
ï»¿

Internet Engineering Task Force (IETF) J. Iyengar, Ed.
Request for Comments: 9002 Fastly
Category: Standards Track I. Swett, Ed.
ISSN: 2070-1721 Google
 May 2021

 QUIC Loss Detection and Congestion Control

Abstract

 This document describes loss detection and congestion control
 mechanisms for QUIC.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9002.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Conventions and Definitions
 3. Design of the QUIC Transmission Machinery
 4. Relevant Differences between QUIC and TCP
 4.1. Separate Packet Number Spaces
 4.2. Monotonically Increasing Packet Numbers
 4.3. Clearer Loss Epoch
 4.4. No Reneging
 4.5. More ACK Ranges
 4.6. Explicit Correction for Delayed Acknowledgments
 4.7. Probe Timeout Replaces RTO and TLP
 4.8. The Minimum Congestion Window Is Two Packets
 4.9. Handshake Packets Are Not Special
 5. Estimating the Round-Trip Time
 5.1. Generating RTT Samples
 5.2. Estimating min_rtt
 5.3. Estimating smoothed_rtt and rttvar
 6. Loss Detection
 6.1. Acknowledgment-Based Detection
 6.1.1. Packet Threshold
 6.1.2. Time Threshold
 6.2. Probe Timeout

 6.2.1. Computing PTO
 6.2.2. Handshakes and New Paths
 6.2.3. Speeding up Handshake Completion
 6.2.4. Sending Probe Packets
 6.3. Handling Retry Packets
 6.4. Discarding Keys and Packet State
 7. Congestion Control
 7.1. Explicit Congestion Notification
 7.2. Initial and Minimum Congestion Window
 7.3. Congestion Control States
 7.3.1. Slow Start
 7.3.2. Recovery
 7.3.3. Congestion Avoidance
 7.4. Ignoring Loss of Undecryptable Packets
 7.5. Probe Timeout
 7.6. Persistent Congestion
 7.6.1. Duration
 7.6.2. Establishing Persistent Congestion
 7.6.3. Example
 7.7. Pacing
 7.8. Underutilizing the Congestion Window
 8. Security Considerations
 8.1. Loss and Congestion Signals
 8.2. Traffic Analysis
 8.3. Misreporting ECN Markings
 9. References
 9.1. Normative References
 9.2. Informative References
 Appendix A. Loss Recovery Pseudocode
 A.1. Tracking Sent Packets
 A.1.1. Sent Packet Fields
 A.2. Constants of Interest
 A.3. Variables of Interest
 A.4. Initialization
 A.5. On Sending a Packet
 A.6. On Receiving a Datagram
 A.7. On Receiving an Acknowledgment
 A.8. Setting the Loss Detection Timer
 A.9. On Timeout
 A.10. Detecting Lost Packets
 A.11. Upon Dropping Initial or Handshake Keys
 Appendix B. Congestion Control Pseudocode
 B.1. Constants of Interest
 B.2. Variables of Interest
 B.3. Initialization
 B.4. On Packet Sent
 B.5. On Packet Acknowledgment
 B.6. On New Congestion Event
 B.7. Process ECN Information
 B.8. On Packets Lost
 B.9. Removing Discarded Packets from Bytes in Flight
 Contributors
 Authors’ Addresses

1. Introduction

 QUIC is a secure, general-purpose transport protocol, described in
 [QUIC-TRANSPORT]. This document describes loss detection and
 congestion control mechanisms for QUIC.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 Ack-eliciting frames: All frames other than ACK, PADDING, and

 CONNECTION_CLOSE are considered ack-eliciting.

 Ack-eliciting packets: Packets that contain ack-eliciting frames
 elicit an ACK from the receiver within the maximum acknowledgment
 delay and are called ack-eliciting packets.

 In-flight packets: Packets are considered in flight when they are
 ack-eliciting or contain a PADDING frame, and they have been sent
 but are not acknowledged, declared lost, or discarded along with
 old keys.

3. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 indicates the encryption level and includes a packet sequence number
 (referred to below as a packet number). The encryption level
 indicates the packet number space, as described in Section 12.3 of
 [QUIC-TRANSPORT]. Packet numbers never repeat within a packet number
 space for the lifetime of a connection. Packet numbers are sent in
 monotonically increasing order within a space, preventing ambiguity.
 It is permitted for some packet numbers to never be used, leaving
 intentional gaps.

 This design obviates the need for disambiguating between
 transmissions and retransmissions; this eliminates significant
 complexity from QUIC’s interpretation of TCP loss detection
 mechanisms.

 QUIC packets can contain multiple frames of different types. The
 recovery mechanisms ensure that data and frames that need reliable
 delivery are acknowledged or declared lost and sent in new packets as
 necessary. The types of frames contained in a packet affect recovery
 and congestion control logic:

 * All packets are acknowledged, though packets that contain no ack-
 eliciting frames are only acknowledged along with ack-eliciting
 packets.

 * Long header packets that contain CRYPTO frames are critical to the
 performance of the QUIC handshake and use shorter timers for
 acknowledgment.

 * Packets containing frames besides ACK or CONNECTION_CLOSE frames
 count toward congestion control limits and are considered to be in
 flight.

 * PADDING frames cause packets to contribute toward bytes in flight
 without directly causing an acknowledgment to be sent.

4. Relevant Differences between QUIC and TCP

 Readers familiar with TCP’s loss detection and congestion control
 will find algorithms here that parallel well-known TCP ones.
 However, protocol differences between QUIC and TCP contribute to
 algorithmic differences. These protocol differences are briefly
 described below.

4.1. Separate Packet Number Spaces

 QUIC uses separate packet number spaces for each encryption level,
 except 0-RTT and all generations of 1-RTT keys use the same packet
 number space. Separate packet number spaces ensures that the
 acknowledgment of packets sent with one level of encryption will not
 cause spurious retransmission of packets sent with a different
 encryption level. Congestion control and round-trip time (RTT)
 measurement are unified across packet number spaces.

4.2. Monotonically Increasing Packet Numbers

 TCP conflates transmission order at the sender with delivery order at
 the receiver, resulting in the retransmission ambiguity problem

 [RETRANSMISSION]. QUIC separates transmission order from delivery
 order: packet numbers indicate transmission order, and delivery order
 is determined by the stream offsets in STREAM frames.

 QUIC’s packet number is strictly increasing within a packet number
 space and directly encodes transmission order. A higher packet
 number signifies that the packet was sent later, and a lower packet
 number signifies that the packet was sent earlier. When a packet
 containing ack-eliciting frames is detected lost, QUIC includes
 necessary frames in a new packet with a new packet number, removing
 ambiguity about which packet is acknowledged when an ACK is received.
 Consequently, more accurate RTT measurements can be made, spurious
 retransmissions are trivially detected, and mechanisms such as Fast
 Retransmit can be applied universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers -- a nontrivial
 task, especially when TCP timestamps are not available.

4.3. Clearer Loss Epoch

 QUIC starts a loss epoch when a packet is lost. The loss epoch ends
 when any packet sent after the start of the epoch is acknowledged.
 TCP waits for the gap in the sequence number space to be filled, and
 so if a segment is lost multiple times in a row, the loss epoch may
 not end for several round trips. Because both should reduce their
 congestion windows only once per epoch, QUIC will do it once for
 every round trip that experiences loss, while TCP may only do it once
 across multiple round trips.

4.4. No Reneging

 QUIC ACK frames contain information similar to that in TCP Selective
 Acknowledgments (SACKs) [RFC2018]. However, QUIC does not allow a
 packet acknowledgment to be reneged, greatly simplifying
 implementations on both sides and reducing memory pressure on the
 sender.

4.5. More ACK Ranges

 QUIC supports many ACK ranges, as opposed to TCP’s three SACK ranges.
 In high-loss environments, this speeds recovery, reduces spurious
 retransmits, and ensures forward progress without relying on
 timeouts.

4.6. Explicit Correction for Delayed Acknowledgments

 QUIC endpoints measure the delay incurred between when a packet is
 received and when the corresponding acknowledgment is sent, allowing
 a peer to maintain a more accurate RTT estimate; see Section 13.2 of
 [QUIC-TRANSPORT].

4.7. Probe Timeout Replaces RTO and TLP

 QUIC uses a probe timeout (PTO; see Section 6.2), with a timer based
 on TCP’s retransmission timeout (RTO) computation; see [RFC6298].
 QUIC’s PTO includes the peer’s maximum expected acknowledgment delay
 instead of using a fixed minimum timeout.

 Similar to the RACK-TLP loss detection algorithm for TCP [RFC8985],
 QUIC does not collapse the congestion window when the PTO expires,
 since a single packet loss at the tail does not indicate persistent
 congestion. Instead, QUIC collapses the congestion window when
 persistent congestion is declared; see Section 7.6. In doing this,
 QUIC avoids unnecessary congestion window reductions, obviating the
 need for correcting mechanisms such as Forward RTO-Recovery (F-RTO)
 [RFC5682]. Since QUIC does not collapse the congestion window on a
 PTO expiration, a QUIC sender is not limited from sending more in-
 flight packets after a PTO expiration if it still has available
 congestion window. This occurs when a sender is application limited

 and the PTO timer expires. This is more aggressive than TCP’s RTO
 mechanism when application limited, but identical when not
 application limited.

