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                  Host Identity Protocol Architecture

Abstract

   This memo describes the Host Identity (HI) namespace, which provides
   a cryptographic namespace to applications, and the associated
   protocol layer, the Host Identity Protocol, located between the
   internetworking and transport layers, that supports end-host
   mobility, multihoming, and NAT traversal.  Herein are presented the
   basics of the current namespaces, their strengths and weaknesses, and
   how a HI namespace will add completeness to them.  The roles of the
   HI namespace in the protocols are defined.

   This document obsoletes RFC 4423 and addresses the concerns raised by
   the IESG, particularly that of crypto agility.  The Security
   Considerations section also describes measures against flooding
   attacks, usage of identities in access control lists, weaker types of
   identifiers, and trust on first use.  This document incorporates
   lessons learned from the implementations of RFC 7401 and goes further
   to explain how HIP works as a secure signaling channel.
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1.  Introduction

   The Internet has two important global namespaces: Internet Protocol
   (IP) addresses and Domain Name Service (DNS) names.  These two
   namespaces have a set of features and abstractions that have powered
   the Internet to what it is today.  They also have a number of
   weaknesses.  Basically, since they are all we have, we try to do too
   much with them.  Semantic overloading and functionality extensions
   have greatly complicated these namespaces.

   The proposed Host Identity namespace is also a global namespace, and
   it fills an important gap between the IP and DNS namespaces.  A Host
   Identity conceptually refers to a computing platform, and there may
   be multiple such Host Identities per computing platform (because the
   platform may wish to present a different identity to different
   communicating peers).  The Host Identity namespace consists of Host



   Identifiers (HI).  There is exactly one Host Identifier for each Host
   Identity (although there may be transient periods of time such as key
   replacement when more than one identifier may be active).  While this
   text later talks about non-cryptographic Host Identifiers, the
   architecture focuses on the case in which Host Identifiers are
   cryptographic in nature.  Specifically, the Host Identifier is the
   public key of an asymmetric key pair.  Each Host Identity uniquely
   identifies a single host, i.e., no two hosts have the same Host
   Identity.  If two or more computing platforms have the same Host
   Identifier, then they are instantiating a distributed host.  The Host
   Identifier can either be public (e.g., published in the DNS) or
   unpublished.  Client systems will tend to have both public and
   unpublished Host Identifiers.

   There is a subtle but important difference between Host Identities
   and Host Identifiers.  An Identity refers to the abstract entity that
   is identified.  An Identifier, on the other hand, refers to the
   concrete bit pattern that is used in the identification process.

   Although the Host Identifiers could be used in many authentication
   systems, such as IKEv2 [RFC7296], the presented architecture
   introduces a new protocol, called the Host Identity Protocol (HIP),
   and a cryptographic exchange, called the HIP base exchange; see also
   Section 6.  HIP provides for limited forms of trust between systems,
   enhances mobility, multihoming, and dynamic IP renumbering, aids in
   protocol translation and transition, and reduces certain types of
   denial-of-service (DoS) attacks.

   When HIP is used, the actual payload traffic between two HIP hosts is
   typically, but not necessarily, protected with Encapsulating Security
   Payload (ESP) [RFC7402].  The Host Identities are used to create the
   needed ESP Security Associations (SAs) and to authenticate the hosts.
   When ESP is used, the actual payload IP packets do not differ in any
   way from standard ESP-protected IP packets.

   Much has been learned about HIP [RFC6538] since [RFC4423] was
   published.  This document expands Host Identities beyond their
   original use to enable IP connectivity and security to enable general
   interhost secure signaling at any protocol layer.  The signal may
   establish a security association between the hosts or simply pass
   information within the channel.

2.  Terminology

2.1.  Terms Common to Other Documents

     +==========+===================================================+
     | Term     | Explanation                                       |
     +==========+===================================================+
     | Public   | The public key of an asymmetric cryptographic key |
     | key      | pair.  Used as a publicly known identifier for    |
     |          | cryptographic identity authentication.  Public is |
     |          | a relative term here, ranging from "known to      |
     |          | peers only" to "known to the world".              |
     +----------+---------------------------------------------------+
     | Private  | The private or secret key of an asymmetric        |
     | key      | cryptographic key pair.  Assumed to be known only |
     |          | to the party identified by the corresponding      |
     |          | public key.  Used by the identified party to      |
     |          | authenticate its identity to other parties.       |
     +----------+---------------------------------------------------+
     | Public   | An asymmetric cryptographic key pair consisting   |
     | key pair | of public and private keys.  For example, Rivest- |
     |          | Shamir-Adleman (RSA), Digital Signature Algorithm |
     |          | (DSA) and Elliptic Curve DSA (ECDSA) key pairs    |
     |          | are such key pairs.                               |
     +----------+---------------------------------------------------+
     | Endpoint | A communicating entity.  For historical reasons,  |
     |          | the term ’computing platform’ is used in this     |
     |          | document as a (rough) synonym for endpoint.       |
     +----------+---------------------------------------------------+



                                 Table 1

2.2.  Terms Specific to This and Other HIP Documents

   It should be noted that many of the terms defined herein are
   tautologous, self-referential, or defined through circular reference
   to other terms.  This is due to the succinct nature of the
   definitions.  See the text elsewhere in this document and the base
   specification [RFC7401] for more elaborate explanations.

      +==============+=============================================+
      | Term         | Explanation                                 |
      +==============+=============================================+
      | Computing    | An entity capable of communicating and      |
      | platform     | computing, for example, a computer.  See    |
      |              | the definition of ’Endpoint’, above.        |
      +--------------+---------------------------------------------+
      | HIP base     | A cryptographic protocol; see also          |
      | exchange     | Section 6.                                  |
      +--------------+---------------------------------------------+
      | HIP packet   | An IP packet that carries a ’Host Identity  |
      |              | Protocol’ message.                          |
      +--------------+---------------------------------------------+
      | Host         | An abstract concept assigned to a           |
      | Identity     | ’computing platform’.  See ’Host            |
      |              | Identifier’, below.                         |
      +--------------+---------------------------------------------+
      | Host         | A public key used as a name for a Host      |
      | Identifier   | Identity.                                   |
      +--------------+---------------------------------------------+
      | Host         | A name space formed by all possible Host    |
      | Identity     | Identifiers.                                |
      | namespace    |                                             |
      +--------------+---------------------------------------------+
      | Host         | A protocol used to carry and authenticate   |
      | Identity     | Host Identifiers and other information.     |
      | Protocol     |                                             |
      +--------------+---------------------------------------------+
      | Host         | The cryptographic hash used in creating the |
      | Identity     | Host Identity Tag from the Host Identifier. |
      | Hash         |                                             |
      +--------------+---------------------------------------------+
      | Host         | A 128-bit datum created by taking a         |
      | Identity Tag | cryptographic hash over a Host Identifier   |
      |              | plus bits to identify which hash was used.  |
      +--------------+---------------------------------------------+
      | Local Scope  | A 32-bit datum denoting a Host Identity.    |
      | Identifier   |                                             |
      +--------------+---------------------------------------------+
      | Public Host  | A published or publicly known Host          |
      | Identifier   | Identifier used as a public name for a Host |
      | and Identity | Identity, and the corresponding Identity.   |
      +--------------+---------------------------------------------+
      | Unpublished  | A Host Identifier that is not placed in any |
      | Host         | public directory, and the corresponding     |
      | Identifier   | Host Identity.  Unpublished Host Identities |
      | and Identity | are typically short lived in nature, being  |
      |              | often replaced and possibly used just once. |
      +--------------+---------------------------------------------+
      | Rendezvous   | A mechanism used to locate mobile hosts     |
      | Mechanism    | based on their HIT.                         |
      +--------------+---------------------------------------------+

                                 Table 2

3.  Background

   The Internet is built from three principal components: computing
   platforms (endpoints), packet transport (i.e., internetworking)
   infrastructure, and services (applications).  The Internet exists to



   service two principal components: people and robotic services
   (silicon-based people, if you will).  All these components need to be
   named in order to interact in a scalable manner.  Here we concentrate
   on naming computing platforms and packet transport elements.

   There are two principal namespaces in use in the Internet for these
   components: IP addresses, and Domain Names.  Domain Names provide
   hierarchically assigned names for some computing platforms and some
   services.  Each hierarchy is delegated from the level above; there is
   no anonymity in Domain Names.  Email, HTTP, and SIP addresses all
   reference Domain Names.

   The IP addressing namespace has been overloaded to name both
   interfaces (at Layer 3) and endpoints (for the endpoint-specific part
   of Layer 3 and for Layer 4).  In their role as interface names, IP
   addresses are sometimes called "locators" and serve as an endpoint
   within a routing topology.

   IP addresses are numbers that name networking interfaces, and
   typically only when the interface is connected to the network.
   Originally, IP addresses had long-term significance.  Today, the vast
   number of interfaces use ephemeral and/or non-unique IP addresses.
   That is, every time an interface is connected to the network, it is
   assigned an IP address.

   In the current Internet, the transport layers are coupled to the IP
   addresses.  Neither can evolve separately from the other.  IPng
   deliberations were strongly shaped by the decision that a
   corresponding TCPng would not be created.

   There are three critical deficiencies with the current namespaces.
   First, the establishing of initial contact and the sustaining of data
   flows between two hosts can be challenging due to private address
   realms and the ephemeral nature of addresses.  Second,
   confidentiality is not provided in a consistent, trustable manner.
   Finally, authentication for systems and datagrams is not provided.
   All of these deficiencies arise because computing platforms are not
   well named with the current namespaces.

3.1.  A Desire for a Namespace for Computing Platforms

   An independent namespace for computing platforms could be used in
   end-to-end operations independent of the evolution of the
   internetworking layer and across the many internetworking layers.
   This could support rapid readdressing of the internetworking layer
   because of mobility, rehoming, or renumbering.

   If the namespace for computing platforms is based on public-key
   cryptography, it can also provide authentication services.  If this
   namespace is locally created without requiring registration, it can
   provide anonymity.

