
ï»¿

Internet Engineering Task Force (IETF) R. Moskowitz, Ed.
Request for Comments: 9063 HTT Consulting
Obsoletes: 4423 M. Komu
Category: Informational Ericsson
ISSN: 2070-1721 July 2021

 Host Identity Protocol Architecture

Abstract

 This memo describes the Host Identity (HI) namespace, which provides
 a cryptographic namespace to applications, and the associated
 protocol layer, the Host Identity Protocol, located between the
 internetworking and transport layers, that supports end-host
 mobility, multihoming, and NAT traversal. Herein are presented the
 basics of the current namespaces, their strengths and weaknesses, and
 how a HI namespace will add completeness to them. The roles of the
 HI namespace in the protocols are defined.

 This document obsoletes RFC 4423 and addresses the concerns raised by
 the IESG, particularly that of crypto agility. The Security
 Considerations section also describes measures against flooding
 attacks, usage of identities in access control lists, weaker types of
 identifiers, and trust on first use. This document incorporates
 lessons learned from the implementations of RFC 7401 and goes further
 to explain how HIP works as a secure signaling channel.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9063.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may

 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction
 2. Terminology
 2.1. Terms Common to Other Documents
 2.2. Terms Specific to This and Other HIP Documents
 3. Background
 3.1. A Desire for a Namespace for Computing Platforms
 4. Host Identity Namespace
 4.1. Host Identifiers
 4.2. Host Identity Hash (HIH)
 4.3. Host Identity Tag (HIT)
 4.4. Local Scope Identifier (LSI)
 4.5. Storing Host Identifiers in Directories
 5. New Stack Architecture
 5.1. On the Multiplicity of Identities
 6. Control Plane
 6.1. Base Exchange
 6.2. End-Host Mobility and Multihoming
 6.3. Rendezvous Mechanism
 6.4. Relay Mechanism
 6.5. Termination of the Control Plane
 7. Data Plane
 8. HIP and NATs
 8.1. HIP and Upper-Layer Checksums
 9. Multicast
 10. HIP Policies
 11. Security Considerations
 11.1. MitM Attacks
 11.2. Protection against Flooding Attacks
 11.3. HITs Used in ACLs
 11.4. Alternative HI Considerations
 11.5. Trust on First Use
 12. IANA Considerations
 13. Changes from RFC 4423
 14. References
 14.1. Normative References
 14.2. Informative References
 Appendix A. Design Considerations
 A.1. Benefits of HIP
 A.2. Drawbacks of HIP
 A.3. Deployment and Adoption Considerations
 A.3.1. Deployment Analysis
 A.3.2. HIP in 802.15.4 Networks
 A.3.3. HIP and Internet of Things
 A.3.4. Infrastructure Applications
 A.3.5. Management of Identities in a Commercial Product
 A.4. Answers to NSRG Questions
 Acknowledgments
 Authors’ Addresses

1. Introduction

 The Internet has two important global namespaces: Internet Protocol
 (IP) addresses and Domain Name Service (DNS) names. These two
 namespaces have a set of features and abstractions that have powered
 the Internet to what it is today. They also have a number of
 weaknesses. Basically, since they are all we have, we try to do too
 much with them. Semantic overloading and functionality extensions
 have greatly complicated these namespaces.

 The proposed Host Identity namespace is also a global namespace, and
 it fills an important gap between the IP and DNS namespaces. A Host
 Identity conceptually refers to a computing platform, and there may
 be multiple such Host Identities per computing platform (because the
 platform may wish to present a different identity to different
 communicating peers). The Host Identity namespace consists of Host

 Identifiers (HI). There is exactly one Host Identifier for each Host
 Identity (although there may be transient periods of time such as key
 replacement when more than one identifier may be active). While this
 text later talks about non-cryptographic Host Identifiers, the
 architecture focuses on the case in which Host Identifiers are
 cryptographic in nature. Specifically, the Host Identifier is the
 public key of an asymmetric key pair. Each Host Identity uniquely
 identifies a single host, i.e., no two hosts have the same Host
 Identity. If two or more computing platforms have the same Host
 Identifier, then they are instantiating a distributed host. The Host
 Identifier can either be public (e.g., published in the DNS) or
 unpublished. Client systems will tend to have both public and
 unpublished Host Identifiers.

 There is a subtle but important difference between Host Identities
 and Host Identifiers. An Identity refers to the abstract entity that
 is identified. An Identifier, on the other hand, refers to the
 concrete bit pattern that is used in the identification process.

 Although the Host Identifiers could be used in many authentication
 systems, such as IKEv2 [RFC7296], the presented architecture
 introduces a new protocol, called the Host Identity Protocol (HIP),
 and a cryptographic exchange, called the HIP base exchange; see also
 Section 6. HIP provides for limited forms of trust between systems,
 enhances mobility, multihoming, and dynamic IP renumbering, aids in
 protocol translation and transition, and reduces certain types of
 denial-of-service (DoS) attacks.

 When HIP is used, the actual payload traffic between two HIP hosts is
 typically, but not necessarily, protected with Encapsulating Security
 Payload (ESP) [RFC7402]. The Host Identities are used to create the
 needed ESP Security Associations (SAs) and to authenticate the hosts.
 When ESP is used, the actual payload IP packets do not differ in any
 way from standard ESP-protected IP packets.

 Much has been learned about HIP [RFC6538] since [RFC4423] was
 published. This document expands Host Identities beyond their
 original use to enable IP connectivity and security to enable general
 interhost secure signaling at any protocol layer. The signal may
 establish a security association between the hosts or simply pass
 information within the channel.

2. Terminology

2.1. Terms Common to Other Documents

 +==========+===+
 | Term | Explanation |
 +==========+===+
 | Public | The public key of an asymmetric cryptographic key |
 | key | pair. Used as a publicly known identifier for |
 | | cryptographic identity authentication. Public is |
 | | a relative term here, ranging from "known to |
 | | peers only" to "known to the world". |
 +----------+---+
 | Private | The private or secret key of an asymmetric |
 | key | cryptographic key pair. Assumed to be known only |
 | | to the party identified by the corresponding |
 | | public key. Used by the identified party to |
 | | authenticate its identity to other parties. |
 +----------+---+
 | Public | An asymmetric cryptographic key pair consisting |
 | key pair | of public and private keys. For example, Rivest- |
 | | Shamir-Adleman (RSA), Digital Signature Algorithm |
 | | (DSA) and Elliptic Curve DSA (ECDSA) key pairs |
 | | are such key pairs. |
 +----------+---+
 | Endpoint | A communicating entity. For historical reasons, |
 | | the term ’computing platform’ is used in this |
 | | document as a (rough) synonym for endpoint. |
 +----------+---+

 Table 1

2.2. Terms Specific to This and Other HIP Documents

 It should be noted that many of the terms defined herein are
 tautologous, self-referential, or defined through circular reference
 to other terms. This is due to the succinct nature of the
 definitions. See the text elsewhere in this document and the base
 specification [RFC7401] for more elaborate explanations.

 +==============+===+
 | Term | Explanation |
 +==============+===+
 | Computing | An entity capable of communicating and |
 | platform | computing, for example, a computer. See |
 | | the definition of ’Endpoint’, above. |
 +--------------+---+
 | HIP base | A cryptographic protocol; see also |
 | exchange | Section 6. |
 +--------------+---+
 | HIP packet | An IP packet that carries a ’Host Identity |
 | | Protocol’ message. |
 +--------------+---+
 | Host | An abstract concept assigned to a |
 | Identity | ’computing platform’. See ’Host |
 | | Identifier’, below. |
 +--------------+---+
 | Host | A public key used as a name for a Host |
 | Identifier | Identity. |
 +--------------+---+
 | Host | A name space formed by all possible Host |
 | Identity | Identifiers. |
 | namespace | |
 +--------------+---+
 | Host | A protocol used to carry and authenticate |
 | Identity | Host Identifiers and other information. |
 | Protocol | |
 +--------------+---+
 | Host | The cryptographic hash used in creating the |
 | Identity | Host Identity Tag from the Host Identifier. |
 | Hash | |
 +--------------+---+
 | Host | A 128-bit datum created by taking a |
 | Identity Tag | cryptographic hash over a Host Identifier |
 | | plus bits to identify which hash was used. |
 +--------------+---+
 | Local Scope | A 32-bit datum denoting a Host Identity. |
 | Identifier | |
 +--------------+---+
 | Public Host | A published or publicly known Host |
 | Identifier | Identifier used as a public name for a Host |
 | and Identity | Identity, and the corresponding Identity. |
 +--------------+---+
 | Unpublished | A Host Identifier that is not placed in any |
 | Host | public directory, and the corresponding |
 | Identifier | Host Identity. Unpublished Host Identities |
 | and Identity | are typically short lived in nature, being |
 | | often replaced and possibly used just once. |
 +--------------+---+
 | Rendezvous | A mechanism used to locate mobile hosts |
 | Mechanism | based on their HIT. |
 +--------------+---+

 Table 2

3. Background

 The Internet is built from three principal components: computing
 platforms (endpoints), packet transport (i.e., internetworking)
 infrastructure, and services (applications). The Internet exists to

 service two principal components: people and robotic services
 (silicon-based people, if you will). All these components need to be
 named in order to interact in a scalable manner. Here we concentrate
 on naming computing platforms and packet transport elements.

 There are two principal namespaces in use in the Internet for these
 components: IP addresses, and Domain Names. Domain Names provide
 hierarchically assigned names for some computing platforms and some
 services. Each hierarchy is delegated from the level above; there is
 no anonymity in Domain Names. Email, HTTP, and SIP addresses all
 reference Domain Names.

 The IP addressing namespace has been overloaded to name both
 interfaces (at Layer 3) and endpoints (for the endpoint-specific part
 of Layer 3 and for Layer 4). In their role as interface names, IP
 addresses are sometimes called "locators" and serve as an endpoint
 within a routing topology.

 IP addresses are numbers that name networking interfaces, and
 typically only when the interface is connected to the network.
 Originally, IP addresses had long-term significance. Today, the vast
 number of interfaces use ephemeral and/or non-unique IP addresses.
 That is, every time an interface is connected to the network, it is
 assigned an IP address.

 In the current Internet, the transport layers are coupled to the IP
 addresses. Neither can evolve separately from the other. IPng
 deliberations were strongly shaped by the decision that a
 corresponding TCPng would not be created.

 There are three critical deficiencies with the current namespaces.
 First, the establishing of initial contact and the sustaining of data
 flows between two hosts can be challenging due to private address
 realms and the ephemeral nature of addresses. Second,
 confidentiality is not provided in a consistent, trustable manner.
 Finally, authentication for systems and datagrams is not provided.
 All of these deficiencies arise because computing platforms are not
 well named with the current namespaces.

3.1. A Desire for a Namespace for Computing Platforms

 An independent namespace for computing platforms could be used in
 end-to-end operations independent of the evolution of the
 internetworking layer and across the many internetworking layers.
 This could support rapid readdressing of the internetworking layer
 because of mobility, rehoming, or renumbering.

 If the namespace for computing platforms is based on public-key
 cryptography, it can also provide authentication services. If this
 namespace is locally created without requiring registration, it can
 provide anonymity.

 Such a namespace (for computing platforms) and the names in it should
 have the following characteristics:

 * The namespace should be applied to the IP ’kernel’ or stack. The
 IP stack is the ’component’ between applications and the packet
 transport infrastructure.

 * The namespace should fully decouple the internetworking layer from
 the higher layers. The names should replace all occurrences of IP
 addresses within applications (like in the Transport Control
 Block, TCB). This replacement can be handled transparently for
 legacy applications as the Local Scope Identifiers (LSIs) and HITs
 are compatible with IPv4 and IPv6 addresses [RFC5338]. However,
 HIP-aware applications require some modifications from the
 developers, who may employ networking API extensions for HIP
 [RFC6317].

 * The introduction of the namespace should not mandate any
 administrative infrastructure. Deployment must come from the

 bottom up, in a pairwise deployment.

 * The names should have a fixed-length representation, for easy
 inclusion in datagram headers and existing programming interfaces
 (e.g., the TCB).

 * Using the namespace should be affordable when used in protocols.
 This is primarily a packet size issue. There is also a
 computational concern in affordability.

 * Name collisions should be avoided as much as possible. The
 mathematics of the birthday paradox can be used to estimate the
 chance of a collision in a given population and hash space. In
 general, for a random hash space of size n bits, we would expect
 to obtain a collision after approximately 1.2*sqrt(2^n) hashes
 were obtained. For 64 bits, this number is roughly 4 billion. A
 hash size of 64 bits may be too small to avoid collisions in a
 large population; for example, there is a 1% chance of collision
 in a population of 640M. For 100 bits (or more), we would not
 expect a collision until approximately 2^50 (1 quadrillion) hashes
 were generated. With the currently used hash size of 96 bits
 [RFC7343], the figure is 2^48 (281 trillions).