 QUIC allows probe packets to temporarily exceed the congestion window
 whenever the timer expires.

4.8. The Minimum Congestion Window Is Two Packets

 TCP uses a minimum congestion window of one packet. However, loss of
 that single packet means that the sender needs to wait for a PTO to
 recover (Section 6.2), which can be much longer than an RTT. Sending
 a single ack-eliciting packet also increases the chances of incurring
 additional latency when a receiver delays its acknowledgment.

 QUIC therefore recommends that the minimum congestion window be two
 packets. While this increases network load, it is considered safe
 since the sender will still reduce its sending rate exponentially
 under persistent congestion (Section 6.2).

4.9. Handshake Packets Are Not Special

 TCP treats the loss of SYN or SYN-ACK packet as persistent congestion
 and reduces the congestion window to one packet; see [RFC5681]. QUIC
 treats loss of a packet containing handshake data the same as other
 losses.

5. Estimating the Round-Trip Time

 At a high level, an endpoint measures the time from when a packet was
 sent to when it is acknowledged as an RTT sample. The endpoint uses
 RTT samples and peer-reported host delays (see Section 13.2 of
 [QUIC-TRANSPORT]) to generate a statistical description of the
 network path’s RTT. An endpoint computes the following three values
 for each path: the minimum value over a period of time (min_rtt), an
 exponentially weighted moving average (smoothed_rtt), and the mean
 deviation (referred to as "variation" in the rest of this document)
 in the observed RTT samples (rttvar).

5.1. Generating RTT Samples

 An endpoint generates an RTT sample on receiving an ACK frame that
 meets the following two conditions:

 * the largest acknowledged packet number is newly acknowledged, and

 * at least one of the newly acknowledged packets was ack-eliciting.

 The RTT sample, latest_rtt, is generated as the time elapsed since
 the largest acknowledged packet was sent:

 latest_rtt = ack_time - send_time_of_largest_acked

 An RTT sample is generated using only the largest acknowledged packet
 in the received ACK frame. This is because a peer reports
 acknowledgment delays for only the largest acknowledged packet in an
 ACK frame. While the reported acknowledgment delay is not used by
 the RTT sample measurement, it is used to adjust the RTT sample in
 subsequent computations of smoothed_rtt and rttvar (Section 5.3).

 To avoid generating multiple RTT samples for a single packet, an ACK
 frame SHOULD NOT be used to update RTT estimates if it does not newly
 acknowledge the largest acknowledged packet.

 An RTT sample MUST NOT be generated on receiving an ACK frame that
 does not newly acknowledge at least one ack-eliciting packet. A peer
 usually does not send an ACK frame when only non-ack-eliciting
 packets are received. Therefore, an ACK frame that contains
 acknowledgments for only non-ack-eliciting packets could include an
 arbitrarily large ACK Delay value. Ignoring such ACK frames avoids
 complications in subsequent smoothed_rtt and rttvar computations.

 A sender might generate multiple RTT samples per RTT when multiple
 ACK frames are received within an RTT. As suggested in [RFC6298],
 doing so might result in inadequate history in smoothed_rtt and
 rttvar. Ensuring that RTT estimates retain sufficient history is an
 open research question.

5.2. Estimating min_rtt

 min_rtt is the sender’s estimate of the minimum RTT observed for a
 given network path over a period of time. In this document, min_rtt
 is used by loss detection to reject implausibly small RTT samples.

 min_rtt MUST be set to the latest_rtt on the first RTT sample.
 min_rtt MUST be set to the lesser of min_rtt and latest_rtt
 (Section 5.1) on all other samples.

 An endpoint uses only locally observed times in computing the min_rtt
 and does not adjust for acknowledgment delays reported by the peer.
 Doing so allows the endpoint to set a lower bound for the
 smoothed_rtt based entirely on what it observes (see Section 5.3) and
 limits potential underestimation due to erroneously reported delays
 by the peer.

 The RTT for a network path may change over time. If a path’s actual
 RTT decreases, the min_rtt will adapt immediately on the first low
 sample. If the path’s actual RTT increases, however, the min_rtt
 will not adapt to it, allowing future RTT samples that are smaller
 than the new RTT to be included in smoothed_rtt.

 Endpoints SHOULD set the min_rtt to the newest RTT sample after
 persistent congestion is established. This avoids repeatedly
 declaring persistent congestion when the RTT increases. This also
 allows a connection to reset its estimate of min_rtt and smoothed_rtt
 after a disruptive network event; see Section 5.3.

 Endpoints MAY reestablish the min_rtt at other times in the
 connection, such as when traffic volume is low and an acknowledgment
 is received with a low acknowledgment delay. Implementations SHOULD
 NOT refresh the min_rtt value too often since the actual minimum RTT
 of the path is not frequently observable.

5.3. Estimating smoothed_rtt and rttvar

 smoothed_rtt is an exponentially weighted moving average of an
 endpoint’s RTT samples, and rttvar estimates the variation in the RTT
 samples using a mean variation.

 The calculation of smoothed_rtt uses RTT samples after adjusting them
 for acknowledgment delays. These delays are decoded from the ACK
 Delay field of ACK frames as described in Section 19.3 of
 [QUIC-TRANSPORT].

 The peer might report acknowledgment delays that are larger than the
 peer’s max_ack_delay during the handshake (Section 13.2.1 of
 [QUIC-TRANSPORT]). To account for this, the endpoint SHOULD ignore
 max_ack_delay until the handshake is confirmed, as defined in
 Section 4.1.2 of [QUIC-TLS]. When they occur, these large
 acknowledgment delays are likely to be non-repeating and limited to
 the handshake. The endpoint can therefore use them without limiting
 them to the max_ack_delay, avoiding unnecessary inflation of the RTT
 estimate.

 Note that a large acknowledgment delay can result in a substantially
 inflated smoothed_rtt if there is an error either in the peer’s
 reporting of the acknowledgment delay or in the endpoint’s min_rtt
 estimate. Therefore, prior to handshake confirmation, an endpoint
 MAY ignore RTT samples if adjusting the RTT sample for acknowledgment
 delay causes the sample to be less than the min_rtt.

 After the handshake is confirmed, any acknowledgment delays reported

 by the peer that are greater than the peer’s max_ack_delay are
 attributed to unintentional but potentially repeating delays, such as
 scheduler latency at the peer or loss of previous acknowledgments.
 Excess delays could also be due to a noncompliant receiver.
 Therefore, these extra delays are considered effectively part of path
 delay and incorporated into the RTT estimate.

 Therefore, when adjusting an RTT sample using peer-reported
 acknowledgment delays, an endpoint:

 * MAY ignore the acknowledgment delay for Initial packets, since
 these acknowledgments are not delayed by the peer (Section 13.2.1
 of [QUIC-TRANSPORT]);

 * SHOULD ignore the peer’s max_ack_delay until the handshake is
 confirmed;

 * MUST use the lesser of the acknowledgment delay and the peer’s
 max_ack_delay after the handshake is confirmed; and

 * MUST NOT subtract the acknowledgment delay from the RTT sample if
 the resulting value is smaller than the min_rtt. This limits the
 underestimation of the smoothed_rtt due to a misreporting peer.

 Additionally, an endpoint might postpone the processing of
 acknowledgments when the corresponding decryption keys are not
 immediately available. For example, a client might receive an
 acknowledgment for a 0-RTT packet that it cannot decrypt because
 1-RTT packet protection keys are not yet available to it. In such
 cases, an endpoint SHOULD subtract such local delays from its RTT
 sample until the handshake is confirmed.

 Similar to [RFC6298], smoothed_rtt and rttvar are computed as
 follows.

 An endpoint initializes the RTT estimator during connection
 establishment and when the estimator is reset during connection
 migration; see Section 9.4 of [QUIC-TRANSPORT]. Before any RTT
 samples are available for a new path or when the estimator is reset,
 the estimator is initialized using the initial RTT; see
 Section 6.2.2.

 smoothed_rtt and rttvar are initialized as follows, where kInitialRtt
 contains the initial RTT value:

 smoothed_rtt = kInitialRtt
 rttvar = kInitialRtt / 2

 RTT samples for the network path are recorded in latest_rtt; see
 Section 5.1. On the first RTT sample after initialization, the
 estimator is reset using that sample. This ensures that the
 estimator retains no history of past samples. Packets sent on other
 paths do not contribute RTT samples to the current path, as described
 in Section 9.4 of [QUIC-TRANSPORT].

 On the first RTT sample after initialization, smoothed_rtt and rttvar
 are set as follows:

 smoothed_rtt = latest_rtt
 rttvar = latest_rtt / 2

 On subsequent RTT samples, smoothed_rtt and rttvar evolve as follows:

 ack_delay = decoded acknowledgment delay from ACK frame
 if (handshake confirmed):
 ack_delay = min(ack_delay, max_ack_delay)
 adjusted_rtt = latest_rtt
 if (latest_rtt >= min_rtt + ack_delay):
 adjusted_rtt = latest_rtt - ack_delay
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * adjusted_rtt
 rttvar_sample = abs(smoothed_rtt - adjusted_rtt)

 rttvar = 3/4 * rttvar + 1/4 * rttvar_sample

6. Loss Detection

 QUIC senders use acknowledgments to detect lost packets and a PTO to
 ensure acknowledgments are received; see Section 6.2. This section
 provides a description of these algorithms.

