
ï»¿

Internet Engineering Task Force (IETF) Y. Sheffer
Request for Comments: 9115 Intuit
Category: Standards Track D. LÃ³pez
ISSN: 2070-1721 A. Pastor Perales
 Telefonica I+D
 T. Fossati
 ARM
 September 2021

 An Automatic Certificate Management Environment (ACME) Profile for
 Generating Delegated Certificates

Abstract

 This document defines a profile of the Automatic Certificate
 Management Environment (ACME) protocol by which the holder of an
 identifier (e.g., a domain name) can allow a third party to obtain an
 X.509 certificate such that the certificate subject is the delegated
 identifier while the certified public key corresponds to a private
 key controlled by the third party. A primary use case is that of a
 Content Delivery Network (CDN), the third party, terminating TLS
 sessions on behalf of a content provider (the holder of a domain
 name). The presented mechanism allows the holder of the identifier
 to retain control over the delegation and revoke it at any time.
 Importantly, this mechanism does not require any modification to the
 deployed TLS clients and servers.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9115.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Terminology
 1.2. Conventions Used in This Document
 2. Protocol Flow
 2.1. Preconditions
 2.2. Overview
 2.3. Delegated Identity Profile
 2.3.1. Delegation Configuration

 2.3.2. Order Object Transmitted from NDC to IdO and to ACME
 Server (STAR)
 2.3.3. Order Object Transmitted from NDC to IdO and to ACME
 Server (Non-STAR)
 2.3.4. Capability Discovery
 2.3.5. Negotiating an Unauthenticated GET
 2.3.6. Terminating the Delegation
 2.4. Proxy Behavior
 3. CA Behavior
 4. CSR Template
 4.1. Template Syntax
 4.2. Example
 5. Further Use Cases
 5.1. CDN Interconnection (CDNI)
 5.1.1. Multiple Parallel Delegates
 5.1.2. Chained Delegation
 5.2. Secure Telephone Identity Revisited (STIR)
 6. IANA Considerations
 6.1. New Fields in the "meta" Object within a Directory Object
 6.2. New Fields in the Order Object
 6.3. New Fields in the Account Object
 6.4. New Error Types
 6.5. CSR Template Extensions
 7. Security Considerations
 7.1. Trust Model
 7.2. Delegation Security Goal
 7.3. New ACME Channels
 7.4. Restricting CDNs to the Delegation Mechanism
 8. References
 8.1. Normative References
 8.2. Informative References
 Appendix A. CSR Template: CDDL
 Appendix B. CSR Template: JSON Schema
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This document is related to [RFC8739], in that some important use
 cases require both documents to be implemented. To avoid
 duplication, we give here a bare-bones description of the motivation
 for this solution. For more details, please refer to the
 introductory sections of [RFC8739].

 An Identifier Owner (IdO) has agreements in place with one or more
 Name Delegation Consumer (NDC) to use and attest its identity.

 In the primary use case, the IdO is a content provider, and we
 consider a Content Delivery Network (CDN) provider contracted to
 serve the content over HTTPS. The CDN terminates the HTTPS
 connection at one of its edge cache servers and needs to present its
 clients (browsers, mobile apps, set-top boxes) a certificate whose
 name matches the domain name of the URL that is requested, i.e., that
 of the IdO. Understandably, some IdOs may balk at sharing their
 long-term private keys with another organization; equally, delegates
 would rather not have to handle other parties’ long-term secrets.
 Other relevant use cases are discussed in Section 5.

 This document describes a profile of the ACME protocol [RFC8555] that
 allows the NDC to request from the IdO, acting as a profiled ACME
 server, a certificate for a delegated identity -- i.e., one belonging
 to the IdO. The IdO then uses the ACME protocol (with the extensions
 described in [RFC8739]) to request issuance of a Short-Term,
 Automatically Renewed (STAR) certificate for the same delegated
 identity. The generated short-term certificate is automatically
 renewed by the ACME Certification Authority (CA), is periodically
 fetched by the NDC, and is used to terminate HTTPS connections in
 lieu of the IdO. The IdO can end the delegation at any time by
 simply instructing the CA to stop the automatic renewal and letting
 the certificate expire shortly thereafter.

 While the primary use case we address is a delegation of STAR
 certificates, the mechanism proposed here also accommodates long-
 lived certificates managed with the ACME protocol. The most
 noticeable difference between long-lived and STAR certificates is the
 way the termination of the delegation is managed. In the case of
 long-lived certificates, the IdO uses the "revokeCert" URL exposed by
 the CA and waits for the explicit revocation based on the Certificate
 Revocation List (CRL) and Online Certificate Status Protocol (OCSP)
 to propagate to the relying parties.

 In case the delegated identity is a domain name, this document also
 provides a way for the NDC to inform the IdO about the CNAME mappings
 that need to be installed in the IdO’s DNS zone to enable the
 aliasing of the delegated name, thus allowing the complete name
 delegation workflow to be handled using a single interface.

 We note that other standardization efforts address the problem of
 certificate delegation for TLS connections, specifically
 [TLS-SUBCERTS] and [MGLT-LURK-TLS13]. The former extends the TLS
 certificate chain with a customer-owned signing certificate; the
 latter separates the server’s private key into a dedicated, more-
 secure component. Compared to these other approaches, the current
 document does not require changes to the TLS network stack of the
 client or the server, nor does it introduce additional latency to the
 TLS connection.

1.1. Terminology

 IdO Identifier Owner, the holder (current owner) of an identifier
 (e.g., a domain name) that needs to be delegated. Depending
 on the context, the term IdO may also be used to designate
 the (profiled) ACME server deployed by the Identifier Owner
 or the ACME client used by the Identifier Owner to interact
 with the CA.

 NDC Name Delegation Consumer, the entity to which the domain name
 is delegated for a limited time. This is a CDN in the
 primary use case (in fact, readers may note the similarity of
 the two abbreviations). Depending on the context, the term
 NDC may also be used to designate the (profiled) ACME client
 used by the Name Delegation Consumer.

 CDN Content Delivery Network, a widely distributed network that
 serves the domain’s web content to a wide audience at high
 performance.

 STAR Short-Term, Automatically Renewed, as applied to X.509
 certificates.

 ACME Automated Certificate Management Environment, a certificate
 management protocol [RFC8555].

 CA Certification Authority, specifically one that implements the
 ACME protocol. In this document, the term is synonymous with
 "ACME server deployed by the Certification Authority".

 CSR Certificate Signing Request, specifically a PKCS#10 [RFC2986]
 Certificate Signing Request, as supported by ACME.

 FQDN Fully Qualified Domain Name.

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Protocol Flow

 This section presents the protocol flow. For completeness, we
 include the ACME profile proposed in this document as well as the
 ACME STAR protocol described in [RFC8739].

2.1. Preconditions

 The protocol assumes the following preconditions are met:

 * The IdO exposes an ACME server interface to the NDC(s) comprising
 the account management interface.

 * The NDC has registered an ACME account with the IdO.

 * The NDC and IdO have agreed on a "CSR template" to use, including
 at a minimum: subject name (e.g., "abc.ido.example"), requested
 algorithms and key length, key usage, and extensions. The NDC
 will use this template for every CSR created under the same
 delegation.

 * The IdO has registered an ACME account with the Certification
 Authority (CA).

 Note that even if the IdO implements the ACME server role, it is not
 acting as a CA; in fact, from the point of view of the certificate
 issuance process, the IdO only works as a "policing" forwarder of the
 NDC’s key pair and is responsible for completing the identity
 verification process towards the CA.

2.2. Overview

 For clarity, the protocol overview presented here covers the main use
 case of this protocol, namely delegation of STAR certificates.
 Protocol behavior for non-STAR certificates is similar, and the
 detailed differences are listed in the following sections.

 The interaction between the NDC and the IdO is governed by the
 profiled ACME workflow detailed in Section 2.3. The interaction
 between the IdO and the CA is ruled by ACME [RFC8555], ACME STAR
 [RFC8739], and any other ACME extension that applies (e.g.,
 [TOKEN-TNAUTHLIST] for Secure Telephone Identity Revisited (STIR)).

 The outline of the combined protocol for STAR certificates is as
 follows (Figure 1):

 * NDC sends an Order1 for the delegated identifier to IdO.

 * IdO creates an Order1 resource in state "ready" with a "finalize"
 URL.

