
ï»¿

Internet Engineering Task Force (IETF) R. Fielding, Ed.
Request for Comments: 9112 Adobe
STD: 99 M. Nottingham, Ed.
Obsoletes: 7230 Fastly
Category: Standards Track J. Reschke, Ed.
ISSN: 2070-1721 greenbytes
 June 2022

 HTTP/1.1

Abstract

 The Hypertext Transfer Protocol (HTTP) is a stateless application-
 level protocol for distributed, collaborative, hypertext information
 systems. This document specifies the HTTP/1.1 message syntax,
 message parsing, connection management, and related security
 concerns.

 This document obsoletes portions of RFC 7230.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9112.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction
 1.1. Requirements Notation
 1.2. Syntax Notation

 2. Message
 2.1. Message Format
 2.2. Message Parsing
 2.3. HTTP Version
 3. Request Line
 3.1. Method
 3.2. Request Target
 3.2.1. origin-form
 3.2.2. absolute-form
 3.2.3. authority-form
 3.2.4. asterisk-form
 3.3. Reconstructing the Target URI
 4. Status Line
 5. Field Syntax
 5.1. Field Line Parsing
 5.2. Obsolete Line Folding
 6. Message Body
 6.1. Transfer-Encoding
 6.2. Content-Length
 6.3. Message Body Length
 7. Transfer Codings
 7.1. Chunked Transfer Coding
 7.1.1. Chunk Extensions
 7.1.2. Chunked Trailer Section
 7.1.3. Decoding Chunked
 7.2. Transfer Codings for Compression
 7.3. Transfer Coding Registry
 7.4. Negotiating Transfer Codings
 8. Handling Incomplete Messages
 9. Connection Management
 9.1. Establishment
 9.2. Associating a Response to a Request
 9.3. Persistence
 9.3.1. Retrying Requests
 9.3.2. Pipelining
 9.4. Concurrency
 9.5. Failures and Timeouts
 9.6. Tear-down
 9.7. TLS Connection Initiation
 9.8. TLS Connection Closure
 10. Enclosing Messages as Data
 10.1. Media Type message/http
 10.2. Media Type application/http
 11. Security Considerations
 11.1. Response Splitting
 11.2. Request Smuggling
 11.3. Message Integrity
 11.4. Message Confidentiality
 12. IANA Considerations
 12.1. Field Name Registration
 12.2. Media Type Registration
 12.3. Transfer Coding Registration
 12.4. ALPN Protocol ID Registration
 13. References
 13.1. Normative References
 13.2. Informative References
 Appendix A. Collected ABNF
 Appendix B. Differences between HTTP and MIME
 B.1. MIME-Version
 B.2. Conversion to Canonical Form
 B.3. Conversion of Date Formats
 B.4. Conversion of Content-Encoding
 B.5. Conversion of Content-Transfer-Encoding
 B.6. MHTML and Line Length Limitations
 Appendix C. Changes from Previous RFCs
 C.1. Changes from HTTP/0.9
 C.2. Changes from HTTP/1.0
 C.2.1. Multihomed Web Servers
 C.2.2. Keep-Alive Connections
 C.2.3. Introduction of Transfer-Encoding
 C.3. Changes from RFC 7230

 Acknowledgements
 Index
 Authors’ Addresses

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a stateless application-
 level request/response protocol that uses extensible semantics and
 self-descriptive messages for flexible interaction with network-based
 hypertext information systems. HTTP/1.1 is defined by:

 * This document

 * "HTTP Semantics" [HTTP]

 * "HTTP Caching" [CACHING]

 This document specifies how HTTP semantics are conveyed using the
 HTTP/1.1 message syntax, framing, and connection management
 mechanisms. Its goal is to define the complete set of requirements
 for HTTP/1.1 message parsers and message-forwarding intermediaries.

 This document obsoletes the portions of RFC 7230 related to HTTP/1.1
 messaging and connection management, with the changes being
 summarized in Appendix C.3. The other parts of RFC 7230 are
 obsoleted by "HTTP Semantics" [HTTP].

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Conformance criteria and considerations regarding error handling are
 defined in Section 2 of [HTTP].

1.2. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234], extended with the notation for case-
 sensitivity in strings defined in [RFC7405].

 It also uses a list extension, defined in Section 5.6.1 of [HTTP],
 that allows for compact definition of comma-separated lists using a
 "#" operator (similar to how the "*" operator indicates repetition).
 Appendix A shows the collected grammar with all list operators
 expanded to standard ABNF notation.

 As a convention, ABNF rule names prefixed with "obs-" denote obsolete
 grammar rules that appear for historical reasons.

 The following core rules are included by reference, as defined in
 [RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
 (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line
 feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR (any
 visible [USASCII] character).

 The rules below are defined in [HTTP]:

 BWS = <BWS, see [HTTP], Section 5.6.3>
 OWS = <OWS, see [HTTP], Section 5.6.3>
 RWS = <RWS, see [HTTP], Section 5.6.3>
 absolute-path = <absolute-path, see [HTTP], Section 4.1>
 field-name = <field-name, see [HTTP], Section 5.1>
 field-value = <field-value, see [HTTP], Section 5.5>
 obs-text = <obs-text, see [HTTP], Section 5.6.4>
 quoted-string = <quoted-string, see [HTTP], Section 5.6.4>
 token = <token, see [HTTP], Section 5.6.2>

 transfer-coding =
 <transfer-coding, see [HTTP], Section 10.1.4>

 The rules below are defined in [URI]:

 absolute-URI = <absolute-URI, see [URI], Section 4.3>
 authority = <authority, see [URI], Section 3.2>
 uri-host = <host, see [URI], Section 3.2.2>
 port = <port, see [URI], Section 3.2.3>
 query = <query, see [URI], Section 3.4>

2. Message

 HTTP/1.1 clients and servers communicate by sending messages. See
 Section 3 of [HTTP] for the general terminology and core concepts of
 HTTP.

2.1. Message Format

 An HTTP/1.1 message consists of a start-line followed by a CRLF and a
 sequence of octets in a format similar to the Internet Message Format
 [RFC5322]: zero or more header field lines (collectively referred to
 as the "headers" or the "header section"), an empty line indicating
 the end of the header section, and an optional message body.

 HTTP-message = start-line CRLF
 *(field-line CRLF)
 CRLF
 [message-body]

 A message can be either a request from client to server or a response
 from server to client. Syntactically, the two types of messages
 differ only in the start-line, which is either a request-line (for
 requests) or a status-line (for responses), and in the algorithm for
 determining the length of the message body (Section 6).

 start-line = request-line / status-line

 In theory, a client could receive requests and a server could receive
 responses, distinguishing them by their different start-line formats.
 In practice, servers are implemented to only expect a request (a
 response is interpreted as an unknown or invalid request method), and
 clients are implemented to only expect a response.

 HTTP makes use of some protocol elements similar to the Multipurpose
 Internet Mail Extensions (MIME) [RFC2045]. See Appendix B for the
 differences between HTTP and MIME messages.

2.2. Message Parsing

 The normal procedure for parsing an HTTP message is to read the
 start-line into a structure, read each header field line into a hash
 table by field name until the empty line, and then use the parsed
 data to determine if a message body is expected. If a message body
 has been indicated, then it is read as a stream until an amount of
 octets equal to the message body length is read or the connection is
 closed.

 A recipient MUST parse an HTTP message as a sequence of octets in an
 encoding that is a superset of US-ASCII [USASCII]. Parsing an HTTP
 message as a stream of Unicode characters, without regard for the
 specific encoding, creates security vulnerabilities due to the
 varying ways that string processing libraries handle invalid
 multibyte character sequences that contain the octet LF (%x0A).
 String-based parsers can only be safely used within protocol elements
 after the element has been extracted from the message, such as within
 a header field line value after message parsing has delineated the
 individual field lines.

 Although the line terminator for the start-line and fields is the
 sequence CRLF, a recipient MAY recognize a single LF as a line

 terminator and ignore any preceding CR.

 A sender MUST NOT generate a bare CR (a CR character not immediately
 followed by LF) within any protocol elements other than the content.
 A recipient of such a bare CR MUST consider that element to be
 invalid or replace each bare CR with SP before processing the element
 or forwarding the message.

 Older HTTP/1.0 user agent implementations might send an extra CRLF
 after a POST request as a workaround for some early server
 applications that failed to read message body content that was not
 terminated by a line-ending. An HTTP/1.1 user agent MUST NOT preface
 or follow a request with an extra CRLF. If terminating the request
 message body with a line-ending is desired, then the user agent MUST
 count the terminating CRLF octets as part of the message body length.

 In the interest of robustness, a server that is expecting to receive
 and parse a request-line SHOULD ignore at least one empty line (CRLF)
 received prior to the request-line.

 A sender MUST NOT send whitespace between the start-line and the
 first header field.

 A recipient that receives whitespace between the start-line and the
 first header field MUST either reject the message as invalid or
 consume each whitespace-preceded line without further processing of
 it (i.e., ignore the entire line, along with any subsequent lines
 preceded by whitespace, until a properly formed header field is
 received or the header section is terminated). Rejection or removal
 of invalid whitespace-preceded lines is necessary to prevent their
 misinterpretation by downstream recipients that might be vulnerable
 to request smuggling (Section 11.2) or response splitting
 (Section 11.1) attacks.

 When a server listening only for HTTP request messages, or processing
 what appears from the start-line to be an HTTP request message,
 receives a sequence of octets that does not match the HTTP-message
 grammar aside from the robustness exceptions listed above, the server
 SHOULD respond with a 400 (Bad Request) response and close the
 connection.

2.3. HTTP Version

 HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
 of the protocol. This specification defines version "1.1".
 Section 2.5 of [HTTP] specifies the semantics of HTTP version
 numbers.

 The version of an HTTP/1.x message is indicated by an HTTP-version
 field in the start-line. HTTP-version is case-sensitive.

 HTTP-version = HTTP-name "/" DIGIT "." DIGIT
 HTTP-name = %s"HTTP"

 When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [HTTP/1.0]
 or a recipient whose version is unknown, the HTTP/1.1 message is
 constructed such that it can be interpreted as a valid HTTP/1.0
 message if all of the newer features are ignored. This specification
 places recipient-version requirements on some new features so that a
 conformant sender will only use compatible features until it has
 determined, through configuration or the receipt of a message, that
 the recipient supports HTTP/1.1.

