
ï»¿

Internet Engineering Task Force (IETF) J. Gould

Request for Comments: 9154 R. Wilhelm

Category: Standards Track Verisign, Inc.

ISSN: 2070-1721 December 2021

Extensible Provisioning Protocol (EPP) Secure Authorization Information

 for Transfer

Abstract

 The Extensible Provisioning Protocol (EPP) (RFC 5730) defines the use

 of authorization information to authorize a transfer of an EPP

 object, such as a domain name, between clients that are referred to

 as "registrars". Object-specific, password-based authorization

 information (see RFCs 5731 and 5733) is commonly used but raises

 issues related to the security, complexity, storage, and lifetime of

 authentication information. This document defines an operational

 practice, using the EPP RFCs, that leverages the use of strong random

 authorization information values that are short lived, not stored by

 the client, and stored by the server using a cryptographic hash that

 provides for secure authorization information that can safely be used

 for object transfers.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Further information on

 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc9154.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Revised BSD License text as described in Section 4.e of the

 Trust Legal Provisions and are provided without warranty as described

 in the Revised BSD License.

Table of Contents

 1. Introduction

 1.1. Conventions Used in This Document

 2. Registrant, Registrar, Registry

 3. Signaling Client and Server Support

 4. Secure Authorization Information

 4.1. Secure Random Authorization Information

 4.2. Authorization Information Time To Live (TTL)

 4.3. Authorization Information Storage and Transport

 4.4. Authorization Information Matching

 5. Create, Transfer, and Secure Authorization Information

 5.1. <Create> Command

 5.2. <Update> Command

 5.3. <Info> Command and Response

 5.4. <Transfer> Request Command

 6. Transition Considerations

 6.1. Transition Phase 1 - Features

 6.2. Transition Phase 2 - Storage

 6.3. Transition Phase 3 - Enforcement

 7. IANA Considerations

 7.1. XML Namespace

 7.2. EPP Extension Registry

 8. Security Considerations

 9. References

 9.1. Normative References

 9.2. Informative References

 Acknowledgements

 Authors’ Addresses

1. Introduction

 The Extensible Provisioning Protocol (EPP) [RFC5730] defines the use

 of authorization information to authorize a transfer of an EPP

 object, such as a domain name, between clients that are referred to

 as "registrars". The authorization information is object specific

 and has been defined in "Extensible Provisioning Protocol (EPP)

 Domain Name Mapping" [RFC5731] and "Extensible Provisioning Protocol

 (EPP) Contact Mapping" [RFC5733] as password-based authorization

 information. Other authorization mechanisms can be used, but in

 practice the password-based authorization information has been used

 at the time of object creation, managed with the object update, and

 used to authorize an object transfer request. What has not been

 considered is the security of the authorization information, which

 includes the complexity of the authorization information, the Time To

 Live (TTL) of the authorization information, and where and how the

 authorization information is stored.

 The current/original lifecycle for authorization information involves

 long-term storage of encrypted (not hashed) passwords, which presents

 a significant latent risk of password compromise and is not

 consistent with current best practices. The mechanisms in this

 document provide a way to avoid long-term password storage entirely

 and to only require the storage of hashed (not retrievable) passwords

 instead of encrypted passwords.

 This document defines an operational practice, using the EPP RFCs,

 that leverages the use of strong, random authorization information

 values that are short lived, not stored by the client, and stored by

 the server using a cryptographic hash to provide secure authorization

 information used for transfers. This operational practice can be

 used to support transfers of any EPP object, where the domain name

 object as defined in [RFC5731] is used in this document for

 illustration purposes. Elements of the practice may be used to

 support the secure use of the authorization information for purposes

 other than transfer, but any other purposes and the applicable

 elements are out of scope for this document.