 * NDC immediately sends a "finalize" request (which includes the
 CSR) to the IdO.

 * IdO verifies the CSR according to the agreed upon CSR template.

 * If the CSR verification fails, Order1 is moved to an "invalid"
 state and everything stops.

 * If the CSR verification is successful, IdO moves Order1 to state
 "processing" and sends a new Order2 (using its own account) for
 the delegated identifier to the CA.

 * If the ACME STAR protocol fails, Order2 moves to "invalid", and
 the same state is reflected in Order1 (i.e., the NDC Order).

 * If the ACME STAR run is successful (i.e., Order2 is "valid"), IdO
 copies the "star-certificate" URL from Order2 to Order1 and
 updates the Order1 state to "valid".

 The NDC can now download, install, and use the short-term certificate
 bearing the name delegated by the IdO. The STAR certificate can be
 used until it expires, at which time the NDC is guaranteed to find a

 new certificate it can download, install, and use. This continues
 with subsequent certificates until either Order1 expires or the IdO
 decides to cancel the automatic renewal process with the CA.

 Note that the interactive identifier authorization phase described in
 Section 7.5 of [RFC8555] is suppressed on the NDC-IdO side because
 the delegated identity contained in the CSR presented to the IdO is
 validated against the configured CSR template (Section 4.1).
 Therefore, the NDC sends the "finalize" request, including the CSR,
 to the IdO immediately after Order1 has been acknowledged. The IdO
 SHALL buffer a (valid) CSR until the Validation phase completes
 successfully.

 Also note that the successful negotiation of the unauthenticated GET
 (Section 3.4 of [RFC8739]) is required in order to allow the NDC to
 access the "star-certificate" URL on the CA.

 .------. .---------------. .------.
 | NDC | | IdO | | ACME |
 +--------+ +--------+--------+ +--------+
 | Client | | Server | Client | | Server |
 ’---+----’ ’----+---+---+----’ ’----+---’
 | | | |
 | Order1 | | |
 | Signature | | |
 o------------------->| | |
 | | | |
 | [No identity] | | |
 | [validation via] | | |
 | [authorizations] | | |
 | | | |
 | CSR | | |
 | Signature | | |
 o------------------->| | |
 | Acknowledgement | | Order2 |
 |<-------------------o | Signature |
 | | o------------------->|
 | | | Required |
 | | | Authorizations |
 | | |<-------------------o
 | | | Responses |
 | | | Signature |
 | | o------------------->|
 | | | |
 | | |<˜˜˜˜Validation˜˜˜˜>|
 | | | |
 | | | CSR |
 | | | Signature |
 | | o------------------->|
 | | | Acknowledgement |
 | | |<-------------------o
 | | | |
 |<˜˜Await issuance˜->| |<˜˜Await issuance˜˜>|
 | |
 | (unauthenticated) GET STAR certificate |
 o-->|
 | Certificate #1 |
 |<--o
 | (unauthenticated) GET STAR certificate |
 o-->|
 | Certificate #2 |
 |<--o
 | [...] |
 | (unauthenticated) GET STAR certificate |
 o-->|
 | Certificate #n |
 |<--o

 Figure 1: End-to-End STAR Delegation Flow

2.3. Delegated Identity Profile

 This section defines a profile of the ACME protocol to be used
 between the NDC and IdO.

2.3.1. Delegation Configuration

 The IdO must be preconfigured to recognize one or more NDCs and
 present them with details about certificate delegations that apply to
 each one.

2.3.1.1. Account Object Extensions

 An NDC identifies itself to the IdO as an ACME account. The IdO can
 delegate multiple names to an NDC, and these configurations are
 described through "delegation" objects associated with the NDC’s
 account object on the IdO.

 As shown in Figure 2, the ACME account resource on the IdO is
 extended with a new "delegations" attribute:

 delegations (required, string): A URL from which a list of
 delegations configured for this account (Section 2.3.1.3) can be
 fetched via a POST-as-GET request.

 {
 "status": "valid",
 "contact": [
 "mailto:delegation-admin@ido.example"
],
 "termsOfServiceAgreed": true,
 "orders": "https://example.com/acme/orders/saHpfB",
 "delegations": "https://acme.ido.example/acme/delegations/adFqoz"
 }

 Figure 2: Example Account Object with Delegations

2.3.1.2. Delegation Lists

 Each account object includes a "delegations" URL from which a list of
 delegation configurations created by the IdO can be fetched via a
 POST-as-GET request. The result of the request MUST be a JSON object
 whose "delegations" field is an array of URLs, each identifying a
 delegation configuration made available to the NDC account
 (Section 2.3.1.3). The server MAY return an incomplete list, along
 with a "Link" header field with a "next" link relation indicating
 where further entries can be acquired.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Link: <https://acme.ido.example/acme/directory>;rel="index"
 Link: <https://acme.ido.example/acme/delegations/adFqoz?/
 cursor=2>;rel="next"

 {
 "delegations": [
 "https://acme.ido.example/acme/delegation/ogfr8EcolOT",
 "https://acme.ido.example/acme/delegation/wSi5Lbb61E4",
 /* more URLs not shown for example brevity */
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen"
]
 }

 Note that in the figure above,
 https://acme.ido.example/acme/delegations/adFqoz?cursor=2 includes a
 line break for the sake of presentation.

2.3.1.3. Delegation Objects

 This profile extends the ACME resource model with a new read-only
 "delegation" object that represents a delegation configuration that
 applies to a given NDC.

 A "delegation" object contains the CSR template (see Section 4) that
 applies to that delegation and, optionally, any related CNAME mapping
 for the delegated identifiers. Its structure is as follows:

 csr-template (required, object): CSR template, as defined in
 Section 4.

 cname-map (optional, object): A map of FQDN pairs. In each pair,
 the name is the delegated identifier; the value is the
 corresponding NDC name that is aliased in the IdO’s zone file to
 redirect the resolvers to the delegated entity. Both names and
 values MUST be FQDNs with a terminating ’.’. This field is only
 meaningful for identifiers of type "dns".

 An example "delegation" object in JSON format is shown in Figure 3.

 {
 "csr-template": {
 "keyTypes": [
 {
 "PublicKeyType": "id-ecPublicKey",
 "namedCurve": "secp256r1",
 "SignatureType": "ecdsa-with-SHA256"
 }
],
 "subject": {
 "country": "CA",
 "stateOrProvince": "**",
 "locality": "**"
 },
 "extensions": {
 "subjectAltName": {
 "DNS": [
 "abc.ido.example"
]
 },
 "keyUsage": [
 "digitalSignature"
],
 "extendedKeyUsage": [
 "serverAuth"
]
 }
 },
 "cname-map": {
 "abc.ido.example.": "abc.ndc.example."
 }
 }

 Figure 3: Example Delegation Configuration Object

 In order to indicate which specific delegation applies to the
 requested certificate, a new "delegation" attribute is added to the
 order object on the NDC-IdO side (see Figures 4 and 7). The value of
 this attribute is the URL pointing to the delegation configuration
 object that is to be used for this certificate request. If the
 "delegation" attribute in the order object contains a URL that does
 not correspond to a configuration available to the requesting ACME
 account, the IdO MUST return an error response with status code 403
 (Forbidden), providing a problem document [RFC7807] with type
 "urn:ietf:params:acme:error:unknownDelegation".

2.3.2. Order Object Transmitted from NDC to IdO and to ACME Server
 (STAR)

 If the delegation is for a STAR certificate, the request object
 created by the NDC:

 * MUST have a "delegation" attribute indicating the preconfigured
 delegation that applies to this Order;

 * MUST have entries in the "identifiers" field for each delegated
 name present in the configuration;

 * MUST NOT contain the "notBefore" and "notAfter" fields; and

 * MUST contain an "auto-renewal" object and, inside it, the fields
 listed in Section 3.1.1 of [RFC8739]. In particular, the "allow-
 certificate-get" attribute MUST be present and set to true.

