINTk
JzTG90c JFMNWSHNT ZmdOFkSThoaUFXRzhTOFhBU jVrMUNneDNZVVECU2dkU2
NGYOFkZisrQnc2WXkrVT0ifX2gggGyMIIBr jCCATWgAWIBAgIEDYOV2TAKBg
gghk JOPQQODA JAMMSQwIgYDVQQODDBt oaWdod2F5LXR1c3QuZXhhbXBsZS5jb2
0gQOEwWIBCNMjEWNDEzMjAzNzM5WhgPMjk 50TEyMzEwMDAWMDBaMBwxG jAYBg
NVBAUMETAWLUQWLUU1LUYyLTAWLTAYMFKkwEWYHK0ZIzjOCAQYIK0ZIZzjODAQ
cDQgAEA6N1Q4ezfMAKmoecrfb0OBMclAYEH+BATKF58FsTSyBxs0SbSWLXE j
DOuwB9gLGNn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVROOBBYEFEWI zJaWAG
03sLojZWRkVAgGbFatMAKGA1UdJEWQCMAAWKWY IKwYBBQUHASAEHxYdaGlnaH
dheS10ZXNOLmV4YW1lwbGUuY29t0OjkONDMWCgYIKoZIz jOEAWIDZWAWZAIWTm
1G8sXkKGNbwbKQcYMapFbmSbnHHURFUoOFURgvbgYX7F1XpBczfwF2k11Nuuj
igAjAowlkc4r55EmiH+OMEX jBN1W1BSZC5QuJjEf0Jsmxssc+pucjOJdJ4Shagn
exMEy 7b jAxggEEMI IBAAIBATAUMCYxJDA1BgNVBAMMG2hpZ2h3YXktdGVzdC
51eGFtcGx1LmNvbSBDQQIEDYOVv2TALBglghkgBZOMEAgGgaTAYBgkghkiGOw
O0BCQOMxCwYJK0ZIhvcNAQcBMBWGCSgGSIb3DQEJBTEPFWOYMTAOMTMYMTQzM]
NaMC8GCSgGSIb3DQEJBDEiBCBJIJwhyYibIjeqeR3b0OaLURzM1Grc3F2X+kvJl
errtoCt TAKBggghk JOPQODAGRHMEUCIQCMYuCE61HFQXH/E16GDOCsVquDtg
r+Q/6/Du/9QkzA7gIgf TMFhAIPW2PNwRa2vZFQAKXUbimk 1 HKzXBA8mdOVHD
U="})

3. MASA to Registrar

The MASA will return a voucher to the registrar, which is to be
relayed to the pledge.