 If a packet is lost, the QUIC transport needs to recover from that
 loss, such as by retransmitting the data, sending an updated frame,
 or discarding the frame. For more information, see Section 13.3 of
 [QUIC-TRANSPORT].

 Loss detection is separate per packet number space, unlike RTT
 measurement and congestion control, because RTT and congestion
 control are properties of the path, whereas loss detection also
 relies upon key availability.

6.1. Acknowledgment-Based Detection

 Acknowledgment-based loss detection implements the spirit of TCP’s
 Fast Retransmit [RFC5681], Early Retransmit [RFC5827], Forward
 Acknowledgment [FACK], SACK loss recovery [RFC6675], and RACK-TLP
 [RFC8985]. This section provides an overview of how these algorithms
 are implemented in QUIC.

 A packet is declared lost if it meets all of the following
 conditions:

 * The packet is unacknowledged, in flight, and was sent prior to an
 acknowledged packet.

 * The packet was sent kPacketThreshold packets before an
 acknowledged packet (Section 6.1.1), or it was sent long enough in
 the past (Section 6.1.2).

 The acknowledgment indicates that a packet sent later was delivered,
 and the packet and time thresholds provide some tolerance for packet
 reordering.

 Spuriously declaring packets as lost leads to unnecessary
 retransmissions and may result in degraded performance due to the
 actions of the congestion controller upon detecting loss.
 Implementations can detect spurious retransmissions and increase the
 packet or time reordering threshold to reduce future spurious
 retransmissions and loss events. Implementations with adaptive time
 thresholds MAY choose to start with smaller initial reordering
 thresholds to minimize recovery latency.

6.1.1. Packet Threshold

 The RECOMMENDED initial value for the packet reordering threshold
 (kPacketThreshold) is 3, based on best practices for TCP loss
 detection [RFC5681] [RFC6675]. In order to remain similar to TCP,
 implementations SHOULD NOT use a packet threshold less than 3; see
 [RFC5681].

 Some networks may exhibit higher degrees of packet reordering,
 causing a sender to detect spurious losses. Additionally, packet
 reordering could be more common with QUIC than TCP because network
 elements that could observe and reorder TCP packets cannot do that
 for QUIC and also because QUIC packet numbers are encrypted.
 Algorithms that increase the reordering threshold after spuriously
 detecting losses, such as RACK [RFC8985], have proven to be useful in
 TCP and are expected to be at least as useful in QUIC.

6.1.2. Time Threshold

 Once a later packet within the same packet number space has been
 acknowledged, an endpoint SHOULD declare an earlier packet lost if it
 was sent a threshold amount of time in the past. To avoid declaring

 packets as lost too early, this time threshold MUST be set to at
 least the local timer granularity, as indicated by the kGranularity
 constant. The time threshold is:

 max(kTimeThreshold * max(smoothed_rtt, latest_rtt), kGranularity)

 If packets sent prior to the largest acknowledged packet cannot yet
 be declared lost, then a timer SHOULD be set for the remaining time.

 Using max(smoothed_rtt, latest_rtt) protects from the two following
 cases:

 * the latest RTT sample is lower than the smoothed RTT, perhaps due
 to reordering where the acknowledgment encountered a shorter path;

 * the latest RTT sample is higher than the smoothed RTT, perhaps due
 to a sustained increase in the actual RTT, but the smoothed RTT
 has not yet caught up.

 The RECOMMENDED time threshold (kTimeThreshold), expressed as an RTT
 multiplier, is 9/8. The RECOMMENDED value of the timer granularity
 (kGranularity) is 1 millisecond.

 | Note: TCP’s RACK [RFC8985] specifies a slightly larger
 | threshold, equivalent to 5/4, for a similar purpose.
 | Experience with QUIC shows that 9/8 works well.

 Implementations MAY experiment with absolute thresholds, thresholds
 from previous connections, adaptive thresholds, or the including of
 RTT variation. Smaller thresholds reduce reordering resilience and
 increase spurious retransmissions, and larger thresholds increase
 loss detection delay.

6.2. Probe Timeout

 A Probe Timeout (PTO) triggers the sending of one or two probe
 datagrams when ack-eliciting packets are not acknowledged within the
 expected period of time or the server may not have validated the
 client’s address. A PTO enables a connection to recover from loss of
 tail packets or acknowledgments.

 As with loss detection, the PTO is per packet number space. That is,
 a PTO value is computed per packet number space.

 A PTO timer expiration event does not indicate packet loss and MUST
 NOT cause prior unacknowledged packets to be marked as lost. When an
 acknowledgment is received that newly acknowledges packets, loss
 detection proceeds as dictated by the packet and time threshold
 mechanisms; see Section 6.1.

 The PTO algorithm used in QUIC implements the reliability functions
 of Tail Loss Probe [RFC8985], RTO [RFC5681], and F-RTO algorithms for
 TCP [RFC5682]. The timeout computation is based on TCP’s RTO period
 [RFC6298].

6.2.1. Computing PTO

 When an ack-eliciting packet is transmitted, the sender schedules a
 timer for the PTO period as follows:

 PTO = smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay

 The PTO period is the amount of time that a sender ought to wait for
 an acknowledgment of a sent packet. This time period includes the
 estimated network RTT (smoothed_rtt), the variation in the estimate
 (4*rttvar), and max_ack_delay, to account for the maximum time by
 which a receiver might delay sending an acknowledgment.

 When the PTO is armed for Initial or Handshake packet number spaces,
 the max_ack_delay in the PTO period computation is set to 0, since
 the peer is expected to not delay these packets intentionally; see

 Section 13.2.1 of [QUIC-TRANSPORT].

 The PTO period MUST be at least kGranularity to avoid the timer
 expiring immediately.

 When ack-eliciting packets in multiple packet number spaces are in
 flight, the timer MUST be set to the earlier value of the Initial and
 Handshake packet number spaces.

 An endpoint MUST NOT set its PTO timer for the Application Data
 packet number space until the handshake is confirmed. Doing so
 prevents the endpoint from retransmitting information in packets when
 either the peer does not yet have the keys to process them or the
 endpoint does not yet have the keys to process their acknowledgments.
 For example, this can happen when a client sends 0-RTT packets to the
 server; it does so without knowing whether the server will be able to
 decrypt them. Similarly, this can happen when a server sends 1-RTT
 packets before confirming that the client has verified the server’s
 certificate and can therefore read these 1-RTT packets.

 A sender SHOULD restart its PTO timer every time an ack-eliciting
 packet is sent or acknowledged, or when Initial or Handshake keys are
 discarded (Section 4.9 of [QUIC-TLS]). This ensures the PTO is
 always set based on the latest estimate of the RTT and for the
 correct packet across packet number spaces.

 When a PTO timer expires, the PTO backoff MUST be increased,
 resulting in the PTO period being set to twice its current value.
 The PTO backoff factor is reset when an acknowledgment is received,
 except in the following case. A server might take longer to respond
 to packets during the handshake than otherwise. To protect such a
 server from repeated client probes, the PTO backoff is not reset at a
 client that is not yet certain that the server has finished
 validating the client’s address. That is, a client does not reset
 the PTO backoff factor on receiving acknowledgments in Initial
 packets.

 This exponential reduction in the sender’s rate is important because
 consecutive PTOs might be caused by loss of packets or
 acknowledgments due to severe congestion. Even when there are ack-
 eliciting packets in flight in multiple packet number spaces, the
 exponential increase in PTO occurs across all spaces to prevent
 excess load on the network. For example, a timeout in the Initial
 packet number space doubles the length of the timeout in the
 Handshake packet number space.

 The total length of time over which consecutive PTOs expire is
 limited by the idle timeout.

 The PTO timer MUST NOT be set if a timer is set for time threshold
 loss detection; see Section 6.1.2. A timer that is set for time
 threshold loss detection will expire earlier than the PTO timer in
 most cases and is less likely to spuriously retransmit data.

6.2.2. Handshakes and New Paths

 Resumed connections over the same network MAY use the previous
 connection’s final smoothed RTT value as the resumed connection’s
 initial RTT. When no previous RTT is available, the initial RTT
 SHOULD be set to 333 milliseconds. This results in handshakes
 starting with a PTO of 1 second, as recommended for TCP’s initial
 RTO; see Section 2 of [RFC6298].

 A connection MAY use the delay between sending a PATH_CHALLENGE and
 receiving a PATH_RESPONSE to set the initial RTT (see kInitialRtt in
 Appendix A.2) for a new path, but the delay SHOULD NOT be considered
 an RTT sample.

 When the Initial keys and Handshake keys are discarded (see
 Section 6.4), any Initial packets and Handshake packets can no longer
 be acknowledged, so they are removed from bytes in flight. When

 Initial or Handshake keys are discarded, the PTO and loss detection
 timers MUST be reset, because discarding keys indicates forward
 progress and the loss detection timer might have been set for a now-
 discarded packet number space.