 POST /acme/new-order HTTP/1.1
 Host: acme.ido.example
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://acme.ido.example/acme/acct/evOfKhNU60wg",
 "nonce": "Alc00Ap6Rt7GMkEl3L1JX5",
 "url": "https://acme.ido.example/acme/new-order"
 }),
 "payload": base64url({
 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],
 "auto-renewal": {
 "end-date": "2021-04-20T00:00:00Z",
 "lifetime": 345600, // 4 days
 "allow-certificate-get": true
 },
 "delegation":
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen"
 }),
 "signature": "g454e3hdBlkT4AEw...nKePnUyZTjGtXZ6H"
 }

 Figure 4: New STAR Order from NDC

 The order object that is created on the IdO:

 * MUST start in the "ready" state;

 * MUST contain an "authorizations" array with zero elements;

 * MUST contain the indicated "delegation" configuration;

 * MUST contain the indicated "auto-renewal" settings; and

 * MUST NOT contain the "notBefore" and "notAfter" fields.

 {
 "status": "ready",
 "expires": "2021-05-01T00:00:00Z",

 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],

 "auto-renewal": {
 "end-date": "2021-04-20T00:00:00Z",
 "lifetime": 345600,
 "allow-certificate-get": true
 },

 "delegation":

 "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

 "authorizations": [],

 "finalize": "https://acme.ido.example/acme/order/TO8rfgo/finalize"
 }

 Figure 5: STAR Order Resource Created on IdO

 The Order is then finalized by the NDC supplying the CSR containing
 the delegated identifiers. The IdO checks the provided CSR against
 the template contained in the "delegation" object that applies to
 this request, as described in Section 4.1. If the CSR fails
 validation for any of the identifiers, the IdO MUST return an error
 response with status code 403 (Forbidden) and an appropriate type,
 e.g., "rejectedIdentifier" or "badCSR". The error response SHOULD
 contain subproblems (Section 6.7.1 of [RFC8555]) for each failed
 identifier. If the CSR is successfully validated, the order object
 status moves to "processing" and the twin ACME protocol instance is
 initiated on the IdO-CA side.

 The request object created by the IdO:

 * MUST copy the identifiers sent by the NDC;

 * MUST strip the "delegation" attribute; and

 * MUST carry a copy of the "auto-renewal" object sent by the NDC.

 When the identifiers’ authorization has been successfully completed
 and the certificate has been issued by the CA, the IdO:

 * MUST move its Order resource status to "valid" and

 * MUST copy the "star-certificate" field from the STAR Order
 returned by the CA into its Order resource. When dereferenced,
 the "star-certificate" URL includes (via the "Cert-Not-Before" and
 "Cert-Not-After" HTTP header fields) the renewal timers needed by
 the NDC to inform its certificate reload logic.

 {
 "status": "valid",
 "expires": "2021-05-01T00:00:00Z",

 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],

 "auto-renewal": {
 "end-date": "2021-04-20T00:00:00Z",
 "lifetime": 345600,
 "allow-certificate-get": true
 },

 "delegation":
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

 "authorizations": [],

 "finalize": "https://acme.ido.example/acme/order/TO8rfgo/finalize",

 "star-certificate": "https://acme.ca.example/acme/order/yTr23sSDg9"
 }

 Figure 6: STAR Order Resource Updated on IdO

 This delegation protocol is predicated on the NDC being able to fetch
 certificates periodically using an unauthenticated HTTP GET, since,

 in general, the NDC does not possess an account on the CA; as a
 consequence, it cannot issue the standard POST-as-GET ACME request.
 Therefore, before forwarding the Order request to the CA, the IdO
 SHOULD ensure that the selected CA supports unauthenticated GET by
 inspecting the relevant settings in the CA’s directory object, as per
 Section 3.4 of [RFC8739]. If the CA does not support unauthenticated
 GET of STAR certificates, the IdO MUST NOT forward the Order request.
 Instead, it MUST move the Order status to "invalid" and set the
 "allow-certificate-get" in the "auto-renewal" object to "false". The
 same occurs in case the Order request is forwarded and the CA does
 not reflect the "allow-certificate-get" setting in its Order
 resource. The combination of "invalid" status and denied "allow-
 certificate-get" in the Order resource at the IdO provides an
 unambiguous (asynchronous) signal to the NDC about the failure
 reason.

2.3.2.1. CNAME Installation

 If one of the objects in the "identifiers" list is of type "dns", the
 IdO can add the CNAME records specified in the "delegation" object to
 its zone, for example:

 abc.ido.example. CNAME abc.ndc.example.

2.3.3. Order Object Transmitted from NDC to IdO and to ACME Server
 (Non-STAR)

 If the delegation is for a non-STAR certificate, the request object
 created by the NDC:

 * MUST have a "delegation" attribute indicating the preconfigured
 delegation that applies to this Order;

 * MUST have entries in the "identifiers" field for each delegated
 name present in the configuration; and

 * MUST have the "allow-certificate-get" attribute set to true.

 POST /acme/new-order HTTP/1.1
 Host: acme.ido.example
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://acme.ido.example/acme/acct/evOfKhNU60wg",
 "nonce": "IYBkoQfaCS80UcCn9qH8Gt",
 "url": "https://acme.ido.example/acme/new-order"
 }),
 "payload": base64url({
 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],
 "delegation":
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen",
 "allow-certificate-get": true
 }),
 "signature": "j9JBUvMigi4zodud...acYkEKaa8gqWyZ6H"
 }

 Figure 7: New Non-STAR Order from NDC

 The order object that is created on the IdO:

 * MUST start in the "ready" state;

 * MUST contain an "authorizations" array with zero elements;

 * MUST contain the indicated "delegation" configuration; and

 * MUST contain the indicated "allow-certificate-get" setting.

 {
 "status": "ready",
 "expires": "2021-05-01T00:00:00Z",

 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],

 "delegation":
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

 "allow-certificate-get": true,

 "authorizations": [],

 "finalize": "https://acme.ido.example/acme/order/3ZDlhYy/finalize"
 }

 Figure 8: Non-STAR Order Resource Created on IdO

 The Order finalization by the NDC and the subsequent validation of
 the CSR by the IdO proceed in the same way as for the STAR case. If
 the CSR is successfully validated, the order object status moves to
 "processing" and the twin ACME protocol instance is initiated on the
 IdO-CA side.

 The request object created by the IdO:

 * MUST copy the identifiers sent by the NDC;

 * MUST strip the "delegation" attribute; and

 * MUST copy the "allow-certificate-get" attribute.

 When the identifiers’ authorization has been successfully completed
 and the certificate has been issued by the CA, the IdO:

 * MUST move its Order resource status to "valid" and

 * MUST copy the "certificate" field from the Order returned by the
 CA into its Order resource, as well as "notBefore" and "notAfter"
 if these fields exist.

 {
 "status": "valid",
 "expires": "2021-05-01T00:00:00Z",

 "identifiers": [
 {
 "type": "dns",
 "value": "abc.ido.example"
 }
],

 "delegation":
 "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

 "allow-certificate-get": true,

 "authorizations": [],

 "finalize": "https://acme.ido.example/acme/order/3ZDlhYy/finalize",

 "certificate": "https://acme.ca.example/acme/order/YtR23SsdG9"

 }

 Figure 9: Non-STAR Order Resource Updated on IdO

 At this point of the protocol flow, the same considerations as in
 Section 2.3.2.1 apply.

 Before forwarding the Order request to the CA, the IdO SHOULD ensure
 that the selected CA supports unauthenticated GET by inspecting the
 relevant settings in the CA’s directory object, as per Section 2.3.5.
 If the CA does not support unauthenticated GET of certificate
 resources, the IdO MUST NOT forward the Order request. Instead, it
 MUST move the Order status to "invalid" and set the "allow-
 certificate-get" attribute to "false". The same occurs in case the
 Order request is forwarded and the CA does not reflect the "allow-
 certificate-get" setting in its Order resource. The combination of
 "invalid" status and denied "allow-certificate-get" in the Order
 resource at the IdO provides an unambiguous (asynchronous) signal to
 the NDC about the failure reason.

2.3.4. Capability Discovery

 In order to help a client discover support for this profile, the
 directory object of an ACME server (typically, one deployed by the
 IdO) contains the following attribute in the "meta" field:

 delegation-enabled (optional, boolean): Boolean flag indicating
 support for the profile specified in this memo. An ACME server
 that supports this delegation profile MUST include this key and
 MUST set it to true.

 The IdO MUST declare its support for delegation using "delegation-
 enabled" regardless of whether it supports delegation of STAR
 certificates, non-STAR certificates, or both.