 Intermediaries that process HTTP messages (i.e., all intermediaries
 other than those acting as tunnels) MUST send their own HTTP-version
 in forwarded messages, unless it is purposefully downgraded as a
 workaround for an upstream issue. In other words, an intermediary is
 not allowed to blindly forward the start-line without ensuring that
 the protocol version in that message matches a version to which that
 intermediary is conformant for both the receiving and sending of
 messages. Forwarding an HTTP message without rewriting the HTTP-

 version might result in communication errors when downstream
 recipients use the message sender’s version to determine what
 features are safe to use for later communication with that sender.

 A server MAY send an HTTP/1.0 response to an HTTP/1.1 request if it
 is known or suspected that the client incorrectly implements the HTTP
 specification and is incapable of correctly processing later version
 responses, such as when a client fails to parse the version number
 correctly or when an intermediary is known to blindly forward the
 HTTP-version even when it doesn’t conform to the given minor version
 of the protocol. Such protocol downgrades SHOULD NOT be performed
 unless triggered by specific client attributes, such as when one or
 more of the request header fields (e.g., User-Agent) uniquely match
 the values sent by a client known to be in error.

3. Request Line

 A request-line begins with a method token, followed by a single space
 (SP), the request-target, and another single space (SP), and ends
 with the protocol version.

 request-line = method SP request-target SP HTTP-version

 Although the request-line grammar rule requires that each of the
 component elements be separated by a single SP octet, recipients MAY
 instead parse on whitespace-delimited word boundaries and, aside from
 the CRLF terminator, treat any form of whitespace as the SP separator
 while ignoring preceding or trailing whitespace; such whitespace
 includes one or more of the following octets: SP, HTAB, VT (%x0B), FF
 (%x0C), or bare CR. However, lenient parsing can result in request
 smuggling security vulnerabilities if there are multiple recipients
 of the message and each has its own unique interpretation of
 robustness (see Section 11.2).

 HTTP does not place a predefined limit on the length of a request-
 line, as described in Section 2.3 of [HTTP]. A server that receives
 a method longer than any that it implements SHOULD respond with a 501
 (Not Implemented) status code. A server that receives a request-
 target longer than any URI it wishes to parse MUST respond with a 414
 (URI Too Long) status code (see Section 15.5.15 of [HTTP]).

 Various ad hoc limitations on request-line length are found in
 practice. It is RECOMMENDED that all HTTP senders and recipients
 support, at a minimum, request-line lengths of 8000 octets.

3.1. Method

 The method token indicates the request method to be performed on the
 target resource. The request method is case-sensitive.

 method = token

 The request methods defined by this specification can be found in
 Section 9 of [HTTP], along with information regarding the HTTP method
 registry and considerations for defining new methods.

3.2. Request Target

 The request-target identifies the target resource upon which to apply
 the request. The client derives a request-target from its desired
 target URI. There are four distinct formats for the request-target,
 depending on both the method being requested and whether the request
 is to a proxy.

 request-target = origin-form
 / absolute-form
 / authority-form
 / asterisk-form

 No whitespace is allowed in the request-target. Unfortunately, some
 user agents fail to properly encode or exclude whitespace found in

 hypertext references, resulting in those disallowed characters being
 sent as the request-target in a malformed request-line.

 Recipients of an invalid request-line SHOULD respond with either a
 400 (Bad Request) error or a 301 (Moved Permanently) redirect with
 the request-target properly encoded. A recipient SHOULD NOT attempt
 to autocorrect and then process the request without a redirect, since
 the invalid request-line might be deliberately crafted to bypass
 security filters along the request chain.

 A client MUST send a Host header field (Section 7.2 of [HTTP]) in all
 HTTP/1.1 request messages. If the target URI includes an authority
 component, then a client MUST send a field value for Host that is
 identical to that authority component, excluding any userinfo
 subcomponent and its "@" delimiter (Section 4.2 of [HTTP]). If the
 authority component is missing or undefined for the target URI, then
 a client MUST send a Host header field with an empty field value.

 A server MUST respond with a 400 (Bad Request) status code to any
 HTTP/1.1 request message that lacks a Host header field and to any
 request message that contains more than one Host header field line or
 a Host header field with an invalid field value.

3.2.1. origin-form

 The most common form of request-target is the "origin-form".

 origin-form = absolute-path ["?" query]

 When making a request directly to an origin server, other than a
 CONNECT or server-wide OPTIONS request (as detailed below), a client
 MUST send only the absolute path and query components of the target
 URI as the request-target. If the target URI’s path component is
 empty, the client MUST send "/" as the path within the origin-form of
 request-target. A Host header field is also sent, as defined in
 Section 7.2 of [HTTP].

 For example, a client wishing to retrieve a representation of the
 resource identified as

 http://www.example.org/where?q=now

 directly from the origin server would open (or reuse) a TCP
 connection to port 80 of the host "www.example.org" and send the
 lines:

 GET /where?q=now HTTP/1.1
 Host: www.example.org

 followed by the remainder of the request message.

3.2.2. absolute-form

 When making a request to a proxy, other than a CONNECT or server-wide
 OPTIONS request (as detailed below), a client MUST send the target
 URI in "absolute-form" as the request-target.

 absolute-form = absolute-URI

 The proxy is requested to either service that request from a valid
 cache, if possible, or make the same request on the client’s behalf
 either to the next inbound proxy server or directly to the origin
 server indicated by the request-target. Requirements on such
 "forwarding" of messages are defined in Section 7.6 of [HTTP].

 An example absolute-form of request-line would be:

 GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1

 A client MUST send a Host header field in an HTTP/1.1 request even if
 the request-target is in the absolute-form, since this allows the

 Host information to be forwarded through ancient HTTP/1.0 proxies
 that might not have implemented Host.

 When a proxy receives a request with an absolute-form of request-
 target, the proxy MUST ignore the received Host header field (if any)
 and instead replace it with the host information of the request-
 target. A proxy that forwards such a request MUST generate a new
 Host field value based on the received request-target rather than
 forward the received Host field value.

 When an origin server receives a request with an absolute-form of
 request-target, the origin server MUST ignore the received Host
 header field (if any) and instead use the host information of the
 request-target. Note that if the request-target does not have an
 authority component, an empty Host header field will be sent in this
 case.

 A server MUST accept the absolute-form in requests even though most
 HTTP/1.1 clients will only send the absolute-form to a proxy.

3.2.3. authority-form

 The "authority-form" of request-target is only used for CONNECT
 requests (Section 9.3.6 of [HTTP]). It consists of only the uri-host
 and port number of the tunnel destination, separated by a colon
 (":").

 authority-form = uri-host ":" port

 When making a CONNECT request to establish a tunnel through one or
 more proxies, a client MUST send only the host and port of the tunnel
 destination as the request-target. The client obtains the host and
 port from the target URI’s authority component, except that it sends
 the scheme’s default port if the target URI elides the port. For
 example, a CONNECT request to "http://www.example.com" looks like the
 following:

 CONNECT www.example.com:80 HTTP/1.1
 Host: www.example.com

3.2.4. asterisk-form

 The "asterisk-form" of request-target is only used for a server-wide
 OPTIONS request (Section 9.3.7 of [HTTP]).

 asterisk-form = "*"

 When a client wishes to request OPTIONS for the server as a whole, as
 opposed to a specific named resource of that server, the client MUST
 send only "*" (%x2A) as the request-target. For example,

 OPTIONS * HTTP/1.1

 If a proxy receives an OPTIONS request with an absolute-form of
 request-target in which the URI has an empty path and no query
 component, then the last proxy on the request chain MUST send a
 request-target of "*" when it forwards the request to the indicated
 origin server.

 For example, the request

 OPTIONS http://www.example.org:8001 HTTP/1.1

 would be forwarded by the final proxy as

 OPTIONS * HTTP/1.1
 Host: www.example.org:8001

 after connecting to port 8001 of host "www.example.org".

3.3. Reconstructing the Target URI

 The target URI is the request-target when the request-target is in
 absolute-form. In that case, a server will parse the URI into its
 generic components for further evaluation.

 Otherwise, the server reconstructs the target URI from the connection
 context and various parts of the request message in order to identify
 the target resource (Section 7.1 of [HTTP]):

 * If the server’s configuration provides for a fixed URI scheme, or
 a scheme is provided by a trusted outbound gateway, that scheme is
 used for the target URI. This is common in large-scale
 deployments because a gateway server will receive the client’s
 connection context and replace that with their own connection to
 the inbound server. Otherwise, if the request is received over a
 secured connection, the target URI’s scheme is "https"; if not,
 the scheme is "http".

 * If the request-target is in authority-form, the target URI’s
 authority component is the request-target. Otherwise, the target
 URI’s authority component is the field value of the Host header
 field. If there is no Host header field or if its field value is
 empty or invalid, the target URI’s authority component is empty.

 * If the request-target is in authority-form or asterisk-form, the
 target URI’s combined path and query component is empty.
 Otherwise, the target URI’s combined path and query component is
 the request-target.

 * The components of a reconstructed target URI, once determined as
 above, can be recombined into absolute-URI form by concatenating
 the scheme, "://", authority, and combined path and query
 component.

 Example 1: The following message received over a secure connection

 GET /pub/WWW/TheProject.html HTTP/1.1
 Host: www.example.org

 has a target URI of

 https://www.example.org/pub/WWW/TheProject.html

 Example 2: The following message received over an insecure connection

 OPTIONS * HTTP/1.1
 Host: www.example.org:8080

 has a target URI of

 http://www.example.org:8080

 If the target URI’s authority component is empty and its URI scheme
 requires a non-empty authority (as is the case for "http" and
 "https"), the server can reject the request or determine whether a
 configured default applies that is consistent with the incoming
 connection’s context. Context might include connection details like
 address and port, what security has been applied, and locally defined
 information specific to that server’s configuration. An empty
 authority is replaced with the configured default before further
 processing of the request.

 Supplying a default name for authority within the context of a
 secured connection is inherently unsafe if there is any chance that
 the user agent’s intended authority might differ from the default. A
 server that can uniquely identify an authority from the request
 context MAY use that identity as a default without this risk.
 Alternatively, it might be better to redirect the request to a safe
 resource that explains how to obtain a new client.

 Note that reconstructing the client’s target URI is only half of the

 process for identifying a target resource. The other half is
 determining whether that target URI identifies a resource for which
 the server is willing and able to send a response, as defined in
 Section 7.4 of [HTTP].