<CODE BEGINS> file "voucher_ 00-DO-E5-F2-00-02.b64"
MITIGIgYJKoZIhvcNAQcCoIIGEzCCBg8CAQExXDTALBglghkgBZOMEAgGEwWggN4BgkghkiG
9wOBBWGgggNpBIIDZXsiaWV0Zil2b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0aWouljoi
bGONnZ2VkIiwiY3J1YXR1ZClvbiI6IjIwMjEtMDQtMTINUMTc6NDM6MJQUNTgSLTAOOJAW
Iiwic2VyaWFsLW51bWJlciI6I JAWLUQWLUULILUYYLTAWLTAYyIiwibmOuY2UiOiItX1hF
OXpLOXE4TGwxcX1sTXRMS2VnIiwicGlubmVkLWRVbWEpbiljZXJ0IjoiTU1lJQi9EQONB
WUEtnQOXdJIQKkFnSUVONW1iVWpBS0JInZ3Fo0a2pPUFFRREFQONRNUk13RUFZS0NaSW1pW1B5
TEJRQkdSWUNZMkV4R1IRBWEInbOpraWFKay9JclpBRVPGZ2x6WVclalpXeHRZVzZR4UERB
NkJnT1ZCQUINTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoY1hCclpTNWpiMjBnVlclemRI
SJFibWNnUmO5MWJuUmhhVzRnVW0 5dmRDQkRRVEF1RncweUlEQX1NalV5TVRNeESUUMEG
dzB5TWpBeUlqUX1INVE14T1RSYUIGTXhFakFROmdvSmtpYUprLO1lzWkFFWkZnSmpZVEVa
TUJJRONNbVNKb21UOG1l4a0FSaldDWE50Yml SbGIJHMWhiakVpTUNBROExVUVBdA3daWm05
MWJuUmhhVzROZEAWemRDNWx1R0Z0Y0d4bExt TnZiVEJaTUJNROJIS5cUATTTQ5QWAFROND
cUATTTQ5Q0XdFSEEWSUFCS1psVUhIJMHVWL2wz ZVpmOXZDOmIrbE1ub0VNRWA jN1JvKlha
Q3RgQUkwQ0QxZkpmS1IvaEl15eURt SFASWW1ORMJISQ0g5ZnlhcmZremdYNHAwe l1RpenFg
S2pBb01CWUdABMVVKS1FFQi93UUINQWIOHQONZROFRVUZCAO1 jTUEOROEXVWREAOVCL3dR
RUF3SUhNREFLOMAncWhrak 9QUVFEQWAObOFEQmxBakJtVDJCTVZVZ2VsZ2YOM1IrNX1C
S05SVGFIbX1QQXZMdnh5ejBtR1Zadlh4Ky8xUndPYWdtdkczYVhtUmtqL1g0Q01RQzhy
TUSCcOxvTnIxXxTDVUuRzU2ZndBZEk4aG1BV0c4UzhYQVI1lazFDZ3gzWVVRQINNZEFNjRmNB
ZGYrK0J3N115K1U9In190IIBdDCCAXAwgfagAwIBAgIEC4CcKMTAKBggghk JOPQQDA jAmM
MSOwIgYDVQQODDBtoaWdod2F5LXR1c3QuZXhhbXBsZS5jb20gQ0EwHhcNMJEwWNDEzMJEOQ
MDE2WhcNMJMwNDEzMJEOMDE2WJjAoMSYwJAYDVQQODDBloaWdod2F5LXR1c3QuZXhhbXBs
75537b20gTUFTQTBZMBMGBYqGSM4 9AGEGCCGGSM4 9AWEHAO IABKoEFaNEue JE+Mn5Gweb
PnRznB66bKmzgTCpojJZ96AdRWEFtUuTCVEoKouLTBX0idIhMLEfJILM311yuKy4CUtpp6W]
EDAOMAWGA1UJEWEB/wWQCMAAWCOYIKoZIzJOEAWIDaQAWZgIxXxAK7LYS3UXI1luhgqoLBh3G
02C6MnM2JdMjhUmHHM6UI3kankFVIBOVIQF ITuwrAgqzwTcwIXAIY8Z70VoulLl+a35HZzB
NDJ49¢/gqlUcDnwC/0FnLUcCKYBIEki1ETULF1si+dqLTOuTGCAQUwggEBAGEBMC4wJ JEk
MCIGAlUEAwwbaGlnaHdheS10ZXNOLmV4YW1wbGUuY29t IENBAgGOLhwoxMAsGCWCGSAF 1
AwQCAaBpMBgGCSqGSIb3DQEJAZELBgkghkiGOwOBBWEWHAYJKoZ IhveNAQKFMQ8XDTIx
MDQxMz IxNDMyNFowLwYJKoZ IhveNAQKEMSIEIFUUJg4WYVO+MpX122Qfk/7zm/G6/B59
HD/xrVRO1GIJMAOGCCGSM4 9BAMCBEgwWRgIhAOhUfxbH2dwpB2BrTDcsYS jRkCCk/WE6
Mdt+y4z5KD9IAIEAPhwdIUb40AONONIUpH7N21TyAFZgynl1NHTteYODmYI=

<CODE ENDS>

The ASN1 decoding of the artifact:

file: examples/voucher_ 00-D0-E5-F2-00-02.b64

0:d=0 hl=4 1=1570 cons: SEQUENCE
4:d=1 hl=2 1= 9 prim: OBJECT :pkcs7-signedData
15:d=1 hl=4 1=1555 cons: cont [0]
19:d=2 hl=4 1=1551 cons: SEQUENCE
23:d=3 hl=2 1= 1 prim: INTEGER :01
26:d=3 hl=2 1= 13 cons: SET
28:d=4 hl=2 1= 11 cons: SEQUENCE
30:d=5 hl=2 1= 9 prim: OBJECT :sha256