 In order to help a client discover support for certificate fetching
 using unauthenticated HTTP GET, the directory object of an ACME
 server (typically, one deployed by the CA) contains the following
 attribute in the "meta" field:

 allow-certificate-get (optional, boolean): See Section 2.3.5.

2.3.5. Negotiating an Unauthenticated GET

 In order to enable the name delegation of non-STAR certificates, this
 document defines a mechanism that allows a server to advertise
 support for accessing certificate resources via unauthenticated GET
 (in addition to POST-as-GET) and a client to enable this service with
 per-Order granularity.

 It is worth pointing out that the protocol elements described in this
 section have the same names and semantics as those introduced in
 Section 3.4 of [RFC8739] for the STAR use case (except, of course,
 they apply to the certificate resource rather than the star-
 certificate resource). However, they differ in terms of their
 position in the directory meta and order objects; rather than being
 wrapped in an "auto-renewal" subobject, they are located at the top
 level.

 A server states its availability to grant unauthenticated access to a
 client’s Order certificate by setting the "allow-certificate-get"
 attribute to "true" in the "meta" field inside the directory object:

 allow-certificate-get (optional, boolean): If this field is present
 and set to "true", the server allows GET (and HEAD) requests to
 certificate URLs.

 A client states its desire to access the issued certificate via
 unauthenticated GET by adding an "allow-certificate-get" attribute to
 the payload of its newOrder request and setting it to "true".

 allow-certificate-get (optional, boolean): If this field is present
 and set to "true", the client requests the server to allow
 unauthenticated GET (and HEAD) to the certificate associated with
 this Order.

 If the server accepts the request, it MUST reflect the attribute
 setting in the resulting order object.

 Note that even when the use of unauthenticated GET has been agreed
 upon, the server MUST also allow POST-as-GET requests to the
 certificate resource.

2.3.6. Terminating the Delegation

 Identity delegation is terminated differently depending on whether or
 not this is a STAR certificate.

2.3.6.1. By Cancellation (STAR)

 The IdO can terminate the delegation of a STAR certificate by
 requesting its cancellation (see Section 3.1.2 of [RFC8739]).

 Cancellation of the ACME STAR certificate is a prerogative of the
 IdO. The NDC does not own the relevant account key on the CA;
 therefore, it can’t issue a cancellation request for the STAR
 certificate. Potentially, since it holds the STAR certificate’s
 private key, it could request the revocation of a single STAR
 certificate. However, STAR explicitly disables the revokeCert
 interface.

 Shortly after the automatic renewal process is stopped by the IdO,
 the last issued STAR certificate expires and the delegation
 terminates.

2.3.6.2. By Revocation (Non-STAR)

 The IdO can terminate the delegation of a non-STAR certificate by
 requesting it to be revoked using the "revokeCert" URL exposed by the
 CA.

 According to Section 7.6 of [RFC8555], the revocation endpoint can be
 used with either the account key pair or the certificate key pair.
 In other words, an NDC that learns the "revokeCert" URL of the CA
 (which is publicly available via the CA’s directory object) would be
 able to revoke the certificate using the associated private key.
 However, given the trust relationship between the NDC and IdO
 expected by the delegation trust model (Section 7.1), as well as the
 lack of incentives for the NDC to prematurely terminate the
 delegation, this does not represent a significant security risk.

2.4. Proxy Behavior

 There are cases where the ACME Delegation flow should be proxied,
 such as the use case described in Section 5.1.2. This section
 describes the behavior of such proxies.

 An entity implementing the IdO server role -- an "ACME Delegation
 server" -- may behave, on a per-identity case, either as a proxy into
 another ACME Delegation server or as an IdO and obtain a certificate
 directly. The determining factor is whether it can successfully be
 authorized by the next-hop ACME server for the identity associated
 with the certificate request.

 The identities supported by each server and the disposition for each
 of them are preconfigured.

 Following is the proxy’s behavior for each of the messages exchanged
 in the ACME Delegation process:

 New-order request:
 * The complete "identifiers" attribute MUST be copied as is.

 * Similarly, the "auto-renewal" object MUST be copied as is.
 New-order response:
 * The "status", "expires", "authorizations", "identifiers", and
 "auto-renewal" attributes/objects MUST be copied as is.
 * The "finalize" URL is rewritten so that the "finalize" request
 will be made to the proxy.
 * Similarly, the "Location" header MUST be rewritten to point to
 an order object on the proxy.
 * Any "Link" relations MUST be rewritten to point to the proxy.
 Get Order response:
 * The "status", "expires", "authorizations", "identifiers", and
 "auto-renewal" attributes/objects MUST be copied as is.
 * Similarly, the "star-certificate" URL (or the "certificate" URL
 in case of non-STAR requests) MUST be copied as is.
 * The "finalize" URL is rewritten so that the "finalize" request
 will be made to the proxy.
 * The "Location" header MUST be rewritten to point to an order
 object on the proxy.
 * Any "Link" relations MUST be rewritten to point to the proxy.
 "finalize" request:
 * The CSR MUST be copied as is.
 "finalize" response:
 * The "Location" header, "Link" relations, and the "finalize"
 URLs are rewritten as for Get Order.

 We note that all the above messages are authenticated; therefore,
 each proxy must be able to authenticate any subordinate server.

3. CA Behavior

 Although most of this document, and in particular Section 2, is
 focused on the protocol between the NDC and IdO, the protocol does
 affect the ACME server running in the CA. A CA that wishes to
 support certificate delegation MUST also support unauthenticated
 certificate fetching, which it declares using "allow-certificate-get"
 (Section 2.3.5, Paragraph 3).

4. CSR Template

 The CSR template is used to express and constrain the shape of the
 CSR that the NDC uses to request the certificate. The CSR is used
 for every certificate created under the same delegation. Its
 validation by the IdO is a critical element in the security of the
 whole delegation mechanism.

 Instead of defining every possible CSR attribute, this document takes
 a minimalist approach by declaring only the minimum attribute set and
 deferring the registration of further, more-specific attributes to
 future documents.

4.1. Template Syntax

 The template is a JSON document. Each field (with the exception of
 "keyTypes", see below) denotes one of the following:

 * A mandatory field where the template specifies the literal value
 of that field. This is denoted by a literal string, such as
 "abc.ido.example".

 * A mandatory field where the content of the field is defined by the
 client. This is denoted by "**".

 * An optional field where the client decides whether the field is
 included in the CSR and, if so, what its value is. This is
 denoted by "*".

 The NDC MUST NOT include any fields in the CSR, including any
 extensions, unless they are specified in the template.

 The structure of the template object is defined by the Concise Data
 Definition Language (CDDL) [RFC8610] document in Appendix A. An

 alternative, nonnormative JSON Schema syntax is given in Appendix B.
 While the CSR template must follow the syntax defined here, neither
 the IdO nor the NDC are expected to validate it at runtime.

 The "subject" field and its subfields are mapped into the "subject"
 field of the CSR, as per Section 4.1.2.6 of [RFC5280]. Other
 extension fields of the CSR template are mapped into the CSR
 according to the table in Section 6.5.

 The "subjectAltName" field is currently defined for the following
 identifiers: DNS names, email addresses, and URIs. New identifier
 types may be added in the future by documents that extend this
 specification. Each new identifier type SHALL have an associated
 identifier validation challenge that the CA can use to obtain proof
 of the requester’s control over it.

 The "keyTypes" property is not copied into the CSR. Instead, this
 property constrains the "SubjectPublicKeyInfo" field of the CSR,
 which MUST have the type/size defined by one of the array members of
 the "keyTypes" property.

 When the IdO receives the CSR, it MUST verify that the CSR is
 consistent with the template contained in the "delegation" object
 referenced in the Order. The IdO MAY enforce additional constraints,
 e.g., by restricting field lengths. In this regard, note that a
 "subjectAltName" of type "DNS" can be specified using the wildcard
 notation, meaning that the NDC can be required ("**") or offered the
 possibility ("*") to define the delegated domain name by itself. If
 this is the case, the IdO MUST apply application-specific checks on
 top of the control rules already provided by the CSR template to
 ensure the requested domain name is legitimate according to its local
 policy.

4.2. Example

 The CSR template in Figure 10 represents one possible CSR template
 governing the delegation exchanges provided in the rest of this
 document.