   Such a namespace (for computing platforms) and the names in it should
   have the following characteristics:

   *  The namespace should be applied to the IP ’kernel’ or stack.  The
      IP stack is the ’component’ between applications and the packet
      transport infrastructure.

   *  The namespace should fully decouple the internetworking layer from
      the higher layers.  The names should replace all occurrences of IP
      addresses within applications (like in the Transport Control
      Block, TCB).  This replacement can be handled transparently for
      legacy applications as the Local Scope Identifiers (LSIs) and HITs
      are compatible with IPv4 and IPv6 addresses [RFC5338].  However,
      HIP-aware applications require some modifications from the
      developers, who may employ networking API extensions for HIP
      [RFC6317].

   *  The introduction of the namespace should not mandate any
      administrative infrastructure.  Deployment must come from the



      bottom up, in a pairwise deployment.

   *  The names should have a fixed-length representation, for easy
      inclusion in datagram headers and existing programming interfaces
      (e.g., the TCB).

   *  Using the namespace should be affordable when used in protocols.
      This is primarily a packet size issue.  There is also a
      computational concern in affordability.

   *  Name collisions should be avoided as much as possible.  The
      mathematics of the birthday paradox can be used to estimate the
      chance of a collision in a given population and hash space.  In
      general, for a random hash space of size n bits, we would expect
      to obtain a collision after approximately 1.2*sqrt(2^n) hashes
      were obtained.  For 64 bits, this number is roughly 4 billion.  A
      hash size of 64 bits may be too small to avoid collisions in a
      large population; for example, there is a 1% chance of collision
      in a population of 640M.  For 100 bits (or more), we would not
      expect a collision until approximately 2^50 (1 quadrillion) hashes
      were generated.  With the currently used hash size of 96 bits
      [RFC7343], the figure is 2^48 (281 trillions).

   *  The names should have a localized abstraction so that they can be
      used in existing protocols and APIs.

   *  It must be possible to create names locally.  When such names are
      not published, this can provide anonymity at the cost of making
      resolvability very difficult.

   *  The namespace should provide authentication services.

   *  The names should be long-lived, but replaceable at any time.  This
      impacts access control lists; short lifetimes will tend to result
      in tedious list maintenance or require a namespace infrastructure
      for central control of access lists.

   In this document, the namespace approaching these ideas is called the
   Host Identity namespace.  Using Host Identities requires its own
   protocol layer, the Host Identity Protocol, between the
   internetworking and transport layers.  The names are based on public-
   key cryptography to supply authentication services.  Properly
   designed, it can deliver all of the above-stated requirements.

4.  Host Identity Namespace

   A name in the Host Identity namespace, a Host Identifier (HI),
   represents a statistically globally unique name for naming any system
   with an IP stack.  This identity is normally associated with, but not
   limited to, an IP stack.  A system can have multiple identities, some
   ’well known’, some unpublished or ’anonymous’.  A system may self-
   assert its own identity, or may use a third-party authenticator like
   DNSSEC [RFC4033], Pretty Good Privacy (PGP), or X.509 to ’notarize’
   the identity assertion to another namespace.

   In theory, any name that can claim to be ’statistically globally
   unique’ may serve as a Host Identifier.  In the HIP architecture, the
   public key of a private-public key pair has been chosen as the Host
   Identifier because it can be self-managed and it is computationally
   difficult to forge.  As specified in the Host Identity Protocol
   specification [RFC7401], a public-key-based HI can authenticate the
   HIP packets and protect them from man-in-the-middle (MitM) attacks.
   Since authenticated datagrams are mandatory to provide much of HIP’s
   denial-of-service protection, the Diffie-Hellman exchange in HIP base
   exchange has to be authenticated.  Thus, only public-key HI and
   authenticated HIP messages are supported in practice.

   In this document, some non-cryptographic forms of HI and HIP are
   referenced, but cryptographic forms should be preferred because they
   are more secure than their non-cryptographic counterparts.  There has
   been past research in challenge puzzles using non-cryptographic HI



   for Radio Frequency IDentification (RFID), in an HIP exchange
   tailored to the workings of such challenges (as described further in
   [urien-rfid] and [urien-rfid-draft]).

4.1.  Host Identifiers

   Host Identity adds two main features to Internet protocols.  The
   first is a decoupling of the internetworking and transport layers;
   see Section 5.  This decoupling will allow for independent evolution
   of the two layers.  Additionally, it can provide end-to-end services
   over multiple internetworking realms.  The second feature is host
   authentication.  Because the Host Identifier is a public key, this
   key can be used for authentication in security protocols like ESP.

   An identity is based on public-private key cryptography in HIP.  The
   Host Identity is referred to by its public component, the public key.
   Thus, the name representing a Host Identity in the Host Identity
   namespace, i.e., the Host Identifier, is the public key.  In a way,
   the possession of the private key defines the Identity itself.  If
   the private key is possessed by more than one node, the Identity can
   be considered to be a distributed one.

   Architecturally, any other Internet naming convention might form a
   usable base for Host Identifiers.  However, non-cryptographic names
   should only be used in situations of high trust and/or low risk.
   That is any place where host authentication is not needed (no risk of
   host spoofing) and no use of ESP.  However, at least for
   interconnected networks spanning several operational domains, the set
   of environments where the risk of host spoofing allowed by non-
   cryptographic Host Identifiers is acceptable is the null set.  Hence,
   the current HIP documents do not specify how to use any other types
   of Host Identifiers but public keys.  For instance, the Back to My
   Mac service [RFC6281] from Apple comes pretty close to the
   functionality of HIP, but unlike HIP, it is based on non-
   cryptographic identifiers.

   The actual Host Identifiers are never directly used at the transport
   or network layers.  The corresponding Host Identifiers (public keys)
   may be stored in various DNS or other directories as identified
   elsewhere in this document, and they are passed in the HIP base
   exchange.  A Host Identity Tag (HIT) is used in other protocols to
   represent the Host Identity.  Another representation of the Host
   Identities, the Local Scope Identifier (LSI), can also be used in
   protocols and APIs.

4.2.  Host Identity Hash (HIH)

   The Host Identity Hash (HIH) is the cryptographic hash algorithm used
   in producing the HIT from the HI.  It is also the hash used
   throughout HIP for consistency and simplicity.  It is possible for
   the two hosts in the HIP exchange to use different hash algorithms.

   Multiple HIHs within HIP are needed to address the moving target of
   creation and eventual compromise of cryptographic hashes.  This
   significantly complicates HIP and offers an attacker an additional
   downgrade attack that is mitigated in HIP [RFC7401].

4.3.  Host Identity Tag (HIT)

   A Host Identity Tag (HIT) is a 128-bit representation for a Host
   Identity.  Due to its size, it is suitable for use in the existing
   sockets API in the place of IPv6 addresses (e.g., in sockaddr_in6
   structure, sin6_addr member) without modifying applications.  It is
   created from an HIH, an IPv6 prefix [RFC7343], and a hash identifier.
   There are two advantages of using the HIT over using the Host
   Identifier in protocols.  First, its fixed length makes for easier
   protocol coding and also better manages the packet size cost of this
   technology.  Second, it presents the identity in a consistent format
   to the protocol independent of the cryptographic algorithms used.

   In essence, the HIT is a hash over the public key.  As such, two



   algorithms affect the generation of a HIT: the public-key algorithm
   of the HI and the used HIH.  The two algorithms are encoded in the
   bit presentation of the HIT.  As the two communicating parties may
   support different algorithms, [RFC7401] defines the minimum set for
   interoperability.  For further interoperability, the Responder may
   store its keys in DNS records, and thus the Initiator may have to
   couple destination HITs with appropriate source HITs according to
   matching HIH.

   In the HIP packets, the HITs identify the sender and recipient of a
   packet.  Consequently, a HIT should be unique in the whole IP
   universe as long as it is being used.  In the extremely rare case of
   a single HIT mapping to more than one Host Identity, the Host
   Identifiers (public keys) will make the final difference.  If there
   is more than one public key for a given node, the HIT acts as a hint
   for the correct public key to use.

   Although it may be rare for an accidental collision to cause a single
   HIT mapping to more than one Host Identity, it may be the case that
   an attacker succeeds to find, by brute force or algorithmic weakness,
   a second Host Identity hashing to the same HIT.  This type of attack
   is known as a preimage attack, and the resistance to finding a second
   Host Identifier (public key) that hashes to the same HIT is called
   second preimage resistance.  Second preimage resistance in HIP is
   based on the hash algorithm strength and the length of the hash
   output used.  Through HIPv2 [RFC7401], this resistance is 96 bits
   (less than the 128-bit width of an IPv6 address field due to the
   presence of the Overlay Routable Cryptographic Hash Identifiers
   (ORCHID) prefix [RFC7343]).  96 bits of resistance was considered
   acceptable strength during the design of HIP but may eventually be
   considered insufficient for the threat model of an envisioned
   deployment.  One possible mitigation would be to augment the use of
   HITs in the deployment with the HIs themselves (and mechanisms to
   securely bind the HIs to the HITs), so that the HI becomes the final
   authority.  It also may be possible to increase the difficulty of a
   brute force attack by making the generation of the HI more
   computationally difficult, such as the hash extension approach of
   Secure Neighbor Discovery Cryptographically Generated Addresses
   (CGAs) [RFC3972], although the HIP specifications through HIPv2 do
   not provide such a mechanism.  Finally, deployments that do not use
   ORCHIDs (such as certain types of overlay networks) might also use
   the full 128-bit width of an IPv6 address field for the HIT.

4.4.  Local Scope Identifier (LSI)

   An LSI is a 32-bit localized representation for a Host Identity.  Due
   to its size, it is suitable for use in the existing sockets API in
   the place of IPv4 addresses (e.g., in sockaddr_in structure, sin_addr
   member) without modifying applications.  The purpose of an LSI is to
   facilitate using Host Identities in existing APIs for IPv4-based
   applications.  LSIs are never transmitted on the wire; when an
   application sends data using a pair of LSIs, the HIP layer (or
   sockets handler) translates the LSIs to the corresponding HITs, and
   vice versa for the receiving of data.  Besides facilitating HIP-based
   connectivity for legacy IPv4 applications, the LSIs are beneficial in
   two other scenarios [RFC6538].