 * The names should have a localized abstraction so that they can be
 used in existing protocols and APIs.

 * It must be possible to create names locally. When such names are
 not published, this can provide anonymity at the cost of making
 resolvability very difficult.

 * The namespace should provide authentication services.

 * The names should be long-lived, but replaceable at any time. This
 impacts access control lists; short lifetimes will tend to result
 in tedious list maintenance or require a namespace infrastructure
 for central control of access lists.

 In this document, the namespace approaching these ideas is called the
 Host Identity namespace. Using Host Identities requires its own
 protocol layer, the Host Identity Protocol, between the
 internetworking and transport layers. The names are based on public-
 key cryptography to supply authentication services. Properly
 designed, it can deliver all of the above-stated requirements.

4. Host Identity Namespace

 A name in the Host Identity namespace, a Host Identifier (HI),
 represents a statistically globally unique name for naming any system
 with an IP stack. This identity is normally associated with, but not
 limited to, an IP stack. A system can have multiple identities, some
 ’well known’, some unpublished or ’anonymous’. A system may self-
 assert its own identity, or may use a third-party authenticator like
 DNSSEC [RFC4033], Pretty Good Privacy (PGP), or X.509 to ’notarize’
 the identity assertion to another namespace.

 In theory, any name that can claim to be ’statistically globally
 unique’ may serve as a Host Identifier. In the HIP architecture, the
 public key of a private-public key pair has been chosen as the Host
 Identifier because it can be self-managed and it is computationally
 difficult to forge. As specified in the Host Identity Protocol
 specification [RFC7401], a public-key-based HI can authenticate the
 HIP packets and protect them from man-in-the-middle (MitM) attacks.
 Since authenticated datagrams are mandatory to provide much of HIP’s
 denial-of-service protection, the Diffie-Hellman exchange in HIP base
 exchange has to be authenticated. Thus, only public-key HI and
 authenticated HIP messages are supported in practice.

 In this document, some non-cryptographic forms of HI and HIP are
 referenced, but cryptographic forms should be preferred because they
 are more secure than their non-cryptographic counterparts. There has
 been past research in challenge puzzles using non-cryptographic HI

 for Radio Frequency IDentification (RFID), in an HIP exchange
 tailored to the workings of such challenges (as described further in
 [urien-rfid] and [urien-rfid-draft]).

4.1. Host Identifiers

 Host Identity adds two main features to Internet protocols. The
 first is a decoupling of the internetworking and transport layers;
 see Section 5. This decoupling will allow for independent evolution
 of the two layers. Additionally, it can provide end-to-end services
 over multiple internetworking realms. The second feature is host
 authentication. Because the Host Identifier is a public key, this
 key can be used for authentication in security protocols like ESP.

 An identity is based on public-private key cryptography in HIP. The
 Host Identity is referred to by its public component, the public key.
 Thus, the name representing a Host Identity in the Host Identity
 namespace, i.e., the Host Identifier, is the public key. In a way,
 the possession of the private key defines the Identity itself. If
 the private key is possessed by more than one node, the Identity can
 be considered to be a distributed one.

 Architecturally, any other Internet naming convention might form a
 usable base for Host Identifiers. However, non-cryptographic names
 should only be used in situations of high trust and/or low risk.
 That is any place where host authentication is not needed (no risk of
 host spoofing) and no use of ESP. However, at least for
 interconnected networks spanning several operational domains, the set
 of environments where the risk of host spoofing allowed by non-
 cryptographic Host Identifiers is acceptable is the null set. Hence,
 the current HIP documents do not specify how to use any other types
 of Host Identifiers but public keys. For instance, the Back to My
 Mac service [RFC6281] from Apple comes pretty close to the
 functionality of HIP, but unlike HIP, it is based on non-
 cryptographic identifiers.

 The actual Host Identifiers are never directly used at the transport
 or network layers. The corresponding Host Identifiers (public keys)
 may be stored in various DNS or other directories as identified
 elsewhere in this document, and they are passed in the HIP base
 exchange. A Host Identity Tag (HIT) is used in other protocols to
 represent the Host Identity. Another representation of the Host
 Identities, the Local Scope Identifier (LSI), can also be used in
 protocols and APIs.

4.2. Host Identity Hash (HIH)

 The Host Identity Hash (HIH) is the cryptographic hash algorithm used
 in producing the HIT from the HI. It is also the hash used
 throughout HIP for consistency and simplicity. It is possible for
 the two hosts in the HIP exchange to use different hash algorithms.

 Multiple HIHs within HIP are needed to address the moving target of
 creation and eventual compromise of cryptographic hashes. This
 significantly complicates HIP and offers an attacker an additional
 downgrade attack that is mitigated in HIP [RFC7401].

4.3. Host Identity Tag (HIT)

 A Host Identity Tag (HIT) is a 128-bit representation for a Host
 Identity. Due to its size, it is suitable for use in the existing
 sockets API in the place of IPv6 addresses (e.g., in sockaddr_in6
 structure, sin6_addr member) without modifying applications. It is
 created from an HIH, an IPv6 prefix [RFC7343], and a hash identifier.
 There are two advantages of using the HIT over using the Host
 Identifier in protocols. First, its fixed length makes for easier
 protocol coding and also better manages the packet size cost of this
 technology. Second, it presents the identity in a consistent format
 to the protocol independent of the cryptographic algorithms used.

 In essence, the HIT is a hash over the public key. As such, two

 algorithms affect the generation of a HIT: the public-key algorithm
 of the HI and the used HIH. The two algorithms are encoded in the
 bit presentation of the HIT. As the two communicating parties may
 support different algorithms, [RFC7401] defines the minimum set for
 interoperability. For further interoperability, the Responder may
 store its keys in DNS records, and thus the Initiator may have to
 couple destination HITs with appropriate source HITs according to
 matching HIH.

 In the HIP packets, the HITs identify the sender and recipient of a
 packet. Consequently, a HIT should be unique in the whole IP
 universe as long as it is being used. In the extremely rare case of
 a single HIT mapping to more than one Host Identity, the Host
 Identifiers (public keys) will make the final difference. If there
 is more than one public key for a given node, the HIT acts as a hint
 for the correct public key to use.

 Although it may be rare for an accidental collision to cause a single
 HIT mapping to more than one Host Identity, it may be the case that
 an attacker succeeds to find, by brute force or algorithmic weakness,
 a second Host Identity hashing to the same HIT. This type of attack
 is known as a preimage attack, and the resistance to finding a second
 Host Identifier (public key) that hashes to the same HIT is called
 second preimage resistance. Second preimage resistance in HIP is
 based on the hash algorithm strength and the length of the hash
 output used. Through HIPv2 [RFC7401], this resistance is 96 bits
 (less than the 128-bit width of an IPv6 address field due to the
 presence of the Overlay Routable Cryptographic Hash Identifiers
 (ORCHID) prefix [RFC7343]). 96 bits of resistance was considered
 acceptable strength during the design of HIP but may eventually be
 considered insufficient for the threat model of an envisioned
 deployment. One possible mitigation would be to augment the use of
 HITs in the deployment with the HIs themselves (and mechanisms to
 securely bind the HIs to the HITs), so that the HI becomes the final
 authority. It also may be possible to increase the difficulty of a
 brute force attack by making the generation of the HI more
 computationally difficult, such as the hash extension approach of
 Secure Neighbor Discovery Cryptographically Generated Addresses
 (CGAs) [RFC3972], although the HIP specifications through HIPv2 do
 not provide such a mechanism. Finally, deployments that do not use
 ORCHIDs (such as certain types of overlay networks) might also use
 the full 128-bit width of an IPv6 address field for the HIT.

4.4. Local Scope Identifier (LSI)

 An LSI is a 32-bit localized representation for a Host Identity. Due
 to its size, it is suitable for use in the existing sockets API in
 the place of IPv4 addresses (e.g., in sockaddr_in structure, sin_addr
 member) without modifying applications. The purpose of an LSI is to
 facilitate using Host Identities in existing APIs for IPv4-based
 applications. LSIs are never transmitted on the wire; when an
 application sends data using a pair of LSIs, the HIP layer (or
 sockets handler) translates the LSIs to the corresponding HITs, and
 vice versa for the receiving of data. Besides facilitating HIP-based
 connectivity for legacy IPv4 applications, the LSIs are beneficial in
 two other scenarios [RFC6538].

 In the first scenario, two IPv4-only applications reside on two
 separate hosts connected by IPv6-only network. With HIP-based
 connectivity, the two applications are able to communicate despite
 the mismatch in the protocol families of the applications and the
 underlying network. The reason is that the HIP layer translates the
 LSIs originating from the upper layers into routable IPv6 locators
 before delivering the packets on the wire.

 The second scenario is the same as the first one, but with the
 difference that one of the applications supports only IPv6. Now two
 obstacles hinder the communication between the applications: the
 addressing families of the two applications differ, and the
 application residing at the IPv4-only side is again unable to
 communicate because of the mismatch between addressing families of

 the application (IPv4) and network (IPv6). With HIP-based
 connectivity for applications, this scenario works; the HIP layer can
 choose whether to translate the locator of an incoming packet into an
 LSI or HIT.

 Effectively, LSIs improve IPv6 interoperability at the network layer
 as described in the first scenario and at the application layer as
 depicted in the second example. The interoperability mechanism
 should not be used to avoid transition to IPv6; the authors firmly
 believe in IPv6 adoption and encourage developers to port existing
 IPv4-only applications to use IPv6. However, some proprietary,
 closed-source, IPv4-only applications may never see the daylight of
 IPv6, and the LSI mechanism is suitable for extending the lifetime of
 such applications even in IPv6-only networks.

 The main disadvantage of an LSI is its local scope. Applications may
 violate layering principles and pass LSIs to each other in
 application-layer protocols. As the LSIs are valid only in the
 context of the local host, they may represent an entirely different
 host when passed to another host. However, it should be emphasized
 here that the LSI concept is effectively a host-based NAT and does
 not introduce any more issues than the prevalent middlebox-based NATs
 for IPv4. In other words, the applications violating layering
 principles are already broken by the NAT boxes that are ubiquitously
 deployed.

4.5. Storing Host Identifiers in Directories

 The public Host Identifiers should be stored in DNS; the unpublished
 Host Identifiers should not be stored anywhere (besides the
 communicating hosts themselves). The (public) HI along with the
 supported HIHs are stored in a new Resource Record (RR) type. This
 RR type is defined in the HIP DNS extension [RFC8005].

 Alternatively, or in addition to storing Host Identifiers in the DNS,
 they may be stored in various other directories. For instance, a
 directory based on the Lightweight Directory Access Protocol (LDAP)
 or a Public Key Infrastructure (PKI) [RFC8002] may be used.
 Alternatively, Distributed Hash Tables (DHTs) [RFC6537] have
 successfully been utilized [RFC6538]. Such a practice may allow them
 to be used for purposes other than pure host identification.

 Some types of applications may cache and use Host Identifiers
 directly, while others may indirectly discover them through a
 symbolic host name (such as a Fully Qualified Domain Name (FQDN))
 look up from a directory. Even though Host Identities can have a
 substantially longer lifetime associated with them than routable IP
 addresses, directories may be a better approach to manage the
 lifespan of Host Identities. For example, an LDAP-based directory or
 DHT can be used for locally published identities whereas DNS can be
 more suitable for public advertisement.

5. New Stack Architecture

 One way to characterize Host Identity is to compare the proposed HI-
 based architecture with the current one. Using the terminology from
 the IRTF Name Space Research Group Report [nsrg-report] and, e.g.,
 the document on "Endpoints and Endpoint Names" [chiappa-endpoints],
 the IP addresses currently embody the dual role of locators and
 endpoint identifiers. That is, each IP address names a topological
 location in the Internet, thereby acting as a routing direction
 vector, or locator. At the same time, the IP address names the
 physical network interface currently located at the point-of-
 attachment, thereby acting as an endpoint name.

 In the HIP architecture, the endpoint names and locators are
 separated from each other. IP addresses continue to act as locators.
 The Host Identifiers take the role of endpoint identifiers. It is
 important to understand that the endpoint names based on Host
 Identities are slightly different from interface names; a Host
 Identity can be simultaneously reachable through several interfaces.

 The difference between the bindings of the logical entities are
 illustrated in Figure 1. The left side illustrates the current TCP/
 IP architecture and the right side the HIP-based architecture.

 Transport ---- Socket Transport ------ Socket
 association | association |
 | |
 | |
 | |
 Endpoint | Endpoint --- Host Identity
 \ | |
 \ | |
 \ | |
 \ | |
 Location --- IP address Location --- IP address

 Figure 1

 Architecturally, HIP provides for a different binding of transport-
 layer protocols. That is, the transport-layer associations, i.e.,
 TCP connections and UDP associations, are no longer bound to IP
 addresses but rather to Host Identities. In practice, the Host
 Identities are exposed as LSIs and HITs for legacy applications and
 the transport layer to facilitate backward compatibility with
 existing networking APIs and stacks.