 {
 "keyTypes": [
 {
 "PublicKeyType": "rsaEncryption",
 "PublicKeyLength": 2048,
 "SignatureType": "sha256WithRSAEncryption"
 },
 {
 "PublicKeyType": "id-ecPublicKey",
 "namedCurve": "secp256r1",
 "SignatureType": "ecdsa-with-SHA256"
 }
],
 "subject": {
 "country": "CA",
 "stateOrProvince": "**",
 "locality": "**"
 },
 "extensions": {
 "subjectAltName": {
 "DNS": [
 "abc.ido.example"
]
 },
 "keyUsage": [
 "digitalSignature"
],
 "extendedKeyUsage": [
 "serverAuth",
 "clientAuth"
]
 }

 }

 Figure 10: Example CSR Template

5. Further Use Cases

 This nonnormative section describes additional use cases implementing
 the STAR certificate delegation in nontrivial ways.

5.1. CDN Interconnection (CDNI)

 [HTTPS-DELEGATION] discusses several solutions addressing different
 delegation requirements for the CDN Interconnection (CDNI)
 environment. This section discusses two of the stated requirements
 in the context of the STAR delegation workflow.

 This section uses specific CDNI terminology, e.g., Upstream CDN
 (uCDN) and Downstream (dCDN), as defined in [RFC7336].

5.1.1. Multiple Parallel Delegates

 In some cases, the content owner (IdO) would like to delegate
 authority over a website to multiple NDCs (CDNs). This could happen
 if the IdO has agreements in place with different regional CDNs for
 different geographical regions or if a "backup" CDN is used to handle
 overflow traffic by temporarily altering some of the CNAME mappings
 in place. The STAR delegation flow enables this use case naturally,
 since each CDN can authenticate separately to the IdO (via its own
 separate account) specifying its CSR, and the IdO is free to allow or
 deny each certificate request according to its own policy.

5.1.2. Chained Delegation

 In other cases, a content owner (IdO) delegates some domains to a
 large CDN (uCDN), which in turn delegates to a smaller regional CDN
 (dCDN). The IdO has a contractual relationship with uCDN, and uCDN
 has a similar relationship with dCDN. However, IdO may not even know
 about dCDN.

 If needed, the STAR protocol can be chained to support this use case:
 uCDN could forward requests from dCDN to IdO and forward responses
 back to dCDN. Whether such proxying is allowed is governed by policy
 and contracts between the parties.

 A mechanism is necessary at the interface between uCDN and dCDN, by
 which the uCDN can advertise:

 * the names that the dCDN is allowed to use and

 * the policy for creating the key material (allowed algorithms,
 minimum key lengths, key usage, etc.) that the dCDN needs to
 satisfy.

 Note that such mechanism is provided by the CSR template.

5.1.2.1. Two-Level Delegation in CDNI

 A User Agent (UA), e.g., a browser or set-top box, wants to fetch the
 video resource at the following URI: "https://video.cp.example/
 movie". Redirection between the content provider (CP) and upstream
 and downstream CDNs is arranged as a CNAME-based aliasing chain, as
 illustrated in Figure 11.

 .------------.
 video.cp.example ? | .-----. |
 .---------------------------------->| | |
 | (a) | | DNS | CP |
 | .-------------------------------+ | |
 | | CNAME video.ucdn.example | ’-----’ |
 | | ’------------’
 | |

 | |
 .-----------|---v--. .------------.
.-----.-+-----.	video.ucdn.example ?	.-----.					
		+----------------------------->					
UA	TLS	DNS		(b)		DNS	uCDN
			<-----------------------------+				
’--+--’-----+-’	CNAME video.dcdn.example	’-----’					
 ’------|----^---|--’ ’------------’
 | | |
 | | |
 | | | .------------.
 | | | video.dcdn.example ? | .-----. | |
 | | ’------------------------------>| | |
 | | (c) | | DNS | |
 | ’-----------------------------------+ | |
 | A 192.0.2.1 | +-----+ dCDN |
 | | | | |
 ’--------------------------------------->| TLS | |
 SNI: video.cp.example | | | |
 | ’-----’ |
 ’------------’

 Figure 11: DNS Redirection

 Unlike HTTP-based redirection, where the original URL is supplanted
 by the one found in the "Location" header of the 302 response, DNS
 redirection is completely transparent to the User Agent. As a
 result, the TLS connection to the dCDN edge is done with a Server
 Name Indication (SNI) equal to the "host" in the original URI -- in
 the example, "video.cp.example". So, in order to successfully
 complete the handshake, the landing dCDN node has to be configured
 with a certificate whose "subjectAltName" field matches
 "video.cp.example", i.e., a content provider’s name.

 Figure 12 illustrates the cascaded delegation flow that allows dCDN
 to obtain a STAR certificate that bears a name belonging to the
 content provider with a private key that is only known to the dCDN.

 .--------------------.
 | .------.------. |
 | | STAR | ACME |<-------------.
 | CP | dele | STAR | | |
 | | srv | cli +-----. |
 | ’---+--’------’ | | 6
 ’---------|------^---’ 5 |
 | | | .--|-------.
 | | | | .-+----. |
 7 | ’---->| ACME | |
 | | | | STAR | C |
 | 4 | +------| A |
 | | | | HTTP | |
 | | | ’----+-’ |
 | .-’ ’--^--|----’
 .--------------v--|--. | |
 | .------.----+-. | | 10
 | | | STAR | | | |
 | uCDN | CDNI | dele | | | |
 | | | fwd | | | |
 | ’----+-’-+----’ | | |
 ’-------^--|---|--^--’ | |
 | | | | | |
 | 2 8 | | |
 1 | | 3 | |
 | | | | 9 |
 .-------|--v---v--|---------. | |
 | .-+----.----+-.------. | | | | | |
 | | | STAR | +------------’ |
 | dCDN | CDNI | dele | HTTP | | |
 | | | cli | |<--------------’
 | ’------’------’------’ |
 ’---------------------------’

 Figure 12: Two-Level Delegation in CDNI

 uCDN is configured to delegate to dCDN, and CP is configured to
 delegate to uCDN, both as defined in Section 2.3.1.

 1. dCDN requests CDNI path metadata to uCDN.

 2. uCDN replies with, among other CDNI metadata, the STAR
 delegation configuration, which includes the delegated content
 provider’s name.

 3. dCDN creates a key pair and the CSR with the delegated name. It
 then places an order for the delegated name to uCDN.

 4. uCDN forwards the received order to the content provider (CP).

 5. CP creates an order for a STAR certificate and sends it to the
 CA. The order also requests unauthenticated access to the
 certificate resource.

 6. After all authorizations complete successfully, the STAR
 certificate is issued.

 7. CP notifies uCDN that the STAR certificate is available at the
 order’s "star-certificate" URL.

 8. uCDN forwards the information to dCDN. At this point, the ACME
 signaling is complete.

 9. dCDN requests the STAR certificate using unauthenticated GET
 from the CA.

 10. The CA returns the certificate. Now dCDN is fully configured to
 handle HTTPS traffic in lieu of the content provider.

 Note that 9 and 10 repeat until the delegation expires or is
 terminated.

5.2. Secure Telephone Identity Revisited (STIR)

 As a second use case, we consider the delegation of credentials in
 the STIR ecosystem [RFC9060].

 This section uses STIR terminology. The term Personal Assertion
 Token (PASSporT) is defined in [RFC8225], and "TNAuthList" is defined
 in [RFC8226].

 In the STIR delegated mode, a service provider SP2 -- the NDC --
 needs to sign PASSporTs [RFC8225] for telephone numbers (e.g.,
 TN=+123) belonging to another service provider, SP1 -- the IdO. In
 order to do that, SP2 needs a STIR certificate and a private key that
 includes TN=+123 in the TNAuthList [RFC8226] certificate extension.

 In detail (Figure 13):

 1. SP1 and SP2 agree on the configuration of the delegation -- in
 particular, the CSR template that applies.

 2. SP2 generates a private/public key pair and sends a CSR to SP1,
 requesting creation of a certificate with an SP1 name, an SP2
 public key, and a TNAuthList extension with the list of TNs that
 SP1 delegates to SP2. (Note that the CSR sent by SP2 to SP1
 needs to be validated against the CSR template agreed upon in
 step 1.).

 3. SP1 sends an order for the CSR to the CA. The order also
 requests unauthenticated access to the certificate resource.