   In the first scenario, two IPv4-only applications reside on two
   separate hosts connected by IPv6-only network.  With HIP-based
   connectivity, the two applications are able to communicate despite
   the mismatch in the protocol families of the applications and the
   underlying network.  The reason is that the HIP layer translates the
   LSIs originating from the upper layers into routable IPv6 locators
   before delivering the packets on the wire.

   The second scenario is the same as the first one, but with the
   difference that one of the applications supports only IPv6.  Now two
   obstacles hinder the communication between the applications: the
   addressing families of the two applications differ, and the
   application residing at the IPv4-only side is again unable to
   communicate because of the mismatch between addressing families of



   the application (IPv4) and network (IPv6).  With HIP-based
   connectivity for applications, this scenario works; the HIP layer can
   choose whether to translate the locator of an incoming packet into an
   LSI or HIT.

   Effectively, LSIs improve IPv6 interoperability at the network layer
   as described in the first scenario and at the application layer as
   depicted in the second example.  The interoperability mechanism
   should not be used to avoid transition to IPv6; the authors firmly
   believe in IPv6 adoption and encourage developers to port existing
   IPv4-only applications to use IPv6.  However, some proprietary,
   closed-source, IPv4-only applications may never see the daylight of
   IPv6, and the LSI mechanism is suitable for extending the lifetime of
   such applications even in IPv6-only networks.

   The main disadvantage of an LSI is its local scope.  Applications may
   violate layering principles and pass LSIs to each other in
   application-layer protocols.  As the LSIs are valid only in the
   context of the local host, they may represent an entirely different
   host when passed to another host.  However, it should be emphasized
   here that the LSI concept is effectively a host-based NAT and does
   not introduce any more issues than the prevalent middlebox-based NATs
   for IPv4.  In other words, the applications violating layering
   principles are already broken by the NAT boxes that are ubiquitously
   deployed.

4.5.  Storing Host Identifiers in Directories

   The public Host Identifiers should be stored in DNS; the unpublished
   Host Identifiers should not be stored anywhere (besides the
   communicating hosts themselves).  The (public) HI along with the
   supported HIHs are stored in a new Resource Record (RR) type.  This
   RR type is defined in the HIP DNS extension [RFC8005].

   Alternatively, or in addition to storing Host Identifiers in the DNS,
   they may be stored in various other directories.  For instance, a
   directory based on the Lightweight Directory Access Protocol (LDAP)
   or a Public Key Infrastructure (PKI) [RFC8002] may be used.
   Alternatively, Distributed Hash Tables (DHTs) [RFC6537] have
   successfully been utilized [RFC6538].  Such a practice may allow them
   to be used for purposes other than pure host identification.

   Some types of applications may cache and use Host Identifiers
   directly, while others may indirectly discover them through a
   symbolic host name (such as a Fully Qualified Domain Name (FQDN))
   look up from a directory.  Even though Host Identities can have a
   substantially longer lifetime associated with them than routable IP
   addresses, directories may be a better approach to manage the
   lifespan of Host Identities.  For example, an LDAP-based directory or
   DHT can be used for locally published identities whereas DNS can be
   more suitable for public advertisement.

5.  New Stack Architecture

   One way to characterize Host Identity is to compare the proposed HI-
   based architecture with the current one.  Using the terminology from
   the IRTF Name Space Research Group Report [nsrg-report] and, e.g.,
   the document on "Endpoints and Endpoint Names" [chiappa-endpoints],
   the IP addresses currently embody the dual role of locators and
   endpoint identifiers.  That is, each IP address names a topological
   location in the Internet, thereby acting as a routing direction
   vector, or locator.  At the same time, the IP address names the
   physical network interface currently located at the point-of-
   attachment, thereby acting as an endpoint name.

   In the HIP architecture, the endpoint names and locators are
   separated from each other.  IP addresses continue to act as locators.
   The Host Identifiers take the role of endpoint identifiers.  It is
   important to understand that the endpoint names based on Host
   Identities are slightly different from interface names; a Host
   Identity can be simultaneously reachable through several interfaces.



   The difference between the bindings of the logical entities are
   illustrated in Figure 1.  The left side illustrates the current TCP/
   IP architecture and the right side the HIP-based architecture.

   Transport ---- Socket                Transport ------ Socket
   association      |                   association        |
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   Architecturally, HIP provides for a different binding of transport-
   layer protocols.  That is, the transport-layer associations, i.e.,
   TCP connections and UDP associations, are no longer bound to IP
   addresses but rather to Host Identities.  In practice, the Host
   Identities are exposed as LSIs and HITs for legacy applications and
   the transport layer to facilitate backward compatibility with
   existing networking APIs and stacks.

   The HIP layer is logically located at Layer 3.5, between the
   transport and network layers, in the networking stack.  It acts as
   shim layer for transport data utilizing LSIs or HITs but leaves other
   data intact.  The HIP layer translates between the two forms of HIP
   identifiers originating from the transport layer into routable IPv4/
   IPv6 addresses for the network layer and vice versa for the reverse
   direction.

5.1.  On the Multiplicity of Identities

   A host may have multiple identities both at the client and server
   side.  This raises some additional concerns that are addressed in
   this section.

   For security reasons, it may be a bad idea to duplicate the same Host
   Identity on multiple hosts because the compromise of a single host
   taints the identities of the other hosts.  Management of machines
   with identical Host Identities may also present other challenges and,
   therefore, it is advisable to have a unique identity for each host.

   At the server side, utilizing DNS is a better alternative than a
   shared Host Identity to implement load balancing.  A single FQDN
   entry can be configured to refer to multiple Host Identities.  Each
   of the FQDN entries can be associated with the related locators or
   with a single shared locator in the case the servers are using the
   same HIP rendezvous server (Section 6.3) or HIP relay server
   (Section 6.4).

   Instead of duplicating identities, HIP opportunistic mode can be
   employed, where the Initiator leaves out the identifier of the
   Responder when initiating the key exchange and learns it upon the
   completion of the exchange.  The trade-offs are related to lowered
   security guarantees, but a benefit of the approach is to avoid the
   publishing of Host Identifiers in any directories [komu-leap].  Since
   many public servers already employ DNS as their directory,
   opportunistic mode may be more suitable for, e.g., peer-to-peer
   connectivity.  It is also worth noting that opportunistic mode is
   also required in practice when anycast IP addresses would be utilized
   as locators.

   HIP opportunistic mode could be utilized in association with HIP
   rendezvous servers or HIP relay servers [komu-diss].  In such a
   scenario, the Initiator sends an I1 message with a wildcard
   destination HIT to the locator of a HIP rendezvous/relay server.



   When the receiving rendezvous/relay server is serving multiple
   registered Responders, the server can choose the ultimate destination
   HIT, thus acting as a HIP-based load balancer.  However, this
   approach is still experimental and requires further investigation.

   At the client side, a host may have multiple Host Identities, for
   instance, for privacy purposes.  Another reason can be that the
   person utilizing the host employs different identities for different
   administrative domains as an extra security measure.  If a HIP-aware
   middlebox, such as a HIP-based firewall, is on the path between the
   client and server, the user or the underlying system should carefully
   choose the correct identity to avoid the firewall unnecessarily
   dropping HIP-based connectivity [komu-diss].

   Similarly, a server may have multiple Host Identities.  For instance,
   a single web server may serve multiple different administrative
   domains.  Typically, the distinction is accomplished based on the DNS
   name, but also the Host Identity could be used for this purpose.
   However, a more compelling reason to employ multiple identities is
   the HIP-aware firewall that is unable to see the HTTP traffic inside
   the encrypted IPsec tunnel.  In such a case, each service could be
   configured with a separate identity, thus allowing the firewall to
   segregate the different services of the single web server from each
   other [lindqvist-enterprise].

6.  Control Plane

   HIP decouples the control and data planes from each other.  Two end-
   hosts initialize the control plane using a key exchange procedure
   called the base exchange.  The procedure can be assisted by HIP-
   specific infrastructural intermediaries called rendezvous or relay
   servers.  In the event of IP address changes, the end-hosts sustain
   control plane connectivity with mobility and multihoming extensions.
   Eventually, the end-hosts terminate the control plane and remove the
   associated state.

6.1.  Base Exchange

   The base exchange is a key exchange procedure that authenticates the
   Initiator and Responder to each other using their public keys.
   Typically, the Initiator is the client-side host and the Responder is
   the server-side host.  The roles are used by the state machine of a
   HIP implementation but then discarded upon successful completion.

   The exchange consists of four messages during which the hosts also
   create symmetric keys to protect the control plane with Hash-based
   Message Authentication Codes (HMACs).  The keys can be also used to
   protect the data plane, and IPsec ESP [RFC7402] is typically used as
   the data plane protocol, albeit HIP can also accommodate others.
   Both the control and data planes are terminated using a closing
   procedure consisting of two messages.

   In addition, the base exchange also includes a computational puzzle
   [RFC7401] that the Initiator must solve.  The Responder chooses the
   difficulty of the puzzle, which permits the Responder to delay new
   incoming Initiators according to local policies, for instance, when
   the Responder is under heavy load.  The puzzle can offer some
   resiliency against DoS attacks because the design of the puzzle
   mechanism allows the Responder to remain stateless until the very end
   of the base exchange [aura-dos].  HIP puzzles have also been studied
   under steady-state DDoS attacks [beal-dos], on multiple adversary
   models with varying puzzle difficulties [tritilanunt-dos], and with
   ephemeral Host Identities [komu-mitigation].

6.2.  End-Host Mobility and Multihoming

   HIP decouples the transport from the internetworking layer and binds
   the transport associations to the Host Identities (actually through
   either the HIT or LSI).  After the initial key exchange, the HIP
   layer maintains transport-layer connectivity and data flows using its
   extensions for mobility [RFC8046] and multihoming [RFC8047].