4. Status Line

 The first line of a response message is the status-line, consisting
 of the protocol version, a space (SP), the status code, and another
 space and ending with an OPTIONAL textual phrase describing the
 status code.

 status-line = HTTP-version SP status-code SP [reason-phrase]

 Although the status-line grammar rule requires that each of the
 component elements be separated by a single SP octet, recipients MAY
 instead parse on whitespace-delimited word boundaries and, aside from
 the line terminator, treat any form of whitespace as the SP separator
 while ignoring preceding or trailing whitespace; such whitespace
 includes one or more of the following octets: SP, HTAB, VT (%x0B), FF
 (%x0C), or bare CR. However, lenient parsing can result in response
 splitting security vulnerabilities if there are multiple recipients
 of the message and each has its own unique interpretation of
 robustness (see Section 11.1).

 The status-code element is a 3-digit integer code describing the
 result of the server’s attempt to understand and satisfy the client’s
 corresponding request. A recipient parses and interprets the
 remainder of the response message in light of the semantics defined
 for that status code, if the status code is recognized by that
 recipient, or in accordance with the class of that status code when
 the specific code is unrecognized.

 status-code = 3DIGIT

 HTTP’s core status codes are defined in Section 15 of [HTTP], along
 with the classes of status codes, considerations for the definition
 of new status codes, and the IANA registry for collecting such
 definitions.

 The reason-phrase element exists for the sole purpose of providing a
 textual description associated with the numeric status code, mostly
 out of deference to earlier Internet application protocols that were
 more frequently used with interactive text clients.

 reason-phrase = 1*(HTAB / SP / VCHAR / obs-text)

 A client SHOULD ignore the reason-phrase content because it is not a
 reliable channel for information (it might be translated for a given
 locale, overwritten by intermediaries, or discarded when the message
 is forwarded via other versions of HTTP). A server MUST send the
 space that separates the status-code from the reason-phrase even when
 the reason-phrase is absent (i.e., the status-line would end with the
 space).

5. Field Syntax

 Each field line consists of a case-insensitive field name followed by
 a colon (":"), optional leading whitespace, the field line value, and
 optional trailing whitespace.

 field-line = field-name ":" OWS field-value OWS

 Rules for parsing within field values are defined in Section 5.5 of
 [HTTP]. This section covers the generic syntax for header field
 inclusion within, and extraction from, HTTP/1.1 messages.

5.1. Field Line Parsing

 Messages are parsed using a generic algorithm, independent of the
 individual field names. The contents within a given field line value

 are not parsed until a later stage of message interpretation (usually
 after the message’s entire field section has been processed).

 No whitespace is allowed between the field name and colon. In the
 past, differences in the handling of such whitespace have led to
 security vulnerabilities in request routing and response handling. A
 server MUST reject, with a response status code of 400 (Bad Request),
 any received request message that contains whitespace between a
 header field name and colon. A proxy MUST remove any such whitespace
 from a response message before forwarding the message downstream.

 A field line value might be preceded and/or followed by optional
 whitespace (OWS); a single SP preceding the field line value is
 preferred for consistent readability by humans. The field line value
 does not include that leading or trailing whitespace: OWS occurring
 before the first non-whitespace octet of the field line value, or
 after the last non-whitespace octet of the field line value, is
 excluded by parsers when extracting the field line value from a field
 line.

5.2. Obsolete Line Folding

 Historically, HTTP/1.x field values could be extended over multiple
 lines by preceding each extra line with at least one space or
 horizontal tab (obs-fold). This specification deprecates such line
 folding except within the "message/http" media type (Section 10.1).

 obs-fold = OWS CRLF RWS
 ; obsolete line folding

 A sender MUST NOT generate a message that includes line folding
 (i.e., that has any field line value that contains a match to the
 obs-fold rule) unless the message is intended for packaging within
 the "message/http" media type.

 A server that receives an obs-fold in a request message that is not
 within a "message/http" container MUST either reject the message by
 sending a 400 (Bad Request), preferably with a representation
 explaining that obsolete line folding is unacceptable, or replace
 each received obs-fold with one or more SP octets prior to
 interpreting the field value or forwarding the message downstream.

 A proxy or gateway that receives an obs-fold in a response message
 that is not within a "message/http" container MUST either discard the
 message and replace it with a 502 (Bad Gateway) response, preferably
 with a representation explaining that unacceptable line folding was
 received, or replace each received obs-fold with one or more SP
 octets prior to interpreting the field value or forwarding the
 message downstream.

 A user agent that receives an obs-fold in a response message that is
 not within a "message/http" container MUST replace each received
 obs-fold with one or more SP octets prior to interpreting the field
 value.

6. Message Body

 The message body (if any) of an HTTP/1.1 message is used to carry
 content (Section 6.4 of [HTTP]) for the request or response. The
 message body is identical to the content unless a transfer coding has
 been applied, as described in Section 6.1.

 message-body = *OCTET

 The rules for determining when a message body is present in an
 HTTP/1.1 message differ for requests and responses.

 The presence of a message body in a request is signaled by a
 Content-Length or Transfer-Encoding header field. Request message
 framing is independent of method semantics.

 The presence of a message body in a response, as detailed in
 Section 6.3, depends on both the request method to which it is
 responding and the response status code. This corresponds to when
 response content is allowed by HTTP semantics (Section 6.4.1 of
 [HTTP]).

6.1. Transfer-Encoding

 The Transfer-Encoding header field lists the transfer coding names
 corresponding to the sequence of transfer codings that have been (or
 will be) applied to the content in order to form the message body.
 Transfer codings are defined in Section 7.

 Transfer-Encoding = #transfer-coding
 ; defined in [HTTP], Section 10.1.4

 Transfer-Encoding is analogous to the Content-Transfer-Encoding field
 of MIME, which was designed to enable safe transport of binary data
 over a 7-bit transport service ([RFC2045], Section 6). However, safe
 transport has a different focus for an 8bit-clean transfer protocol.
 In HTTP’s case, Transfer-Encoding is primarily intended to accurately
 delimit dynamically generated content. It also serves to distinguish
 encodings that are only applied in transit from the encodings that
 are a characteristic of the selected representation.

 A recipient MUST be able to parse the chunked transfer coding
 (Section 7.1) because it plays a crucial role in framing messages
 when the content size is not known in advance. A sender MUST NOT
 apply the chunked transfer coding more than once to a message body
 (i.e., chunking an already chunked message is not allowed). If any
 transfer coding other than chunked is applied to a request’s content,
 the sender MUST apply chunked as the final transfer coding to ensure
 that the message is properly framed. If any transfer coding other
 than chunked is applied to a response’s content, the sender MUST
 either apply chunked as the final transfer coding or terminate the
 message by closing the connection.

 For example,

 Transfer-Encoding: gzip, chunked

 indicates that the content has been compressed using the gzip coding
 and then chunked using the chunked coding while forming the message
 body.

 Unlike Content-Encoding (Section 8.4.1 of [HTTP]), Transfer-Encoding
 is a property of the message, not of the representation. Any
 recipient along the request/response chain MAY decode the received
 transfer coding(s) or apply additional transfer coding(s) to the
 message body, assuming that corresponding changes are made to the
 Transfer-Encoding field value. Additional information about the
 encoding parameters can be provided by other header fields not
 defined by this specification.

 Transfer-Encoding MAY be sent in a response to a HEAD request or in a
 304 (Not Modified) response (Section 15.4.5 of [HTTP]) to a GET
 request, neither of which includes a message body, to indicate that
 the origin server would have applied a transfer coding to the message
 body if the request had been an unconditional GET. This indication
 is not required, however, because any recipient on the response chain
 (including the origin server) can remove transfer codings when they
 are not needed.

 A server MUST NOT send a Transfer-Encoding header field in any
 response with a status code of 1xx (Informational) or 204 (No
 Content). A server MUST NOT send a Transfer-Encoding header field in
 any 2xx (Successful) response to a CONNECT request (Section 9.3.6 of
 [HTTP]).

 A server that receives a request message with a transfer coding it
 does not understand SHOULD respond with 501 (Not Implemented).

 Transfer-Encoding was added in HTTP/1.1. It is generally assumed
 that implementations advertising only HTTP/1.0 support will not
 understand how to process transfer-encoded content, and that an
 HTTP/1.0 message received with a Transfer-Encoding is likely to have
 been forwarded without proper handling of the chunked transfer coding
 in transit.

 A client MUST NOT send a request containing Transfer-Encoding unless
 it knows the server will handle HTTP/1.1 requests (or later minor
 revisions); such knowledge might be in the form of specific user
 configuration or by remembering the version of a prior received
 response. A server MUST NOT send a response containing Transfer-
 Encoding unless the corresponding request indicates HTTP/1.1 (or
 later minor revisions).

 Early implementations of Transfer-Encoding would occasionally send
 both a chunked transfer coding for message framing and an estimated
 Content-Length header field for use by progress bars. This is why
 Transfer-Encoding is defined as overriding Content-Length, as opposed
 to them being mutually incompatible. Unfortunately, forwarding such
 a message can lead to vulnerabilities regarding request smuggling
 (Section 11.2) or response splitting (Section 11.1) attacks if any
 downstream recipient fails to parse the message according to this
 specification, particularly when a downstream recipient only
 implements HTTP/1.0.

 A server MAY reject a request that contains both Content-Length and
 Transfer-Encoding or process such a request in accordance with the
 Transfer-Encoding alone. Regardless, the server MUST close the
 connection after responding to such a request to avoid the potential
 attacks.

 A server or client that receives an HTTP/1.0 message containing a
 Transfer-Encoding header field MUST treat the message as if the
 framing is faulty, even if a Content-Length is present, and close the
 connection after processing the message. The message sender might
 have retained a portion of the message, in buffer, that could be
 misinterpreted by further use of the connection.

6.2. Content-Length

 When a message does not have a Transfer-Encoding header field, a
 Content-Length header field (Section 8.6 of [HTTP]) can provide the
 anticipated size, as a decimal number of octets, for potential
 content. For messages that do include content, the Content-Length
 field value provides the framing information necessary for
 determining where the data (and message) ends. For messages that do
 not include content, the Content-Length indicates the size of the
 selected representation (Section 8.6 of [HTTP]).

 A sender MUST NOT send a Content-Length header field in any message
 that contains a Transfer-Encoding header field.

 | *Note:* HTTP’s use of Content-Length for message framing
 | differs significantly from the same field’s use in MIME, where
 | it is an optional field used only within the "message/external-
 | body" media-type.