 The overall goal is to have strong, random authorization information

 values that are short lived and are either not stored or stored as

 cryptographic hash values by the non-responsible parties. In a

 registrant, registrar, and registry model, the registrant registers

 the object through the registrar to the registry. The registrant is

 the responsible party, and the registrar and the registry are the

 non-responsible parties. EPP is a protocol between the registrar and

 the registry, where the registrar is referred to as the "client" and

 the registry is referred to as the "server". The following are the

 elements of the operational practice and how the existing features of

 the EPP RFCs can be leveraged to satisfy them:

 Strong Random Authorization Information: The EPP RFCs define the

 password-based authorization information value using an XML

 schema "normalizedString" type, so they don’t restrict what can

 be used in any substantial way. This operational practice

 defines the recommended mechanism for creating a strong random

 authorization value that would be generated by the client.

 Short-Lived Authorization Information: The EPP RFCs don’t explicitly

 support short-lived authorization information or a TTL for

 authorization information, but there are EPP RFC features that

 can be leveraged to support short-lived authorization

 information. All of these features are compatible with the EPP

 RFCs, though not mandatory to implement. As stated in

 Section 2.6 of [RFC5731], authorization information is assigned

 when a domain object is created, which results in long-lived

 authorization information. This specification changes the nature

 of the authorization information from long lived to short lived.

 If authorization information is set only when a transfer is in

 process, the server needs to support an empty authorization

 information value on create, support setting and unsetting

 authorization information, and support automatically unsetting

 the authorization information upon a successful transfer. All of

 these features can be supported by the EPP RFCs.

 Storing Authorization Information Securely: The EPP RFCs don’t

 specify where and how the authorization information is stored in

 the client or the server, so there are no restrictions on

 defining an operational practice for storing the authorization

 information securely. The operational practice will require the

 client to not store the authorization information and will

 require the server to store the authorization information using a

 cryptographic hash with at least a 256-bit hash function, such as

 SHA-256 [FIPS-180-4], and with a per-authorization information

 random salt with at least 128 bits. Returning the authorization

 information set in an EPP info response will not be supported.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 XML [W3C.REC-xml-20081126] is case sensitive. Unless stated

 otherwise, XML specifications and examples provided in this document

 MUST be interpreted in the character case presented in order to

 develop a conforming implementation.

 In examples, "C:" represents lines sent by a protocol client and "S:"

 represents lines returned by a protocol server. Indentation and

 empty space in examples are provided only to illustrate element

 relationships and are not a required feature of this protocol.

 The examples reference XML namespace prefixes that are used for the

 associated XML namespaces. Implementations MUST NOT depend on the

 example XML namespaces and instead employ a proper namespace-aware

 XML parser and serializer to interpret and output the XML documents.

 The example namespace prefixes used and their associated XML

 namespaces include the following:

 domain: urn:ietf:params:xml:ns:domain-1.0

 contact: urn:ietf:params:xml:ns:contact-1.0

2. Registrant, Registrar, Registry

 The EPP RFCs refer to "client" and "server", but when it comes to

 transfers, there are three types of actors that are involved. This

 document will refer to these actors as "registrant", "registrar", and

 "registry". [RFC8499] defines these terms formally for the Domain

 Name System (DNS). The terms are further described below to cover

 their roles as actors using the authorization information in the

 transfer process of any object in the registry, such as a domain name

 or a contact:

 Registrant: [RFC8499] defines the registrant as "an individual or

 organization on whose behalf a name in a zone is registered by

 the registry." The registrant can be the owner of any object in

 the registry, such as a domain name or a contact. The registrant

 interfaces with the registrar for provisioning the objects. A

 transfer is coordinated by the registrant to transfer the

 sponsorship of the object from one registrar to another. The

 authorization information is meant to authenticate the registrant

 as the owner of the object to the non-sponsoring registrar and to

 authorize the transfer.

 Registrar: [RFC8499] defines the registrar as "a service provider

 that acts as a go-between for registrants and registries." The

 registrar interfaces with the registrant for the provisioning of

 objects, such as domain names and contacts, and with the

 registries to satisfy the registrant’s provisioning requests. A

 registrar may (1) directly interface with the registrant or

 (2) indirectly interface with the registrant, typically through

 one or more resellers. Implementing a transfer using secure

 authorization information extends through the registrar’s

 reseller channel up to the direct interface with the registrant.