   Consequently, HIP can provide for a degree of internetworking
   mobility and multihoming at a low infrastructure cost.  HIP mobility
   includes IP address changes (via any method) to either party.  Thus,
   a system is considered mobile if its IP address can change
   dynamically for any reason like PPP, DHCP, IPv6 prefix reassignments,
   or a NAT device remapping its translation.  Likewise, a system is
   considered multihomed if it has more than one globally routable IP
   address at the same time.  HIP links IP addresses together when
   multiple IP addresses correspond to the same Host Identity.  If one
   address becomes unusable, or a more preferred address becomes
   available, existing transport associations can easily be moved to
   another address.

   When a mobile node moves while communication is ongoing, address
   changes are rather straightforward.  The mobile node sends a HIP
   UPDATE packet to inform the peer of the new address(es), and the peer
   then verifies that the mobile node is reachable through these
   addresses.  This way, the peer can avoid flooding attacks as further
   discussed in Section 11.2.

6.3.  Rendezvous Mechanism

   Establishing a contact to a mobile, moving node is slightly more
   involved.  In order to start the HIP exchange, the Initiator node has
   to know how to reach the mobile node.  For instance, the mobile node
   can employ Dynamic DNS [RFC2136] to update its reachability
   information in the DNS.  To avoid the dependency to DNS, HIP provides
   its own HIP-specific alternative: the HIP rendezvous mechanism as
   defined in the HIP rendezvous specification [RFC8004].

   Using the HIP rendezvous extensions, the mobile node keeps the
   rendezvous infrastructure continuously updated with its current IP
   address(es).  The mobile nodes trusts the rendezvous mechanism in
   order to properly maintain their HIT and IP address mappings.

   The rendezvous mechanism is especially useful in scenarios where both
   of the nodes are expected to change their address at the same time.
   In such a case, the HIP UPDATE packets will cross each other in the
   network and never reach the peer node.

6.4.  Relay Mechanism

   The HIP relay mechanism [RFC9028] is an alternative to the HIP
   rendezvous mechanism.  The HIP relay mechanism is more suitable for
   IPv4 networks with NATs because a HIP relay can forward all control
   and data plane communications in order to guarantee successful NAT
   traversal.

6.5.  Termination of the Control Plane

   The control plane between two hosts is terminated using a secure two-
   message exchange as specified in base exchange specification
   [RFC7401].  The related state (i.e., host associations) should be
   removed upon successful termination.

7.  Data Plane

   The encapsulation format for the data plane used for carrying the
   application-layer traffic can be dynamically negotiated during the
   key exchange.  For instance, HICCUPS extensions [RFC6078] define one
   way to transport application-layer datagrams directly over the HIP
   control plane, protected by asymmetric key cryptography.  Also,
   Secure Real-time Transport Protocol (SRTP) has been considered as the
   data encapsulation protocol [hip-srtp].  However, the most widely
   implemented method is the Encapsulated Security Payload (ESP)
   [RFC7402] that is protected by symmetric keys derived during the key
   exchange.  ESP Security Associations (SAs) offer both confidentiality
   and integrity protection, of which the former can be disabled during
   the key exchange.  In the future, other ways of transporting
   application-layer data may be defined.



   The ESP SAs are established and terminated between the Initiator and
   the Responder hosts.  Usually, the hosts create at least two SAs, one
   in each direction (Initiator-to-Responder SA and Responder-to-
   Initiator SA).  If the IP addresses of either host changes, the HIP
   mobility extensions can be used to renegotiate the corresponding SAs.

   On the wire, the difference in the use of identifiers between the HIP
   control and data planes is that the HITs are included in all control
   packets, but not in the data plane when ESP is employed.  Instead,
   the ESP employs Security Parameter Index (SPI) numbers that act as
   compressed HITs.  Any HIP-aware middlebox (for instance, a HIP-aware
   firewall) interested in the ESP-based data plane should keep track
   between the control and data plane identifiers in order to associate
   them with each other.

   Since HIP does not negotiate any SA lifetimes, all lifetimes are
   subject to local policy.  The only lifetimes a HIP implementation
   must support are sequence number rollover (for replay protection) and
   SA timeout.  An SA times out if no packets are received using that
   SA.  Implementations may support lifetimes for the various ESP
   transforms and other data plane protocols.

8.  HIP and NATs

   Passing packets between different IP addressing realms requires
   changing IP addresses in the packet header.  This may occur, for
   example, when a packet is passed between the public Internet and a
   private address space, or between IPv4 and IPv6 networks.  The
   address translation is usually implemented as Network Address
   Translation (NAT) [RFC3022] or the historic NAT Protocol Translation
   (NAT-PT) [RFC2766].

   In a network environment where identification is based on the IP
   addresses, identifying the communicating nodes is difficult when NATs
   are employed because private address spaces are overlapping.  In
   other words, two hosts cannot be distinguished from each other solely
   based on their IP addresses.  With HIP, the transport-layer endpoints
   (i.e., applications) are bound to unique Host Identities rather than
   overlapping private addresses.  This allows two endpoints to
   distinguish one other even when they are located in different private
   address realms.  Thus, the IP addresses are used only for routing
   purposes and can be changed freely by NATs when a packet between two
   HIP-capable hosts traverses through multiple private address realms.

   NAT traversal extensions for HIP [RFC9028] can be used to realize the
   actual end-to-end connectivity through NAT devices.  To support basic
   backward compatibility with legacy NATs, the extensions encapsulate
   both HIP control and data planes in UDP.  The extensions define
   mechanisms for forwarding the two planes through an intermediary host
   called HIP relay and procedures to establish direct end-to-end
   connectivity by penetrating NATs.  Besides this "native" NAT
   traversal mode for HIP, other NAT traversal mechanisms have been
   successfully utilized, such as Teredo [RFC4380] (as described in
   further detail in [varjonen-split]).

   Besides legacy NATs, a HIP-aware NAT has been designed and
   implemented [ylitalo-spinat].  For a HIP-based flow, a HIP-aware NAT
   or HIP-aware historic NAT-PT system tracks the mapping of HITs, and
   the corresponding ESP SPIs, to an IP address.  The NAT system has to
   learn mappings both from HITs and from SPIs to IP addresses.  Many
   HITs (and SPIs) can map to a single IP address on a NAT, simplifying
   connections on address-poor NAT interfaces.  The NAT can gain much of
   its knowledge from the HIP packets themselves; however, some NAT
   configuration may be necessary.

8.1.  HIP and Upper-Layer Checksums

   There is no way for a host to know if any of the IP addresses in an
   IP header are the addresses used to calculate the TCP checksum.  That
   is, it is not feasible to calculate the TCP checksum using the actual
   IP addresses in the pseudo header; the addresses received in the



   incoming packet are not necessarily the same as they were on the
   sending host.  Furthermore, it is not possible to recompute the
   upper-layer checksums in the NAT/NAT-PT system, since the traffic is
   ESP protected.  Consequently, the TCP and UDP checksums are
   calculated using the HITs in the place of the IP addresses in the
   pseudo header.  Furthermore, only the IPv6 pseudo header format is
   used.  This provides for IPv4 / IPv6 protocol translation.

9.  Multicast

   A number of studies investigating HIP-based multicast have been
   published (including [shields-hip], [zhu-hip], [amir-hip],
   [kovacshazi-host], and [zhu-secure]).  In particular, so-called Bloom
   filters, which allow the compression of multiple labels into small
   data structures, may be a promising way forward [sarela-bloom].
   However, the different schemes have not been adopted by the HIP
   working group (nor the HIP research group in the IRTF), so the
   details are not further elaborated here.

10.  HIP Policies

   There are a number of variables that influence the HIP exchange that
   each host must support.  All HIP implementations should support at
   least two HIs, one to publish in DNS or a similar directory service
   and an unpublished one for anonymous usage (that should expect to be
   rotated frequently in order to disrupt linkability and/or
   trackability).  Although unpublished HIs will rarely be used as
   Responder HIs, they are likely to be common for Initiators.  As
   stated in [RFC7401], "all HIP implementations MUST support more than
   one simultaneous HI, at least one of which SHOULD be reserved for
   anonymous usage", and "support for more than two HIs is RECOMMENDED".
   This provides new challenges for systems or users to decide which
   type of HI to expose when they start a new session.

   Opportunistic mode (where the Initiator starts a HIP exchange without
   prior knowledge of the Responder’s HI) presents a security trade-off.
   At the expense of being subject to MitM attacks, the opportunistic
   mode allows the Initiator to learn the identity of the Responder
   during communication rather than from an external directory.
   Opportunistic mode can be used for registration to HIP-based services
   [RFC8003] (i.e., utilized by HIP for its own internal purposes) or by
   the application layer [komu-leap].  For security reasons, especially
   the latter requires some involvement from the user to accept the
   identity of the Responder similar to how the Secure Shell (SSH)
   protocol prompts the user when connecting to a server for the first
   time [pham-leap].  In practice, this can be realized in end-host-
   based firewalls in the case of legacy applications [karvonen-usable]
   or with native APIs for HIP APIs [RFC6317] in the case of HIP-aware
   applications.

   As stated in [RFC7401]:

   |  Initiators MAY use a different HI for different Responders to
   |  provide basic privacy.  Whether such private HIs are used
   |  repeatedly with the same Responder, and how long these HIs are
   |  used, are decided by local policy and depend on the privacy
   |  requirements of the Initiator.

   According to [RFC7401]:

   |  Responders that only respond to selected Initiators require an
   |  Access Control List (ACL), representing for which hosts they
   |  accept HIP base exchanges, and the preferred transport format and
   |  local lifetimes.  Wildcarding SHOULD be supported for such ACLs,
   |  and also for Responders that offer public or anonymous services.

11.  Security Considerations

   This section includes discussion on some issues and solutions related
   to security in the HIP architecture.



11.1.  MitM Attacks

   HIP takes advantage of the Host Identity paradigm to provide secure
   authentication of hosts and to provide a fast key exchange for ESP.
   HIP also attempts to limit the exposure of the host to various
   denial-of-service (DoS) and man-in-the-middle (MitM) attacks.  In so
   doing, HIP itself is subject to its own DoS and MitM attacks that
   potentially could be more damaging to a host’s ability to conduct
   business as usual.