 4. Subsequently, after the required TNAuthList authorizations are
 successfully completed, the CA moves the order to a "valid"

 state; at the same time, the star-certificate endpoint is
 populated.

 5. The contents of the order are forwarded from SP1 to SP2 by means
 of the paired "delegation" order.

 6. SP2 dereferences the "star-certificate" URL in the order to fetch
 the rolling STAR certificate bearing the delegated identifiers.

 7. The STAR certificate is returned to SP2.

 .-------------------.
 | .------.------. |
 | | STAR | STAR |<--------------.
 .-->| SP1 | dele | dele | | |
 | | | srv | cli +-----. |
 | | ’----+-’------’ | | 4
 | ’------^--|---------’ 3 |
 | | | | .----|-----.
 | | 5 | | .---+--. | | |
 | | | ’--->| ACME | |
 | | | | | STAR | C |
 1 | | | +------| A |
 | | | .--->| HTTP | |
 | 2 | | | ’---+--’ |
 | | | | ’----|-----’
 | .------|--v---------. 6 |
 | | .-+----.------. | | 7
 | | | STAR | +-----’ |
 ’-->| SP2 | dele | HTTP | | |
 | | cli | |<--------------’
 | ’----+-’-+----’ |
 ’-------------------’

 Figure 13: Delegation in STIR

 As shown, the STAR delegation profile described in this document
 applies straightforwardly; the only extra requirement being the
 ability to instruct the NDC about the allowed TNAuthList values.
 This can be achieved by a simple extension to the CSR template.

6. IANA Considerations

6.1. New Fields in the "meta" Object within a Directory Object

 This document adds the following entries to the "ACME Directory
 Metadata Fields" registry:

 +=======================+============+===========+
 | Field Name | Field Type | Reference |
 +=======================+============+===========+
 | delegation-enabled | boolean | RFC 9115 |
 +-----------------------+------------+-----------+
 | allow-certificate-get | boolean | RFC 9115 |
 +-----------------------+------------+-----------+

 Table 1

6.2. New Fields in the Order Object

 This document adds the following entries to the "ACME Order Object
 Fields" registry:

 +=======================+============+==============+===========+
 | Field Name | Field Type | Configurable | Reference |
 +=======================+============+==============+===========+
 | allow-certificate-get | boolean | true | RFC 9115 |
 +-----------------------+------------+--------------+-----------+
 | delegation | string | true | RFC 9115 |
 +-----------------------+------------+--------------+-----------+

 Table 2

6.3. New Fields in the Account Object

 This document adds the following entries to the "ACME Account Object
 Fields" registry:

 +=============+============+==========+===========+
 | Field Name | Field Type | Requests | Reference |
 +=============+============+==========+===========+
 | delegations | string | none | RFC 9115 |
 +-------------+------------+----------+-----------+

 Table 3

 Note that the "delegations" field is only reported by ACME servers
 that have "delegation-enabled" set to true in their meta Object.

6.4. New Error Types

 This document adds the following entries to the "ACME Error Types"
 registry:

 +===================+================================+===========+
 | Type | Description | Reference |
 +===================+================================+===========+
 | unknownDelegation | An unknown configuration is | RFC 9115 |
 | | listed in the "delegation" | |
 | | attribute of the order request | |
 +-------------------+--------------------------------+-----------+

 Table 4

6.5. CSR Template Extensions

 IANA has established the "STAR Delegation CSR Template Extensions"
 registry, with "Specification Required" as its registration
 procedure.

 Each extension registered must specify:

 * an extension name,

 * an extension syntax, as a reference to a CDDL document that
 defines this extension, and

 * the extension’s mapping into an X.509 certificate extension.

 The initial contents of this registry are the extensions defined by
 the CDDL in Appendix A.

 +==================+===========+===============================+
 | Extension Name | Extension | Mapping to X.509 Certificate |
 | | Syntax | Extension |
 +==================+===========+===============================+
 | keyUsage | See | [RFC5280], Section 4.2.1.3 |
 | | Appendix | |
 | | A | |
 +------------------+-----------+-------------------------------+
 | extendedKeyUsage | See | [RFC5280], Section 4.2.1.12 |
 | | Appendix | |
 | | A | |
 +------------------+-----------+-------------------------------+
 | subjectAltName | See | [RFC5280], Section 4.2.1.6 |
 | | Appendix | (note that only specific name |
 | | A | formats are allowed: URI, DNS |
 | | | name, email address) |
 +------------------+-----------+-------------------------------+

 Table 5

 When evaluating a request for an assignment in this registry, the
 designated expert should follow this guidance:

 * The definition must include a full CDDL definition, which the
 expert will validate.

 * The definition must include both positive and negative test cases.

 * Additional requirements that are not captured by the CDDL
 definition are allowed but must be explicitly specified.

7. Security Considerations

7.1. Trust Model

 The ACME trust model needs to be extended to include the trust
 relationship between NDC and IdO. Note that once this trust link is
 established, it potentially becomes recursive. Therefore, there has
 to be a trust relationship between each of the nodes in the
 delegation chain; for example, in case of cascading CDNs, this is
 contractually defined. Note that when using standard [RFC6125]
 identity verification, there are no mechanisms available to the IdO
 to restrict the use of the delegated name once the name has been
 handed over to the first NDC. It is, therefore, expected that
 contractual measures are in place to get some assurance that
 redelegation is not being performed.

7.2. Delegation Security Goal

 Delegation introduces a new security goal: only an NDC that has been
 authorized by the IdO, either directly or transitively, can obtain a
 certificate with an IdO identity.

 From a security point of view, the delegation process has five
 separate parts:

 1. enabling a specific third party (the intended NDC) to submit
 requests for delegated certificates

 2. making sure that any request for a delegated certificate matches
 the intended "shape" in terms of delegated identities as well as
 any other certificate metadata, e.g., key length, x.509
 extensions, etc.

 3. serving the certificate back to the NDC

 4. handling revocation of the delegation

 5. handling revocation of the certificate itself

 The first part is covered by the NDC’s ACME account that is
 administered by the IdO, whose security relies on the correct
 handling of the associated key pair. When a compromise of the
 private key is detected, the delegate MUST use the account
 deactivation procedures defined in Section 7.3.6 of [RFC8555].

 The second part is covered by the act of checking an NDC’s
 certificate request against the intended CSR template. The steps of
 shaping the CSR template correctly, selecting the right CSR template
 to check against the presented CSR, and making sure that the
 presented CSR matches the selected CSR template are all security
 relevant.

 The third part builds on the trust relationship between NDC and IdO
 that is responsible for correctly forwarding the certificate URL from
 the Order returned by the CA.

 The fourth part is associated with the ability of the IdO to
 unilaterally remove the "delegation" object associated with the
 revoked identity, therefore, disabling any further NDC requests for
 such identity. Note that, in more extreme circumstances, the IdO

 might decide to disable the NDC account, thus entirely blocking any
 further interaction.

 The fifth is covered by two different mechanisms, depending on the
 nature of the certificate. For STAR, the IdO shall use the
 cancellation interface defined in Section 2.3 of [RFC8739]. For non-
 STAR, the certificate revocation interface defined in Section 7.6 of
 [RFC8555]) is used.

 The ACME account associated with the delegation plays a crucial role
 in the overall security of the presented protocol. This, in turn,
 means that (in delegation scenarios) the security requirements and
 verification associated with an ACME account may be more stringent
 than in base ACME deployments, since the out-of-band configuration of
 delegations that an account is authorized to use (combined with
 account authentication) takes the place of the normal ACME
 authorization challenge procedures. Therefore, the IdO MUST ensure
 that each account is associated with the exact policies (via their
 matching "delegation" objects) that define which domain names can be
 delegated to the account and how. The IdO is expected to use out-of-
 band means to preregister each NDC to the corresponding account.

7.3. New ACME Channels

 Using the model established in Section 10.1 of [RFC8555], we can
 decompose the interactions of the basic delegation workflow, as shown
 in Figure 14.

 .-----. ACME Channel .--------.
 | NDC +------------->| IdO |
 ’--+--’ | server |
 | ’--o-----’
 | |
 | | ACME Channel
 | | .------------>-------------.
 | | | |
 | .--o--+--. .--+---.
 | | IdO | | CA |
 | | client | ’--+-+-’
 | ’-----+--’ | |
 | ’-----------<--------------’ |
 | Validation Channel |
 ’-------------------->-------------------------------’
 (subset of) ACME Channel [1]

 [1] Unauthenticated certificate fetch and non-STAR certificate
 revocation.