 The HIP layer is logically located at Layer 3.5, between the
 transport and network layers, in the networking stack. It acts as
 shim layer for transport data utilizing LSIs or HITs but leaves other
 data intact. The HIP layer translates between the two forms of HIP
 identifiers originating from the transport layer into routable IPv4/
 IPv6 addresses for the network layer and vice versa for the reverse
 direction.

5.1. On the Multiplicity of Identities

 A host may have multiple identities both at the client and server
 side. This raises some additional concerns that are addressed in
 this section.

 For security reasons, it may be a bad idea to duplicate the same Host
 Identity on multiple hosts because the compromise of a single host
 taints the identities of the other hosts. Management of machines
 with identical Host Identities may also present other challenges and,
 therefore, it is advisable to have a unique identity for each host.

 At the server side, utilizing DNS is a better alternative than a
 shared Host Identity to implement load balancing. A single FQDN
 entry can be configured to refer to multiple Host Identities. Each
 of the FQDN entries can be associated with the related locators or
 with a single shared locator in the case the servers are using the
 same HIP rendezvous server (Section 6.3) or HIP relay server
 (Section 6.4).

 Instead of duplicating identities, HIP opportunistic mode can be
 employed, where the Initiator leaves out the identifier of the
 Responder when initiating the key exchange and learns it upon the
 completion of the exchange. The trade-offs are related to lowered
 security guarantees, but a benefit of the approach is to avoid the
 publishing of Host Identifiers in any directories [komu-leap]. Since
 many public servers already employ DNS as their directory,
 opportunistic mode may be more suitable for, e.g., peer-to-peer
 connectivity. It is also worth noting that opportunistic mode is
 also required in practice when anycast IP addresses would be utilized
 as locators.

 HIP opportunistic mode could be utilized in association with HIP
 rendezvous servers or HIP relay servers [komu-diss]. In such a
 scenario, the Initiator sends an I1 message with a wildcard
 destination HIT to the locator of a HIP rendezvous/relay server.

 When the receiving rendezvous/relay server is serving multiple
 registered Responders, the server can choose the ultimate destination
 HIT, thus acting as a HIP-based load balancer. However, this
 approach is still experimental and requires further investigation.

 At the client side, a host may have multiple Host Identities, for
 instance, for privacy purposes. Another reason can be that the
 person utilizing the host employs different identities for different
 administrative domains as an extra security measure. If a HIP-aware
 middlebox, such as a HIP-based firewall, is on the path between the
 client and server, the user or the underlying system should carefully
 choose the correct identity to avoid the firewall unnecessarily
 dropping HIP-based connectivity [komu-diss].

 Similarly, a server may have multiple Host Identities. For instance,
 a single web server may serve multiple different administrative
 domains. Typically, the distinction is accomplished based on the DNS
 name, but also the Host Identity could be used for this purpose.
 However, a more compelling reason to employ multiple identities is
 the HIP-aware firewall that is unable to see the HTTP traffic inside
 the encrypted IPsec tunnel. In such a case, each service could be
 configured with a separate identity, thus allowing the firewall to
 segregate the different services of the single web server from each
 other [lindqvist-enterprise].

6. Control Plane

 HIP decouples the control and data planes from each other. Two end-
 hosts initialize the control plane using a key exchange procedure
 called the base exchange. The procedure can be assisted by HIP-
 specific infrastructural intermediaries called rendezvous or relay
 servers. In the event of IP address changes, the end-hosts sustain
 control plane connectivity with mobility and multihoming extensions.
 Eventually, the end-hosts terminate the control plane and remove the
 associated state.

6.1. Base Exchange

 The base exchange is a key exchange procedure that authenticates the
 Initiator and Responder to each other using their public keys.
 Typically, the Initiator is the client-side host and the Responder is
 the server-side host. The roles are used by the state machine of a
 HIP implementation but then discarded upon successful completion.

 The exchange consists of four messages during which the hosts also
 create symmetric keys to protect the control plane with Hash-based
 Message Authentication Codes (HMACs). The keys can be also used to
 protect the data plane, and IPsec ESP [RFC7402] is typically used as
 the data plane protocol, albeit HIP can also accommodate others.
 Both the control and data planes are terminated using a closing
 procedure consisting of two messages.

 In addition, the base exchange also includes a computational puzzle
 [RFC7401] that the Initiator must solve. The Responder chooses the
 difficulty of the puzzle, which permits the Responder to delay new
 incoming Initiators according to local policies, for instance, when
 the Responder is under heavy load. The puzzle can offer some
 resiliency against DoS attacks because the design of the puzzle
 mechanism allows the Responder to remain stateless until the very end
 of the base exchange [aura-dos]. HIP puzzles have also been studied
 under steady-state DDoS attacks [beal-dos], on multiple adversary
 models with varying puzzle difficulties [tritilanunt-dos], and with
 ephemeral Host Identities [komu-mitigation].

6.2. End-Host Mobility and Multihoming

 HIP decouples the transport from the internetworking layer and binds
 the transport associations to the Host Identities (actually through
 either the HIT or LSI). After the initial key exchange, the HIP
 layer maintains transport-layer connectivity and data flows using its
 extensions for mobility [RFC8046] and multihoming [RFC8047].

 Consequently, HIP can provide for a degree of internetworking
 mobility and multihoming at a low infrastructure cost. HIP mobility
 includes IP address changes (via any method) to either party. Thus,
 a system is considered mobile if its IP address can change
 dynamically for any reason like PPP, DHCP, IPv6 prefix reassignments,
 or a NAT device remapping its translation. Likewise, a system is
 considered multihomed if it has more than one globally routable IP
 address at the same time. HIP links IP addresses together when
 multiple IP addresses correspond to the same Host Identity. If one
 address becomes unusable, or a more preferred address becomes
 available, existing transport associations can easily be moved to
 another address.

 When a mobile node moves while communication is ongoing, address
 changes are rather straightforward. The mobile node sends a HIP
 UPDATE packet to inform the peer of the new address(es), and the peer
 then verifies that the mobile node is reachable through these
 addresses. This way, the peer can avoid flooding attacks as further
 discussed in Section 11.2.

6.3. Rendezvous Mechanism

 Establishing a contact to a mobile, moving node is slightly more
 involved. In order to start the HIP exchange, the Initiator node has
 to know how to reach the mobile node. For instance, the mobile node
 can employ Dynamic DNS [RFC2136] to update its reachability
 information in the DNS. To avoid the dependency to DNS, HIP provides
 its own HIP-specific alternative: the HIP rendezvous mechanism as
 defined in the HIP rendezvous specification [RFC8004].

 Using the HIP rendezvous extensions, the mobile node keeps the
 rendezvous infrastructure continuously updated with its current IP
 address(es). The mobile nodes trusts the rendezvous mechanism in
 order to properly maintain their HIT and IP address mappings.

 The rendezvous mechanism is especially useful in scenarios where both
 of the nodes are expected to change their address at the same time.
 In such a case, the HIP UPDATE packets will cross each other in the
 network and never reach the peer node.

6.4. Relay Mechanism

 The HIP relay mechanism [RFC9028] is an alternative to the HIP
 rendezvous mechanism. The HIP relay mechanism is more suitable for
 IPv4 networks with NATs because a HIP relay can forward all control
 and data plane communications in order to guarantee successful NAT
 traversal.

6.5. Termination of the Control Plane

 The control plane between two hosts is terminated using a secure two-
 message exchange as specified in base exchange specification
 [RFC7401]. The related state (i.e., host associations) should be
 removed upon successful termination.

7. Data Plane

 The encapsulation format for the data plane used for carrying the
 application-layer traffic can be dynamically negotiated during the
 key exchange. For instance, HICCUPS extensions [RFC6078] define one
 way to transport application-layer datagrams directly over the HIP
 control plane, protected by asymmetric key cryptography. Also,
 Secure Real-time Transport Protocol (SRTP) has been considered as the
 data encapsulation protocol [hip-srtp]. However, the most widely
 implemented method is the Encapsulated Security Payload (ESP)
 [RFC7402] that is protected by symmetric keys derived during the key
 exchange. ESP Security Associations (SAs) offer both confidentiality
 and integrity protection, of which the former can be disabled during
 the key exchange. In the future, other ways of transporting
 application-layer data may be defined.

 The ESP SAs are established and terminated between the Initiator and
 the Responder hosts. Usually, the hosts create at least two SAs, one
 in each direction (Initiator-to-Responder SA and Responder-to-
 Initiator SA). If the IP addresses of either host changes, the HIP
 mobility extensions can be used to renegotiate the corresponding SAs.

 On the wire, the difference in the use of identifiers between the HIP
 control and data planes is that the HITs are included in all control
 packets, but not in the data plane when ESP is employed. Instead,
 the ESP employs Security Parameter Index (SPI) numbers that act as
 compressed HITs. Any HIP-aware middlebox (for instance, a HIP-aware
 firewall) interested in the ESP-based data plane should keep track
 between the control and data plane identifiers in order to associate
 them with each other.

 Since HIP does not negotiate any SA lifetimes, all lifetimes are
 subject to local policy. The only lifetimes a HIP implementation
 must support are sequence number rollover (for replay protection) and
 SA timeout. An SA times out if no packets are received using that
 SA. Implementations may support lifetimes for the various ESP
 transforms and other data plane protocols.

8. HIP and NATs

 Passing packets between different IP addressing realms requires
 changing IP addresses in the packet header. This may occur, for
 example, when a packet is passed between the public Internet and a
 private address space, or between IPv4 and IPv6 networks. The
 address translation is usually implemented as Network Address
 Translation (NAT) [RFC3022] or the historic NAT Protocol Translation
 (NAT-PT) [RFC2766].

 In a network environment where identification is based on the IP
 addresses, identifying the communicating nodes is difficult when NATs
 are employed because private address spaces are overlapping. In
 other words, two hosts cannot be distinguished from each other solely
 based on their IP addresses. With HIP, the transport-layer endpoints
 (i.e., applications) are bound to unique Host Identities rather than
 overlapping private addresses. This allows two endpoints to
 distinguish one other even when they are located in different private
 address realms. Thus, the IP addresses are used only for routing
 purposes and can be changed freely by NATs when a packet between two
 HIP-capable hosts traverses through multiple private address realms.

 NAT traversal extensions for HIP [RFC9028] can be used to realize the
 actual end-to-end connectivity through NAT devices. To support basic
 backward compatibility with legacy NATs, the extensions encapsulate
 both HIP control and data planes in UDP. The extensions define
 mechanisms for forwarding the two planes through an intermediary host
 called HIP relay and procedures to establish direct end-to-end
 connectivity by penetrating NATs. Besides this "native" NAT
 traversal mode for HIP, other NAT traversal mechanisms have been
 successfully utilized, such as Teredo [RFC4380] (as described in
 further detail in [varjonen-split]).

 Besides legacy NATs, a HIP-aware NAT has been designed and
 implemented [ylitalo-spinat]. For a HIP-based flow, a HIP-aware NAT
 or HIP-aware historic NAT-PT system tracks the mapping of HITs, and
 the corresponding ESP SPIs, to an IP address. The NAT system has to
 learn mappings both from HITs and from SPIs to IP addresses. Many
 HITs (and SPIs) can map to a single IP address on a NAT, simplifying
 connections on address-poor NAT interfaces. The NAT can gain much of
 its knowledge from the HIP packets themselves; however, some NAT
 configuration may be necessary.

8.1. HIP and Upper-Layer Checksums

 There is no way for a host to know if any of the IP addresses in an
 IP header are the addresses used to calculate the TCP checksum. That
 is, it is not feasible to calculate the TCP checksum using the actual
 IP addresses in the pseudo header; the addresses received in the

 incoming packet are not necessarily the same as they were on the
 sending host. Furthermore, it is not possible to recompute the
 upper-layer checksums in the NAT/NAT-PT system, since the traffic is
 ESP protected. Consequently, the TCP and UDP checksums are
 calculated using the HITs in the place of the IP addresses in the
 pseudo header. Furthermore, only the IPv6 pseudo header format is
 used. This provides for IPv4 / IPv6 protocol translation.

9. Multicast

 A number of studies investigating HIP-based multicast have been
 published (including [shields-hip], [zhu-hip], [amir-hip],
 [kovacshazi-host], and [zhu-secure]). In particular, so-called Bloom
 filters, which allow the compression of multiple labels into small
 data structures, may be a promising way forward [sarela-bloom].
 However, the different schemes have not been adopted by the HIP
 working group (nor the HIP research group in the IRTF), so the
 details are not further elaborated here.