   Resource exhausting DoS attacks take advantage of the cost of setting
   up a state for a protocol on the Responder compared to the
   ’cheapness’ on the Initiator.  HIP allows a Responder to increase the
   cost of the start of state on the Initiator and makes an effort to
   reduce the cost to the Responder.  This is done by having the
   Responder start the authenticated Diffie-Hellman exchange instead of
   the Initiator, making the HIP base exchange four packets long.  The
   first packet sent by the Responder can be prebuilt to further
   mitigate the costs.  This packet also includes a computational puzzle
   that can optionally be used to further delay the Initiator, for
   instance, when the Responder is overloaded.  The details are
   explained in the base exchange specification [RFC7401].

   MitM attacks are difficult to defend against without third-party
   authentication.  A skillful MitM could easily handle all parts of the
   HIP base exchange, but HIP indirectly provides the following
   protection from a MitM attack.  If the Responder’s HI is retrieved
   from a signed DNS zone or securely obtained by some other means, the
   Initiator can use this to authenticate the signed HIP packets.
   Likewise, if the Initiator’s HI is in a secure DNS zone, the
   Responder can retrieve it and validate the signed HIP packets.
   However, since an Initiator may choose to use an unpublished HI, it
   knowingly risks a MitM attack.  The Responder may choose not to
   accept a HIP exchange with an Initiator using an unknown HI.

   Other types of MitM attacks against HIP can be mounted using ICMP
   messages that can be used to signal about problems.  As an overall
   guideline, the ICMP messages should be considered as unreliable
   "hints" and should be acted upon only after timeouts.  The exact
   attack scenarios and countermeasures are described in full detail in
   the base exchange specification [RFC7401].

   A MitM attacker could try to replay older I1 or R1 messages using
   weaker cryptographic algorithms as described in Section 4.1.4 of
   [RFC7401].  The base exchange has been augmented to deal with such an
   attack by restarting on the detection of the attack.  At worst, this
   would only lead to a situation in which the base exchange would never
   finish (or would be aborted after some retries).  As a drawback, this
   leads to a six-way base exchange, which may seem bad at first.
   However, since this only occurs in an attack scenario and since the
   attack can be handled (so it is not interesting to mount anymore), we
   assume the subsequent messages do not represent a security threat.
   Since the MitM cannot be successful with a downgrade attack, these
   sorts of attacks will only occur as ’nuisance’ attacks.  So, the base
   exchange would still be usually just four packets even though
   implementations must be prepared to protect themselves against the
   downgrade attack.

   In HIP, the Security Association for ESP is indexed by the SPI; the
   source address is always ignored, and the destination address may be
   ignored as well.  Therefore, HIP-enabled ESP is IP address
   independent.  This might seem to make attacking easier, but ESP with
   replay protection is already as well protected as possible, and the
   removal of the IP address as a check should not increase the exposure
   of ESP to DoS attacks.

11.2.  Protection against Flooding Attacks

   Although the idea of informing about address changes by simply
   sending packets with a new source address appears appealing, it is
   not secure enough.  That is, even if HIP does not rely on the source



   address for anything (once the base exchange has been completed), it
   appears to be necessary to check a mobile node’s reachability at the
   new address before actually sending any larger amounts of traffic to
   the new address.

   Blindly accepting new addresses would potentially lead to flooding
   DoS attacks against third parties [RFC4225].  In a distributed
   flooding attack, an attacker opens high-volume HIP connections with a
   large number of hosts (using unpublished HIs) and then claims to all
   of these hosts that it has moved to a target node’s IP address.  If
   the peer hosts were to simply accept the move, the result would be a
   packet flood to the target node’s address.  To prevent this type of
   attack, HIP mobility extensions include a return routability check
   procedure where the reachability of a node is separately checked at
   each address before using the address for larger amounts of traffic.

   A credit-based authorization approach for "Host Mobility with the
   Host Identity Protocol" [RFC8046] can be used between hosts for
   sending data prior to completing the address tests.  Otherwise, if
   HIP is used between two hosts that fully trust each other, the hosts
   may optionally decide to skip the address tests.  However, such
   performance optimization must be restricted to peers that are known
   to be trustworthy and capable of protecting themselves from malicious
   software.

11.3.  HITs Used in ACLs

   At end-hosts, HITs can be used in IP-based access control lists at
   the application and network layers.  At middleboxes, HIP-aware
   firewalls [lindqvist-enterprise] can use HITs or public keys to
   control both ingress and egress access to networks or individual
   hosts, even in the presence of mobile devices because the HITs and
   public keys are topology independent.  As discussed earlier in
   Section 7, once a HIP session has been established, the SPI value in
   an ESP packet may be used as an index, indicating the HITs.  In
   practice, firewalls can inspect HIP packets to learn of the bindings
   between HITs, SPI values, and IP addresses.  They can even explicitly
   control ESP usage, dynamically opening ESP only for specific SPI
   values and IP addresses.  The signatures in HIP packets allow a
   capable firewall to ensure that the HIP exchange is indeed occurring
   between two known hosts.  This may increase firewall security.

   A potential drawback of HITs in ACLs is their ’flatness’, which means
   they cannot be aggregated, and this could potentially result in
   larger table searches in HIP-aware firewalls.  A way to optimize this
   could be to utilize Bloom filters for grouping HITs [sarela-bloom].
   However, it should be noted that it is also easier to exclude
   individual, misbehaving hosts when the firewall rules concern
   individual HITs rather than groups.

   There has been considerable bad experience with distributed ACLs that
   contain material related to public keys, for example, with SSH.  If
   the owner of a key needs to revoke it for any reason, the task of
   finding all locations where the key is held in an ACL may be
   impossible.  If the reason for the revocation is due to private key
   theft, this could be a serious issue.

   A host can keep track of all of its partners that might use its HIT
   in an ACL by logging all remote HITs.  It should only be necessary to
   log Responder hosts.  With this information, the host can notify the
   various hosts about the change to the HIT.  There have been attempts
   to develop a secure method to issue the HIT revocation notice
   [zhang-revocation].

   Some of the HIP-aware middleboxes, such as firewalls
   [lindqvist-enterprise] or NATs [ylitalo-spinat], may observe the on-
   path traffic passively.  Such middleboxes are transparent by their
   nature and may not get a notification when a host moves to a
   different network.  Thus, such middleboxes should maintain soft state
   and time out when the control and data planes between two HIP end-
   hosts have been idle too long.  Correspondingly, the two end-hosts



   may send periodically keepalives, such as UPDATE packets or ICMP
   messages inside the ESP tunnel, to sustain state at the on-path
   middleboxes.

   One general limitation related to end-to-end encryption is that
   middleboxes may not be able to participate in the protection of data
   flows.  While the issue may also affect other protocols, Heer et al.
   [heer-end-host] have analyzed the problem in the context of HIP.
   More specifically, when ESP is used as the data plane protocol for
   HIP, the association between the control and data planes is weak and
   can be exploited under certain assumptions.  In the scenario, the
   attacker has already gained access to the target network protected by
   a HIP-aware firewall, but wants to circumvent the HIP-based firewall.
   To achieve this, the attacker passively observes a base exchange
   between two HIP hosts and later replays it.  This way, the attacker
   manages to penetrate the firewall and can use a fake ESP tunnel to
   transport its own data.  This is possible because the firewall cannot
   distinguish when the ESP tunnel is valid.  As a solution, HIP-aware
   middleboxes may participate in the control plane interaction by
   adding random nonce parameters to the control traffic, which the end-
   hosts have to sign to guarantee the freshness of the control traffic
   [heer-midauth].  As an alternative, extensions for transporting the
   data plane directly over the control plane can be used [RFC6078].

11.4.  Alternative HI Considerations

   The definition of the Host Identifier states that the HI need not be
   a public key.  It implies that the HI could be any value, for
   example, a FQDN.  This document does not describe how to support such
   a non-cryptographic HI, but examples of such protocol variants do
   exist ([urien-rfid], [urien-rfid-draft]).  A non-cryptographic HI
   would still offer the services of the HIT or LSI for NAT traversal.
   It would be possible to carry HITs in HIP packets that had neither
   privacy nor authentication.  Such schemes may be employed for
   resource-constrained devices, such as small sensors operating on
   battery power, but are not further analyzed here.

   If it is desirable to use HIP in a low-security situation where
   public key computations are considered expensive, HIP can be used
   with very short Diffie-Hellman and Host Identity keys.  Such use
   makes the participating hosts vulnerable to MitM and connection
   hijacking attacks.  However, it does not cause flooding dangers,
   since the address check mechanism relies on the routing system and
   not on cryptographic strength.

11.5.  Trust on First Use

   [RFC7435] highlights four design principles for Leap of Faith, or
   Trust On First Use (TOFU), protocols that apply also to opportunistic
   HIP:

   1.  Coexist with explicit policy

   2.  Prioritize communication

   3.  Maximize security peer by peer

   4.  No misrepresentation of security

   According to the first TOFU design principle, "Opportunistic security
   never displaces or preempts explicit policy".  Some application data
   may be too sensitive, so the related policy could require
   authentication (i.e., the public key or certificate) in such a case
   instead of the unauthenticated opportunistic mode.  In practice, this
   has been realized in HIP implementations as follows [RFC6538].

   The OpenHIP implementation allowed an Initiator to use opportunistic
   mode only with an explicitly configured Responder IP address, when
   the Responder’s HIT is unknown.  At the Responder, OpenHIP had an
   option to allow opportunistic mode with any Initiator -- trust any
   Initiator.



   HIP for Linux (HIPL) developers experimented with more fine-grained
   policies operating at the application level.  The HIPL implementation
   utilized so-called "LD_PRELOAD" hooking at the application layer that
   allowed a dynamically linked library to intercept socket-related
   calls without rebuilding the related application binaries.  The
   library acted as a shim layer between the application and transport
   layers.  The shim layer translated the non-HIP-based socket calls
   from the application into HIP-based socket calls.  While the shim
   library involved some level of complexity as described in more detail
   in [komu-leap], it achieved the goal of applying opportunistic mode
   at the granularity of individual applications.