 Figure 14: Delegation Channels Topology

 The considerations regarding the security of the ACME Channel and
 Validation Channel discussed in [RFC8555] apply verbatim to the IdO-
 CA leg. The same can be said for the ACME Channel on the NDC-IdO
 leg. A slightly different set of considerations apply to the ACME
 Channel between the NDC and CA, which consists of a subset of the
 ACME interface comprising two API endpoints: the unauthenticated
 certificate retrieval and, potentially, non-STAR revocation via
 certificate private key. No specific security considerations apply
 to the former, but the privacy considerations in Section 6.3 of
 [RFC8739] do. With regard to the latter, it should be noted that
 there is currently no means for an IdO to disable authorizing
 revocation based on certificate private keys. So, in theory, an NDC
 could use the revocation API directly with the CA, therefore,
 bypassing the IdO. The NDC SHOULD NOT directly use the revocation
 interface exposed by the CA unless failing to do so would compromise
 the overall security, for example, if the certificate private key is
 compromised and the IdO is not currently reachable.

 All other security considerations from [RFC8555] and [RFC8739] apply
 as is to the delegation topology.

7.4. Restricting CDNs to the Delegation Mechanism

 When a website is delegated to a CDN, the CDN can in principle modify
 the website at will, e.g., create and remove pages. This means that
 a malicious or breached CDN can pass the ACME (as well as common non-
 ACME) HTTPS-based validation challenges and generate a certificate
 for the site. This is true regardless of whether or not the CNAME
 mechanisms defined in the current document is used.

 In some cases, this is the desired behavior; the domain holder trusts
 the CDN to have full control of the cryptographic credentials for the
 site. However, this document assumes a scenario where the domain
 holder only wants to delegate restricted control and wishes to retain
 the capability to cancel the CDN’s credentials at a short notice.

 The following is a possible mitigation when the IdO wishes to ensure
 that a rogue CDN cannot issue unauthorized certificates:

 * The domain holder makes sure that the CDN cannot modify the DNS
 records for the domain. The domain holder should ensure it is the
 only entity authorized to modify the DNS zone. Typically, it
 establishes a CNAME resource record from a subdomain into a CDN-
 managed domain.

 * The domain holder uses a Certification Authority Authorization
 (CAA) record [RFC8659] to restrict certificate issuance for the
 domain to specific CAs that comply with ACME and are known to
 implement [RFC8657].

 * The domain holder uses the ACME-specific CAA mechanism [RFC8657]
 to restrict issuance to a specific CA account that is controlled
 by it and MUST require "dns-01" as the sole validation method.

 We note that the above solution may need to be tweaked depending on
 the exact capabilities and authorization flows supported by the
 selected CA. In addition, this mitigation may be bypassed if a
 malicious or misconfigured CA does not comply with CAA restrictions.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8555] Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8739] Sheffer, Y., Lopez, D., Gonzalez de Dios, O., Pastor
 Perales, A., and T. Fossati, "Support for Short-Term,
 Automatically Renewed (STAR) Certificates in the Automated
 Certificate Management Environment (ACME)", RFC 8739,
 DOI 10.17487/RFC8739, March 2020,
 <https://www.rfc-editor.org/info/rfc8739>.

8.2. Informative References

 [HTTPS-DELEGATION]
 Fieau, F., Stephan, E., and S. Mishra, "CDNI extensions
 for HTTPS delegation", Work in Progress, Internet-Draft,
 draft-ietf-cdni-interfaces-https-delegation-06, 10
 September 2021, <https://datatracker.ietf.org/doc/html/
 draft-ietf-cdni-interfaces-https-delegation-06>.

 [json-schema-07]
 Wright, A., Andrews, H., and B. Hutton, "JSON Schema
 Validation: A Vocabulary for Structural Validation of
 JSON", Work in Progress, Internet-Draft, draft-handrews-
 json-schema-validation-02, 17 September 2019,
 <https://datatracker.ietf.org/doc/html/draft-handrews-
 json-schema-validation-02>.

 [MGLT-LURK-TLS13]
 Migault, D., "LURK Extension version 1 for (D)TLS 1.3
 Authentication", Work in Progress, Internet-Draft, draft-
 mglt-lurk-tls13-05, 26 July 2021,
 <https://datatracker.ietf.org/doc/html/draft-mglt-lurk-
 tls13-05>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7336] Peterson, L., Davie, B., and R. van Brandenburg, Ed.,
 "Framework for Content Distribution Network
 Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,
 August 2014, <https://www.rfc-editor.org/info/rfc7336>.

 [RFC8225] Wendt, C. and J. Peterson, "PASSporT: Personal Assertion
 Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,
 <https://www.rfc-editor.org/info/rfc8225>.

 [RFC8226] Peterson, J. and S. Turner, "Secure Telephone Identity
 Credentials: Certificates", RFC 8226,
 DOI 10.17487/RFC8226, February 2018,
 <https://www.rfc-editor.org/info/rfc8226>.

 [RFC8657] Landau, H., "Certification Authority Authorization (CAA)
 Record Extensions for Account URI and Automatic
 Certificate Management Environment (ACME) Method Binding",
 RFC 8657, DOI 10.17487/RFC8657, November 2019,
 <https://www.rfc-editor.org/info/rfc8657>.

 [RFC8659] Hallam-Baker, P., Stradling, R., and J. Hoffman-Andrews,
 "DNS Certification Authority Authorization (CAA) Resource
 Record", RFC 8659, DOI 10.17487/RFC8659, November 2019,
 <https://www.rfc-editor.org/info/rfc8659>.

 [RFC9060] Peterson, J., "Secure Telephone Identity Revisited (STIR)
 Certificate Delegation", RFC 9060, DOI 10.17487/RFC9060,

 September 2021, <https://www.rfc-editor.org/info/rfc9060>.

 [TLS-SUBCERTS]
 Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
 "Delegated Credentials for TLS", Work in Progress,
 Internet-Draft, draft-ietf-tls-subcerts-10, 24 January
 2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
 tls-subcerts-10>.

 [TOKEN-TNAUTHLIST]
 Wendt, C., Hancock, D., Barnes, M., and J. Peterson,
 "TNAuthList profile of ACME Authority Token", Work in
 Progress, Internet-Draft, draft-ietf-acme-authority-token-
 tnauthlist-08, 27 March 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-acme-
 authority-token-tnauthlist-08>.

Appendix A. CSR Template: CDDL

 Following is the normative definition of the CSR template using CDDL
 [RFC8610]. The CSR template MUST be a valid JSON document that is
 compliant with the syntax defined here.

 There are additional constraints not expressed in CDDL that MUST be
 validated by the recipient, including:

 * the value of each "subjectAltName" entry is compatible with its
 type and

 * the parameters in each "keyTypes" entry form an acceptable
 combination.

 csr-template-schema = {
 keyTypes: [+ $keyType]
 ? subject: non-empty<distinguishedName>
 extensions: extensions
 }

 non-empty<M> = (M) .and ({ + any => any })

 mandatory-wildcard = "**"
 optional-wildcard = "*"
 wildcard = mandatory-wildcard / optional-wildcard

 ; regtext matches all text strings but "*" and "**"
 regtext = text .regexp "([^*].*)|([*][^*].*)|([*][*].+)"

 regtext-or-wildcard = regtext / wildcard

 distinguishedName = {
 ? country: regtext-or-wildcard
 ? stateOrProvince: regtext-or-wildcard
 ? locality: regtext-or-wildcard
 ? organization: regtext-or-wildcard
 ? organizationalUnit: regtext-or-wildcard
 ? emailAddress: regtext-or-wildcard
 ? commonName: regtext-or-wildcard
 }