6.3. Message Body Length

 The length of a message body is determined by one of the following
 (in order of precedence):

 1. Any response to a HEAD request and any response with a 1xx
 (Informational), 204 (No Content), or 304 (Not Modified) status
 code is always terminated by the first empty line after the
 header fields, regardless of the header fields present in the
 message, and thus cannot contain a message body or trailer
 section.

 2. Any 2xx (Successful) response to a CONNECT request implies that
 the connection will become a tunnel immediately after the empty
 line that concludes the header fields. A client MUST ignore any
 Content-Length or Transfer-Encoding header fields received in
 such a message.

 3. If a message is received with both a Transfer-Encoding and a
 Content-Length header field, the Transfer-Encoding overrides the
 Content-Length. Such a message might indicate an attempt to
 perform request smuggling (Section 11.2) or response splitting
 (Section 11.1) and ought to be handled as an error. An
 intermediary that chooses to forward the message MUST first
 remove the received Content-Length field and process the
 Transfer-Encoding (as described below) prior to forwarding the
 message downstream.

 4. If a Transfer-Encoding header field is present and the chunked
 transfer coding (Section 7.1) is the final encoding, the message
 body length is determined by reading and decoding the chunked
 data until the transfer coding indicates the data is complete.

 If a Transfer-Encoding header field is present in a response and
 the chunked transfer coding is not the final encoding, the
 message body length is determined by reading the connection until
 it is closed by the server.

 If a Transfer-Encoding header field is present in a request and
 the chunked transfer coding is not the final encoding, the
 message body length cannot be determined reliably; the server
 MUST respond with the 400 (Bad Request) status code and then
 close the connection.

 5. If a message is received without Transfer-Encoding and with an
 invalid Content-Length header field, then the message framing is
 invalid and the recipient MUST treat it as an unrecoverable
 error, unless the field value can be successfully parsed as a
 comma-separated list (Section 5.6.1 of [HTTP]), all values in the
 list are valid, and all values in the list are the same (in which
 case, the message is processed with that single value used as the
 Content-Length field value). If the unrecoverable error is in a
 request message, the server MUST respond with a 400 (Bad Request)
 status code and then close the connection. If it is in a
 response message received by a proxy, the proxy MUST close the
 connection to the server, discard the received response, and send
 a 502 (Bad Gateway) response to the client. If it is in a
 response message received by a user agent, the user agent MUST
 close the connection to the server and discard the received
 response.

 6. If a valid Content-Length header field is present without
 Transfer-Encoding, its decimal value defines the expected message
 body length in octets. If the sender closes the connection or
 the recipient times out before the indicated number of octets are
 received, the recipient MUST consider the message to be
 incomplete and close the connection.

 7. If this is a request message and none of the above are true, then
 the message body length is zero (no message body is present).

 8. Otherwise, this is a response message without a declared message
 body length, so the message body length is determined by the
 number of octets received prior to the server closing the
 connection.

 Since there is no way to distinguish a successfully completed, close-
 delimited response message from a partially received message
 interrupted by network failure, a server SHOULD generate encoding or
 length-delimited messages whenever possible. The close-delimiting
 feature exists primarily for backwards compatibility with HTTP/1.0.

 | *Note:* Request messages are never close-delimited because they

 | are always explicitly framed by length or transfer coding, with
 | the absence of both implying the request ends immediately after
 | the header section.

 A server MAY reject a request that contains a message body but not a
 Content-Length by responding with 411 (Length Required).

 Unless a transfer coding other than chunked has been applied, a
 client that sends a request containing a message body SHOULD use a
 valid Content-Length header field if the message body length is known
 in advance, rather than the chunked transfer coding, since some
 existing services respond to chunked with a 411 (Length Required)
 status code even though they understand the chunked transfer coding.
 This is typically because such services are implemented via a gateway
 that requires a content length in advance of being called, and the
 server is unable or unwilling to buffer the entire request before
 processing.

 A user agent that sends a request that contains a message body MUST
 send either a valid Content-Length header field or use the chunked
 transfer coding. A client MUST NOT use the chunked transfer coding
 unless it knows the server will handle HTTP/1.1 (or later) requests;
 such knowledge can be in the form of specific user configuration or
 by remembering the version of a prior received response.

 If the final response to the last request on a connection has been
 completely received and there remains additional data to read, a user
 agent MAY discard the remaining data or attempt to determine if that
 data belongs as part of the prior message body, which might be the
 case if the prior message’s Content-Length value is incorrect. A
 client MUST NOT process, cache, or forward such extra data as a
 separate response, since such behavior would be vulnerable to cache
 poisoning.

7. Transfer Codings

 Transfer coding names are used to indicate an encoding transformation
 that has been, can be, or might need to be applied to a message’s
 content in order to ensure "safe transport" through the network.
 This differs from a content coding in that the transfer coding is a
 property of the message rather than a property of the representation
 that is being transferred.

 All transfer-coding names are case-insensitive and ought to be
 registered within the HTTP Transfer Coding registry, as defined in
 Section 7.3. They are used in the Transfer-Encoding (Section 6.1)
 and TE (Section 10.1.4 of [HTTP]) header fields (the latter also
 defining the "transfer-coding" grammar).

7.1. Chunked Transfer Coding

 The chunked transfer coding wraps content in order to transfer it as
 a series of chunks, each with its own size indicator, followed by an
 OPTIONAL trailer section containing trailer fields. Chunked enables
 content streams of unknown size to be transferred as a sequence of
 length-delimited buffers, which enables the sender to retain
 connection persistence and the recipient to know when it has received
 the entire message.

 chunked-body = *chunk
 last-chunk
 trailer-section
 CRLF

 chunk = chunk-size [chunk-ext] CRLF
 chunk-data CRLF
 chunk-size = 1*HEXDIG
 last-chunk = 1*("0") [chunk-ext] CRLF

 chunk-data = 1*OCTET ; a sequence of chunk-size octets

 The chunk-size field is a string of hex digits indicating the size of
 the chunk-data in octets. The chunked transfer coding is complete
 when a chunk with a chunk-size of zero is received, possibly followed
 by a trailer section, and finally terminated by an empty line.

 A recipient MUST be able to parse and decode the chunked transfer
 coding.

 HTTP/1.1 does not define any means to limit the size of a chunked
 response such that an intermediary can be assured of buffering the
 entire response. Additionally, very large chunk sizes may cause
 overflows or loss of precision if their values are not represented
 accurately in a receiving implementation. Therefore, recipients MUST
 anticipate potentially large hexadecimal numerals and prevent parsing
 errors due to integer conversion overflows or precision loss due to
 integer representation.

 The chunked coding does not define any parameters. Their presence
 SHOULD be treated as an error.

7.1.1. Chunk Extensions

 The chunked coding allows each chunk to include zero or more chunk
 extensions, immediately following the chunk-size, for the sake of
 supplying per-chunk metadata (such as a signature or hash), mid-
 message control information, or randomization of message body size.

 chunk-ext = *(BWS ";" BWS chunk-ext-name
 [BWS "=" BWS chunk-ext-val])

 chunk-ext-name = token
 chunk-ext-val = token / quoted-string

 The chunked coding is specific to each connection and is likely to be
 removed or recoded by each recipient (including intermediaries)
 before any higher-level application would have a chance to inspect
 the extensions. Hence, the use of chunk extensions is generally
 limited to specialized HTTP services such as "long polling" (where
 client and server can have shared expectations regarding the use of
 chunk extensions) or for padding within an end-to-end secured
 connection.

 A recipient MUST ignore unrecognized chunk extensions. A server
 ought to limit the total length of chunk extensions received in a
 request to an amount reasonable for the services provided, in the
 same way that it applies length limitations and timeouts for other
 parts of a message, and generate an appropriate 4xx (Client Error)
 response if that amount is exceeded.

7.1.2. Chunked Trailer Section

 A trailer section allows the sender to include additional fields at
 the end of a chunked message in order to supply metadata that might
 be dynamically generated while the content is sent, such as a message
 integrity check, digital signature, or post-processing status. The
 proper use and limitations of trailer fields are defined in
 Section 6.5 of [HTTP].

 trailer-section = *(field-line CRLF)

 A recipient that removes the chunked coding from a message MAY
 selectively retain or discard the received trailer fields. A
 recipient that retains a received trailer field MUST either store/
 forward the trailer field separately from the received header fields
 or merge the received trailer field into the header section. A
 recipient MUST NOT merge a received trailer field into the header
 section unless its corresponding header field definition explicitly
 permits and instructs how the trailer field value can be safely
 merged.

7.1.3. Decoding Chunked

 A process for decoding the chunked transfer coding can be represented
 in pseudo-code as:

 length := 0
 read chunk-size, chunk-ext (if any), and CRLF
 while (chunk-size > 0) {
 read chunk-data and CRLF
 append chunk-data to content
 length := length + chunk-size
 read chunk-size, chunk-ext (if any), and CRLF
 }
 read trailer field
 while (trailer field is not empty) {
 if (trailer fields are stored/forwarded separately) {
 append trailer field to existing trailer fields
 }
 else if (trailer field is understood and defined as mergeable) {
 merge trailer field with existing header fields
 }
 else {
 discard trailer field
 }
 read trailer field
 }
 Content-Length := length
 Remove "chunked" from Transfer-Encoding

7.2. Transfer Codings for Compression

 The following transfer coding names for compression are defined by
 the same algorithm as their corresponding content coding:

 compress (and x-compress)
 See Section 8.4.1.1 of [HTTP].

 deflate
 See Section 8.4.1.2 of [HTTP].

 gzip (and x-gzip)
 See Section 8.4.1.3 of [HTTP].

 The compression codings do not define any parameters. The presence
 of parameters with any of these compression codings SHOULD be treated
 as an error.

7.3. Transfer Coding Registry

 The "HTTP Transfer Coding Registry" defines the namespace for
 transfer coding names. It is maintained at
 <https://www.iana.org/assignments/http-parameters>.

 Registrations MUST include the following fields:

 * Name

 * Description

 * Pointer to specification text

 Names of transfer codings MUST NOT overlap with names of content
 codings (Section 8.4.1 of [HTTP]) unless the encoding transformation
 is identical, as is the case for the compression codings defined in
 Section 7.2.