   The second TOFU principle essentially states that communication
   should prioritized over security.  So opportunistic mode should be,
   in general, allowed even if no authentication is present, and even
   possibly a fallback to unencrypted communications could be allowed
   (if policy permits) instead of blocking communications.  In practice,
   this can be realized in three steps.  In the first step, a HIP
   Initiator can look up the HI of a Responder from a directory such as
   DNS.  When the Initiator discovers a HI, it can use the HI for
   authentication and skip the rest of the following steps.  In the
   second step, the Initiator can, upon failing to find a HI, try
   opportunistic mode with the Responder.  In the third step, the
   Initiator can fall back to non-HIP-based communications upon failing
   with opportunistic mode if the policy allows it.  This three-step
   model has been implemented successfully and described in more detail
   in [komu-leap].

   The third TOFU principle suggests that security should be maximized,
   so that at least opportunistic security would be employed.  The
   three-step model described earlier prefers authentication when it is
   available, e.g., via DNS records (and possibly even via DNSSEC when
   available) and falls back to opportunistic mode when no out-of-band
   credentials are available.  As the last resort, fallback to non-HIP-
   based communications can be used if the policy allows it.  Also,
   since perfect forward secrecy (PFS) is explicitly mentioned in the
   third design principle, it is worth mentioning that HIP supports it.

   The fourth TOFU principle states that users and noninteractive
   applications should be properly informed about the level of security
   being applied.  In practice, non-HIP-aware applications would assume
   that no extra security is being applied, so misleading at least a
   noninteractive application should not be possible.  In the case of
   interactive desktop applications, system-level prompts have been
   utilized in earlier HIP experiments [karvonen-usable] [RFC6538] to
   guide the user about the underlying HIP-based security.  In general,
   users in those experiments perceived when HIP-based security was
   being used versus not used.  However, the users failed to notice the
   difference between opportunistic, non-authenticated HIP and non-
   opportunistic, authenticated HIP.  The reason for this was that the
   opportunistic HIP (i.e., lowered level of security) was not clearly
   indicated in the prompt.  This provided a valuable lesson to further
   improve the user interface.

   In the case of HIP-aware applications, native sockets APIs for HIP as
   specified in [RFC6317] can be used to develop application-specific
   logic instead of using generic system-level prompting.  In such a
   case, the application itself can directly prompt the user or
   otherwise manage the situation in other ways.  In this case,
   noninteractive applications also can properly log the level of
   security being employed because the developer can now explicitly
   program the use of authenticated HIP, opportunistic HIP, and plain-
   text communication.

   It is worth mentioning a few additional items discussed in [RFC7435].
   Related to active attacks, HIP has built-in protection against
   ciphersuite downgrade attacks as described in detail in [RFC7401].
   In addition, pre-deployed certificates could be used to mitigate
   against active attacks in the case of opportunistic mode as mentioned
   in [RFC6538].



   Detection of peer capabilities is also mentioned in the TOFU context.
   As discussed in this section, the three-step model can be used to
   detect peer capabilities.  A host can achieve the first step of
   authentication, i.e., discovery of a public key, via DNS, for
   instance.  If the host finds no keys, the host can then try
   opportunistic mode as the second step.  Upon a timeout, the host can
   then proceed to the third step by falling back to non-HIP-based
   communications if the policy permits.  This last step is based on an
   implicit timeout rather an explicit (negative) acknowledgment like in
   the case of DNS, so the user may conclude prematurely that the
   connectivity has failed.  To speed up the detection phase by
   explicitly detecting if the peer supports opportunistic HIP,
   researchers have proposed TCP-specific extensions [RFC6538]
   [komu-leap].  In a nutshell, an Initiator sends simultaneously both
   an opportunistic I1 packet and the related TCP SYN datagram equipped
   with a special TCP option to a peer.  If the peer supports HIP, it
   drops the SYN packet and responds with an R1.  If the peer is HIP
   incapable, it drops the HIP packet (and the unknown TCP option) and
   responds with a TCP SYN-ACK.  The benefit of the proposed scheme is a
   faster, one round-trip fallback to non-HIP-based communications.  The
   drawback is that the approach is tied to TCP (IP options were also
   considered, but do not work well with firewalls and NATs).
   Naturally, the approach does not work against an active attacker, but
   opportunistic mode is not supposed to protect against such an
   adversary anyway.

   It is worth noting that while the use of opportunistic mode has some
   benefits related to incremental deployment, it does not achieve all
   the benefits of authenticated HIP [komu-diss].  Namely, authenticated
   HIP supports persistent identifiers in the sense that hosts are
   identified with the same HI independent of their movement.
   Opportunistic HIP meets this goal only partially: after the first
   contact between two hosts, HIP can successfully sustain connectivity
   with its mobility management extensions, but problems emerge when the
   hosts close the HIP association and try to reestablish connectivity.
   As hosts can change their location, it is no longer guaranteed that
   the same IP address belongs to the same host.  The same address can
   be temporally assigned to different hosts, e.g., due to the reuse of
   IP addresses (e.g., by a DHCP service), the overlapping of private
   address realms (see also the discussion on Internet transparency in
   Appendix A.1), or due to an attempted attack.

12.  IANA Considerations

   This document has no IANA actions.

13.  Changes from RFC 4423

   In a nutshell, the changes from RFC 4423 [RFC4423] are mostly
   editorial, including clarifications on topics described in a
   difficult way and omitting some of the non-architectural
   (implementation) details that are already described in other
   documents.  A number of missing references to the literature were
   also added.  New topics include the drawbacks of HIP, a discussion on
   802.15.4 and MAC security, HIP for IoT scenarios, deployment
   considerations, and a description of the base exchange.
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Appendix A.  Design Considerations

A.1.  Benefits of HIP

   In the beginning, the network layer protocol (i.e., IP) had the
   following four "classic" invariants:

   1.  Non-mutable: The address sent is the address received.

   2.  Non-mobile: The address doesn’t change during the course of an
       "association".

   3.  Reversible: A return header can always be formed by reversing the
       source and destination addresses.

   4.  Omniscient: Each host knows what address a partner host can use
       to send packets to it.

   Actually, the fourth can be inferred from 1 and 3, but it is worth
   mentioning explicitly for reasons that will be obvious soon if not
   already.

   In the current "post-classic" world, we are intentionally trying to
   get rid of the second invariant (both for mobility and for
   multihoming), and we have been forced to give up the first and the
   fourth.  Realm Specific IP [RFC3102] is an attempt to reinstate the
   fourth invariant without the first invariant.  IPv6 attempts to
   reinstate the first invariant.

   Few client-side systems on the Internet have DNS names that are
   meaningful.  That is, if they have a Fully Qualified Domain Name
   (FQDN), that name typically belongs to a NAT device or a dial-up
   server, and does not really identify the system itself but its
   current connectivity.  FQDNs (and their extensions as email names)
   are application-layer names; more frequently naming services than
   particular systems.  This is why many systems on the Internet are not
   registered in the DNS; they do not have services of interest to other
   Internet hosts.

   DNS names are references to IP addresses.  This only demonstrates the
   interrelationship of the networking and application layers.  DNS, as
   the Internet’s only deployed and distributed database, is also the
   repository of other namespaces, due in part to DNSSEC and
   application-specific key records.  Although each namespace can be
   stretched (IP with v6, DNS with KEY records), neither can adequately
   provide for host authentication or act as a separation between
   internetworking and transport layers.

   The Host Identity (HI) namespace fills an important gap between the
   IP and DNS namespaces.  An interesting thing about the HI is that it
   actually allows a host to give up all but the 3rd network-layer
   invariant.  That is to say, as long as the source and destination
   addresses in the network-layer protocol are reversible, HIP takes
   care of host identification, and reversibility allows a local host to
   receive a packet back from a remote host.  The address changes
   occurring during NAT transit (non-mutable) or host movement (non-



   omniscient or non-mobile) can be managed by the HIP layer.

   With the exception of high-performance computing applications, the
   sockets API is the most common way to develop network applications.
   Applications use the sockets API either directly or indirectly
   through some libraries or frameworks.  However, the sockets API is
   based on the assumption of static IP addresses, and DNS with its
   lifetime values was invented at later stages during the evolution of
   the Internet.  Hence, the sockets API does not deal with the lifetime
   of addresses [RFC6250].  As the majority of the end-user equipment is
   mobile today, their addresses are effectively ephemeral, but the
   sockets API still gives a fallacious illusion of persistent IP
   addresses to the unwary developer.  HIP can be used to solidify this
   illusion because HIP provides persistent, surrogate addresses to the
   application layer in the form of LSIs and HITs.

   The persistent identifiers as provided by HIP are useful in multiple
   scenarios (see, e.g., [ylitalo-diss] or [komu-diss] for a more
   elaborate discussion):

   *  When a mobile host moves physically between two different WLAN
      networks and obtains a new address, an application using the
      identifiers remains isolated regardless of the topology changes
      while the underlying HIP layer reestablishes connectivity (i.e., a
      horizontal handoff).

   *  Similarly, the application utilizing the identifiers remains again
      unaware of the topological changes when the underlying host
      equipped with WLAN and cellular network interfaces switches
      between the two different access technologies (i.e., a vertical
      handoff).

   *  Even when hosts are located in private address realms,
      applications can uniquely distinguish different hosts from each
      other based on their identifiers.  In other words, it can be
      stated that HIP improves Internet transparency for the application
      layer [komu-diss].

   *  Site renumbering events for services can occur due to corporate
      mergers or acquisitions, or by changes in Internet service
      provider.  They can involve changing the entire network prefix of
      an organization, which is problematic due to hard-coded addresses
      in service configuration files or cached IP addresses at the
      client side [RFC5887].  Considering such human errors, a site
      employing location-independent identifiers as promoted by HIP may
      experience fewer problems while renumbering their network.

   *  More agile IPv6 interoperability can be achieved, as discussed in
      Section 4.4.  IPv6-based applications can communicate using HITs
      with IPv4-based applications that are using LSIs.  Additionally,
      the underlying network type (IPv4 or IPv6) becomes independent of
      the addressing family of the application.