10. HIP Policies

 There are a number of variables that influence the HIP exchange that
 each host must support. All HIP implementations should support at
 least two HIs, one to publish in DNS or a similar directory service
 and an unpublished one for anonymous usage (that should expect to be
 rotated frequently in order to disrupt linkability and/or
 trackability). Although unpublished HIs will rarely be used as
 Responder HIs, they are likely to be common for Initiators. As
 stated in [RFC7401], "all HIP implementations MUST support more than
 one simultaneous HI, at least one of which SHOULD be reserved for
 anonymous usage", and "support for more than two HIs is RECOMMENDED".
 This provides new challenges for systems or users to decide which
 type of HI to expose when they start a new session.

 Opportunistic mode (where the Initiator starts a HIP exchange without
 prior knowledge of the Responder’s HI) presents a security trade-off.
 At the expense of being subject to MitM attacks, the opportunistic
 mode allows the Initiator to learn the identity of the Responder
 during communication rather than from an external directory.
 Opportunistic mode can be used for registration to HIP-based services
 [RFC8003] (i.e., utilized by HIP for its own internal purposes) or by
 the application layer [komu-leap]. For security reasons, especially
 the latter requires some involvement from the user to accept the
 identity of the Responder similar to how the Secure Shell (SSH)
 protocol prompts the user when connecting to a server for the first
 time [pham-leap]. In practice, this can be realized in end-host-
 based firewalls in the case of legacy applications [karvonen-usable]
 or with native APIs for HIP APIs [RFC6317] in the case of HIP-aware
 applications.

 As stated in [RFC7401]:

 | Initiators MAY use a different HI for different Responders to
 | provide basic privacy. Whether such private HIs are used
 | repeatedly with the same Responder, and how long these HIs are
 | used, are decided by local policy and depend on the privacy
 | requirements of the Initiator.

 According to [RFC7401]:

 | Responders that only respond to selected Initiators require an
 | Access Control List (ACL), representing for which hosts they
 | accept HIP base exchanges, and the preferred transport format and
 | local lifetimes. Wildcarding SHOULD be supported for such ACLs,
 | and also for Responders that offer public or anonymous services.

11. Security Considerations

 This section includes discussion on some issues and solutions related
 to security in the HIP architecture.

11.1. MitM Attacks

 HIP takes advantage of the Host Identity paradigm to provide secure
 authentication of hosts and to provide a fast key exchange for ESP.
 HIP also attempts to limit the exposure of the host to various
 denial-of-service (DoS) and man-in-the-middle (MitM) attacks. In so
 doing, HIP itself is subject to its own DoS and MitM attacks that
 potentially could be more damaging to a host’s ability to conduct
 business as usual.

 Resource exhausting DoS attacks take advantage of the cost of setting
 up a state for a protocol on the Responder compared to the
 ’cheapness’ on the Initiator. HIP allows a Responder to increase the
 cost of the start of state on the Initiator and makes an effort to
 reduce the cost to the Responder. This is done by having the
 Responder start the authenticated Diffie-Hellman exchange instead of
 the Initiator, making the HIP base exchange four packets long. The
 first packet sent by the Responder can be prebuilt to further
 mitigate the costs. This packet also includes a computational puzzle
 that can optionally be used to further delay the Initiator, for
 instance, when the Responder is overloaded. The details are
 explained in the base exchange specification [RFC7401].

 MitM attacks are difficult to defend against without third-party
 authentication. A skillful MitM could easily handle all parts of the
 HIP base exchange, but HIP indirectly provides the following
 protection from a MitM attack. If the Responder’s HI is retrieved
 from a signed DNS zone or securely obtained by some other means, the
 Initiator can use this to authenticate the signed HIP packets.
 Likewise, if the Initiator’s HI is in a secure DNS zone, the
 Responder can retrieve it and validate the signed HIP packets.
 However, since an Initiator may choose to use an unpublished HI, it
 knowingly risks a MitM attack. The Responder may choose not to
 accept a HIP exchange with an Initiator using an unknown HI.

 Other types of MitM attacks against HIP can be mounted using ICMP
 messages that can be used to signal about problems. As an overall
 guideline, the ICMP messages should be considered as unreliable
 "hints" and should be acted upon only after timeouts. The exact
 attack scenarios and countermeasures are described in full detail in
 the base exchange specification [RFC7401].

 A MitM attacker could try to replay older I1 or R1 messages using
 weaker cryptographic algorithms as described in Section 4.1.4 of
 [RFC7401]. The base exchange has been augmented to deal with such an
 attack by restarting on the detection of the attack. At worst, this
 would only lead to a situation in which the base exchange would never
 finish (or would be aborted after some retries). As a drawback, this
 leads to a six-way base exchange, which may seem bad at first.
 However, since this only occurs in an attack scenario and since the
 attack can be handled (so it is not interesting to mount anymore), we
 assume the subsequent messages do not represent a security threat.
 Since the MitM cannot be successful with a downgrade attack, these
 sorts of attacks will only occur as ’nuisance’ attacks. So, the base
 exchange would still be usually just four packets even though
 implementations must be prepared to protect themselves against the
 downgrade attack.

 In HIP, the Security Association for ESP is indexed by the SPI; the
 source address is always ignored, and the destination address may be
 ignored as well. Therefore, HIP-enabled ESP is IP address
 independent. This might seem to make attacking easier, but ESP with
 replay protection is already as well protected as possible, and the
 removal of the IP address as a check should not increase the exposure
 of ESP to DoS attacks.

11.2. Protection against Flooding Attacks

 Although the idea of informing about address changes by simply
 sending packets with a new source address appears appealing, it is
 not secure enough. That is, even if HIP does not rely on the source

 address for anything (once the base exchange has been completed), it
 appears to be necessary to check a mobile node’s reachability at the
 new address before actually sending any larger amounts of traffic to
 the new address.

 Blindly accepting new addresses would potentially lead to flooding
 DoS attacks against third parties [RFC4225]. In a distributed
 flooding attack, an attacker opens high-volume HIP connections with a
 large number of hosts (using unpublished HIs) and then claims to all
 of these hosts that it has moved to a target node’s IP address. If
 the peer hosts were to simply accept the move, the result would be a
 packet flood to the target node’s address. To prevent this type of
 attack, HIP mobility extensions include a return routability check
 procedure where the reachability of a node is separately checked at
 each address before using the address for larger amounts of traffic.

 A credit-based authorization approach for "Host Mobility with the
 Host Identity Protocol" [RFC8046] can be used between hosts for
 sending data prior to completing the address tests. Otherwise, if
 HIP is used between two hosts that fully trust each other, the hosts
 may optionally decide to skip the address tests. However, such
 performance optimization must be restricted to peers that are known
 to be trustworthy and capable of protecting themselves from malicious
 software.

11.3. HITs Used in ACLs

 At end-hosts, HITs can be used in IP-based access control lists at
 the application and network layers. At middleboxes, HIP-aware
 firewalls [lindqvist-enterprise] can use HITs or public keys to
 control both ingress and egress access to networks or individual
 hosts, even in the presence of mobile devices because the HITs and
 public keys are topology independent. As discussed earlier in
 Section 7, once a HIP session has been established, the SPI value in
 an ESP packet may be used as an index, indicating the HITs. In
 practice, firewalls can inspect HIP packets to learn of the bindings
 between HITs, SPI values, and IP addresses. They can even explicitly
 control ESP usage, dynamically opening ESP only for specific SPI
 values and IP addresses. The signatures in HIP packets allow a
 capable firewall to ensure that the HIP exchange is indeed occurring
 between two known hosts. This may increase firewall security.

 A potential drawback of HITs in ACLs is their ’flatness’, which means
 they cannot be aggregated, and this could potentially result in
 larger table searches in HIP-aware firewalls. A way to optimize this
 could be to utilize Bloom filters for grouping HITs [sarela-bloom].
 However, it should be noted that it is also easier to exclude
 individual, misbehaving hosts when the firewall rules concern
 individual HITs rather than groups.

 There has been considerable bad experience with distributed ACLs that
 contain material related to public keys, for example, with SSH. If
 the owner of a key needs to revoke it for any reason, the task of
 finding all locations where the key is held in an ACL may be
 impossible. If the reason for the revocation is due to private key
 theft, this could be a serious issue.

 A host can keep track of all of its partners that might use its HIT
 in an ACL by logging all remote HITs. It should only be necessary to
 log Responder hosts. With this information, the host can notify the
 various hosts about the change to the HIT. There have been attempts
 to develop a secure method to issue the HIT revocation notice
 [zhang-revocation].

 Some of the HIP-aware middleboxes, such as firewalls
 [lindqvist-enterprise] or NATs [ylitalo-spinat], may observe the on-
 path traffic passively. Such middleboxes are transparent by their
 nature and may not get a notification when a host moves to a
 different network. Thus, such middleboxes should maintain soft state
 and time out when the control and data planes between two HIP end-
 hosts have been idle too long. Correspondingly, the two end-hosts

 may send periodically keepalives, such as UPDATE packets or ICMP
 messages inside the ESP tunnel, to sustain state at the on-path
 middleboxes.

 One general limitation related to end-to-end encryption is that
 middleboxes may not be able to participate in the protection of data
 flows. While the issue may also affect other protocols, Heer et al.
 [heer-end-host] have analyzed the problem in the context of HIP.
 More specifically, when ESP is used as the data plane protocol for
 HIP, the association between the control and data planes is weak and
 can be exploited under certain assumptions. In the scenario, the
 attacker has already gained access to the target network protected by
 a HIP-aware firewall, but wants to circumvent the HIP-based firewall.
 To achieve this, the attacker passively observes a base exchange
 between two HIP hosts and later replays it. This way, the attacker
 manages to penetrate the firewall and can use a fake ESP tunnel to
 transport its own data. This is possible because the firewall cannot
 distinguish when the ESP tunnel is valid. As a solution, HIP-aware
 middleboxes may participate in the control plane interaction by
 adding random nonce parameters to the control traffic, which the end-
 hosts have to sign to guarantee the freshness of the control traffic
 [heer-midauth]. As an alternative, extensions for transporting the
 data plane directly over the control plane can be used [RFC6078].

11.4. Alternative HI Considerations

 The definition of the Host Identifier states that the HI need not be
 a public key. It implies that the HI could be any value, for
 example, a FQDN. This document does not describe how to support such
 a non-cryptographic HI, but examples of such protocol variants do
 exist ([urien-rfid], [urien-rfid-draft]). A non-cryptographic HI
 would still offer the services of the HIT or LSI for NAT traversal.
 It would be possible to carry HITs in HIP packets that had neither
 privacy nor authentication. Such schemes may be employed for
 resource-constrained devices, such as small sensors operating on
 battery power, but are not further analyzed here.

 If it is desirable to use HIP in a low-security situation where
 public key computations are considered expensive, HIP can be used
 with very short Diffie-Hellman and Host Identity keys. Such use
 makes the participating hosts vulnerable to MitM and connection
 hijacking attacks. However, it does not cause flooding dangers,
 since the address check mechanism relies on the routing system and
 not on cryptographic strength.

11.5. Trust on First Use

 [RFC7435] highlights four design principles for Leap of Faith, or
 Trust On First Use (TOFU), protocols that apply also to opportunistic
 HIP:

 1. Coexist with explicit policy

 2. Prioritize communication

 3. Maximize security peer by peer

 4. No misrepresentation of security

 According to the first TOFU design principle, "Opportunistic security
 never displaces or preempts explicit policy". Some application data
 may be too sensitive, so the related policy could require
 authentication (i.e., the public key or certificate) in such a case
 instead of the unauthenticated opportunistic mode. In practice, this
 has been realized in HIP implementations as follows [RFC6538].

 The OpenHIP implementation allowed an Initiator to use opportunistic
 mode only with an explicitly configured Responder IP address, when
 the Responder’s HIT is unknown. At the Responder, OpenHIP had an
 option to allow opportunistic mode with any Initiator -- trust any
 Initiator.

 HIP for Linux (HIPL) developers experimented with more fine-grained
 policies operating at the application level. The HIPL implementation
 utilized so-called "LD_PRELOAD" hooking at the application layer that
 allowed a dynamically linked library to intercept socket-related
 calls without rebuilding the related application binaries. The
 library acted as a shim layer between the application and transport
 layers. The shim layer translated the non-HIP-based socket calls
 from the application into HIP-based socket calls. While the shim
 library involved some level of complexity as described in more detail
 in [komu-leap], it achieved the goal of applying opportunistic mode
 at the granularity of individual applications.

 The second TOFU principle essentially states that communication
 should prioritized over security. So opportunistic mode should be,
 in general, allowed even if no authentication is present, and even
 possibly a fallback to unencrypted communications could be allowed
 (if policy permits) instead of blocking communications. In practice,
 this can be realized in three steps. In the first step, a HIP
 Initiator can look up the HI of a Responder from a directory such as
 DNS. When the Initiator discovers a HI, it can use the HI for
 authentication and skip the rest of the following steps. In the
 second step, the Initiator can, upon failing to find a HI, try
 opportunistic mode with the Responder. In the third step, the
 Initiator can fall back to non-HIP-based communications upon failing
 with opportunistic mode if the policy allows it. This three-step
 model has been implemented successfully and described in more detail
 in [komu-leap].