 The TE header field (Section 10.1.4 of [HTTP]) uses a pseudo-
 parameter named "q" as the rank value when multiple transfer codings
 are acceptable. Future registrations of transfer codings SHOULD NOT
 define parameters called "q" (case-insensitively) in order to avoid
 ambiguities.

 Values to be added to this namespace require IETF Review (see
 Section 4.8 of [RFC8126]) and MUST conform to the purpose of transfer
 coding defined in this specification.

 Use of program names for the identification of encoding formats is
 not desirable and is discouraged for future encodings.

7.4. Negotiating Transfer Codings

 The TE field (Section 10.1.4 of [HTTP]) is used in HTTP/1.1 to
 indicate what transfer codings, besides chunked, the client is
 willing to accept in the response and whether the client is willing
 to preserve trailer fields in a chunked transfer coding.

 A client MUST NOT send the chunked transfer coding name in TE;
 chunked is always acceptable for HTTP/1.1 recipients.

 Three examples of TE use are below.

 TE: deflate
 TE:
 TE: trailers, deflate;q=0.5

 When multiple transfer codings are acceptable, the client MAY rank
 the codings by preference using a case-insensitive "q" parameter
 (similar to the qvalues used in content negotiation fields; see
 Section 12.4.2 of [HTTP]). The rank value is a real number in the
 range 0 through 1, where 0.001 is the least preferred and 1 is the
 most preferred; a value of 0 means "not acceptable".

 If the TE field value is empty or if no TE field is present, the only
 acceptable transfer coding is chunked. A message with no transfer
 coding is always acceptable.

 The keyword "trailers" indicates that the sender will not discard
 trailer fields, as described in Section 6.5 of [HTTP].

 Since the TE header field only applies to the immediate connection, a
 sender of TE MUST also send a "TE" connection option within the
 Connection header field (Section 7.6.1 of [HTTP]) in order to prevent
 the TE header field from being forwarded by intermediaries that do
 not support its semantics.

8. Handling Incomplete Messages

 A server that receives an incomplete request message, usually due to
 a canceled request or a triggered timeout exception, MAY send an
 error response prior to closing the connection.

 A client that receives an incomplete response message, which can
 occur when a connection is closed prematurely or when decoding a
 supposedly chunked transfer coding fails, MUST record the message as
 incomplete. Cache requirements for incomplete responses are defined
 in Section 3.3 of [CACHING].

 If a response terminates in the middle of the header section (before
 the empty line is received) and the status code might rely on header
 fields to convey the full meaning of the response, then the client
 cannot assume that meaning has been conveyed; the client might need
 to repeat the request in order to determine what action to take next.

 A message body that uses the chunked transfer coding is incomplete if
 the zero-sized chunk that terminates the encoding has not been
 received. A message that uses a valid Content-Length is incomplete
 if the size of the message body received (in octets) is less than the
 value given by Content-Length. A response that has neither chunked
 transfer coding nor Content-Length is terminated by closure of the
 connection and, if the header section was received intact, is
 considered complete unless an error was indicated by the underlying
 connection (e.g., an "incomplete close" in TLS would leave the
 response incomplete, as described in Section 9.8).

9. Connection Management

 HTTP messaging is independent of the underlying transport- or
 session-layer connection protocol(s). HTTP only presumes a reliable
 transport with in-order delivery of requests and the corresponding
 in-order delivery of responses. The mapping of HTTP request and
 response structures onto the data units of an underlying transport
 protocol is outside the scope of this specification.

 As described in Section 7.3 of [HTTP], the specific connection
 protocols to be used for an HTTP interaction are determined by client
 configuration and the target URI. For example, the "http" URI scheme
 (Section 4.2.1 of [HTTP]) indicates a default connection of TCP over
 IP, with a default TCP port of 80, but the client might be configured
 to use a proxy via some other connection, port, or protocol.

 HTTP implementations are expected to engage in connection management,
 which includes maintaining the state of current connections,
 establishing a new connection or reusing an existing connection,
 processing messages received on a connection, detecting connection
 failures, and closing each connection. Most clients maintain
 multiple connections in parallel, including more than one connection
 per server endpoint. Most servers are designed to maintain thousands
 of concurrent connections, while controlling request queues to enable
 fair use and detect denial-of-service attacks.

9.1. Establishment

 It is beyond the scope of this specification to describe how
 connections are established via various transport- or session-layer
 protocols. Each HTTP connection maps to one underlying transport
 connection.

9.2. Associating a Response to a Request

 HTTP/1.1 does not include a request identifier for associating a
 given request message with its corresponding one or more response
 messages. Hence, it relies on the order of response arrival to
 correspond exactly to the order in which requests are made on the
 same connection. More than one response message per request only
 occurs when one or more informational responses (1xx; see
 Section 15.2 of [HTTP]) precede a final response to the same request.

 A client that has more than one outstanding request on a connection
 MUST maintain a list of outstanding requests in the order sent and
 MUST associate each received response message on that connection to
 the first outstanding request that has not yet received a final (non-
 1xx) response.

 If a client receives data on a connection that doesn’t have
 outstanding requests, the client MUST NOT consider that data to be a
 valid response; the client SHOULD close the connection, since message
 delimitation is now ambiguous, unless the data consists only of one
 or more CRLF (which can be discarded per Section 2.2).

9.3. Persistence

 HTTP/1.1 defaults to the use of "persistent connections", allowing
 multiple requests and responses to be carried over a single
 connection. HTTP implementations SHOULD support persistent
 connections.

 A recipient determines whether a connection is persistent or not
 based on the protocol version and Connection header field
 (Section 7.6.1 of [HTTP]) in the most recently received message, if
 any:

 * If the "close" connection option is present (Section 9.6), the
 connection will not persist after the current response; else,

 * If the received protocol is HTTP/1.1 (or later), the connection
 will persist after the current response; else,

 * If the received protocol is HTTP/1.0, the "keep-alive" connection
 option is present, either the recipient is not a proxy or the
 message is a response, and the recipient wishes to honor the
 HTTP/1.0 "keep-alive" mechanism, the connection will persist after
 the current response; otherwise,

 * The connection will close after the current response.

 A client that does not support persistent connections MUST send the
 "close" connection option in every request message.

 A server that does not support persistent connections MUST send the
 "close" connection option in every response message that does not
 have a 1xx (Informational) status code.

 A client MAY send additional requests on a persistent connection
 until it sends or receives a "close" connection option or receives an
 HTTP/1.0 response without a "keep-alive" connection option.

 In order to remain persistent, all messages on a connection need to
 have a self-defined message length (i.e., one not defined by closure
 of the connection), as described in Section 6. A server MUST read
 the entire request message body or close the connection after sending
 its response; otherwise, the remaining data on a persistent
 connection would be misinterpreted as the next request. Likewise, a
 client MUST read the entire response message body if it intends to
 reuse the same connection for a subsequent request.

 A proxy server MUST NOT maintain a persistent connection with an
 HTTP/1.0 client (see Appendix C.2.2 for information and discussion of
 the problems with the Keep-Alive header field implemented by many
 HTTP/1.0 clients).

 See Appendix C.2.2 for more information on backwards compatibility
 with HTTP/1.0 clients.

9.3.1. Retrying Requests

 Connections can be closed at any time, with or without intention.
 Implementations ought to anticipate the need to recover from
 asynchronous close events. The conditions under which a client can
 automatically retry a sequence of outstanding requests are defined in
 Section 9.2.2 of [HTTP].

9.3.2. Pipelining

 A client that supports persistent connections MAY "pipeline" its
 requests (i.e., send multiple requests without waiting for each
 response). A server MAY process a sequence of pipelined requests in
 parallel if they all have safe methods (Section 9.2.1 of [HTTP]), but
 it MUST send the corresponding responses in the same order that the
 requests were received.

 A client that pipelines requests SHOULD retry unanswered requests if
 the connection closes before it receives all of the corresponding
 responses. When retrying pipelined requests after a failed
 connection (a connection not explicitly closed by the server in its
 last complete response), a client MUST NOT pipeline immediately after
 connection establishment, since the first remaining request in the
 prior pipeline might have caused an error response that can be lost
 again if multiple requests are sent on a prematurely closed
 connection (see the TCP reset problem described in Section 9.6).

 Idempotent methods (Section 9.2.2 of [HTTP]) are significant to
 pipelining because they can be automatically retried after a
 connection failure. A user agent SHOULD NOT pipeline requests after
 a non-idempotent method, until the final response status code for
 that method has been received, unless the user agent has a means to

 detect and recover from partial failure conditions involving the
 pipelined sequence.

 An intermediary that receives pipelined requests MAY pipeline those
 requests when forwarding them inbound, since it can rely on the
 outbound user agent(s) to determine what requests can be safely
 pipelined. If the inbound connection fails before receiving a
 response, the pipelining intermediary MAY attempt to retry a sequence
 of requests that have yet to receive a response if the requests all
 have idempotent methods; otherwise, the pipelining intermediary
 SHOULD forward any received responses and then close the
 corresponding outbound connection(s) so that the outbound user
 agent(s) can recover accordingly.

9.4. Concurrency

 A client ought to limit the number of simultaneous open connections
 that it maintains to a given server.

 Previous revisions of HTTP gave a specific number of connections as a
 ceiling, but this was found to be impractical for many applications.
 As a result, this specification does not mandate a particular maximum
 number of connections but, instead, encourages clients to be
 conservative when opening multiple connections.

 Multiple connections are typically used to avoid the "head-of-line
 blocking" problem, wherein a request that takes significant server-
 side processing and/or transfers very large content would block
 subsequent requests on the same connection. However, each connection
 consumes server resources.

 Furthermore, using multiple connections can cause undesirable side
 effects in congested networks. Using larger numbers of connections
 can also cause side effects in otherwise uncongested networks,
 because their aggregate and initially synchronized sending behavior
 can cause congestion that would not have been present if fewer
 parallel connections had been used.

 Note that a server might reject traffic that it deems abusive or
 characteristic of a denial-of-service attack, such as an excessive
 number of open connections from a single client.

9.5. Failures and Timeouts

 Servers will usually have some timeout value beyond which they will
 no longer maintain an inactive connection. Proxy servers might make
 this a higher value since it is likely that the client will be making
 more connections through the same proxy server. The use of
 persistent connections places no requirements on the length (or
 existence) of this timeout for either the client or the server.

 A client or server that wishes to time out SHOULD issue a graceful
 close on the connection. Implementations SHOULD constantly monitor
 open connections for a received closure signal and respond to it as
 appropriate, since prompt closure of both sides of a connection
 enables allocated system resources to be reclaimed.