   *  HITs (or LSIs) can be used in IP-based access control lists as a
      more secure replacement for IPv6 addresses.  Besides security,
      HIT-based access control has two other benefits.  First, the use
      of HITs can potentially halve the size of access control lists
      because separate rules for IPv4 are not needed [komu-diss].
      Second, HIT-based configuration rules in HIP-aware middleboxes
      remain static and independent of topology changes, thus
      simplifying administrative efforts particularly for mobile
      environments.  For instance, the benefits of HIT-based access
      control have been harnessed in the case of HIP-aware firewalls,
      but can be utilized directly at the end-hosts as well [RFC6538].

   While some of these benefits could be and have been redundantly
   implemented by individual applications, providing such generic
   functionality at the lower layers is useful because it reduces
   software development effort and networking software bugs (as the
   layer is tested with multiple applications).  It also allows the
   developer to focus on building the application itself rather than



   delving into the intricacies of mobile networking, thus facilitating
   separation of concerns.

   HIP could also be realized by combining a number of different
   protocols, but the complexity of the resulting software may become
   substantially larger, and the interaction between multiple, possibly
   layered protocols may have adverse effects on latency and throughput.
   It is also worth noting that virtually nothing prevents realizing the
   HIP architecture, for instance, as an application-layer library,
   which has been actually implemented in the past [xin-hip-lib].
   However, the trade-off in moving the HIP layer to the application
   layer is that legacy applications may not be supported.

A.2.  Drawbacks of HIP

   In computer science, many problems can be solved with an extra layer
   of indirection.  However, the indirection always involves some costs
   as there is no such a thing as a "free lunch".  In the case of HIP,
   the main costs could be stated as follows:

   *  In general, an additional layer and a namespace always involve
      some initial effort in terms of implementation, deployment, and
      maintenance.  Some education of developers and administrators may
      also be needed.  However, the HIP community at the IETF has spent
      years in experimenting, exploring, testing, documenting, and
      implementing HIP to ease the adoption costs.

   *  HIP introduces a need to manage HIs and requires a centralized
      approach to manage HIP-aware endpoints at scale.  What were
      formerly IP address-based ACLs are now trusted HITs, and the HIT-
      to-IP address mappings as well as access policies must be managed.
      HIP-aware endpoints must also be able to operate autonomously to
      ensure mobility and availability (an endpoint must be able to run
      without having to have a persistent management connection).  The
      users who want this better security and mobility of HIs instead of
      IP address-based ACLs have to then manage this additional
      ’identity layer’ in a nonpersistent fashion.  As exemplified in
      Appendix A.3.5, these challenges have been already solved in an
      infrastructure setting to distribute policy and manage the
      mappings and trust relationships between HIP-aware endpoints.

   *  HIP decouples identifier and locator roles of IP addresses.
      Consequently, a mapping mechanism is needed to associate them
      together.  A failure to map a HIT to its corresponding locator may
      result in failed connectivity because a HIT is "flat" by its
      nature and cannot be looked up from the hierarchically organized
      DNS.  HITs are flat by design due to a security trade-off.  The
      more bits that are allocated for the hash in the HIT, the less
      likely there will be (malicious) collisions.

   *  From performance viewpoint, HIP control and data plane processing
      introduces some overhead in terms of throughput and latency as
      elaborated below.

   Related to deployment drawbacks, firewalls are commonly used to
   control access to various services and devices in the current
   Internet.  Since HIP introduces an additional namespace, it is
   expected that the HIP namespace would be filtered for unwanted
   connectivity also.  While this can be achieved with existing tools
   directly in the end-hosts, filtering at the middleboxes requires
   modifications to existing firewall software or additional middleboxes
   [RFC6538].

   The key exchange introduces some extra latency (two round trips) in
   the initial transport-layer connection establishment between two
   hosts.  With TCP, additional delay occurs if the underlying network
   stack implementation drops the triggering SYN packet during the key
   exchange.  The same cost may also occur during HIP handoff
   procedures.  However, subsequent TCP sessions using the same HIP
   association will not bear this cost (within the key lifetime).  Both
   the key exchange and handoff penalties can be minimized by caching



   TCP packets.  The latter case can further be optimized with TCP user
   timeout extensions [RFC5482] as described in further detail by SchÃ¼tz
   et al. [schuetz-intermittent].

   The most CPU-intensive operations involve the use of the asymmetric
   keys and Diffie-Hellman key derivation at the control plane, but this
   occurs only during the key exchange, its maintenance (handoffs and
   refreshing of key material), and teardown procedures of HIP
   associations.  The data plane is typically implemented with ESP
   because it has a smaller overhead due to symmetric key encryption.
   Naturally, even ESP involves some overhead in terms of latency
   (processing costs) and throughput (tunneling) (see, e.g.,
   [ylitalo-diss] for a performance evaluation).

A.3.  Deployment and Adoption Considerations

   This section describes some deployment and adoption considerations
   related to HIP from a technical perspective.

A.3.1.  Deployment Analysis

   HIP has been adapted and deployed in an industrial control network in
   a production factory, in which HIP’s strong network-layer identity
   supports the secure coexistence of the control network with many
   untrusted network devices operated by third-party vendors
   [paine-hip].  Similarly, HIP has also been included in a security
   product to support Layer 2 VPNs [henderson-vpls] to enable security
   zones in a supervisory control and data acquisition (SCADA) network.
   However, HIP has not been a "wild success" [RFC5218] in the Internet
   as argued by LevÃ¤ et al. [levae-barriers].  Here, we briefly
   highlight some of their findings based on interviews with 19 experts
   from the industry and academia.

   From a marketing perspective, the demand for HIP has been low and
   substitute technologies have been favored.  Another identified reason
   has been that some technical misconceptions related to the early
   stages of HIP specifications still persist.  Two identified
   misconceptions are that HIP does not support NAT traversal and that
   HIP must be implemented in the OS kernel.  Both of these claims are
   untrue; HIP does have NAT traversal extensions [RFC9028], and kernel
   modifications can be avoided with modern operating systems by
   diverting packets for userspace processing.

   The analysis by LevÃ¤ et al. clarifies infrastructural requirements
   for HIP.  In a minimal setup, a client and server machine have to run
   HIP software.  However, to avoid manual configurations, usually DNS
   records for HIP are set up.  For instance, the popular DNS server
   software Bind9 does not require any changes to accommodate DNS
   records for HIP because they can be supported in binary format in its
   configuration files [RFC6538].  HIP rendezvous servers and firewalls
   are optional.  No changes are required to network address points,
   NATs, edge routers, or core networks.  HIP may require holes in
   legacy firewalls.

   The analysis also clarifies the requirements for the host components
   that consist of three parts.  First, a HIP control plane component is
   required, typically implemented as a userspace daemon.  Second, a
   data plane component is needed.  Most HIP implementations utilize the
   so-called Bound End-to-End Tunnel (BEET) mode of ESP that has been
   available since Linux kernel 2.6.27, but the BEET mode is also
   included as a userspace component in a few of the implementations.
   Third, HIP systems usually provide a DNS proxy for the local host
   that translates HIP DNS records to LSIs and HITs, and communicates
   the corresponding locators to the HIP userspace daemon.  While the
   third component is not mandatory, it is very useful for avoiding
   manual configurations.  The three components are further described in
   the HIP experiment report [RFC6538].

   Based on the interviews, LevÃ¤ et al. suggest further directions to
   facilitate HIP deployment.  Transitioning a number of HIP
   specifications to the Standards Track in the IETF has already taken



   place, but the authors suggest other additional measures based on the
   interviews.  As a more radical measure, the authors suggest to
   implement HIP as a purely application-layer library [xin-hip-lib] or
   other kind of middleware.  On the other hand, more conservative
   measures include focusing on private deployments controlled by a
   single stakeholder.  As a more concrete example of such a scenario,
   HIP could be used by a single service provider to facilitate secure
   connectivity between its servers [komu-cloud].

A.3.2.  HIP in 802.15.4 Networks

   The IEEE 802 standards have been defining MAC-layer security.  Many
   of these standards use Extensible Authentication Protocol (EAP)
   [RFC3748] as a Key Management System (KMS) transport, but some like
   IEEE 802.15.4 [IEEE.802.15.4] leave the KMS and its transport as "out
   of scope".

   HIP is well suited as a KMS in these environments:

   *  HIP is independent of IP addressing and can be directly
      transported over any network protocol.

   *  Master keys in 802 protocols are commonly pair-based with group
      keys transported from the group controller using pairwise keys.

   *  Ad hoc 802 networks can be better served by a peer-to-peer KMS
      than the EAP client/server model.

   *  Some devices are very memory constrained, and a common KMS for
      both MAC and IP security represents a considerable code savings.

A.3.3.  HIP and Internet of Things

   HIP requires certain amount computational resources from a device due
   to cryptographic processing.  HIP scales down to phones and small
   system-on-chip devices (such as Raspberry Pis, Intel Edison), but
   small sensors operating with small batteries have remained
   problematic.  Different extensions to the HIP have been developed to
   scale HIP down to smaller devices, typically with different security
   trade-offs.  For example, the non-cryptographic identifiers have been
   proposed in RFID scenarios.  The Slimfit approach [hummen] proposes a
   compression layer for HIP to make it more suitable for constrained
   networks.  The approach is applied to a lightweight version of HIP
   (i.e., "Diet HIP") in order to scale down to small sensors.

   The HIP Diet EXchange (DEX) [hip-dex] design aims to reduce the
   overhead of the employed cryptographic primitives by omitting public-
   key signatures and hash functions.  In doing so, the main goal is to
   still deliver security properties similar to the Base Exchange (BEX).

   DEX is primarily designed for computation- or memory-constrained
   sensor/actuator devices.  Like BEX, it is expected to be used
   together with a suitable security protocol such as the ESP for the
   protection of upper-layer protocol data.  In addition, DEX can also
   be used as a keying mechanism for security primitives at the MAC
   layer, e.g., for IEEE 802.15.9 networks [IEEE.802.15.9].