6.2.2.1. Before Address Validation

 Until the server has validated the client’s address on the path, the
 amount of data it can send is limited to three times the amount of
 data received, as specified in Section 8.1 of [QUIC-TRANSPORT]. If
 no additional data can be sent, the server’s PTO timer MUST NOT be
 armed until datagrams have been received from the client because
 packets sent on PTO count against the anti-amplification limit.

 When the server receives a datagram from the client, the
 amplification limit is increased and the server resets the PTO timer.
 If the PTO timer is then set to a time in the past, it is executed
 immediately. Doing so avoids sending new 1-RTT packets prior to
 packets critical to the completion of the handshake. In particular,
 this can happen when 0-RTT is accepted but the server fails to
 validate the client’s address.

 Since the server could be blocked until more datagrams are received
 from the client, it is the client’s responsibility to send packets to
 unblock the server until it is certain that the server has finished
 its address validation (see Section 8 of [QUIC-TRANSPORT]). That is,
 the client MUST set the PTO timer if the client has not received an
 acknowledgment for any of its Handshake packets and the handshake is
 not confirmed (see Section 4.1.2 of [QUIC-TLS]), even if there are no
 packets in flight. When the PTO fires, the client MUST send a
 Handshake packet if it has Handshake keys, otherwise it MUST send an
 Initial packet in a UDP datagram with a payload of at least 1200
 bytes.

6.2.3. Speeding up Handshake Completion

 When a server receives an Initial packet containing duplicate CRYPTO
 data, it can assume the client did not receive all of the server’s
 CRYPTO data sent in Initial packets, or the client’s estimated RTT is
 too small. When a client receives Handshake or 1-RTT packets prior
 to obtaining Handshake keys, it may assume some or all of the
 server’s Initial packets were lost.

 To speed up handshake completion under these conditions, an endpoint
 MAY, for a limited number of times per connection, send a packet
 containing unacknowledged CRYPTO data earlier than the PTO expiry,
 subject to the address validation limits in Section 8.1 of
 [QUIC-TRANSPORT]. Doing so at most once for each connection is
 adequate to quickly recover from a single packet loss. An endpoint
 that always retransmits packets in response to receiving packets that
 it cannot process risks creating an infinite exchange of packets.

 Endpoints can also use coalesced packets (see Section 12.2 of
 [QUIC-TRANSPORT]) to ensure that each datagram elicits at least one
 acknowledgment. For example, a client can coalesce an Initial packet
 containing PING and PADDING frames with a 0-RTT data packet, and a
 server can coalesce an Initial packet containing a PING frame with
 one or more packets in its first flight.

6.2.4. Sending Probe Packets

 When a PTO timer expires, a sender MUST send at least one ack-
 eliciting packet in the packet number space as a probe. An endpoint
 MAY send up to two full-sized datagrams containing ack-eliciting
 packets to avoid an expensive consecutive PTO expiration due to a
 single lost datagram or to transmit data from multiple packet number
 spaces. All probe packets sent on a PTO MUST be ack-eliciting.

 In addition to sending data in the packet number space for which the
 timer expired, the sender SHOULD send ack-eliciting packets from
 other packet number spaces with in-flight data, coalescing packets if

 possible. This is particularly valuable when the server has both
 Initial and Handshake data in flight or when the client has both
 Handshake and Application Data in flight because the peer might only
 have receive keys for one of the two packet number spaces.

 If the sender wants to elicit a faster acknowledgment on PTO, it can
 skip a packet number to eliminate the acknowledgment delay.

 An endpoint SHOULD include new data in packets that are sent on PTO
 expiration. Previously sent data MAY be sent if no new data can be
 sent. Implementations MAY use alternative strategies for determining
 the content of probe packets, including sending new or retransmitted
 data based on the application’s priorities.

 It is possible the sender has no new or previously sent data to send.
 As an example, consider the following sequence of events: new
 application data is sent in a STREAM frame, deemed lost, then
 retransmitted in a new packet, and then the original transmission is
 acknowledged. When there is no data to send, the sender SHOULD send
 a PING or other ack-eliciting frame in a single packet, rearming the
 PTO timer.

 Alternatively, instead of sending an ack-eliciting packet, the sender
 MAY mark any packets still in flight as lost. Doing so avoids
 sending an additional packet but increases the risk that loss is
 declared too aggressively, resulting in an unnecessary rate reduction
 by the congestion controller.

 Consecutive PTO periods increase exponentially, and as a result,
 connection recovery latency increases exponentially as packets
 continue to be dropped in the network. Sending two packets on PTO
 expiration increases resilience to packet drops, thus reducing the
 probability of consecutive PTO events.

 When the PTO timer expires multiple times and new data cannot be
 sent, implementations must choose between sending the same payload
 every time or sending different payloads. Sending the same payload
 may be simpler and ensures the highest priority frames arrive first.
 Sending different payloads each time reduces the chances of spurious
 retransmission.

6.3. Handling Retry Packets

 A Retry packet causes a client to send another Initial packet,
 effectively restarting the connection process. A Retry packet
 indicates that the Initial packet was received but not processed. A
 Retry packet cannot be treated as an acknowledgment because it does
 not indicate that a packet was processed or specify the packet
 number.

 Clients that receive a Retry packet reset congestion control and loss
 recovery state, including resetting any pending timers. Other
 connection state, in particular cryptographic handshake messages, is
 retained; see Section 17.2.5 of [QUIC-TRANSPORT].

 The client MAY compute an RTT estimate to the server as the time
 period from when the first Initial packet was sent to when a Retry or
 a Version Negotiation packet is received. The client MAY use this
 value in place of its default for the initial RTT estimate.

6.4. Discarding Keys and Packet State

 When Initial and Handshake packet protection keys are discarded (see
 Section 4.9 of [QUIC-TLS]), all packets that were sent with those
 keys can no longer be acknowledged because their acknowledgments
 cannot be processed. The sender MUST discard all recovery state
 associated with those packets and MUST remove them from the count of
 bytes in flight.

 Endpoints stop sending and receiving Initial packets once they start
 exchanging Handshake packets; see Section 17.2.2.1 of

 [QUIC-TRANSPORT]. At this point, recovery state for all in-flight
 Initial packets is discarded.

 When 0-RTT is rejected, recovery state for all in-flight 0-RTT
 packets is discarded.

 If a server accepts 0-RTT, but does not buffer 0-RTT packets that
 arrive before Initial packets, early 0-RTT packets will be declared
 lost, but that is expected to be infrequent.

 It is expected that keys are discarded at some time after the packets
 encrypted with them are either acknowledged or declared lost.
 However, Initial and Handshake secrets are discarded as soon as
 Handshake and 1-RTT keys are proven to be available to both client
 and server; see Section 4.9.1 of [QUIC-TLS].

7. Congestion Control

 This document specifies a sender-side congestion controller for QUIC
 similar to TCP NewReno [RFC6582].

 The signals QUIC provides for congestion control are generic and are
 designed to support different sender-side algorithms. A sender can
 unilaterally choose a different algorithm to use, such as CUBIC
 [RFC8312].

 If a sender uses a different controller than that specified in this
 document, the chosen controller MUST conform to the congestion
 control guidelines specified in Section 3.1 of [RFC8085].

 Similar to TCP, packets containing only ACK frames do not count
 toward bytes in flight and are not congestion controlled. Unlike
 TCP, QUIC can detect the loss of these packets and MAY use that
 information to adjust the congestion controller or the rate of ACK-
 only packets being sent, but this document does not describe a
 mechanism for doing so.

 The congestion controller is per path, so packets sent on other paths
 do not alter the current path’s congestion controller, as described
 in Section 9.4 of [QUIC-TRANSPORT].

 The algorithm in this document specifies and uses the controller’s
 congestion window in bytes.

 An endpoint MUST NOT send a packet if it would cause bytes_in_flight
 (see Appendix B.2) to be larger than the congestion window, unless
 the packet is sent on a PTO timer expiration (see Section 6.2) or
 when entering recovery (see Section 7.3.2).

7.1. Explicit Congestion Notification

 If a path has been validated to support Explicit Congestion
 Notification (ECN) [RFC3168] [RFC8311], QUIC treats a Congestion
 Experienced (CE) codepoint in the IP header as a signal of
 congestion. This document specifies an endpoint’s response when the
 peer-reported ECN-CE count increases; see Section 13.4.2 of
 [QUIC-TRANSPORT].

7.2. Initial and Minimum Congestion Window

 QUIC begins every connection in slow start with the congestion window
 set to an initial value. Endpoints SHOULD use an initial congestion
 window of ten times the maximum datagram size (max_datagram_size),
 while limiting the window to the larger of 14,720 bytes or twice the
 maximum datagram size. This follows the analysis and recommendations
 in [RFC6928], increasing the byte limit to account for the smaller
 8-byte overhead of UDP compared to the 20-byte overhead for TCP.

 If the maximum datagram size changes during the connection, the
 initial congestion window SHOULD be recalculated with the new size.
 If the maximum datagram size is decreased in order to complete the

 handshake, the congestion window SHOULD be set to the new initial
 congestion window.