 A client, server, or proxy MAY close the transport connection at any
 time. For example, a client might have started to send a new request
 at the same time that the server has decided to close the "idle"
 connection. From the server’s point of view, the connection is being
 closed while it was idle, but from the client’s point of view, a
 request is in progress.

 A server SHOULD sustain persistent connections, when possible, and
 allow the underlying transport’s flow-control mechanisms to resolve
 temporary overloads rather than terminate connections with the
 expectation that clients will retry. The latter technique can
 exacerbate network congestion or server load.

 A client sending a message body SHOULD monitor the network connection

 for an error response while it is transmitting the request. If the
 client sees a response that indicates the server does not wish to
 receive the message body and is closing the connection, the client
 SHOULD immediately cease transmitting the body and close its side of
 the connection.

9.6. Tear-down

 The "close" connection option is defined as a signal that the sender
 will close this connection after completion of the response. A
 sender SHOULD send a Connection header field (Section 7.6.1 of
 [HTTP]) containing the "close" connection option when it intends to
 close a connection. For example,

 Connection: close

 as a request header field indicates that this is the last request
 that the client will send on this connection, while in a response,
 the same field indicates that the server is going to close this
 connection after the response message is complete.

 Note that the field name "Close" is reserved, since using that name
 as a header field might conflict with the "close" connection option.

 A client that sends a "close" connection option MUST NOT send further
 requests on that connection (after the one containing the "close")
 and MUST close the connection after reading the final response
 message corresponding to this request.

 A server that receives a "close" connection option MUST initiate
 closure of the connection (see below) after it sends the final
 response to the request that contained the "close" connection option.
 The server SHOULD send a "close" connection option in its final
 response on that connection. The server MUST NOT process any further
 requests received on that connection.

 A server that sends a "close" connection option MUST initiate closure
 of the connection (see below) after it sends the response containing
 the "close" connection option. The server MUST NOT process any
 further requests received on that connection.

 A client that receives a "close" connection option MUST cease sending
 requests on that connection and close the connection after reading
 the response message containing the "close" connection option; if
 additional pipelined requests had been sent on the connection, the
 client SHOULD NOT assume that they will be processed by the server.

 If a server performs an immediate close of a TCP connection, there is
 a significant risk that the client will not be able to read the last
 HTTP response. If the server receives additional data from the
 client on a fully closed connection, such as another request sent by
 the client before receiving the server’s response, the server’s TCP
 stack will send a reset packet to the client; unfortunately, the
 reset packet might erase the client’s unacknowledged input buffers
 before they can be read and interpreted by the client’s HTTP parser.

 To avoid the TCP reset problem, servers typically close a connection
 in stages. First, the server performs a half-close by closing only
 the write side of the read/write connection. The server then
 continues to read from the connection until it receives a
 corresponding close by the client, or until the server is reasonably
 certain that its own TCP stack has received the client’s
 acknowledgement of the packet(s) containing the server’s last
 response. Finally, the server fully closes the connection.

 It is unknown whether the reset problem is exclusive to TCP or might
 also be found in other transport connection protocols.

 Note that a TCP connection that is half-closed by the client does not
 delimit a request message, nor does it imply that the client is no
 longer interested in a response. In general, transport signals

 cannot be relied upon to signal edge cases, since HTTP/1.1 is
 independent of transport.

9.7. TLS Connection Initiation

 Conceptually, HTTP/TLS is simply sending HTTP messages over a
 connection secured via TLS [TLS13].

 The HTTP client also acts as the TLS client. It initiates a
 connection to the server on the appropriate port and sends the TLS
 ClientHello to begin the TLS handshake. When the TLS handshake has
 finished, the client may then initiate the first HTTP request. All
 HTTP data MUST be sent as TLS "application data" but is otherwise
 treated like a normal connection for HTTP (including potential reuse
 as a persistent connection).

9.8. TLS Connection Closure

 TLS uses an exchange of closure alerts prior to (non-error)
 connection closure to provide secure connection closure; see
 Section 6.1 of [TLS13]. When a valid closure alert is received, an
 implementation can be assured that no further data will be received
 on that connection.

 When an implementation knows that it has sent or received all the
 message data that it cares about, typically by detecting HTTP message
 boundaries, it might generate an "incomplete close" by sending a
 closure alert and then closing the connection without waiting to
 receive the corresponding closure alert from its peer.

 An incomplete close does not call into question the security of the
 data already received, but it could indicate that subsequent data
 might have been truncated. As TLS is not directly aware of HTTP
 message framing, it is necessary to examine the HTTP data itself to
 determine whether messages are complete. Handling of incomplete
 messages is defined in Section 8.

 When encountering an incomplete close, a client SHOULD treat as
 completed all requests for which it has received either

 1. as much data as specified in the Content-Length header field or

 2. the terminal zero-length chunk (when Transfer-Encoding of chunked
 is used).

 A response that has neither chunked transfer coding nor Content-
 Length is complete only if a valid closure alert has been received.
 Treating an incomplete message as complete could expose
 implementations to attack.

 A client detecting an incomplete close SHOULD recover gracefully.

 Clients MUST send a closure alert before closing the connection.
 Clients that do not expect to receive any more data MAY choose not to
 wait for the server’s closure alert and simply close the connection,
 thus generating an incomplete close on the server side.

 Servers SHOULD be prepared to receive an incomplete close from the
 client, since the client can often locate the end of server data.

 Servers MUST attempt to initiate an exchange of closure alerts with
 the client before closing the connection. Servers MAY close the
 connection after sending the closure alert, thus generating an
 incomplete close on the client side.

10. Enclosing Messages as Data

10.1. Media Type message/http

 The "message/http" media type can be used to enclose a single HTTP
 request or response message, provided that it obeys the MIME

 restrictions for all "message" types regarding line length and
 encodings. Because of the line length limitations, field values
 within "message/http" are allowed to use line folding (obs-fold), as
 described in Section 5.2, to convey the field value over multiple
 lines. A recipient of "message/http" data MUST replace any obsolete
 line folding with one or more SP characters when the message is
 consumed.

 Type name: message

 Subtype name: http

 Required parameters: N/A

 Optional parameters: version, msgtype

 version: The HTTP-version number of the enclosed message (e.g.,
 "1.1"). If not present, the version can be determined from the
 first line of the body.

 msgtype: The message type -- "request" or "response". If not
 present, the type can be determined from the first line of the
 body.

 Encoding considerations: only "7bit", "8bit", or "binary" are
 permitted

 Security considerations: see Section 11

 Interoperability considerations: N/A

 Published specification: RFC 9112 (see Section 10.1).

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information: Magic number(s): N/A

 Deprecated alias names for this type: N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: See Aut
 hors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors’ Addresses section.

 Change controller: IESG

10.2. Media Type application/http

 The "application/http" media type can be used to enclose a pipeline
 of one or more HTTP request or response messages (not intermixed).

 Type name: application

 Subtype name: http

 Required parameters: N/A

 Optional parameters: version, msgtype

 version: The HTTP-version number of the enclosed messages (e.g.,
 "1.1"). If not present, the version can be determined from the

 first line of the body.

 msgtype: The message type -- "request" or "response". If not
 present, the type can be determined from the first line of the
 body.

 Encoding considerations: HTTP messages enclosed by this type are in
 "binary" format; use of an appropriate Content-Transfer-Encoding
 is required when transmitted via email.

 Security considerations: see Section 11

 Interoperability considerations: N/A

 Published specification: RFC 9112 (see Section 10.2).

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information: Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: See Aut
 hors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors’ Addresses section.

 Change controller: IESG

11. Security Considerations

 This section is meant to inform developers, information providers,
 and users about known security considerations relevant to HTTP
 message syntax and parsing. Security considerations about HTTP
 semantics, content, and routing are addressed in [HTTP].

11.1. Response Splitting

 Response splitting (a.k.a. CRLF injection) is a common technique,
 used in various attacks on Web usage, that exploits the line-based
 nature of HTTP message framing and the ordered association of
 requests to responses on persistent connections [Klein]. This
 technique can be particularly damaging when the requests pass through
 a shared cache.

 Response splitting exploits a vulnerability in servers (usually
 within an application server) where an attacker can send encoded data
 within some parameter of the request that is later decoded and echoed
 within any of the response header fields of the response. If the
 decoded data is crafted to look like the response has ended and a
 subsequent response has begun, the response has been split, and the
 content within the apparent second response is controlled by the
 attacker. The attacker can then make any other request on the same
 persistent connection and trick the recipients (including
 intermediaries) into believing that the second half of the split is
 an authoritative answer to the second request.

 For example, a parameter within the request-target might be read by
 an application server and reused within a redirect, resulting in the
 same parameter being echoed in the Location header field of the
 response. If the parameter is decoded by the application and not

 properly encoded when placed in the response field, the attacker can
 send encoded CRLF octets and other content that will make the
 application’s single response look like two or more responses.

 A common defense against response splitting is to filter requests for
 data that looks like encoded CR and LF (e.g., "%0D" and "%0A").
 However, that assumes the application server is only performing URI
 decoding rather than more obscure data transformations like charset
 transcoding, XML entity translation, base64 decoding, sprintf
 reformatting, etc. A more effective mitigation is to prevent
 anything other than the server’s core protocol libraries from sending
 a CR or LF within the header section, which means restricting the
 output of header fields to APIs that filter for bad octets and not
 allowing application servers to write directly to the protocol
 stream.

11.2. Request Smuggling

 Request smuggling ([Linhart]) is a technique that exploits
 differences in protocol parsing among various recipients to hide
 additional requests (which might otherwise be blocked or disabled by
 policy) within an apparently harmless request. Like response
 splitting, request smuggling can lead to a variety of attacks on HTTP
 usage.

 This specification has introduced new requirements on request
 parsing, particularly with regard to message framing in Section 6.3,
 to reduce the effectiveness of request smuggling.

11.3. Message Integrity

 HTTP does not define a specific mechanism for ensuring message
 integrity, instead relying on the error-detection ability of
 underlying transport protocols and the use of length or chunk-
 delimited framing to detect completeness. Historically, the lack of
 a single integrity mechanism has been justified by the informal
 nature of most HTTP communication. However, the prevalence of HTTP
 as an information access mechanism has resulted in its increasing use
 within environments where verification of message integrity is
 crucial.