 The third TOFU principle suggests that security should be maximized,
 so that at least opportunistic security would be employed. The
 three-step model described earlier prefers authentication when it is
 available, e.g., via DNS records (and possibly even via DNSSEC when
 available) and falls back to opportunistic mode when no out-of-band
 credentials are available. As the last resort, fallback to non-HIP-
 based communications can be used if the policy allows it. Also,
 since perfect forward secrecy (PFS) is explicitly mentioned in the
 third design principle, it is worth mentioning that HIP supports it.

 The fourth TOFU principle states that users and noninteractive
 applications should be properly informed about the level of security
 being applied. In practice, non-HIP-aware applications would assume
 that no extra security is being applied, so misleading at least a
 noninteractive application should not be possible. In the case of
 interactive desktop applications, system-level prompts have been
 utilized in earlier HIP experiments [karvonen-usable] [RFC6538] to
 guide the user about the underlying HIP-based security. In general,
 users in those experiments perceived when HIP-based security was
 being used versus not used. However, the users failed to notice the
 difference between opportunistic, non-authenticated HIP and non-
 opportunistic, authenticated HIP. The reason for this was that the
 opportunistic HIP (i.e., lowered level of security) was not clearly
 indicated in the prompt. This provided a valuable lesson to further
 improve the user interface.

 In the case of HIP-aware applications, native sockets APIs for HIP as
 specified in [RFC6317] can be used to develop application-specific
 logic instead of using generic system-level prompting. In such a
 case, the application itself can directly prompt the user or
 otherwise manage the situation in other ways. In this case,
 noninteractive applications also can properly log the level of
 security being employed because the developer can now explicitly
 program the use of authenticated HIP, opportunistic HIP, and plain-
 text communication.

 It is worth mentioning a few additional items discussed in [RFC7435].
 Related to active attacks, HIP has built-in protection against
 ciphersuite downgrade attacks as described in detail in [RFC7401].
 In addition, pre-deployed certificates could be used to mitigate
 against active attacks in the case of opportunistic mode as mentioned
 in [RFC6538].

 Detection of peer capabilities is also mentioned in the TOFU context.
 As discussed in this section, the three-step model can be used to
 detect peer capabilities. A host can achieve the first step of
 authentication, i.e., discovery of a public key, via DNS, for
 instance. If the host finds no keys, the host can then try
 opportunistic mode as the second step. Upon a timeout, the host can
 then proceed to the third step by falling back to non-HIP-based
 communications if the policy permits. This last step is based on an
 implicit timeout rather an explicit (negative) acknowledgment like in
 the case of DNS, so the user may conclude prematurely that the
 connectivity has failed. To speed up the detection phase by
 explicitly detecting if the peer supports opportunistic HIP,
 researchers have proposed TCP-specific extensions [RFC6538]
 [komu-leap]. In a nutshell, an Initiator sends simultaneously both
 an opportunistic I1 packet and the related TCP SYN datagram equipped
 with a special TCP option to a peer. If the peer supports HIP, it
 drops the SYN packet and responds with an R1. If the peer is HIP
 incapable, it drops the HIP packet (and the unknown TCP option) and
 responds with a TCP SYN-ACK. The benefit of the proposed scheme is a
 faster, one round-trip fallback to non-HIP-based communications. The
 drawback is that the approach is tied to TCP (IP options were also
 considered, but do not work well with firewalls and NATs).
 Naturally, the approach does not work against an active attacker, but
 opportunistic mode is not supposed to protect against such an
 adversary anyway.

 It is worth noting that while the use of opportunistic mode has some
 benefits related to incremental deployment, it does not achieve all
 the benefits of authenticated HIP [komu-diss]. Namely, authenticated
 HIP supports persistent identifiers in the sense that hosts are
 identified with the same HI independent of their movement.
 Opportunistic HIP meets this goal only partially: after the first
 contact between two hosts, HIP can successfully sustain connectivity
 with its mobility management extensions, but problems emerge when the
 hosts close the HIP association and try to reestablish connectivity.
 As hosts can change their location, it is no longer guaranteed that
 the same IP address belongs to the same host. The same address can
 be temporally assigned to different hosts, e.g., due to the reuse of
 IP addresses (e.g., by a DHCP service), the overlapping of private
 address realms (see also the discussion on Internet transparency in
 Appendix A.1), or due to an attempted attack.

12. IANA Considerations

 This document has no IANA actions.

13. Changes from RFC 4423

 In a nutshell, the changes from RFC 4423 [RFC4423] are mostly
 editorial, including clarifications on topics described in a
 difficult way and omitting some of the non-architectural
 (implementation) details that are already described in other
 documents. A number of missing references to the literature were
 also added. New topics include the drawbacks of HIP, a discussion on
 802.15.4 and MAC security, HIP for IoT scenarios, deployment
 considerations, and a description of the base exchange.

14. References

14.1. Normative References

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
 RFC 5482, DOI 10.17487/RFC5482, March 2009,
 <https://www.rfc-editor.org/info/rfc5482>.

 [RFC6079] Camarillo, G., Nikander, P., Hautakorpi, J., Keranen, A.,
 and A. Johnston, "HIP BONE: Host Identity Protocol (HIP)
 Based Overlay Networking Environment (BONE)", RFC 6079,
 DOI 10.17487/RFC6079, January 2011,
 <https://www.rfc-editor.org/info/rfc6079>.

 [RFC7086] Keranen, A., Camarillo, G., and J. Maenpaa, "Host Identity
 Protocol-Based Overlay Networking Environment (HIP BONE)
 Instance Specification for REsource LOcation And Discovery
 (RELOAD)", RFC 7086, DOI 10.17487/RFC7086, January 2014,
 <https://www.rfc-editor.org/info/rfc7086>.

 [RFC7343] Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay
 Routable Cryptographic Hash Identifiers Version 2
 (ORCHIDv2)", RFC 7343, DOI 10.17487/RFC7343, September
 2014, <https://www.rfc-editor.org/info/rfc7343>.

 [RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
 Henderson, "Host Identity Protocol Version 2 (HIPv2)",
 RFC 7401, DOI 10.17487/RFC7401, April 2015,
 <https://www.rfc-editor.org/info/rfc7401>.

 [RFC7402] Jokela, P., Moskowitz, R., and J. Melen, "Using the
 Encapsulating Security Payload (ESP) Transport Format with
 the Host Identity Protocol (HIP)", RFC 7402,
 DOI 10.17487/RFC7402, April 2015,
 <https://www.rfc-editor.org/info/rfc7402>.

 [RFC8002] Heer, T. and S. Varjonen, "Host Identity Protocol
 Certificates", RFC 8002, DOI 10.17487/RFC8002, October
 2016, <https://www.rfc-editor.org/info/rfc8002>.

 [RFC8003] Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
 Registration Extension", RFC 8003, DOI 10.17487/RFC8003,
 October 2016, <https://www.rfc-editor.org/info/rfc8003>.

 [RFC8004] Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
 Rendezvous Extension", RFC 8004, DOI 10.17487/RFC8004,
 October 2016, <https://www.rfc-editor.org/info/rfc8004>.

 [RFC8005] Laganier, J., "Host Identity Protocol (HIP) Domain Name
 System (DNS) Extension", RFC 8005, DOI 10.17487/RFC8005,
 October 2016, <https://www.rfc-editor.org/info/rfc8005>.

 [RFC8046] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host Mobility
 with the Host Identity Protocol", RFC 8046,
 DOI 10.17487/RFC8046, February 2017,
 <https://www.rfc-editor.org/info/rfc8046>.

 [RFC8047] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host
 Multihoming with the Host Identity Protocol", RFC 8047,
 DOI 10.17487/RFC8047, February 2017,
 <https://www.rfc-editor.org/info/rfc8047>.

 [RFC9028] KerÃ¤nen, A., MelÃ©n, J., and M. Komu, Ed., "Native NAT
 Traversal Mode for the Host Identity Protocol", RFC 9028,
 DOI 10.17487/RFC9028, July 2021,
 <https://www.rfc-editor.org/info/rfc9028>.

14.2. Informative References

 [amir-hip] Amir, K., Forsgren, H., Grahn, K., Karvi, T., and G.
 Pulkkis, "Security and Trust of Public Key Cryptography
 for HIP and HIP Multicast", International Journal of
 Dependable and Trustworthy Information Systems (IJDTIS),
 Vol. 2, Issue 3, pp. 17-35, DOI 10.4018/jdtis.2011070102,
 2013, <https://doi.org/10.4018/jdtis.2011070102>.

 [aura-dos] Aura, T., Nikander, P., and J. Leiwo, "DOS-Resistant
 Authentication with Client Puzzles", 8th International
 Workshop on Security Protocols, Security Protocols 2000,
 Lecture Notes in Computer Science, Vol. 2133, pp. 170-177,
 Springer, DOI 10.1007/3-540-44810-1_22, September 2001,
 <https://doi.org/10.1007/3-540-44810-1_22>.

 [beal-dos] Beal, J. and T. Shepard, "Deamplification of DoS Attacks

 via Puzzles", October 2004.

 [camarillo-p2psip]
 Camarillo, G., MÃ¤enpÃ¤Ã¤, J., KerÃ¤nen, A., and V. Anderson,
 "Reducing delays related to NAT traversal in P2PSIP
 session establishments", IEEE Consumer Communications and
 Networking Conference (CCNC), pp. 549-553,
 DOI 10.1109/CCNC.2011.5766540, 2011,
 <https://doi.org/10.1109/CCNC.2011.5766540>.

 [chiappa-endpoints]
 Chiappa, J., "Endpoints and Endpoint Names: A Proposed
 Enhancement to the Internet Architecture", 1999,
 <http://mercury.lcs.mit.edu/˜jnc/tech/endpoints.txt>.

 [heer-end-host]
 Heer, T., Hummen, R., Komu, M., Gotz, S., and K. Wehrle,
 "End-Host Authentication and Authorization for Middleboxes
 Based on a Cryptographic Namespace", 2009 IEEE
 International Conference on Communications,
 DOI 10.1109/ICC.2009.5198984, 2009,
 <https://doi.org/10.1109/ICC.2009.5198984>.

 [heer-midauth]
 Heer, T., Ed., Hummen, R., Wehrle, K., and M. Komu, "End-
 Host Authentication for HIP Middleboxes", Work in
 Progress, Internet-Draft, draft-heer-hip-middle-auth-04,
 31 October 2011, <https://datatracker.ietf.org/doc/html/
 draft-heer-hip-middle-auth-04>.

 [henderson-vpls]
 Henderson, T. R., Venema, S. C., and D. Mattes, "HIP-based
 Virtual Private LAN Service (HIPLS)", Work in Progress,
 Internet-Draft, draft-henderson-hip-vpls-11, 3 August
 2016, <https://datatracker.ietf.org/doc/html/draft-
 henderson-hip-vpls-11>.

 [hip-dex] Moskowitz, R., Ed., Hummen, R., and M. Komu, "HIP Diet
 EXchange (DEX)", Work in Progress, Internet-Draft, draft-
 ietf-hip-dex-24, 19 January 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-
 24>.

 [hip-lte] Liyanage, M., Kumar, P., Ylianttila, M., and A. Gurtov,
 "Novel secure VPN architectures for LTE backhaul
 networks", Security and Communication Networks, Vol. 9,
 pp. 1198-1215, DOI 10.1002/sec.1411, January 2016,
 <https://doi.org/10.1002/sec.1411>.

 [hip-srtp] Tschofenig, H., Shanmugam, M., and F. Muenz, "Using SRTP
 transport format with HIP", Work in Progress, Internet-
 Draft, draft-tschofenig-hiprg-hip-srtp-02, 25 October
 2006, <https://datatracker.ietf.org/doc/html/draft-
 tschofenig-hiprg-hip-srtp-02>.

 [hummen] Hummen, R., Hiller, J., Henze, M., and K. Wehrle, "Slimfit
 - A HIP DEX compression layer for the IP-based Internet of
 Things", 2013 IEEE 9th International Conference on
 Wireless and Mobile Computing, Networking and
 Communications (WiMob), pp. 259-266,
 DOI 10.1109/WiMOB.2013.6673370, October 2013,
 <https://doi.org/10.1109/WiMOB.2013.6673370>.

 [IEEE.802.15.4]
 IEEE, "IEEE Standard for Low-Rate Wireless Networks",
 IEEE Standard 802.15.4, DOI 10.1109/IEEESTD.2020.9144691,
 July 2020, <https://ieeexplore.ieee.org/document/9144691>.

 [IEEE.802.15.9]
 IEEE, "IEEE Draft Recommended Practice for Transport of
 Key Management Protocol (KMP) Datagrams",

 IEEE P802.15.9/D04, May 2015.

 [karvonen-usable]
 Karvonen, K., Komu, M., and A. Gurtov, "Usable security
 management with host identity protocol", 2009 IEEE/ACS
 International Conference on Computer Systems and
 Applications, pp. 279-286,
 DOI 10.1109/AICCSA.2009.5069337, 2009,
 <https://doi.org/10.1109/AICCSA.2009.5069337>.