 Prior to validating the client’s address, the server can be further
 limited by the anti-amplification limit as specified in Section 8.1
 of [QUIC-TRANSPORT]. Though the anti-amplification limit can prevent
 the congestion window from being fully utilized and therefore slow
 down the increase in congestion window, it does not directly affect
 the congestion window.

 The minimum congestion window is the smallest value the congestion
 window can attain in response to loss, an increase in the peer-
 reported ECN-CE count, or persistent congestion. The RECOMMENDED
 value is 2 * max_datagram_size.

7.3. Congestion Control States

 The NewReno congestion controller described in this document has
 three distinct states, as shown in Figure 1.

 New path or +------------+
 persistent congestion | Slow |
 (O)---------------------->| Start |
 +------------+
 |
 Loss or |
 ECN-CE increase |
 v
 +------------+ Loss or +------------+
 | Congestion | ECN-CE increase | Recovery |
 | Avoidance |------------------>| Period |
 +------------+ +------------+
 ^ |
 | |
 +----------------------------+
 Acknowledgment of packet
 sent during recovery

 Figure 1: Congestion Control States and Transitions

 These states and the transitions between them are described in
 subsequent sections.

7.3.1. Slow Start

 A NewReno sender is in slow start any time the congestion window is
 below the slow start threshold. A sender begins in slow start
 because the slow start threshold is initialized to an infinite value.

 While a sender is in slow start, the congestion window increases by
 the number of bytes acknowledged when each acknowledgment is
 processed. This results in exponential growth of the congestion
 window.

 The sender MUST exit slow start and enter a recovery period when a
 packet is lost or when the ECN-CE count reported by its peer
 increases.

 A sender reenters slow start any time the congestion window is less
 than the slow start threshold, which only occurs after persistent
 congestion is declared.

7.3.2. Recovery

 A NewReno sender enters a recovery period when it detects the loss of
 a packet or when the ECN-CE count reported by its peer increases. A
 sender that is already in a recovery period stays in it and does not
 reenter it.

 On entering a recovery period, a sender MUST set the slow start
 threshold to half the value of the congestion window when loss is

 detected. The congestion window MUST be set to the reduced value of
 the slow start threshold before exiting the recovery period.

 Implementations MAY reduce the congestion window immediately upon
 entering a recovery period or use other mechanisms, such as
 Proportional Rate Reduction [PRR], to reduce the congestion window
 more gradually. If the congestion window is reduced immediately, a
 single packet can be sent prior to reduction. This speeds up loss
 recovery if the data in the lost packet is retransmitted and is
 similar to TCP as described in Section 5 of [RFC6675].

 The recovery period aims to limit congestion window reduction to once
 per round trip. Therefore, during a recovery period, the congestion
 window does not change in response to new losses or increases in the
 ECN-CE count.

 A recovery period ends and the sender enters congestion avoidance
 when a packet sent during the recovery period is acknowledged. This
 is slightly different from TCP’s definition of recovery, which ends
 when the lost segment that started recovery is acknowledged
 [RFC5681].

7.3.3. Congestion Avoidance

 A NewReno sender is in congestion avoidance any time the congestion
 window is at or above the slow start threshold and not in a recovery
 period.

 A sender in congestion avoidance uses an Additive Increase
 Multiplicative Decrease (AIMD) approach that MUST limit the increase
 to the congestion window to at most one maximum datagram size for
 each congestion window that is acknowledged.

 The sender exits congestion avoidance and enters a recovery period
 when a packet is lost or when the ECN-CE count reported by its peer
 increases.

7.4. Ignoring Loss of Undecryptable Packets

 During the handshake, some packet protection keys might not be
 available when a packet arrives, and the receiver can choose to drop
 the packet. In particular, Handshake and 0-RTT packets cannot be
 processed until the Initial packets arrive, and 1-RTT packets cannot
 be processed until the handshake completes. Endpoints MAY ignore the
 loss of Handshake, 0-RTT, and 1-RTT packets that might have arrived
 before the peer had packet protection keys to process those packets.
 Endpoints MUST NOT ignore the loss of packets that were sent after
 the earliest acknowledged packet in a given packet number space.

7.5. Probe Timeout

 Probe packets MUST NOT be blocked by the congestion controller. A
 sender MUST however count these packets as being additionally in
 flight, since these packets add network load without establishing
 packet loss. Note that sending probe packets might cause the
 sender’s bytes in flight to exceed the congestion window until an
 acknowledgment is received that establishes loss or delivery of
 packets.

7.6. Persistent Congestion

 When a sender establishes loss of all packets sent over a long enough
 duration, the network is considered to be experiencing persistent
 congestion.

7.6.1. Duration

 The persistent congestion duration is computed as follows:

 (smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay) *
 kPersistentCongestionThreshold

 Unlike the PTO computation in Section 6.2, this duration includes the
 max_ack_delay irrespective of the packet number spaces in which
 losses are established.

 This duration allows a sender to send as many packets before
 establishing persistent congestion, including some in response to PTO
 expiration, as TCP does with Tail Loss Probes [RFC8985] and an RTO
 [RFC5681].

 Larger values of kPersistentCongestionThreshold cause the sender to
 become less responsive to persistent congestion in the network, which
 can result in aggressive sending into a congested network. Too small
 a value can result in a sender declaring persistent congestion
 unnecessarily, resulting in reduced throughput for the sender.

 The RECOMMENDED value for kPersistentCongestionThreshold is 3, which
 results in behavior that is approximately equivalent to a TCP sender
 declaring an RTO after two TLPs.

 This design does not use consecutive PTO events to establish
 persistent congestion, since application patterns impact PTO
 expiration. For example, a sender that sends small amounts of data
 with silence periods between them restarts the PTO timer every time
 it sends, potentially preventing the PTO timer from expiring for a
 long period of time, even when no acknowledgments are being received.
 The use of a duration enables a sender to establish persistent
 congestion without depending on PTO expiration.

7.6.2. Establishing Persistent Congestion

 A sender establishes persistent congestion after the receipt of an
 acknowledgment if two packets that are ack-eliciting are declared
 lost, and:

 * across all packet number spaces, none of the packets sent between
 the send times of these two packets are acknowledged;

 * the duration between the send times of these two packets exceeds
 the persistent congestion duration (Section 7.6.1); and

 * a prior RTT sample existed when these two packets were sent.

 These two packets MUST be ack-eliciting, since a receiver is required
 to acknowledge only ack-eliciting packets within its maximum
 acknowledgment delay; see Section 13.2 of [QUIC-TRANSPORT].

 The persistent congestion period SHOULD NOT start until there is at
 least one RTT sample. Before the first RTT sample, a sender arms its
 PTO timer based on the initial RTT (Section 6.2.2), which could be
 substantially larger than the actual RTT. Requiring a prior RTT
 sample prevents a sender from establishing persistent congestion with
 potentially too few probes.

 Since network congestion is not affected by packet number spaces,
 persistent congestion SHOULD consider packets sent across packet
 number spaces. A sender that does not have state for all packet
 number spaces or an implementation that cannot compare send times
 across packet number spaces MAY use state for just the packet number
 space that was acknowledged. This might result in erroneously
 declaring persistent congestion, but it will not lead to a failure to
 detect persistent congestion.

 When persistent congestion is declared, the sender’s congestion
 window MUST be reduced to the minimum congestion window
 (kMinimumWindow), similar to a TCP sender’s response on an RTO
 [RFC5681].

7.6.3. Example

 The following example illustrates how a sender might establish

 persistent congestion. Assume:

 smoothed_rtt + max(4*rttvar, kGranularity) + max_ack_delay = 2
 kPersistentCongestionThreshold = 3

 Consider the following sequence of events:

 +========+===================================+
 | Time | Action |
 +========+===================================+
 | t=0 | Send packet #1 (application data) |
 +--------+-----------------------------------+
 | t=1 | Send packet #2 (application data) |
 +--------+-----------------------------------+
 | t=1.2 | Receive acknowledgment of #1 |
 +--------+-----------------------------------+
 | t=2 | Send packet #3 (application data) |
 +--------+-----------------------------------+
 | t=3 | Send packet #4 (application data) |
 +--------+-----------------------------------+
 | t=4 | Send packet #5 (application data) |
 +--------+-----------------------------------+
 | t=5 | Send packet #6 (application data) |
 +--------+-----------------------------------+
 | t=6 | Send packet #7 (application data) |
 +--------+-----------------------------------+
 | t=8 | Send packet #8 (PTO 1) |
 +--------+-----------------------------------+
 | t=12 | Send packet #9 (PTO 2) |
 +--------+-----------------------------------+
 | t=12.2 | Receive acknowledgment of #9 |
 +--------+-----------------------------------+

 Table 1

 Packets 2 through 8 are declared lost when the acknowledgment for
 packet 9 is received at "t = 12.2".

 The congestion period is calculated as the time between the oldest
 and newest lost packets: "8 - 1 = 7". The persistent congestion
 duration is "2 * 3 = 6". Because the threshold was reached and
 because none of the packets between the oldest and the newest lost
 packets were acknowledged, the network is considered to have
 experienced persistent congestion.

 While this example shows PTO expiration, they are not required for
 persistent congestion to be established.