 The mechanisms provided with the "https" scheme, such as
 authenticated encryption, provide protection against modification of
 messages. Care is needed, however, to ensure that connection closure
 cannot be used to truncate messages (see Section 9.8). User agents
 might refuse to accept incomplete messages or treat them specially.
 For example, a browser being used to view medical history or drug
 interaction information needs to indicate to the user when such
 information is detected by the protocol to be incomplete, expired, or
 corrupted during transfer. Such mechanisms might be selectively
 enabled via user agent extensions or the presence of message
 integrity metadata in a response.

 The "http" scheme provides no protection against accidental or
 malicious modification of messages.

 Extensions to the protocol might be used to mitigate the risk of
 unwanted modification of messages by intermediaries, even when the
 "https" scheme is used. Integrity might be assured by using message
 authentication codes or digital signatures that are selectively added
 to messages via extensible metadata fields.

11.4. Message Confidentiality

 HTTP relies on underlying transport protocols to provide message
 confidentiality when that is desired. HTTP has been specifically
 designed to be independent of the transport protocol, such that it
 can be used over many forms of encrypted connection, with the
 selection of such transports being identified by the choice of URI
 scheme or within user agent configuration.

 The "https" scheme can be used to identify resources that require a
 confidential connection, as described in Section 4.2.2 of [HTTP].

12. IANA Considerations

 The change controller for the following registrations is: "IETF
 (iesg@ietf.org) - Internet Engineering Task Force".

12.1. Field Name Registration

 IANA has added the following field names to the "Hypertext Transfer
 Protocol (HTTP) Field Name Registry" at
 <https://www.iana.org/assignments/http-fields>, as described in
 Section 18.4 of [HTTP].

 +===================+===========+=========+============+
 | Field Name | Status | Section | Comments |
 +===================+===========+=========+============+
 | Close | permanent | 9.6 | (reserved) |
 +-------------------+-----------+---------+------------+
 | MIME-Version | permanent | B.1 | |
 +-------------------+-----------+---------+------------+
 | Transfer-Encoding | permanent | 6.1 | |
 +-------------------+-----------+---------+------------+

 Table 1

12.2. Media Type Registration

 IANA has updated the "Media Types" registry at
 <https://www.iana.org/assignments/media-types> with the registration
 information in Sections 10.1 and 10.2 for the media types "message/
 http" and "application/http", respectively.

12.3. Transfer Coding Registration

 IANA has updated the "HTTP Transfer Coding Registry" at
 <https://www.iana.org/assignments/http-parameters/> with the
 registration procedure of Section 7.3 and the content coding names
 summarized in the table below.

 +============+===+=========+
 | Name | Description | Section |
 +============+===+=========+
 | chunked | Transfer in a series of chunks | 7.1 |
 +------------+---+---------+
 | compress | UNIX "compress" data format [Welch] | 7.2 |
 +------------+---+---------+
 | deflate | "deflate" compressed data ([RFC1951]) | 7.2 |
 | | inside the "zlib" data format ([RFC1950]) | |
 +------------+---+---------+
 | gzip | GZIP file format [RFC1952] | 7.2 |
 +------------+---+---------+
 | trailers | (reserved) | 12.3 |
 +------------+---+---------+
 | x-compress | Deprecated (alias for compress) | 7.2 |
 +------------+---+---------+
 | x-gzip | Deprecated (alias for gzip) | 7.2 |
 +------------+---+---------+

 Table 2

 | *Note:* the coding name "trailers" is reserved because its use
 | would conflict with the keyword "trailers" in the TE header
 | field (Section 10.1.4 of [HTTP]).

12.4. ALPN Protocol ID Registration

 IANA has updated the "TLS Application-Layer Protocol Negotiation
 (ALPN) Protocol IDs" registry at <https://www.iana.org/assignments/
 tls-extensiontype-values/> with the registration below:

 +==========+=============================+===========+
 | Protocol | Identification Sequence | Reference |
 +==========+=============================+===========+
 | HTTP/1.1 | 0x68 0x74 0x74 0x70 0x2f | RFC 9112 |
 | | 0x31 0x2e 0x31 ("http/1.1") | |
 +----------+-----------------------------+-----------+

 Table 3

13. References

13.1. Normative References

 [CACHING] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/info/rfc9111>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/info/rfc1950>.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
 <https://www.rfc-editor.org/info/rfc1951>.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, DOI 10.17487/RFC1952, May 1996,
 <https://www.rfc-editor.org/info/rfc1952>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
 RFC 7405, DOI 10.17487/RFC7405, December 2014,
 <https://www.rfc-editor.org/info/rfc7405>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [Welch] Welch, T., "A Technique for High-Performance Data
 Compression", IEEE Computer 17(6),
 DOI 10.1109/MC.1984.1659158, June 1984,

 <https://ieeexplore.ieee.org/document/1659158/>.

13.2. Informative References

 [HTTP/1.0] Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945,
 DOI 10.17487/RFC1945, May 1996,
 <https://www.rfc-editor.org/info/rfc1945>.

 [Klein] Klein, A., "Divide and Conquer - HTTP Response Splitting,
 Web Cache Poisoning Attacks, and Related Topics", March
 2004, <https://packetstormsecurity.com/papers/general/
 whitepaper_httpresponse.pdf>.

 [Linhart] Linhart, C., Klein, A., Heled, R., and S. Orrin, "HTTP
 Request Smuggling", June 2005,
 <https://www.cgisecurity.com/lib/HTTP-Request-
 Smuggling.pdf>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC2049] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Five: Conformance Criteria and
 Examples", RFC 2049, DOI 10.17487/RFC2049, November 1996,
 <https://www.rfc-editor.org/info/rfc2049>.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
 RFC 2068, DOI 10.17487/RFC2068, January 1997,
 <https://www.rfc-editor.org/info/rfc2068>.

 [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. Collected ABNF

 In the collected ABNF below, list rules are expanded per
 Section 5.6.1 of [HTTP].

 BWS = <BWS, see [HTTP], Section 5.6.3>

 HTTP-message = start-line CRLF *(field-line CRLF) CRLF [
 message-body]
 HTTP-name = %x48.54.54.50 ; HTTP
 HTTP-version = HTTP-name "/" DIGIT "." DIGIT

 OWS = <OWS, see [HTTP], Section 5.6.3>

 RWS = <RWS, see [HTTP], Section 5.6.3>

 Transfer-Encoding = [transfer-coding *(OWS "," OWS transfer-coding
)]

 absolute-URI = <absolute-URI, see [URI], Section 4.3>
 absolute-form = absolute-URI
 absolute-path = <absolute-path, see [HTTP], Section 4.1>
 asterisk-form = "*"
 authority = <authority, see [URI], Section 3.2>
 authority-form = uri-host ":" port

 chunk = chunk-size [chunk-ext] CRLF chunk-data CRLF
 chunk-data = 1*OCTET
 chunk-ext = *(BWS ";" BWS chunk-ext-name [BWS "=" BWS chunk-ext-val
])
 chunk-ext-name = token
 chunk-ext-val = token / quoted-string
 chunk-size = 1*HEXDIG
 chunked-body = *chunk last-chunk trailer-section CRLF

 field-line = field-name ":" OWS field-value OWS
 field-name = <field-name, see [HTTP], Section 5.1>
 field-value = <field-value, see [HTTP], Section 5.5>

 last-chunk = 1*"0" [chunk-ext] CRLF

 message-body = *OCTET
 method = token

 obs-fold = OWS CRLF RWS
 obs-text = <obs-text, see [HTTP], Section 5.6.4>
 origin-form = absolute-path ["?" query]

 port = <port, see [URI], Section 3.2.3>

 query = <query, see [URI], Section 3.4>
 quoted-string = <quoted-string, see [HTTP], Section 5.6.4>

 reason-phrase = 1*(HTAB / SP / VCHAR / obs-text)
 request-line = method SP request-target SP HTTP-version
 request-target = origin-form / absolute-form / authority-form /
 asterisk-form

 start-line = request-line / status-line
 status-code = 3DIGIT
 status-line = HTTP-version SP status-code SP [reason-phrase]

 token = <token, see [HTTP], Section 5.6.2>
 trailer-section = *(field-line CRLF)
 transfer-coding = <transfer-coding, see [HTTP], Section 10.1.4>

 uri-host = <host, see [URI], Section 3.2.2>

Appendix B. Differences between HTTP and MIME

 HTTP/1.1 uses many of the constructs defined for the Internet Message
 Format [RFC5322] and Multipurpose Internet Mail Extensions (MIME)
 [RFC2045] to allow a message body to be transmitted in an open
 variety of representations and with extensible fields. However, some
 of these constructs have been reinterpreted to better fit the needs
 of interactive communication, leading to some differences in how MIME
 constructs are used within HTTP. These differences were carefully
 chosen to optimize performance over binary connections, allow greater
 freedom in the use of new media types, ease date comparisons, and
 accommodate common implementations.

 This appendix describes specific areas where HTTP differs from MIME.
 Proxies and gateways to and from strict MIME environments need to be
 aware of these differences and provide the appropriate conversions

 where necessary.

B.1. MIME-Version

 HTTP is not a MIME-compliant protocol. However, messages can include
 a single MIME-Version header field to indicate what version of the
 MIME protocol was used to construct the message. Use of the MIME-
 Version header field indicates that the message is in full
 conformance with the MIME protocol (as defined in [RFC2045]).
 Senders are responsible for ensuring full conformance (where
 possible) when exporting HTTP messages to strict MIME environments.

B.2. Conversion to Canonical Form

 MIME requires that an Internet mail body part be converted to
 canonical form prior to being transferred, as described in Section 4
 of [RFC2049], and that content with a type of "text" represents line
 breaks as CRLF, forbidding the use of CR or LF outside of line break
 sequences [RFC2046]. In contrast, HTTP does not care whether CRLF,
 bare CR, or bare LF are used to indicate a line break within content.

 A proxy or gateway from HTTP to a strict MIME environment ought to
 translate all line breaks within text media types to the RFC 2049
 canonical form of CRLF. Note, however, this might be complicated by
 the presence of a Content-Encoding and by the fact that HTTP allows
 the use of some charsets that do not use octets 13 and 10 to
 represent CR and LF, respectively.

 Conversion will break any cryptographic checksums applied to the
 original content unless the original content is already in canonical
 form. Therefore, the canonical form is recommended for any content
 that uses such checksums in HTTP.