 [komu-cloud]
 Komu, M., Sethi, M., Mallavarapu, R., Oirola, H., Khan,
 R., and S. Tarkoma, "Secure Networking for Virtual
 Machines in the Cloud", 2012 IEEE International Conference
 on Cluster Computing Workshops, pp. 88-96,
 DOI 10.1109/ClusterW.2012.29, 2012,
 <https://doi.org/10.1109/ClusterW.2012.29>.

 [komu-diss]
 Komu, M., "A Consolidated Namespace for Network
 Applications, Developers, Administrators and Users",
 Dissertation, Aalto University, Espoo, Finland,
 ISBN 978-952-60-4904-5 (printed), ISBN 978-952-60-4905-2
 (electronic), December 2012.

 [komu-leap]
 Komu, M. and J. Lindqvist, "Leap-of-Faith Security is
 Enough for IP Mobility", 2009 6th IEEE Consumer
 Communications and Networking Conference, Las Vegas, NV,
 USA, pp. 1-5, DOI 10.1109/CCNC.2009.4784729, January 2009,
 <https://doi.org/10.1109/CCNC.2009.4784729>.

 [komu-mitigation]
 Komu, M., Tarkoma, S., and A. Lukyanenko, "Mitigation of
 Unsolicited Traffic Across Domains with Host Identities
 and Puzzles", 15th Nordic Conference on Secure IT Systems,
 NordSec 2010, Lecture Notes in Computer Science, Vol.
 7127, pp. 33-48, Springer, ISBN 978-3-642-27936-2,
 DOI 10.1007/978-3-642-27937-9_3, October 2010,
 <https://doi.org/10.1007/978-3-642-27937-9_3>.

 [kovacshazi-host]
 Kovacshazi, Z. and R. Vida, "Host Identity Specific
 Multicast", International Conference on Networking and
 Services (ICNS ’07), Athens, Greece, pp. 1-1,
 DOI 10.1109/ICNS.2007.66, 2007,
 <https://doi.org/10.1109/ICNS.2007.66>.

 [levae-barriers]
 LevÃ¤, T., Komu, M., and S. Luukkainen, "Adoption barriers
 of network layer protocols: the case of host identity
 protocol", Computer Networks, Vol. 57, Issue 10, pp.
 2218-2232, ISSN 1389-1286,
 DOI 10.1016/j.comnet.2012.11.024, March 2013,
 <https://doi.org/10.1016/j.comnet.2012.11.024>.

 [lindqvist-enterprise]
 Lindqvist, J., Vehmersalo, E., Komu, M., and J. Manner,
 "Enterprise Network Packet Filtering for Mobile
 Cryptographic Identities", International Journal of
 Handheld Computing Research (IJHCR), Vol. 1, Issue 1, pp.
 79-94, DOI 10.4018/jhcr.2010090905, 2010,
 <https://doi.org/10.4018/jhcr.2010090905>.

 [Nik2001] Nikander, P., "Denial-of-Service, Address Ownership, and
 Early Authentication in the IPv6 World", 9th International
 Workshop on Security Protocols, Security Protocols 2001,
 Lecture Notes in Computer Science, Vol. 2467, pp. 12-21,
 Springer, DOI 10.1007/3-540-45807-7_3, 2002,
 <https://doi.org/10.1007/3-540-45807-7_3>.

 [nsrg-report]
 Lear, E. and R. Droms, "What’s In A Name: Thoughts from
 the NSRG", Work in Progress, Internet-Draft, draft-irtf-
 nsrg-report-10, 22 September 2003,
 <https://datatracker.ietf.org/doc/html/draft-irtf-nsrg-
 report-10>.

 [paine-hip]
 Paine, R. H., "Beyond HIP: The End to Hacking As We Know
 It", BookSurge Publishing, ISBN-10 1439256047,
 ISBN-13 978-1439256046, 2009.

 [pham-leap]
 Pham, V. and T. Aura, "Security Analysis of Leap-of-Faith
 Protocols", 7th International ICST Conference, Security
 and Privacy for Communication Networks, SecureComm 2011,
 Lecture Notes of the Institute for Computer Sciences,
 Social Informatics and Telecommunications Engineering,
 Vol. 96, DOI 10.1007/978-3-642-31909-9_19, 2012,
 <https://doi.org/10.1007/978-3-642-31909-9_19>.

 [ranjbar-synaptic]
 Ranjbar, A., Komu, M., Salmela, P., and T. Aura,
 "SynAPTIC: Secure and Persistent Connectivity for
 Containers", 2017 17th IEEE/ACM International Symposium on
 Cluster, Cloud and Grid Computing (CCGRID), Madrid, 2017,
 pp. 262-267, DOI 10.1109/CCGRID.2017.62, 2017,
 <https://doi.org/10.1109/CCGRID.2017.62>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 DOI 10.17487/RFC2766, February 2000,
 <https://www.rfc-editor.org/info/rfc2766>.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001,
 <https://www.rfc-editor.org/info/rfc3022>.

 [RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
 "Realm Specific IP: Framework", RFC 3102,
 DOI 10.17487/RFC3102, October 2001,
 <https://www.rfc-editor.org/info/rfc3102>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
 RFC 3972, DOI 10.17487/RFC3972, March 2005,
 <https://www.rfc-editor.org/info/rfc3972>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4225] Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E.
 Nordmark, "Mobile IP Version 6 Route Optimization Security
 Design Background", RFC 4225, DOI 10.17487/RFC4225,
 December 2005, <https://www.rfc-editor.org/info/rfc4225>.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 DOI 10.17487/RFC4380, February 2006,

 <https://www.rfc-editor.org/info/rfc4380>.

 [RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol
 (HIP) Architecture", RFC 4423, DOI 10.17487/RFC4423, May
 2006, <https://www.rfc-editor.org/info/rfc4423>.

 [RFC5218] Thaler, D. and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
 <https://www.rfc-editor.org/info/rfc5218>.

 [RFC5338] Henderson, T., Nikander, P., and M. Komu, "Using the Host
 Identity Protocol with Legacy Applications", RFC 5338,
 DOI 10.17487/RFC5338, September 2008,
 <https://www.rfc-editor.org/info/rfc5338>.

 [RFC5887] Carpenter, B., Atkinson, R., and H. Flinck, "Renumbering
 Still Needs Work", RFC 5887, DOI 10.17487/RFC5887, May
 2010, <https://www.rfc-editor.org/info/rfc5887>.

 [RFC6078] Camarillo, G. and J. Melen, "Host Identity Protocol (HIP)
 Immediate Carriage and Conveyance of Upper-Layer Protocol
 Signaling (HICCUPS)", RFC 6078, DOI 10.17487/RFC6078,
 January 2011, <https://www.rfc-editor.org/info/rfc6078>.

 [RFC6250] Thaler, D., "Evolution of the IP Model", RFC 6250,
 DOI 10.17487/RFC6250, May 2011,
 <https://www.rfc-editor.org/info/rfc6250>.

 [RFC6281] Cheshire, S., Zhu, Z., Wakikawa, R., and L. Zhang,
 "Understanding Apple’s Back to My Mac (BTMM) Service",
 RFC 6281, DOI 10.17487/RFC6281, June 2011,
 <https://www.rfc-editor.org/info/rfc6281>.

 [RFC6317] Komu, M. and T. Henderson, "Basic Socket Interface
 Extensions for the Host Identity Protocol (HIP)",
 RFC 6317, DOI 10.17487/RFC6317, July 2011,
 <https://www.rfc-editor.org/info/rfc6317>.

 [RFC6537] Ahrenholz, J., "Host Identity Protocol Distributed Hash
 Table Interface", RFC 6537, DOI 10.17487/RFC6537, February
 2012, <https://www.rfc-editor.org/info/rfc6537>.

 [RFC6538] Henderson, T. and A. Gurtov, "The Host Identity Protocol
 (HIP) Experiment Report", RFC 6538, DOI 10.17487/RFC6538,
 March 2012, <https://www.rfc-editor.org/info/rfc6538>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

 [sarela-bloom]
 SÃ¤relÃ¤, M., Esteve Rothenberg, C., Zahemszky, A.,
 Nikander, P., and J. Ott, "BloomCasting: Security in Bloom
 Filter Based Multicast", Information Security Technology
 for Applications, NordSec 2010, Lecture Notes in Computer
 Science, Vol. 7127, pages 1-16, Springer,
 DOI 10.1007/978-3-642-27937-9_1, 2012,
 <https://doi.org/10.1007/978-3-642-27937-9_1>.

 [schuetz-intermittent]
 SchÃ¼tz, S., Eggert, L., Schmid, S., and M. Brunner,
 "Protocol enhancements for intermittently connected
 hosts", ACM SIGCOMM Computer Communication Review, Vol.
 35, Issue 3, pp. 5-18, DOI 10.1145/1070873.1070875, July
 2005, <https://doi.org/10.1145/1070873.1070875>.

 [shields-hip]
 Shields, C. and J. J. Garcia-Luna-Aceves, "The HIP
 protocol for hierarchical multicast routing", Proceedings
 of the seventeenth annual ACM symposium on Principles of
 distributed computing, pp. 257-266, ISBN 0-89791-977-7,
 DOI 10.1145/277697.277744, 1998,
 <https://doi.org/10.1145/277697.277744>.

 [tempered-networks]
 Tempered Networks, "Identity-Defined Network (IDN)
 Architecture: Unified, Secure Networking Made Simple",
 White Paper, 2016.

 [tritilanunt-dos]
 Tritilanunt, S., Boyd, C., Foo, E., and J.M.G. Nieto,
 "Examining the DoS Resistance of HIP", On the Move to
 Meaningful Internet Systems 2006: OTM 2006 Workshops,
 Lecture Notes in Computer Science, Vol. 4277, pp. 616-625,
 Springer, DOI 10.1007/11915034_85, 2006,
 <https://doi.org/10.1007/11915034_85>.

 [urien-rfid]
 Urien, P., Chabanne, H., Pepin, C., Orga, S., Bouet, M.,
 de Cunha, D.O., Guyot, V., Pujolle, G., Paradinas, P.,
 Gressier, E., and J.-F. Susini, "HIP-based RFID Networking
 Architecture", 2007 IFIP International Conference on
 Wireless and Optical Communications Networks, pp. 1-5,
 DOI 10.1109/WOCN.2007.4284140, 2007,
 <https://doi.org/10.1109/WOCN.2007.4284140>.

 [urien-rfid-draft]
 Urien, P., Lee, G. M., and G. Pujolle, "HIP support for
 RFIDs", Work in Progress, Internet-Draft, draft-irtf-
 hiprg-rfid-07, 23 April 2013,
 <https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-
 rfid-07>.

 [varjonen-split]
 Varjonen, S., Komu, M., and A. Gurtov, "Secure and
 Efficient IPv4/IPv6 Handovers Using Host-Based Identifier-
 Location Split", Journal of Communications Software and
 Systems, Vol. 6, Issue 1, ISSN 18456421,
 DOI 10.24138/jcomss.v6i1.193, 2010,
 <https://doi.org/10.24138/jcomss.v6i1.193>.

 [xin-hip-lib]
 Xin, G., "Host Identity Protocol Version 2.5", Master’s
 Thesis, Aalto University, Espoo, Finland, June 2012.

 [ylitalo-diss]
 Ylitalo, J., "Secure Mobility at Multiple Granularity
 Levels over Heterogeneous Datacom Networks", Dissertation,
 Helsinki University of Technology, Espoo, Finland,
 ISBN 978-951-22-9531-9, 2008.

 [ylitalo-spinat]
 Ylitalo, J., Salmela, P., and H. Tschofenig, "SPINAT:
 Integrating IPsec into Overlay Routing", First
 International Conference on Security and Privacy for
 Emerging Areas in Communication Networks, SECURECOMM’05,
 Athens, Greece, pp. 315-326, ISBN 0-7695-2369-2,
 DOI 10.1109/SECURECOMM.2005.53, 2005,
 <https://doi.org/10.1109/SECURECOMM.2005.53>.

 [zhang-revocation]
 Zhang, D., Kuptsov, D., and S. Shen, "Host Identifier
 Revocation in HIP", Work in Progress, Internet-Draft,
 draft-irtf-hiprg-revocation-05, 9 March 2012,
 <https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-
 revocation-05>.

 [zhu-hip] Zhu, X., Ding, Z., and X. Wang, "A Multicast Routing
 Algorithm Applied to HIP-Multicast Model", 2011
 International Conference on Network Computing and
 Information Security, Guilin, China, pp. 169-174,
 DOI 10.1109/NCIS.2011.42, 2011,
 <https://doi.org/10.1109/NCIS.2011.42>.