7.7. Pacing

 A sender SHOULD pace sending of all in-flight packets based on input
 from the congestion controller.

 Sending multiple packets into the network without any delay between
 them creates a packet burst that might cause short-term congestion
 and losses. Senders MUST either use pacing or limit such bursts.
 Senders SHOULD limit bursts to the initial congestion window; see
 Section 7.2. A sender with knowledge that the network path to the
 receiver can absorb larger bursts MAY use a higher limit.

 An implementation should take care to architect its congestion
 controller to work well with a pacer. For instance, a pacer might
 wrap the congestion controller and control the availability of the
 congestion window, or a pacer might pace out packets handed to it by
 the congestion controller.

 Timely delivery of ACK frames is important for efficient loss
 recovery. To avoid delaying their delivery to the peer, packets
 containing only ACK frames SHOULD therefore not be paced.

 Endpoints can implement pacing as they choose. A perfectly paced

 sender spreads packets exactly evenly over time. For a window-based
 congestion controller, such as the one in this document, that rate
 can be computed by averaging the congestion window over the RTT.
 Expressed as a rate in units of bytes per time, where
 congestion_window is in bytes:

 rate = N * congestion_window / smoothed_rtt

 Or expressed as an inter-packet interval in units of time:

 interval = (smoothed_rtt * packet_size / congestion_window) / N

 Using a value for "N" that is small, but at least 1 (for example,
 1.25) ensures that variations in RTT do not result in
 underutilization of the congestion window.

 Practical considerations, such as packetization, scheduling delays,
 and computational efficiency, can cause a sender to deviate from this
 rate over time periods that are much shorter than an RTT.

 One possible implementation strategy for pacing uses a leaky bucket
 algorithm, where the capacity of the "bucket" is limited to the
 maximum burst size and the rate the "bucket" fills is determined by
 the above function.

7.8. Underutilizing the Congestion Window

 When bytes in flight is smaller than the congestion window and
 sending is not pacing limited, the congestion window is
 underutilized. This can happen due to insufficient application data
 or flow control limits. When this occurs, the congestion window
 SHOULD NOT be increased in either slow start or congestion avoidance.

 A sender that paces packets (see Section 7.7) might delay sending
 packets and not fully utilize the congestion window due to this
 delay. A sender SHOULD NOT consider itself application limited if it
 would have fully utilized the congestion window without pacing delay.

 A sender MAY implement alternative mechanisms to update its
 congestion window after periods of underutilization, such as those
 proposed for TCP in [RFC7661].

8. Security Considerations

8.1. Loss and Congestion Signals

 Loss detection and congestion control fundamentally involve the
 consumption of signals, such as delay, loss, and ECN markings, from
 unauthenticated entities. An attacker can cause endpoints to reduce
 their sending rate by manipulating these signals: by dropping
 packets, by altering path delay strategically, or by changing ECN
 codepoints.

8.2. Traffic Analysis

 Packets that carry only ACK frames can be heuristically identified by
 observing packet size. Acknowledgment patterns may expose
 information about link characteristics or application behavior. To
 reduce leaked information, endpoints can bundle acknowledgments with
 other frames, or they can use PADDING frames at a potential cost to
 performance.

8.3. Misreporting ECN Markings

 A receiver can misreport ECN markings to alter the congestion
 response of a sender. Suppressing reports of ECN-CE markings could
 cause a sender to increase their send rate. This increase could
 result in congestion and loss.

 A sender can detect suppression of reports by marking occasional
 packets that it sends with an ECN-CE marking. If a packet sent with

 an ECN-CE marking is not reported as having been CE marked when the
 packet is acknowledged, then the sender can disable ECN for that path
 by not setting ECN-Capable Transport (ECT) codepoints in subsequent
 packets sent on that path [RFC3168].

 Reporting additional ECN-CE markings will cause a sender to reduce
 their sending rate, which is similar in effect to advertising reduced
 connection flow control limits and so no advantage is gained by doing
 so.

 Endpoints choose the congestion controller that they use. Congestion
 controllers respond to reports of ECN-CE by reducing their rate, but
 the response may vary. Markings can be treated as equivalent to loss
 [RFC3168], but other responses can be specified, such as [RFC8511] or
 [RFC8311].

9. References

9.1. Normative References

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/info/rfc9001>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [FACK] Mathis, M. and J. Mahdavi, "Forward acknowledgement:
 Refining TCP Congestion Control", ACM SIGCOMM Computer
 Communication Review, DOI 10.1145/248157.248181, August
 1996, <https://doi.org/10.1145/248157.248181>.

 [PRR] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", RFC 6937, DOI 10.17487/RFC6937,
 May 2013, <https://www.rfc-editor.org/info/rfc6937>.

 [RETRANSMISSION]
 Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", ACM
 Transactions on Computer Systems,
 DOI 10.1145/118544.118549, November 1991,
 <https://doi.org/10.1145/118544.118549>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <https://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <https://www.rfc-editor.org/info/rfc5827>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <https://www.rfc-editor.org/info/rfc6582>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",
 RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP’s Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC7661] Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
 TCP to Support Rate-Limited Traffic", RFC 7661,
 DOI 10.17487/RFC7661, October 2015,
 <https://www.rfc-editor.org/info/rfc7661>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",
 RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [RFC8511] Khademi, N., Welzl, M., Armitage, G., and G. Fairhurst,
 "TCP Alternative Backoff with ECN (ABE)", RFC 8511,
 DOI 10.17487/RFC8511, December 2018,
 <https://www.rfc-editor.org/info/rfc8511>.

 [RFC8985] Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "The
 RACK-TLP Loss Detection Algorithm for TCP", RFC 8985,
 DOI 10.17487/RFC8985, February 2021,
 <https://www.rfc-editor.org/info/rfc8985>.

Appendix A. Loss Recovery Pseudocode

 We now describe an example implementation of the loss detection
 mechanisms described in Section 6.

 The pseudocode segments in this section are licensed as Code
 Components; see the copyright notice.

A.1. Tracking Sent Packets

 To correctly implement congestion control, a QUIC sender tracks every
 ack-eliciting packet until the packet is acknowledged or lost. It is
 expected that implementations will be able to access this information
 by packet number and crypto context and store the per-packet fields
 (Appendix A.1.1) for loss recovery and congestion control.

 After a packet is declared lost, the endpoint can still maintain
 state for it for an amount of time to allow for packet reordering;
 see Section 13.3 of [QUIC-TRANSPORT]. This enables a sender to
 detect spurious retransmissions.

 Sent packets are tracked for each packet number space, and ACK
 processing only applies to a single space.

A.1.1. Sent Packet Fields

 packet_number: The packet number of the sent packet.

 ack_eliciting: A Boolean that indicates whether a packet is ack-
 eliciting. If true, it is expected that an acknowledgment will be
 received, though the peer could delay sending the ACK frame
 containing it by up to the max_ack_delay.

 in_flight: A Boolean that indicates whether the packet counts toward
 bytes in flight.

 sent_bytes: The number of bytes sent in the packet, not including
 UDP or IP overhead, but including QUIC framing overhead.

 time_sent: The time the packet was sent.

A.2. Constants of Interest

 Constants used in loss recovery are based on a combination of RFCs,
 papers, and common practice.

 kPacketThreshold: Maximum reordering in packets before packet
 threshold loss detection considers a packet lost. The value
 recommended in Section 6.1.1 is 3.

 kTimeThreshold: Maximum reordering in time before time threshold
 loss detection considers a packet lost. Specified as an RTT
 multiplier. The value recommended in Section 6.1.2 is 9/8.

 kGranularity: Timer granularity. This is a system-dependent value,
 and Section 6.1.2 recommends a value of 1 ms.

 kInitialRtt: The RTT used before an RTT sample is taken. The value
 recommended in Section 6.2.2 is 333 ms.

 kPacketNumberSpace: An enum to enumerate the three packet number
 spaces:

 enum kPacketNumberSpace {
 Initial,
 Handshake,
 ApplicationData,
 }

A.3. Variables of Interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 latest_rtt: The most recent RTT measurement made when receiving an
 acknowledgment for a previously unacknowledged packet.

 smoothed_rtt: The smoothed RTT of the connection, computed as
 described in Section 5.3.

 rttvar: The RTT variation, computed as described in Section 5.3.

 min_rtt: The minimum RTT seen over a period of time, ignoring
 acknowledgment delay, as described in Section 5.2.

 first_rtt_sample: The time that the first RTT sample was obtained.

 max_ack_delay: The maximum amount of time by which the receiver
 intends to delay acknowledgments for packets in the Application
 Data packet number space, as defined by the eponymous transport
 parameter (Section 18.2 of [QUIC-TRANSPORT]). Note that the
 actual ack_delay in a received ACK frame may be larger due to late
 timers, reordering, or loss.

 loss_detection_timer: Multi-modal timer used for loss detection.

 pto_count: The number of times a PTO has been sent without receiving
 an acknowledgment.

 time_of_last_ack_eliciting_packet[kPacketNumberSpace]: The time the
 most recent ack-eliciting packet was sent.

 largest_acked_packet[kPacketNumberSpace]: The largest packet number
 acknowledged in the packet number space so far.

 loss_time[kPacketNumberSpace]: The time at which the next packet in
 that packet number space can be considered lost based on exceeding
 the reordering window in time.

 sent_packets[kPacketNumberSpace]: An association of packet numbers
 in a packet number space to information about them. Described in
 detail above in Appendix A.1.