 $keyType /= rsaKeyType
 $keyType /= ecdsaKeyType

 rsaKeyType = {
 PublicKeyType: "rsaEncryption" ; OID: 1.2.840.113549.1.1.1
 PublicKeyLength: rsaKeySize
 SignatureType: $rsaSignatureType
 }

 rsaKeySize = uint

 ; RSASSA-PKCS1-v1_5 with SHA-256

 $rsaSignatureType /= "sha256WithRSAEncryption"
 ; RSASSA-PCKS1-v1_5 with SHA-384
 $rsaSignatureType /= "sha384WithRSAEncryption"
 ; RSASSA-PCKS1-v1_5 with SHA-512
 $rsaSignatureType /= "sha512WithRSAEncryption"
 ; RSASSA-PSS with SHA-256, MGF-1 with SHA-256, and a 32 byte salt
 $rsaSignatureType /= "sha256WithRSAandMGF1"
 ; RSASSA-PSS with SHA-384, MGF-1 with SHA-384, and a 48 byte salt
 $rsaSignatureType /= "sha384WithRSAandMGF1"
 ; RSASSA-PSS with SHA-512, MGF-1 with SHA-512, and a 64 byte salt
 $rsaSignatureType /= "sha512WithRSAandMGF1"

 ecdsaKeyType = {
 PublicKeyType: "id-ecPublicKey" ; OID: 1.2.840.10045.2.1
 namedCurve: $ecdsaCurve
 SignatureType: $ecdsaSignatureType
 }

 $ecdsaCurve /= "secp256r1" ; OID: 1.2.840.10045.3.1.7
 $ecdsaCurve /= "secp384r1" ; OID: 1.3.132.0.34
 $ecdsaCurve /= "secp521r1" ; OID: 1.3.132.0.3

 $ecdsaSignatureType /= "ecdsa-with-SHA256" ; paired with secp256r1
 $ecdsaSignatureType /= "ecdsa-with-SHA384" ; paired with secp384r1
 $ecdsaSignatureType /= "ecdsa-with-SHA512" ; paired with secp521r1

 subjectaltname = {
 ? DNS: [+ regtext-or-wildcard]
 ? Email: [+ regtext]
 ? URI: [+ regtext]
 * $$subjectaltname-extension
 }

 extensions = {
 ? keyUsage: [+ keyUsageType]
 ? extendedKeyUsage: [+ extendedKeyUsageType]
 subjectAltName: non-empty<subjectaltname>
 }

 keyUsageType /= "digitalSignature"
 keyUsageType /= "nonRepudiation"
 keyUsageType /= "keyEncipherment"
 keyUsageType /= "dataEncipherment"
 keyUsageType /= "keyAgreement"
 keyUsageType /= "keyCertSign"
 keyUsageType /= "cRLSign"
 keyUsageType /= "encipherOnly"
 keyUsageType /= "decipherOnly"

 extendedKeyUsageType /= "serverAuth"
 extendedKeyUsageType /= "clientAuth"
 extendedKeyUsageType /= "codeSigning"
 extendedKeyUsageType /= "emailProtection"
 extendedKeyUsageType /= "timeStamping"
 extendedKeyUsageType /= "OCSPSigning"
 extendedKeyUsageType /= oid

 oid = text .regexp "([0-2])((\.0)|(\.[1-9][0-9]*))*"

Appendix B. CSR Template: JSON Schema

 This appendix includes an alternative, nonnormative JSON Schema
 definition of the CSR template. The syntax used is that of draft 7
 of JSON Schema, which is documented in [json-schema-07]. Note that
 later versions of this (now-expired) draft describe later versions of
 the JSON Schema syntax. At the time of writing, a stable reference
 for this syntax is not yet available, and we have chosen to use the
 draft version, which is currently best supported by tool
 implementations.

 The same considerations about additional constraints checking

 discussed in Appendix A apply here as well.

 {
 "title": "JSON Schema for the STAR Delegation CSR template",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://ietf.org/acme/drafts/star-delegation/csr-template",
 "$defs": {
 "distinguished-name": {
 "$id": "#distinguished-name",
 "type": "object",
 "minProperties": 1,
 "properties": {
 "country": {
 "type": "string"
 },
 "stateOrProvince": {
 "type": "string"
 },
 "locality": {
 "type": "string"
 },
 "organization": {
 "type": "string"
 },
 "organizationalUnit": {
 "type": "string"
 },
 "emailAddress": {
 "type": "string"
 },
 "commonName": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 "rsaKeyType": {
 "$id": "#rsaKeyType",
 "type": "object",
 "properties": {
 "PublicKeyType": {
 "type": "string",
 "const": "rsaEncryption"
 },
 "PublicKeyLength": {
 "type": "integer"
 },
 "SignatureType": {
 "type": "string",
 "enum": [
 "sha256WithRSAEncryption",
 "sha384WithRSAEncryption",
 "sha512WithRSAEncryption",
 "sha256WithRSAandMGF1",
 "sha384WithRSAandMGF1",
 "sha512WithRSAandMGF1"
]
 }
 },
 "required": [
 "PublicKeyType",
 "PublicKeyLength",
 "SignatureType"
],
 "additionalProperties": false
 },
 "ecdsaKeyType": {
 "$id": "#ecdsaKeyType",
 "type": "object",
 "properties": {
 "PublicKeyType": {

 "type": "string",
 "const": "id-ecPublicKey"
 },
 "namedCurve": {
 "type": "string",
 "enum": [
 "secp256r1",
 "secp384r1",
 "secp521r1"
]
 },
 "SignatureType": {
 "type": "string",
 "enum": [
 "ecdsa-with-SHA256",
 "ecdsa-with-SHA384",
 "ecdsa-with-SHA512"
]
 }
 },
 "required": [
 "PublicKeyType",
 "namedCurve",
 "SignatureType"
],
 "additionalProperties": false
 }
 },
 "type": "object",
 "properties": {
 "keyTypes": {
 "type": "array",
 "minItems": 1,
 "items": {
 "anyOf": [
 {
 "$ref": "#rsaKeyType"
 },
 {
 "$ref": "#ecdsaKeyType"
 }
]
 }
 },
 "subject": {
 "$ref": "#distinguished-name"
 },
 "extensions": {
 "type": "object",
 "properties": {
 "keyUsage": {
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "string",
 "enum": [
 "digitalSignature",
 "nonRepudiation",
 "keyEncipherment",
 "dataEncipherment",
 "keyAgreement",
 "keyCertSign",
 "cRLSign",
 "encipherOnly",
 "decipherOnly"
]
 }
 },
 "extendedKeyUsage": {
 "type": "array",
 "minItems": 1,

 "items": {
 "anyOf": [
 {
 "type": "string",
 "enum": [
 "serverAuth",
 "clientAuth",
 "codeSigning",
 "emailProtection",
 "timeStamping",
 "OCSPSigning"
]
 },
 {
 "type": "string",
 "pattern": "^([0-2])((\\.0)|(\\.[1-9][0-9]*))*$",
 "description": "Used for OID values"
 }
]
 }
 },
 "subjectAltName": {
 "type": "object",
 "minProperties": 1,
 "properties": {
 "DNS": {
 "type": "array",
 "minItems": 1,
 "items": {
 "anyOf": [
 {
 "type": "string",
 "enum": [
 "*",
 "**"
]
 },
 {
 "type": "string",
 "format": "hostname"
 }
]
 }
 },
 "Email": {
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "string",
 "format": "email"
 }
 },
 "URI": {
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "string",
 "format": "uri"
 }
 }
 },
 "additionalProperties": false
 }
 },
 "required": [
 "subjectAltName"
],
 "additionalProperties": false
 }
 },
 "required": [

 "extensions",
 "keyTypes"
],
 "additionalProperties": false
 }

Acknowledgements

 We would like to thank the following people who contributed
 significantly to this document with their review comments and design
 proposals: Richard Barnes, Carsten Bormann, Roman Danyliw, Lars
 Eggert, FrÃ©dÃ©ric Fieau, Russ Housley, Ben Kaduk, Eric Kline, Sanjay
 Mishra, Francesca Palombini, Jon Peterson, Ryan Sleevi, Emile
 Stephan, and Ã\211ric Vyncke.

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI). This support does not imply
 endorsement.

Authors’ Addresses

 Yaron Sheffer
 Intuit

 Email: yaronf.ietf@gmail.com

 Diego LÃ³pez
 Telefonica I+D

 Email: diego.r.lopez@telefonica.com

 Antonio AgustÃ­n Pastor Perales
 Telefonica I+D

 Email: antonio.pastorperales@telefonica.com

 Thomas Fossati
 ARM

 Email: thomas.fossati@arm.com