41:d=3 hl=4 1= 888 cons: SEQUENCE
45:d=4 hl=2 1= 9 prim: OBJECT :pkcs7-data
56:d=4 hl=4 1= 873 cons: cont [0]
60:d=5 hl=4 1= 869 prim: OCTET STRING :{"ietf-voucher:voucher":
933:d=3 hl=4 1= 372 cons: cont [0]
937:d=4 hl=4 1= 368 cons: SEQUENCE
941:d=5 hl=3 1= 246 cons: SEQUENCE
944:d=6 hl=2 1= 3 cons: cont [O]
946:d=7 hl=2 1= 1 prim: INTEGER :02
949:d=6 hl=2 1= 4 prim: INTEGER :0B870A31
955:d=6 hl=2 1= 10 cons: SEQUENCE
957:d=7 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
967:d=6 hl=2 1= 38 cons: SEQUENCE
969:d=7 hl=2 1= 36 cons: SET
971:d=8 hl=2 1= 34 cons: SEQUENCE
973:d=9 hl=2 1= 3 prim: OBJECT : commonName
978:d=9 hl=2 1= 27 prim: UTF8STRING thighway-test.example.com
1007:d=6 hl=2 1= 30 cons: SEQUENCE
1009:d=7 hl=2 1= 13 prim: UTCTIME :210413214016%2
1024:d=7 hl=2 1= 13 prim: UTCTIME :230413214016%
1039:d=6 hl=2 1= 40 cons: SEQUENCE
1041:d=7 hl=2 1= 38 cons: SET
1043:d=8 hl=2 1= 36 cons: SEQUENCE
1045:d=9 hl=2 1= 3 prim: OBJECT :commonName
1050:d=9 hl=2 1= 29 prim: UTF8STRING :highway-test.example.com
1081:d=6 hl=2 1= 89 cons: SEQUENCE
1083:d=7 hl=2 1= 19 cons: SEQUENCE
1085:d=8 hl=2 1= 7 prim: OBJECT :id-ecPublicKey
1094:d=8 hl=2 1= 8 prim: OBJECT :prime256vl
1104:d=7 hl=2 1= 66 prim: BIT STRING
1172:d=6 hl=2 1= 16 cons: cont [3]
1174:d=7 hl=2 1= 14 cons: SEQUENCE
1176:d=8 hl=2 1= 12 cons: SEQUENCE
1178:d=9 hl=2 1= 3 prim: OBJECT :X509v3 Basic Constraints
1183:d=9 hl=2 1= 1 prim: BOOLEAN :255
1186:d=9 hl=2 1= 2 prim: OCTET STRING [HEX DUMP]:3000
1190:d=5 hl=2 1= 10 cons: SEQUENCE
1192:d=6 hl=2 1= 8 prim: OBJECT recdsa-with-SHA256
1202:d=5 hl=2 1= 105 prim: BIT STRING
1309:d=3 hl=4 1= 261 cons: SET
1313:d=4 hl=4 1= 257 cons: SEQUENCE
1317:d=5 hl=2 1= 1 prim: INTEGER :01
1320:d=5 hl=2 1= 46 cons: SEQUENCE
1322:d=6 hl=2 1= 38 cons: SEQUENCE
1324:d=7 hl=2 1= 36 cons: SET
1326:d=8 hl=2 1= 34 cons: SEQUENCE
1328:d=9 hl=2 1= 3 prim: OBJECT :commonName
1333:d=9 hl=2 1= 27 prim: UTF8STRING :highway-test.example.com
1362:d=6 hl=2 1= 4 prim: INTEGER :0B870A31
1368:d=5 hl=2 1= 11 cons: SEQUENCE
1370:d=6 hl=2 1= 9 prim: OBJECT :sha256
1381:d=5 hl=2 1= 105 cons: cont [0]
1383:d=6 hl=2 1= 24 cons: SEQUENCE
1385:d=7 hl=2 1= 9 prim: OBJECT :contentType
1396:d=7 hl=2 1= 11 cons: SET
1398:d=8 hl=2 1= 9 prim: OBJECT :pkcs7-data
1409:d=6 hl=2 1= 28 cons: SEQUENCE
1411:d=7 hl=2 1= 9 prim: OBJECT :signingTime
1422:d=7 hl=2 1= 15 cons: SET
1424:d=8 hl=2 1= 13 prim: UTCTIME :2104132143247
1439:d=6 hl=2 1= 47 cons: SEQUENCE
1441:d=7 hl=2 1= 9 prim: OBJECT :messageDigest
1452:d=7 hl=2 1= 34 cons: SET
1454:d=8 hl=2 1= 32 prim: OCTET STRING [HEX DUMP] :55148E0E166153
1488:d=5 hl=2 1= 10 cons: SEQUENCE
1490:d=6 hl=2 1= 8 prim: OBJECT recdsa-with—-SHA256
1500:d=5 hl=2 1= 72 prim: OCTET STRING [HEX DUMP] :3046022100E854

Acknowledgements

We would like to thank the various reviewers for their input, in
particular William Atwood, Brian Carpenter, Fuyu Eleven, Eliot Lear,
Sergey Kasatkin, Anoop Kumar, Tom Petch, Markus Stenberg, Peter van
der Stok, and Thomas Werner.

Significant reviews were done by Jari Arkko, Christian Huitema, and
Russ Housley.

Henk Birkholz contributed the CDDL for the audit-log response.

This document started its life as a two-page idea from Steinthor
Bjarnason.

In addition, significant review comments were provided by many IESG
members, including Adam Roach, Alexey Melnikov, Alissa Cooper,
Benjamin Kaduk, A\2llric Vyncke, Roman Danyliw, and Magnus Westerlund.

Authors’ Addresses

Max Pritikin
Cisco

Email: pritikin@cisco.com
Michael C. Richardson
Sandelman Software Works
Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

Toerless Eckert

Futurewei Technologies Inc. USA
2330 Central Expy

Santa Clara, CA 95050

United States of America

Email: tte+ietf@cs.fau.de

Michael H. Behringer

Email: Michael.H.Behringer@gmail.com
Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