 [zhu-secure]
 Zhu, X. and J. W. Atwood, "A Secure Multicast Model for
 Peer-to-Peer and Access Networks Using the Host Identity
 Protocol", 2007 4th IEEE Consumer Communications and
 Networking Conference, Las Vegas, NV, USA, pages
 1098-1102, DOI 10.1109/CCNC.2007.221, 2007,
 <https://doi.org/10.1109/CCNC.2007.221>.

Appendix A. Design Considerations

A.1. Benefits of HIP

 In the beginning, the network layer protocol (i.e., IP) had the
 following four "classic" invariants:

 1. Non-mutable: The address sent is the address received.

 2. Non-mobile: The address doesn’t change during the course of an
 "association".

 3. Reversible: A return header can always be formed by reversing the
 source and destination addresses.

 4. Omniscient: Each host knows what address a partner host can use
 to send packets to it.

 Actually, the fourth can be inferred from 1 and 3, but it is worth
 mentioning explicitly for reasons that will be obvious soon if not
 already.

 In the current "post-classic" world, we are intentionally trying to
 get rid of the second invariant (both for mobility and for
 multihoming), and we have been forced to give up the first and the
 fourth. Realm Specific IP [RFC3102] is an attempt to reinstate the
 fourth invariant without the first invariant. IPv6 attempts to
 reinstate the first invariant.

 Few client-side systems on the Internet have DNS names that are
 meaningful. That is, if they have a Fully Qualified Domain Name
 (FQDN), that name typically belongs to a NAT device or a dial-up
 server, and does not really identify the system itself but its
 current connectivity. FQDNs (and their extensions as email names)
 are application-layer names; more frequently naming services than
 particular systems. This is why many systems on the Internet are not
 registered in the DNS; they do not have services of interest to other
 Internet hosts.

 DNS names are references to IP addresses. This only demonstrates the
 interrelationship of the networking and application layers. DNS, as
 the Internet’s only deployed and distributed database, is also the
 repository of other namespaces, due in part to DNSSEC and
 application-specific key records. Although each namespace can be
 stretched (IP with v6, DNS with KEY records), neither can adequately
 provide for host authentication or act as a separation between
 internetworking and transport layers.

 The Host Identity (HI) namespace fills an important gap between the
 IP and DNS namespaces. An interesting thing about the HI is that it
 actually allows a host to give up all but the 3rd network-layer
 invariant. That is to say, as long as the source and destination
 addresses in the network-layer protocol are reversible, HIP takes
 care of host identification, and reversibility allows a local host to
 receive a packet back from a remote host. The address changes
 occurring during NAT transit (non-mutable) or host movement (non-

 omniscient or non-mobile) can be managed by the HIP layer.

 With the exception of high-performance computing applications, the
 sockets API is the most common way to develop network applications.
 Applications use the sockets API either directly or indirectly
 through some libraries or frameworks. However, the sockets API is
 based on the assumption of static IP addresses, and DNS with its
 lifetime values was invented at later stages during the evolution of
 the Internet. Hence, the sockets API does not deal with the lifetime
 of addresses [RFC6250]. As the majority of the end-user equipment is
 mobile today, their addresses are effectively ephemeral, but the
 sockets API still gives a fallacious illusion of persistent IP
 addresses to the unwary developer. HIP can be used to solidify this
 illusion because HIP provides persistent, surrogate addresses to the
 application layer in the form of LSIs and HITs.

 The persistent identifiers as provided by HIP are useful in multiple
 scenarios (see, e.g., [ylitalo-diss] or [komu-diss] for a more
 elaborate discussion):

 * When a mobile host moves physically between two different WLAN
 networks and obtains a new address, an application using the
 identifiers remains isolated regardless of the topology changes
 while the underlying HIP layer reestablishes connectivity (i.e., a
 horizontal handoff).

 * Similarly, the application utilizing the identifiers remains again
 unaware of the topological changes when the underlying host
 equipped with WLAN and cellular network interfaces switches
 between the two different access technologies (i.e., a vertical
 handoff).

 * Even when hosts are located in private address realms,
 applications can uniquely distinguish different hosts from each
 other based on their identifiers. In other words, it can be
 stated that HIP improves Internet transparency for the application
 layer [komu-diss].

 * Site renumbering events for services can occur due to corporate
 mergers or acquisitions, or by changes in Internet service
 provider. They can involve changing the entire network prefix of
 an organization, which is problematic due to hard-coded addresses
 in service configuration files or cached IP addresses at the
 client side [RFC5887]. Considering such human errors, a site
 employing location-independent identifiers as promoted by HIP may
 experience fewer problems while renumbering their network.

 * More agile IPv6 interoperability can be achieved, as discussed in
 Section 4.4. IPv6-based applications can communicate using HITs
 with IPv4-based applications that are using LSIs. Additionally,
 the underlying network type (IPv4 or IPv6) becomes independent of
 the addressing family of the application.

 * HITs (or LSIs) can be used in IP-based access control lists as a
 more secure replacement for IPv6 addresses. Besides security,
 HIT-based access control has two other benefits. First, the use
 of HITs can potentially halve the size of access control lists
 because separate rules for IPv4 are not needed [komu-diss].
 Second, HIT-based configuration rules in HIP-aware middleboxes
 remain static and independent of topology changes, thus
 simplifying administrative efforts particularly for mobile
 environments. For instance, the benefits of HIT-based access
 control have been harnessed in the case of HIP-aware firewalls,
 but can be utilized directly at the end-hosts as well [RFC6538].

 While some of these benefits could be and have been redundantly
 implemented by individual applications, providing such generic
 functionality at the lower layers is useful because it reduces
 software development effort and networking software bugs (as the
 layer is tested with multiple applications). It also allows the
 developer to focus on building the application itself rather than

 delving into the intricacies of mobile networking, thus facilitating
 separation of concerns.

 HIP could also be realized by combining a number of different
 protocols, but the complexity of the resulting software may become
 substantially larger, and the interaction between multiple, possibly
 layered protocols may have adverse effects on latency and throughput.
 It is also worth noting that virtually nothing prevents realizing the
 HIP architecture, for instance, as an application-layer library,
 which has been actually implemented in the past [xin-hip-lib].
 However, the trade-off in moving the HIP layer to the application
 layer is that legacy applications may not be supported.

A.2. Drawbacks of HIP

 In computer science, many problems can be solved with an extra layer
 of indirection. However, the indirection always involves some costs
 as there is no such a thing as a "free lunch". In the case of HIP,
 the main costs could be stated as follows:

 * In general, an additional layer and a namespace always involve
 some initial effort in terms of implementation, deployment, and
 maintenance. Some education of developers and administrators may
 also be needed. However, the HIP community at the IETF has spent
 years in experimenting, exploring, testing, documenting, and
 implementing HIP to ease the adoption costs.

 * HIP introduces a need to manage HIs and requires a centralized
 approach to manage HIP-aware endpoints at scale. What were
 formerly IP address-based ACLs are now trusted HITs, and the HIT-
 to-IP address mappings as well as access policies must be managed.
 HIP-aware endpoints must also be able to operate autonomously to
 ensure mobility and availability (an endpoint must be able to run
 without having to have a persistent management connection). The
 users who want this better security and mobility of HIs instead of
 IP address-based ACLs have to then manage this additional
 ’identity layer’ in a nonpersistent fashion. As exemplified in
 Appendix A.3.5, these challenges have been already solved in an
 infrastructure setting to distribute policy and manage the
 mappings and trust relationships between HIP-aware endpoints.

 * HIP decouples identifier and locator roles of IP addresses.
 Consequently, a mapping mechanism is needed to associate them
 together. A failure to map a HIT to its corresponding locator may
 result in failed connectivity because a HIT is "flat" by its
 nature and cannot be looked up from the hierarchically organized
 DNS. HITs are flat by design due to a security trade-off. The
 more bits that are allocated for the hash in the HIT, the less
 likely there will be (malicious) collisions.

 * From performance viewpoint, HIP control and data plane processing
 introduces some overhead in terms of throughput and latency as
 elaborated below.

 Related to deployment drawbacks, firewalls are commonly used to
 control access to various services and devices in the current
 Internet. Since HIP introduces an additional namespace, it is
 expected that the HIP namespace would be filtered for unwanted
 connectivity also. While this can be achieved with existing tools
 directly in the end-hosts, filtering at the middleboxes requires
 modifications to existing firewall software or additional middleboxes
 [RFC6538].

 The key exchange introduces some extra latency (two round trips) in
 the initial transport-layer connection establishment between two
 hosts. With TCP, additional delay occurs if the underlying network
 stack implementation drops the triggering SYN packet during the key
 exchange. The same cost may also occur during HIP handoff
 procedures. However, subsequent TCP sessions using the same HIP
 association will not bear this cost (within the key lifetime). Both
 the key exchange and handoff penalties can be minimized by caching

 TCP packets. The latter case can further be optimized with TCP user
 timeout extensions [RFC5482] as described in further detail by SchÃ¼tz
 et al. [schuetz-intermittent].

 The most CPU-intensive operations involve the use of the asymmetric
 keys and Diffie-Hellman key derivation at the control plane, but this
 occurs only during the key exchange, its maintenance (handoffs and
 refreshing of key material), and teardown procedures of HIP
 associations. The data plane is typically implemented with ESP
 because it has a smaller overhead due to symmetric key encryption.
 Naturally, even ESP involves some overhead in terms of latency
 (processing costs) and throughput (tunneling) (see, e.g.,
 [ylitalo-diss] for a performance evaluation).

A.3. Deployment and Adoption Considerations

 This section describes some deployment and adoption considerations
 related to HIP from a technical perspective.

A.3.1. Deployment Analysis

 HIP has been adapted and deployed in an industrial control network in
 a production factory, in which HIP’s strong network-layer identity
 supports the secure coexistence of the control network with many
 untrusted network devices operated by third-party vendors
 [paine-hip]. Similarly, HIP has also been included in a security
 product to support Layer 2 VPNs [henderson-vpls] to enable security
 zones in a supervisory control and data acquisition (SCADA) network.
 However, HIP has not been a "wild success" [RFC5218] in the Internet
 as argued by LevÃ¤ et al. [levae-barriers]. Here, we briefly
 highlight some of their findings based on interviews with 19 experts
 from the industry and academia.

 From a marketing perspective, the demand for HIP has been low and
 substitute technologies have been favored. Another identified reason
 has been that some technical misconceptions related to the early
 stages of HIP specifications still persist. Two identified
 misconceptions are that HIP does not support NAT traversal and that
 HIP must be implemented in the OS kernel. Both of these claims are
 untrue; HIP does have NAT traversal extensions [RFC9028], and kernel
 modifications can be avoided with modern operating systems by
 diverting packets for userspace processing.

 The analysis by LevÃ¤ et al. clarifies infrastructural requirements
 for HIP. In a minimal setup, a client and server machine have to run
 HIP software. However, to avoid manual configurations, usually DNS
 records for HIP are set up. For instance, the popular DNS server
 software Bind9 does not require any changes to accommodate DNS
 records for HIP because they can be supported in binary format in its
 configuration files [RFC6538]. HIP rendezvous servers and firewalls
 are optional. No changes are required to network address points,
 NATs, edge routers, or core networks. HIP may require holes in
 legacy firewalls.

 The analysis also clarifies the requirements for the host components
 that consist of three parts. First, a HIP control plane component is
 required, typically implemented as a userspace daemon. Second, a
 data plane component is needed. Most HIP implementations utilize the
 so-called Bound End-to-End Tunnel (BEET) mode of ESP that has been
 available since Linux kernel 2.6.27, but the BEET mode is also
 included as a userspace component in a few of the implementations.
 Third, HIP systems usually provide a DNS proxy for the local host
 that translates HIP DNS records to LSIs and HITs, and communicates
 the corresponding locators to the HIP userspace daemon. While the
 third component is not mandatory, it is very useful for avoiding
 manual configurations. The three components are further described in
 the HIP experiment report [RFC6538].

 Based on the interviews, LevÃ¤ et al. suggest further directions to
 facilitate HIP deployment. Transitioning a number of HIP
 specifications to the Standards Track in the IETF has already taken

 place, but the authors suggest other additional measures based on the
 interviews. As a more radical measure, the authors suggest to
 implement HIP as a purely application-layer library [xin-hip-lib] or
 other kind of middleware. On the other hand, more conservative
 measures include focusing on private deployments controlled by a
 single stakeholder. As a more concrete example of such a scenario,
 HIP could be used by a single service provider to facilitate secure
 connectivity between its servers [komu-cloud].

A.3.2. HIP in 802.15.4 Networks

 The IEEE 802 standards have been defining MAC-layer security. Many
 of these standards use Extensible Authentication Protocol (EAP)
 [RFC3748] as a Key Management System (KMS) transport, but some like
 IEEE 802.15.4 [IEEE.802.15.4] leave the KMS and its transport as "out
 of scope".

 HIP is well suited as a KMS in these environments:

 * HIP is independent of IP addressing and can be directly
 transported over any network protocol.