A.4. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

 loss_detection_timer.reset()
 pto_count = 0
 latest_rtt = 0
 smoothed_rtt = kInitialRtt
 rttvar = kInitialRtt / 2
 min_rtt = 0
 first_rtt_sample = 0
 for pn_space in [Initial, Handshake, ApplicationData]:
 largest_acked_packet[pn_space] = infinite
 time_of_last_ack_eliciting_packet[pn_space] = 0
 loss_time[pn_space] = 0

A.5. On Sending a Packet

 After a packet is sent, information about the packet is stored. The
 parameters to OnPacketSent are described in detail above in
 Appendix A.1.1.

 Pseudocode for OnPacketSent follows:

 OnPacketSent(packet_number, pn_space, ack_eliciting,
 in_flight, sent_bytes):
 sent_packets[pn_space][packet_number].packet_number =
 packet_number
 sent_packets[pn_space][packet_number].time_sent = now()
 sent_packets[pn_space][packet_number].ack_eliciting =
 ack_eliciting
 sent_packets[pn_space][packet_number].in_flight = in_flight
 sent_packets[pn_space][packet_number].sent_bytes = sent_bytes

 if (in_flight):
 if (ack_eliciting):
 time_of_last_ack_eliciting_packet[pn_space] = now()
 OnPacketSentCC(sent_bytes)
 SetLossDetectionTimer()

A.6. On Receiving a Datagram

 When a server is blocked by anti-amplification limits, receiving a
 datagram unblocks it, even if none of the packets in the datagram are
 successfully processed. In such a case, the PTO timer will need to
 be rearmed.

 Pseudocode for OnDatagramReceived follows:

 OnDatagramReceived(datagram):
 // If this datagram unblocks the server, arm the
 // PTO timer to avoid deadlock.
 if (server was at anti-amplification limit):
 SetLossDetectionTimer()
 if loss_detection_timer.timeout < now():
 // Execute PTO if it would have expired
 // while the amplification limit applied.
 OnLossDetectionTimeout()

A.7. On Receiving an Acknowledgment

 When an ACK frame is received, it may newly acknowledge any number of
 packets.

 Pseudocode for OnAckReceived and UpdateRtt follow:

 IncludesAckEliciting(packets):
 for packet in packets:
 if (packet.ack_eliciting):
 return true
 return false

 OnAckReceived(ack, pn_space):
 if (largest_acked_packet[pn_space] == infinite):
 largest_acked_packet[pn_space] = ack.largest_acked
 else:
 largest_acked_packet[pn_space] =
 max(largest_acked_packet[pn_space], ack.largest_acked)

 // DetectAndRemoveAckedPackets finds packets that are newly
 // acknowledged and removes them from sent_packets.
 newly_acked_packets =
 DetectAndRemoveAckedPackets(ack, pn_space)
 // Nothing to do if there are no newly acked packets.
 if (newly_acked_packets.empty()):
 return

 // Update the RTT if the largest acknowledged is newly acked
 // and at least one ack-eliciting was newly acked.
 if (newly_acked_packets.largest().packet_number ==
 ack.largest_acked &&
 IncludesAckEliciting(newly_acked_packets)):
 latest_rtt =
 now() - newly_acked_packets.largest().time_sent
 UpdateRtt(ack.ack_delay)

 // Process ECN information if present.
 if (ACK frame contains ECN information):
 ProcessECN(ack, pn_space)

 lost_packets = DetectAndRemoveLostPackets(pn_space)
 if (!lost_packets.empty()):
 OnPacketsLost(lost_packets)
 OnPacketsAcked(newly_acked_packets)

 // Reset pto_count unless the client is unsure if
 // the server has validated the client’s address.
 if (PeerCompletedAddressValidation()):
 pto_count = 0
 SetLossDetectionTimer()

 UpdateRtt(ack_delay):
 if (first_rtt_sample == 0):
 min_rtt = latest_rtt
 smoothed_rtt = latest_rtt
 rttvar = latest_rtt / 2
 first_rtt_sample = now()
 return

 // min_rtt ignores acknowledgment delay.
 min_rtt = min(min_rtt, latest_rtt)
 // Limit ack_delay by max_ack_delay after handshake
 // confirmation.
 if (handshake confirmed):
 ack_delay = min(ack_delay, max_ack_delay)

 // Adjust for acknowledgment delay if plausible.
 adjusted_rtt = latest_rtt
 if (latest_rtt >= min_rtt + ack_delay):
 adjusted_rtt = latest_rtt - ack_delay

 rttvar = 3/4 * rttvar + 1/4 * abs(smoothed_rtt - adjusted_rtt)
 smoothed_rtt = 7/8 * smoothed_rtt + 1/8 * adjusted_rtt

A.8. Setting the Loss Detection Timer

 QUIC loss detection uses a single timer for all timeout loss
 detection. The duration of the timer is based on the timer’s mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionTimer defined below shows how the single
 timer is set.

 This algorithm may result in the timer being set in the past,
 particularly if timers wake up late. Timers set in the past fire
 immediately.

 Pseudocode for SetLossDetectionTimer follows (where the "^" operator
 represents exponentiation):

 GetLossTimeAndSpace():
 time = loss_time[Initial]
 space = Initial
 for pn_space in [Handshake, ApplicationData]:
 if (time == 0 || loss_time[pn_space] < time):
 time = loss_time[pn_space];
 space = pn_space
 return time, space

 GetPtoTimeAndSpace():
 duration = (smoothed_rtt + max(4 * rttvar, kGranularity))
 * (2 ^ pto_count)
 // Anti-deadlock PTO starts from the current time
 if (no ack-eliciting packets in flight):
 assert(!PeerCompletedAddressValidation())
 if (has handshake keys):
 return (now() + duration), Handshake
 else:
 return (now() + duration), Initial
 pto_timeout = infinite
 pto_space = Initial
 for space in [Initial, Handshake, ApplicationData]:
 if (no ack-eliciting packets in flight in space):
 continue;
 if (space == ApplicationData):
 // Skip Application Data until handshake confirmed.

 if (handshake is not confirmed):
 return pto_timeout, pto_space
 // Include max_ack_delay and backoff for Application Data.
 duration += max_ack_delay * (2 ^ pto_count)

 t = time_of_last_ack_eliciting_packet[space] + duration
 if (t < pto_timeout):
 pto_timeout = t
 pto_space = space
 return pto_timeout, pto_space

 PeerCompletedAddressValidation():
 // Assume clients validate the server’s address implicitly.
 if (endpoint is server):
 return true
 // Servers complete address validation when a
 // protected packet is received.
 return has received Handshake ACK ||
 handshake confirmed

 SetLossDetectionTimer():
 earliest_loss_time, _ = GetLossTimeAndSpace()
 if (earliest_loss_time != 0):
 // Time threshold loss detection.
 loss_detection_timer.update(earliest_loss_time)
 return

 if (server is at anti-amplification limit):
 // The server’s timer is not set if nothing can be sent.
 loss_detection_timer.cancel()
 return

 if (no ack-eliciting packets in flight &&
 PeerCompletedAddressValidation()):
 // There is nothing to detect lost, so no timer is set.
 // However, the client needs to arm the timer if the
 // server might be blocked by the anti-amplification limit.
 loss_detection_timer.cancel()
 return

 timeout, _ = GetPtoTimeAndSpace()
 loss_detection_timer.update(timeout)

A.9. On Timeout

 When the loss detection timer expires, the timer’s mode determines
 the action to be performed.

 Pseudocode for OnLossDetectionTimeout follows:

 OnLossDetectionTimeout():
 earliest_loss_time, pn_space = GetLossTimeAndSpace()
 if (earliest_loss_time != 0):
 // Time threshold loss Detection
 lost_packets = DetectAndRemoveLostPackets(pn_space)
 assert(!lost_packets.empty())
 OnPacketsLost(lost_packets)
 SetLossDetectionTimer()
 return

 if (no ack-eliciting packets in flight):
 assert(!PeerCompletedAddressValidation())
 // Client sends an anti-deadlock packet: Initial is padded
 // to earn more anti-amplification credit,
 // a Handshake packet proves address ownership.
 if (has Handshake keys):
 SendOneAckElicitingHandshakePacket()
 else:
 SendOneAckElicitingPaddedInitialPacket()
 else:
 // PTO. Send new data if available, else retransmit old data.

 // If neither is available, send a single PING frame.
 _, pn_space = GetPtoTimeAndSpace()
 SendOneOrTwoAckElicitingPackets(pn_space)

 pto_count++
 SetLossDetectionTimer()

A.10. Detecting Lost Packets

 DetectAndRemoveLostPackets is called every time an ACK is received or
 the time threshold loss detection timer expires. This function
 operates on the sent_packets for that packet number space and returns
 a list of packets newly detected as lost.