   The main differences between HIP BEX and DEX are:

   1.  Minimum collection of cryptographic primitives to reduce the
       protocol overhead.

       *  Static Elliptic Curve Diffie-Hellman (ECDH) key pairs for peer
          authentication and encryption of the session key.

       *  AES-CTR for symmetric encryption and AES-CMAC for MACing
          function.

       *  A simple fold function for HIT generation.

   2.  Forfeit of perfect forward secrecy with the dropping of an



       ephemeral Diffie-Hellman key agreement.

   3.  Forfeit of digital signatures with the removal of a hash
       function.  Reliance on the ECDH-derived key used in HIP_MAC to
       prove ownership of the private key.

   4.  Diffie-Hellman derived key ONLY used to protect the HIP packets.
       A separate secret exchange within the HIP packets creates the
       session key(s).

   5.  Optional retransmission strategy tailored to handle the
       potentially extensive processing time of the employed
       cryptographic operations on computationally constrained devices.

A.3.4.  Infrastructure Applications

   The HIP experimentation report [RFC6538] enumerates a number of
   client and server applications that have been trialed with HIP.
   Based on the report, this section highlights and complements some
   potential ways how HIP could be exploited in existing infrastructure
   such as routers, gateways, and proxies.

   HIP has been successfully used with forward web proxies (i.e.,
   client-side proxies).  HIP was used between a client host (web
   browser) and a forward proxy (Apache server) that terminated the HIP/
   ESP tunnel.  The forward web proxy translated HIP-based traffic
   originating from the client into non-HIP traffic towards any web
   server in the Internet.  Consequently, the HIP-capable client could
   communicate with HIP-incapable web servers.  This way, the client
   could utilize mobility support as provided by HIP while using the
   fixed IP address of the web proxy, for instance, to access services
   that were allowed only from the IP address range of the proxy.

   HIP with reverse web proxies (i.e., server-side proxies) has also
   been investigated, as described in more detail in [komu-cloud].  In
   this scenario, a HIP-incapable client accessed a HIP-capable web
   service via an intermediary load balancer (a web-based load balancer
   implementation called HAProxy).  The load balancer translated non-HIP
   traffic originating from the client into HIP-based traffic for the
   web service (consisting of front-end and back-end servers).  Both the
   load balancer and the web service were located in a data center.  One
   of the key benefits for encrypting the web traffic with HIP in this
   scenario was supporting a private-public cloud scenario (i.e., hybrid
   cloud) where the load balancer, front-end servers, and back-end
   servers were located in different data centers, and thus the traffic
   needed to be protected when it passed through potentially insecure
   networks between the borders of the private and public clouds.

   While HIP could be used to secure access to intermediary devices
   (e.g., access to switches with legacy telnet), it has also been used
   to secure intermittent connectivity between middlebox infrastructure.
   For instance, earlier research [komu-mitigation] utilized HIP between
   Simple Mail Transport Protocol (SMTP) servers in order to exploit the
   computational puzzles of HIP as a spam mitigation mechanism.  A
   rather obvious practical challenge in this approach was the lack of
   HIP adoption on existing SMTP servers.

   To avoid deployment hurdles with existing infrastructure, HIP could
   be applied in the context of new protocols with little deployment.
   Namely, HIP has been studied in the context of a new protocol, peer-
   to-peer SIP [camarillo-p2psip].  The work has resulted in a number of
   related RFCs [RFC6078], [RFC6079], and [RFC7086].  The key idea in
   the research work was to avoid redundant, time-consuming ICE
   procedures by grouping different connections (i.e., SIP and media
   streams) together using the low-layer HIP, which executes NAT
   traversal procedures only once per host.  An interesting aspect in
   the approach was the use of P2P-SIP infrastructure as rendezvous
   servers for the HIP control plane instead of utilizing the
   traditional HIP rendezvous services [RFC8004].

   Researchers have proposed using HIP in cellular networks as a



   mobility, multihoming, and security solution. [hip-lte] provides a
   security analysis and simulation measurements of using HIP in Long
   Term Evolution (LTE) backhaul networks.

   HIP has been studied for securing cloud internal connectivity.  First
   with virtual machines [komu-cloud] and then between Linux containers
   [ranjbar-synaptic].  In both cases, HIP was suggested as a solution
   to NAT traversal that could be utilized both internally by a cloud
   network and between multi-cloud deployments.  Specifically in the
   former case, HIP was beneficial sustaining connectivity with a
   virtual machine while it migrated to a new location.  In the latter
   case, a Software-Defined Networking (SDN) controller acted as a
   rendezvous server for HIP-capable containers.  The controller
   enforced strong replay protection by adding middlebox nonces
   [heer-end-host] to the passing HIP base exchange and UPDATE messages.

A.3.5.  Management of Identities in a Commercial Product

   Tempered Networks provides HIP-based products.  They refer to their
   platform as Identity-Defined Networking (IDN) [tempered-networks]
   because of HIP’s identity-first networking architecture.  Their
   objective has been to make it simple and nondisruptive to deploy HIP-
   enabled services widely in production environments with the purpose
   of enabling transparent device authentication and authorization,
   cloaking, segmentation, and end-to-end networking.  The goal is to
   eliminate much of the circular dependencies, exploits, and layered
   complexity of traditional "address-defined networking" that prevents
   mobility and verifiable device access control.  The products in the
   portfolio of Tempered Networks utilize HIP are as follows:

   HIP Switches / Gateways
      These are physical or virtual appliances that serve as the HIP
      gateway and policy enforcement point for non-HIP-aware
      applications and devices located behind it.  No IP or
      infrastructure changes are required in order to connect, cloak,
      and protect the non-HIP-aware devices.  Currently known supported
      platforms for HIP gateways are x86 and ARM chipsets, ESXi, Hyper-
      V, KVM, AWS, Azure, and Google clouds.

   HIP Relays / Rendezvous
      These are physical or virtual appliances that serve as identity-
      based routers authorizing and bridging HIP endpoints without
      decrypting the HIP session.  A HIP relay can be deployed as a
      standalone appliance or in a cluster for horizontal scaling.  All
      HIP-aware endpoints and the devices they’re connecting and
      protecting can remain privately addressed.  The appliances
      eliminate IP conflicts, tunnel through NAT and carrier-grade NAT,
      and require no changes to the underlying infrastructure.  The only
      requirement is that a HIP endpoint should have outbound access to
      the Internet and that a HIP Relay should have a public address.

   HIP-Aware Clients and Servers
      This is software that is installed in the host’s network stack and
      enforces policy for that host.  HIP clients support split
      tunneling.  Both the HIP client and HIP server can interface with
      the local host firewall, and the HIP server can be locked down to
      listen only on the port used for HIP, making the server invisible
      from unauthorized devices.  Currently known supported platforms
      are Windows, OS X, iOS, Android, Ubuntu, CentOS, and other Linux
      derivatives.

   Policy Orchestration Managers
      These physical or virtual appliances serve as the engine to define
      and distribute network and security policy (HI and IP mappings,
      overlay networks, and whitelist policies, etc.) to HIP-aware
      endpoints.  Orchestration does not need to persist to the HIP
      endpoints and vice versa, allowing for autonomous host networking
      and security.

A.4.  Answers to NSRG Questions



   The IRTF Name Space Research Group has posed a number of evaluating
   questions in their report [nsrg-report].  In this section, we provide
   answers to these questions.

   1.  How would a stack name improve the overall functionality of the
       Internet?

       HIP decouples the internetworking layer from the transport layer,
       allowing each to evolve separately.  The decoupling makes end-
       host mobility and multihoming easier, also across IPv4 and IPv6
       networks.  HIs make network renumbering easier, and they also
       make process migration and clustered servers easier to implement.
       Furthermore, being cryptographic in nature, they provide the
       basis for solving the security problems related to end-host
       mobility and multihoming.

   2.  What does a stack name look like?

       A HI is a cryptographic public key.  However, instead of using
       the keys directly, most protocols use a fixed-size hash of the
       public key.

   3.  What is its lifetime?

       HIP provides both stable and temporary Host Identifiers.  Stable
       HIs are typically long-lived, with a lifetime of years or more.
       The lifetime of temporary HIs depends on how long the upper-layer
       connections and applications need them, and can range from a few
       seconds to years.

   4.  Where does it live in the stack?

       The HIs live between the transport and internetworking layers.

   5.  How is it used on the endpoints?

       The Host Identifiers may be used directly or indirectly (in the
       form of HITs or LSIs) by applications when they access network
       services.  Additionally, the Host Identifiers, as public keys,
       are used in the built-in key agreement protocol, called the HIP
       base exchange, to authenticate the hosts to each other.

   6.  What administrative infrastructure is needed to support it?

       In some environments, it is possible to use HIP
       opportunistically, without any infrastructure.  However, to gain
       full benefit from HIP, the HIs must be stored in the DNS or a
       PKI, and the rendezvous mechanism is needed [RFC8005].

   7.  If we add an additional layer, would it make the address list in
       SCTP unnecessary?

       Yes

   8.  What additional security benefits would a new naming scheme
       offer?

       HIP reduces dependency on IP addresses, making the so-called
       address ownership [Nik2001] problems easier to solve.  In
       practice, HIP provides security for end-host mobility and
       multihoming.  Furthermore, since HIP Host Identifiers are public
       keys, standard public key certificate infrastructures can be
       applied on the top of HIP.

   9.  What would the resolution mechanisms be, or what characteristics
       of a resolution mechanisms would be required?

       For most purposes, an approach where DNS names are resolved
       simultaneously to HIs and IP addresses is sufficient.  However,
       if it becomes necessary to resolve HIs into IP addresses or back
       to DNS names, a flat resolution infrastructure is needed.  Such



       an infrastructure could be based on the ideas of Distributed Hash
       Tables, but would require significant new development and
       deployment.
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   universities: RWTH Aachen, Aalto, and University of Helsinki for
   their efforts.  Without their collective efforts, HIP would have
   withered as on the IETF vine as a nice concept.

   Thanks also to Suvi Koskinen for her help with proofreading and with
   the reference jungle.
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