 * Master keys in 802 protocols are commonly pair-based with group
 keys transported from the group controller using pairwise keys.

 * Ad hoc 802 networks can be better served by a peer-to-peer KMS
 than the EAP client/server model.

 * Some devices are very memory constrained, and a common KMS for
 both MAC and IP security represents a considerable code savings.

A.3.3. HIP and Internet of Things

 HIP requires certain amount computational resources from a device due
 to cryptographic processing. HIP scales down to phones and small
 system-on-chip devices (such as Raspberry Pis, Intel Edison), but
 small sensors operating with small batteries have remained
 problematic. Different extensions to the HIP have been developed to
 scale HIP down to smaller devices, typically with different security
 trade-offs. For example, the non-cryptographic identifiers have been
 proposed in RFID scenarios. The Slimfit approach [hummen] proposes a
 compression layer for HIP to make it more suitable for constrained
 networks. The approach is applied to a lightweight version of HIP
 (i.e., "Diet HIP") in order to scale down to small sensors.

 The HIP Diet EXchange (DEX) [hip-dex] design aims to reduce the
 overhead of the employed cryptographic primitives by omitting public-
 key signatures and hash functions. In doing so, the main goal is to
 still deliver security properties similar to the Base Exchange (BEX).

 DEX is primarily designed for computation- or memory-constrained
 sensor/actuator devices. Like BEX, it is expected to be used
 together with a suitable security protocol such as the ESP for the
 protection of upper-layer protocol data. In addition, DEX can also
 be used as a keying mechanism for security primitives at the MAC
 layer, e.g., for IEEE 802.15.9 networks [IEEE.802.15.9].

 The main differences between HIP BEX and DEX are:

 1. Minimum collection of cryptographic primitives to reduce the
 protocol overhead.

 * Static Elliptic Curve Diffie-Hellman (ECDH) key pairs for peer
 authentication and encryption of the session key.

 * AES-CTR for symmetric encryption and AES-CMAC for MACing
 function.

 * A simple fold function for HIT generation.

 2. Forfeit of perfect forward secrecy with the dropping of an

 ephemeral Diffie-Hellman key agreement.

 3. Forfeit of digital signatures with the removal of a hash
 function. Reliance on the ECDH-derived key used in HIP_MAC to
 prove ownership of the private key.

 4. Diffie-Hellman derived key ONLY used to protect the HIP packets.
 A separate secret exchange within the HIP packets creates the
 session key(s).

 5. Optional retransmission strategy tailored to handle the
 potentially extensive processing time of the employed
 cryptographic operations on computationally constrained devices.

A.3.4. Infrastructure Applications

 The HIP experimentation report [RFC6538] enumerates a number of
 client and server applications that have been trialed with HIP.
 Based on the report, this section highlights and complements some
 potential ways how HIP could be exploited in existing infrastructure
 such as routers, gateways, and proxies.

 HIP has been successfully used with forward web proxies (i.e.,
 client-side proxies). HIP was used between a client host (web
 browser) and a forward proxy (Apache server) that terminated the HIP/
 ESP tunnel. The forward web proxy translated HIP-based traffic
 originating from the client into non-HIP traffic towards any web
 server in the Internet. Consequently, the HIP-capable client could
 communicate with HIP-incapable web servers. This way, the client
 could utilize mobility support as provided by HIP while using the
 fixed IP address of the web proxy, for instance, to access services
 that were allowed only from the IP address range of the proxy.

 HIP with reverse web proxies (i.e., server-side proxies) has also
 been investigated, as described in more detail in [komu-cloud]. In
 this scenario, a HIP-incapable client accessed a HIP-capable web
 service via an intermediary load balancer (a web-based load balancer
 implementation called HAProxy). The load balancer translated non-HIP
 traffic originating from the client into HIP-based traffic for the
 web service (consisting of front-end and back-end servers). Both the
 load balancer and the web service were located in a data center. One
 of the key benefits for encrypting the web traffic with HIP in this
 scenario was supporting a private-public cloud scenario (i.e., hybrid
 cloud) where the load balancer, front-end servers, and back-end
 servers were located in different data centers, and thus the traffic
 needed to be protected when it passed through potentially insecure
 networks between the borders of the private and public clouds.

 While HIP could be used to secure access to intermediary devices
 (e.g., access to switches with legacy telnet), it has also been used
 to secure intermittent connectivity between middlebox infrastructure.
 For instance, earlier research [komu-mitigation] utilized HIP between
 Simple Mail Transport Protocol (SMTP) servers in order to exploit the
 computational puzzles of HIP as a spam mitigation mechanism. A
 rather obvious practical challenge in this approach was the lack of
 HIP adoption on existing SMTP servers.

 To avoid deployment hurdles with existing infrastructure, HIP could
 be applied in the context of new protocols with little deployment.
 Namely, HIP has been studied in the context of a new protocol, peer-
 to-peer SIP [camarillo-p2psip]. The work has resulted in a number of
 related RFCs [RFC6078], [RFC6079], and [RFC7086]. The key idea in
 the research work was to avoid redundant, time-consuming ICE
 procedures by grouping different connections (i.e., SIP and media
 streams) together using the low-layer HIP, which executes NAT
 traversal procedures only once per host. An interesting aspect in
 the approach was the use of P2P-SIP infrastructure as rendezvous
 servers for the HIP control plane instead of utilizing the
 traditional HIP rendezvous services [RFC8004].

 Researchers have proposed using HIP in cellular networks as a

 mobility, multihoming, and security solution. [hip-lte] provides a
 security analysis and simulation measurements of using HIP in Long
 Term Evolution (LTE) backhaul networks.

 HIP has been studied for securing cloud internal connectivity. First
 with virtual machines [komu-cloud] and then between Linux containers
 [ranjbar-synaptic]. In both cases, HIP was suggested as a solution
 to NAT traversal that could be utilized both internally by a cloud
 network and between multi-cloud deployments. Specifically in the
 former case, HIP was beneficial sustaining connectivity with a
 virtual machine while it migrated to a new location. In the latter
 case, a Software-Defined Networking (SDN) controller acted as a
 rendezvous server for HIP-capable containers. The controller
 enforced strong replay protection by adding middlebox nonces
 [heer-end-host] to the passing HIP base exchange and UPDATE messages.

A.3.5. Management of Identities in a Commercial Product

 Tempered Networks provides HIP-based products. They refer to their
 platform as Identity-Defined Networking (IDN) [tempered-networks]
 because of HIP’s identity-first networking architecture. Their
 objective has been to make it simple and nondisruptive to deploy HIP-
 enabled services widely in production environments with the purpose
 of enabling transparent device authentication and authorization,
 cloaking, segmentation, and end-to-end networking. The goal is to
 eliminate much of the circular dependencies, exploits, and layered
 complexity of traditional "address-defined networking" that prevents
 mobility and verifiable device access control. The products in the
 portfolio of Tempered Networks utilize HIP are as follows:

 HIP Switches / Gateways
 These are physical or virtual appliances that serve as the HIP
 gateway and policy enforcement point for non-HIP-aware
 applications and devices located behind it. No IP or
 infrastructure changes are required in order to connect, cloak,
 and protect the non-HIP-aware devices. Currently known supported
 platforms for HIP gateways are x86 and ARM chipsets, ESXi, Hyper-
 V, KVM, AWS, Azure, and Google clouds.

 HIP Relays / Rendezvous
 These are physical or virtual appliances that serve as identity-
 based routers authorizing and bridging HIP endpoints without
 decrypting the HIP session. A HIP relay can be deployed as a
 standalone appliance or in a cluster for horizontal scaling. All
 HIP-aware endpoints and the devices they’re connecting and
 protecting can remain privately addressed. The appliances
 eliminate IP conflicts, tunnel through NAT and carrier-grade NAT,
 and require no changes to the underlying infrastructure. The only
 requirement is that a HIP endpoint should have outbound access to
 the Internet and that a HIP Relay should have a public address.

 HIP-Aware Clients and Servers
 This is software that is installed in the host’s network stack and
 enforces policy for that host. HIP clients support split
 tunneling. Both the HIP client and HIP server can interface with
 the local host firewall, and the HIP server can be locked down to
 listen only on the port used for HIP, making the server invisible
 from unauthorized devices. Currently known supported platforms
 are Windows, OS X, iOS, Android, Ubuntu, CentOS, and other Linux
 derivatives.

 Policy Orchestration Managers
 These physical or virtual appliances serve as the engine to define
 and distribute network and security policy (HI and IP mappings,
 overlay networks, and whitelist policies, etc.) to HIP-aware
 endpoints. Orchestration does not need to persist to the HIP
 endpoints and vice versa, allowing for autonomous host networking
 and security.

A.4. Answers to NSRG Questions

 The IRTF Name Space Research Group has posed a number of evaluating
 questions in their report [nsrg-report]. In this section, we provide
 answers to these questions.

 1. How would a stack name improve the overall functionality of the
 Internet?

 HIP decouples the internetworking layer from the transport layer,
 allowing each to evolve separately. The decoupling makes end-
 host mobility and multihoming easier, also across IPv4 and IPv6
 networks. HIs make network renumbering easier, and they also
 make process migration and clustered servers easier to implement.
 Furthermore, being cryptographic in nature, they provide the
 basis for solving the security problems related to end-host
 mobility and multihoming.

 2. What does a stack name look like?

 A HI is a cryptographic public key. However, instead of using
 the keys directly, most protocols use a fixed-size hash of the
 public key.

 3. What is its lifetime?

 HIP provides both stable and temporary Host Identifiers. Stable
 HIs are typically long-lived, with a lifetime of years or more.
 The lifetime of temporary HIs depends on how long the upper-layer
 connections and applications need them, and can range from a few
 seconds to years.

 4. Where does it live in the stack?

 The HIs live between the transport and internetworking layers.

 5. How is it used on the endpoints?

 The Host Identifiers may be used directly or indirectly (in the
 form of HITs or LSIs) by applications when they access network
 services. Additionally, the Host Identifiers, as public keys,
 are used in the built-in key agreement protocol, called the HIP
 base exchange, to authenticate the hosts to each other.

 6. What administrative infrastructure is needed to support it?

 In some environments, it is possible to use HIP
 opportunistically, without any infrastructure. However, to gain
 full benefit from HIP, the HIs must be stored in the DNS or a
 PKI, and the rendezvous mechanism is needed [RFC8005].

 7. If we add an additional layer, would it make the address list in
 SCTP unnecessary?

 Yes

 8. What additional security benefits would a new naming scheme
 offer?

 HIP reduces dependency on IP addresses, making the so-called
 address ownership [Nik2001] problems easier to solve. In
 practice, HIP provides security for end-host mobility and
 multihoming. Furthermore, since HIP Host Identifiers are public
 keys, standard public key certificate infrastructures can be
 applied on the top of HIP.

 9. What would the resolution mechanisms be, or what characteristics
 of a resolution mechanisms would be required?

 For most purposes, an approach where DNS names are resolved
 simultaneously to HIs and IP addresses is sufficient. However,
 if it becomes necessary to resolve HIs into IP addresses or back
 to DNS names, a flat resolution infrastructure is needed. Such

 an infrastructure could be based on the ideas of Distributed Hash
 Tables, but would require significant new development and
 deployment.

Acknowledgments

 For the people historically involved in the early stages of HIP, see
 the Acknowledgments section in the Host Identity Protocol
 specification.

 During the later stages of this document, when the editing baton was
 transferred to Pekka Nikander, the comments from the early
 implementers and others, including Jari Arkko, Jeff Ahrenholz, Tom
 Henderson, Petri Jokela, Miika Komu, Mika Kousa, Andrew McGregor, Jan
 Melen, Tim Shepard, Jukka Ylitalo, Sasu Tarkoma, and Jorma Wall, were
 invaluable. Also, the comments from Lars Eggert, Spencer Dawkins,
 Dave Crocker, and Erik Giesa were also useful.

 The authors want to express their special thanks to Tom Henderson,
 who took the burden of editing the document in response to IESG
 comments at the time when both of the authors were busy doing other
 things. Without his perseverance, the original document might have
 never made it as RFC 4423.

 This main effort to update and move HIP forward within the IETF
 process owes its impetus to a number of HIP development teams. The
 authors are grateful for Boeing, Helsinki Institute for Information
 Technology (HIIT), NomadicLab of Ericsson, and the three
 universities: RWTH Aachen, Aalto, and University of Helsinki for
 their efforts. Without their collective efforts, HIP would have
 withered as on the IETF vine as a nice concept.

 Thanks also to Suvi Koskinen for her help with proofreading and with
 the reference jungle.

Authors’ Addresses

 Robert Moskowitz (editor)
 HTT Consulting
 Oak Park, Michigan
 United States of America

 Email: rgm@labs.htt-consult.com

 Miika Komu
 Ericsson
 Hirsalantie 11
 FI-02420 Jorvas
 Finland

 Email: miika.komu@ericsson.com