B.3. Conversion of Date Formats

 HTTP/1.1 uses a restricted set of date formats (Section 5.6.7 of
 [HTTP]) to simplify the process of date comparison. Proxies and
 gateways from other protocols ought to ensure that any Date header
 field present in a message conforms to one of the HTTP/1.1 formats
 and rewrite the date if necessary.

B.4. Conversion of Content-Encoding

 MIME does not include any concept equivalent to HTTP’s Content-
 Encoding header field. Since this acts as a modifier on the media
 type, proxies and gateways from HTTP to MIME-compliant protocols
 ought to either change the value of the Content-Type header field or
 decode the representation before forwarding the message. (Some
 experimental applications of Content-Type for Internet mail have used
 a media-type parameter of ";conversions=<content-coding>" to perform
 a function equivalent to Content-Encoding. However, this parameter
 is not part of the MIME standards.)

B.5. Conversion of Content-Transfer-Encoding

 HTTP does not use the Content-Transfer-Encoding field of MIME.
 Proxies and gateways from MIME-compliant protocols to HTTP need to
 remove any Content-Transfer-Encoding prior to delivering the response
 message to an HTTP client.

 Proxies and gateways from HTTP to MIME-compliant protocols are
 responsible for ensuring that the message is in the correct format
 and encoding for safe transport on that protocol, where "safe
 transport" is defined by the limitations of the protocol being used.
 Such a proxy or gateway ought to transform and label the data with an
 appropriate Content-Transfer-Encoding if doing so will improve the
 likelihood of safe transport over the destination protocol.

B.6. MHTML and Line Length Limitations

 HTTP implementations that share code with MHTML [RFC2557]

 implementations need to be aware of MIME line length limitations.
 Since HTTP does not have this limitation, HTTP does not fold long
 lines. MHTML messages being transported by HTTP follow all
 conventions of MHTML, including line length limitations and folding,
 canonicalization, etc., since HTTP transfers message-bodies without
 modification and, aside from the "multipart/byteranges" type
 (Section 14.6 of [HTTP]), does not interpret the content or any MIME
 header lines that might be contained therein.

Appendix C. Changes from Previous RFCs

C.1. Changes from HTTP/0.9

 Since HTTP/0.9 did not support header fields in a request, there is
 no mechanism for it to support name-based virtual hosts (selection of
 resource by inspection of the Host header field). Any server that
 implements name-based virtual hosts ought to disable support for
 HTTP/0.9. Most requests that appear to be HTTP/0.9 are, in fact,
 badly constructed HTTP/1.x requests caused by a client failing to
 properly encode the request-target.

C.2. Changes from HTTP/1.0

C.2.1. Multihomed Web Servers

 The requirements that clients and servers support the Host header
 field (Section 7.2 of [HTTP]), report an error if it is missing from
 an HTTP/1.1 request, and accept absolute URIs (Section 3.2) are among
 the most important changes defined by HTTP/1.1.

 Older HTTP/1.0 clients assumed a one-to-one relationship of IP
 addresses and servers; there was no established mechanism for
 distinguishing the intended server of a request other than the IP
 address to which that request was directed. The Host header field
 was introduced during the development of HTTP/1.1 and, though it was
 quickly implemented by most HTTP/1.0 browsers, additional
 requirements were placed on all HTTP/1.1 requests in order to ensure
 complete adoption. At the time of this writing, most HTTP-based
 services are dependent upon the Host header field for targeting
 requests.

C.2.2. Keep-Alive Connections

 In HTTP/1.0, each connection is established by the client prior to
 the request and closed by the server after sending the response.
 However, some implementations implement the explicitly negotiated
 ("Keep-Alive") version of persistent connections described in
 Section 19.7.1 of [RFC2068].

 Some clients and servers might wish to be compatible with these
 previous approaches to persistent connections, by explicitly
 negotiating for them with a "Connection: keep-alive" request header
 field. However, some experimental implementations of HTTP/1.0
 persistent connections are faulty; for example, if an HTTP/1.0 proxy
 server doesn’t understand Connection, it will erroneously forward
 that header field to the next inbound server, which would result in a
 hung connection.

 One attempted solution was the introduction of a Proxy-Connection
 header field, targeted specifically at proxies. In practice, this
 was also unworkable, because proxies are often deployed in multiple
 layers, bringing about the same problem discussed above.

 As a result, clients are encouraged not to send the Proxy-Connection
 header field in any requests.

 Clients are also encouraged to consider the use of "Connection: keep-
 alive" in requests carefully; while they can enable persistent
 connections with HTTP/1.0 servers, clients using them will need to
 monitor the connection for "hung" requests (which indicate that the
 client ought to stop sending the header field), and this mechanism

 ought not be used by clients at all when a proxy is being used.

C.2.3. Introduction of Transfer-Encoding

 HTTP/1.1 introduces the Transfer-Encoding header field (Section 6.1).
 Transfer codings need to be decoded prior to forwarding an HTTP
 message over a MIME-compliant protocol.

C.3. Changes from RFC 7230

 Most of the sections introducing HTTP’s design goals, history,
 architecture, conformance criteria, protocol versioning, URIs,
 message routing, and header fields have been moved to [HTTP]. This
 document has been reduced to just the messaging syntax and connection
 management requirements specific to HTTP/1.1.

 Bare CRs have been prohibited outside of content. (Section 2.2)

 The ABNF definition of authority-form has changed from the more
 general authority component of a URI (in which port is optional) to
 the specific host:port format that is required by CONNECT.
 (Section 3.2.3)

 Recipients are required to avoid smuggling/splitting attacks when
 processing an ambiguous message framing. (Section 6.1)

 In the ABNF for chunked extensions, (bad) whitespace around ";" and
 "=" has been reintroduced. Whitespace was removed in [RFC7230], but
 that change was found to break existing implementations.
 (Section 7.1.1)

 Trailer field semantics now transcend the specifics of chunked
 transfer coding. The decoding algorithm for chunked (Section 7.1.3)
 has been updated to encourage storage/forwarding of trailer fields
 separately from the header section, to only allow merging into the
 header section if the recipient knows the corresponding field
 definition permits and defines how to merge, and otherwise to discard
 the trailer fields instead of merging. The trailer part is now
 called the trailer section to be more consistent with the header
 section and more distinct from a body part. (Section 7.1.2)

 Transfer coding parameters called "q" are disallowed in order to
 avoid conflicts with the use of ranks in the TE header field.
 (Section 7.3)

Acknowledgements

 See Appendix "Acknowledgements" of [HTTP], which applies to this
 document as well.

Index

 A C D F G H M O R T X

 A

 absolute-form (of request-target) Section 3.2.2
 application/http Media Type *_Section 10.2_*
 asterisk-form (of request-target) Section 3.2.4
 authority-form (of request-target) Section 3.2.3

 C

 chunked (Coding Format) Section 6.1; Section 6.3
 chunked (transfer coding) *_Section 7.1_*
 close Section 9.3; *_Section 9.6_*
 compress (transfer coding) *_Section 7.2_*
 Connection header field Section 9.6
 Content-Length header field Section 6.2
 Content-Transfer-Encoding header field Appendix B.5

 D

 deflate (transfer coding) *_Section 7.2_*

 F

 Fields
 Close *_Section 9.6, Paragraph 4_*
 MIME-Version *_Appendix B.1_*
 Transfer-Encoding *_Section 6.1_*

 G

 Grammar
 ALPHA *_Section 1.2_*
 CR *_Section 1.2_*
 CRLF *_Section 1.2_*
 CTL *_Section 1.2_*
 DIGIT *_Section 1.2_*
 DQUOTE *_Section 1.2_*
 HEXDIG *_Section 1.2_*
 HTAB *_Section 1.2_*
 HTTP-message *_Section 2.1_*
 HTTP-name *_Section 2.3_*
 HTTP-version *_Section 2.3_*
 LF *_Section 1.2_*
 OCTET *_Section 1.2_*
 SP *_Section 1.2_*
 Transfer-Encoding *_Section 6.1_*
 VCHAR *_Section 1.2_*
 absolute-form Section 3.2; *_Section 3.2.2_*
 asterisk-form Section 3.2; *_Section 3.2.4_*
 authority-form Section 3.2; *_Section 3.2.3_*
 chunk *_Section 7.1_*
 chunk-data *_Section 7.1_*
 chunk-ext Section 7.1; *_Section 7.1.1_*
 chunk-ext-name *_Section 7.1.1_*
 chunk-ext-val *_Section 7.1.1_*
 chunk-size *_Section 7.1_*
 chunked-body *_Section 7.1_*
 field-line *_Section 5_*; Section 7.1.2
 field-name Section 5
 field-value Section 5
 last-chunk *_Section 7.1_*
 message-body *_Section 6_*
 method *_Section 3.1_*
 obs-fold *_Section 5.2_*
 origin-form Section 3.2; *_Section 3.2.1_*
 reason-phrase *_Section 4_*
 request-line *_Section 3_*
 request-target *_Section 3.2_*
 start-line *_Section 2.1_*
 status-code *_Section 4_*
 status-line *_Section 4_*
 trailer-section Section 7.1; *_Section 7.1.2_*
 gzip (transfer coding) *_Section 7.2_*

 H

 Header Fields
 MIME-Version *_Appendix B.1_*
 Transfer-Encoding *_Section 6.1_*
 header line Section 2.1
 header section Section 2.1
 headers Section 2.1

 M

 Media Type
 application/http *_Section 10.2_*
 message/http *_Section 10.1_*

 message/http Media Type *_Section 10.1_*
 method *_Section 3.1_*
 MIME-Version header field *_Appendix B.1_*

 O

 origin-form (of request-target) Section 3.2.1

 R

 request-target *_Section 3.2_*

 T

 Transfer-Encoding header field *_Section 6.1_*

 X

 x-compress (transfer coding) *_Section 7.2_*
 x-gzip (transfer coding) *_Section 7.2_*

Authors’ Addresses

 Roy T. Fielding (editor)
 Adobe
 345 Park Ave
 San Jose, CA 95110
 United States of America
 Email: fielding@gbiv.com
 URI: https://roy.gbiv.com/

 Mark Nottingham (editor)
 Fastly
 Prahran
 Australia
 Email: mnot@mnot.net
 URI: https://www.mnot.net/

 Julian Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 48155 MÃ¼nster
 Germany
 Email: julian.reschke@greenbytes.de
 URI: https://greenbytes.de/tech/webdav/