 Pseudocode for DetectAndRemoveLostPackets follows:

 DetectAndRemoveLostPackets(pn_space):
 assert(largest_acked_packet[pn_space] != infinite)
 loss_time[pn_space] = 0
 lost_packets = []
 loss_delay = kTimeThreshold * max(latest_rtt, smoothed_rtt)

 // Minimum time of kGranularity before packets are deemed lost.
 loss_delay = max(loss_delay, kGranularity)

 // Packets sent before this time are deemed lost.
 lost_send_time = now() - loss_delay

 foreach unacked in sent_packets[pn_space]:
 if (unacked.packet_number > largest_acked_packet[pn_space]):
 continue

 // Mark packet as lost, or set time when it should be marked.
 // Note: The use of kPacketThreshold here assumes that there
 // were no sender-induced gaps in the packet number space.
 if (unacked.time_sent <= lost_send_time ||
 largest_acked_packet[pn_space] >=
 unacked.packet_number + kPacketThreshold):
 sent_packets[pn_space].remove(unacked.packet_number)
 lost_packets.insert(unacked)
 else:
 if (loss_time[pn_space] == 0):
 loss_time[pn_space] = unacked.time_sent + loss_delay
 else:
 loss_time[pn_space] = min(loss_time[pn_space],
 unacked.time_sent + loss_delay)
 return lost_packets

A.11. Upon Dropping Initial or Handshake Keys

 When Initial or Handshake keys are discarded, packets from the space
 are discarded and loss detection state is updated.

 Pseudocode for OnPacketNumberSpaceDiscarded follows:

 OnPacketNumberSpaceDiscarded(pn_space):
 assert(pn_space != ApplicationData)
 RemoveFromBytesInFlight(sent_packets[pn_space])
 sent_packets[pn_space].clear()
 // Reset the loss detection and PTO timer
 time_of_last_ack_eliciting_packet[pn_space] = 0
 loss_time[pn_space] = 0
 pto_count = 0
 SetLossDetectionTimer()

Appendix B. Congestion Control Pseudocode

 We now describe an example implementation of the congestion
 controller described in Section 7.

 The pseudocode segments in this section are licensed as Code

 Components; see the copyright notice.

B.1. Constants of Interest

 Constants used in congestion control are based on a combination of
 RFCs, papers, and common practice.

 kInitialWindow: Default limit on the initial bytes in flight as
 described in Section 7.2.

 kMinimumWindow: Minimum congestion window in bytes as described in
 Section 7.2.

 kLossReductionFactor: Scaling factor applied to reduce the
 congestion window when a new loss event is detected. Section 7
 recommends a value of 0.5.

 kPersistentCongestionThreshold: Period of time for persistent
 congestion to be established, specified as a PTO multiplier.
 Section 7.6 recommends a value of 3.

B.2. Variables of Interest

 Variables required to implement the congestion control mechanisms are
 described in this section.

 max_datagram_size: The sender’s current maximum payload size. This
 does not include UDP or IP overhead. The max datagram size is
 used for congestion window computations. An endpoint sets the
 value of this variable based on its Path Maximum Transmission Unit
 (PMTU; see Section 14.2 of [QUIC-TRANSPORT]), with a minimum value
 of 1200 bytes.

 ecn_ce_counters[kPacketNumberSpace]: The highest value reported for
 the ECN-CE counter in the packet number space by the peer in an
 ACK frame. This value is used to detect increases in the reported
 ECN-CE counter.

 bytes_in_flight: The sum of the size in bytes of all sent packets
 that contain at least one ack-eliciting or PADDING frame and have
 not been acknowledged or declared lost. The size does not include
 IP or UDP overhead, but does include the QUIC header and
 Authenticated Encryption with Associated Data (AEAD) overhead.
 Packets only containing ACK frames do not count toward
 bytes_in_flight to ensure congestion control does not impede
 congestion feedback.

 congestion_window: Maximum number of bytes allowed to be in flight.

 congestion_recovery_start_time: The time the current recovery period
 started due to the detection of loss or ECN. When a packet sent
 after this time is acknowledged, QUIC exits congestion recovery.

 ssthresh: Slow start threshold in bytes. When the congestion window
 is below ssthresh, the mode is slow start and the window grows by
 the number of bytes acknowledged.

 The congestion control pseudocode also accesses some of the variables
 from the loss recovery pseudocode.

B.3. Initialization

 At the beginning of the connection, initialize the congestion control
 variables as follows:

 congestion_window = kInitialWindow
 bytes_in_flight = 0
 congestion_recovery_start_time = 0
 ssthresh = infinite
 for pn_space in [Initial, Handshake, ApplicationData]:
 ecn_ce_counters[pn_space] = 0

B.4. On Packet Sent

 Whenever a packet is sent and it contains non-ACK frames, the packet
 increases bytes_in_flight.

 OnPacketSentCC(sent_bytes):
 bytes_in_flight += sent_bytes

B.5. On Packet Acknowledgment

 This is invoked from loss detection’s OnAckReceived and is supplied
 with the newly acked_packets from sent_packets.

 In congestion avoidance, implementers that use an integer
 representation for congestion_window should be careful with division
 and can use the alternative approach suggested in Section 2.1 of
 [RFC3465].

 InCongestionRecovery(sent_time):
 return sent_time <= congestion_recovery_start_time

 OnPacketsAcked(acked_packets):
 for acked_packet in acked_packets:
 OnPacketAcked(acked_packet)

 OnPacketAcked(acked_packet):
 if (!acked_packet.in_flight):
 return;
 // Remove from bytes_in_flight.
 bytes_in_flight -= acked_packet.sent_bytes
 // Do not increase congestion_window if application
 // limited or flow control limited.
 if (IsAppOrFlowControlLimited())
 return
 // Do not increase congestion window in recovery period.
 if (InCongestionRecovery(acked_packet.time_sent)):
 return
 if (congestion_window < ssthresh):
 // Slow start.
 congestion_window += acked_packet.sent_bytes
 else:
 // Congestion avoidance.
 congestion_window +=
 max_datagram_size * acked_packet.sent_bytes
 / congestion_window

B.6. On New Congestion Event

 This is invoked from ProcessECN and OnPacketsLost when a new
 congestion event is detected. If not already in recovery, this
 starts a recovery period and reduces the slow start threshold and
 congestion window immediately.

 OnCongestionEvent(sent_time):
 // No reaction if already in a recovery period.
 if (InCongestionRecovery(sent_time)):
 return

 // Enter recovery period.
 congestion_recovery_start_time = now()
 ssthresh = congestion_window * kLossReductionFactor
 congestion_window = max(ssthresh, kMinimumWindow)
 // A packet can be sent to speed up loss recovery.
 MaybeSendOnePacket()

B.7. Process ECN Information

 This is invoked when an ACK frame with an ECN section is received
 from the peer.

 ProcessECN(ack, pn_space):
 // If the ECN-CE counter reported by the peer has increased,
 // this could be a new congestion event.
 if (ack.ce_counter > ecn_ce_counters[pn_space]):
 ecn_ce_counters[pn_space] = ack.ce_counter
 sent_time = sent_packets[ack.largest_acked].time_sent
 OnCongestionEvent(sent_time)

B.8. On Packets Lost

 This is invoked when DetectAndRemoveLostPackets deems packets lost.

 OnPacketsLost(lost_packets):
 sent_time_of_last_loss = 0
 // Remove lost packets from bytes_in_flight.
 for lost_packet in lost_packets:
 if lost_packet.in_flight:
 bytes_in_flight -= lost_packet.sent_bytes
 sent_time_of_last_loss =
 max(sent_time_of_last_loss, lost_packet.time_sent)
 // Congestion event if in-flight packets were lost
 if (sent_time_of_last_loss != 0):
 OnCongestionEvent(sent_time_of_last_loss)

 // Reset the congestion window if the loss of these
 // packets indicates persistent congestion.
 // Only consider packets sent after getting an RTT sample.
 if (first_rtt_sample == 0):
 return
 pc_lost = []
 for lost in lost_packets:
 if lost.time_sent > first_rtt_sample:
 pc_lost.insert(lost)
 if (InPersistentCongestion(pc_lost)):
 congestion_window = kMinimumWindow
 congestion_recovery_start_time = 0

B.9. Removing Discarded Packets from Bytes in Flight

 When Initial or Handshake keys are discarded, packets sent in that
 space no longer count toward bytes in flight.

 Pseudocode for RemoveFromBytesInFlight follows:

 RemoveFromBytesInFlight(discarded_packets):
 // Remove any unacknowledged packets from flight.
 foreach packet in discarded_packets:
 if packet.in_flight
 bytes_in_flight -= size

Contributors

 The IETF QUIC Working Group received an enormous amount of support
 from many people. The following people provided substantive
 contributions to this document:

 * Alessandro Ghedini
 * Benjamin Saunders
 * Gorry Fairhurst
 * å±±æ\234¬å\222\214å½¦ (Kazu Yamamoto)
 * å¥¥ ä¸\200ç©\202 (Kazuho Oku)
 * Lars Eggert
 * Magnus Westerlund
 * Marten Seemann
 * Martin Duke
 * Martin Thomson
 * Mirja KÃ¼hlewind
 * Nick Banks
 * Praveen Balasubramanian

Authors’ Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

 Ian Swett (editor)
 Google

 Email: ianswett@google.com