 The registrar’s interface with the registries uses EPP. The

 registrar’s interface with its reseller channel or the registrant

 is registrar specific. In the EPP RFCs, the registrar is

 referred to as the "client", since EPP is the protocol used

 between the registrar and the registry. The sponsoring registrar

 is the authorized registrar to manage objects on behalf of the

 registrant. A non-sponsoring registrar is not authorized to

 manage objects on behalf of the registrant. A transfer of an

 object’s sponsorship is from one registrar, referred to as the

 "losing registrar", to another registrar, referred to as the

 "gaining registrar".

 Registry: [RFC8499] defines the registry as "the administrative

 operation of a zone that allows registration of names within that

 zone." The registry typically interfaces with the registrars

 over EPP and generally does not interact directly with the

 registrant. In the EPP RFCs, the registry is referred to as the

 "server", since EPP is the protocol used between the registrar

 and the registry. The registry has a record of the sponsoring

 registrar for each object and provides the mechanism (over EPP)

 to coordinate a transfer of an object’s sponsorship between

 registrars.

3. Signaling Client and Server Support

 This document does not define a new protocol; rather, it defines an

 operational practice using existing EPP features, where the client

 and the server can signal support for the operational practice using

 a namespace URI in the login and greeting extension services. The

 namespace URI "urn:ietf:params:xml:ns:epp:secure-authinfo-transfer-

 1.0" is used to signal support for the operational practice. The

 client includes the namespace URI in an <svcExtension> <extURI>

 element of the <login> command [RFC5730]. The server includes the

 namespace URI in an <svcExtension> <extURI> element of the greeting

 [RFC5730].

 A client that receives the namespace URI in the server’s greeting

 extension services can expect the following supported behavior by the

 server:

 1. Support for an empty authorization information value with a

 <create> command.

 2. Support for unsetting authorization information with an <update>

 command.

 3. Support for validating authorization information with an <info>

 command.

 4. Support for not returning an indication of whether the

 authorization information is set or unset to the non-sponsoring

 registrar.

 5. Support for returning an empty authorization information value to

 the sponsoring registrar when the authorization information is

 set in an info response.

 6. Support for allowing the passing of a matching non-empty

 authorization information value to authorize a transfer.

 7. Support for automatically unsetting the authorization information

 upon successful completion of a transfer.

 A server that receives the namespace URI in the client’s <login>

 command extension services can expect the following supported

 behavior by the client:

 1. Support for the generation of authorization information using a

 secure random value.

 2. Support for only setting the authorization information when a

 transfer is in process.

4. Secure Authorization Information

 The EPP RFCs ([RFC5731] and [RFC5733]) use password-based

 authorization information to support transfer with the <domain:pw>

 element [RFC5731] and with the <contact:pw> element [RFC5733]. Other

 EPP objects that support password-based authorization information for

 transfer can use secure authorization information as defined in this

 document. For authorization information to be secure, it must be

 generated using a strong random value and have a short TTL. The

 security of the authorization information is defined in the following

 sections.

4.1. Secure Random Authorization Information

 For authorization information to be secure, it MUST be generated

 using a secure random value. The authorization information is

 treated as a password, and the required length L of a password,

 rounded up to the largest whole number, is based on the size N of the

 set of characters and the desired entropy H, in the equation L =

 ROUNDUP(H / log_2 N). Given a target entropy, the required length

 can be calculated after deciding on the set of characters that will

 be randomized. In accordance with current best practices and noting

 that the authorization information is a machine-generated value, the

 implementation SHOULD use at least 128 bits of entropy as the value

 of H. The lengths below are calculated using that value.

 Calculation of the required length with 128 bits of entropy and with

 the set of all printable ASCII characters except space (0x20), which

 consists of the 94 characters 0x21-0x7E:

 ROUNDUP(128 / log_2 94) =˜ ROUNDUP(128 / 6.55) =˜ ROUNDUP(19.54) = 20

 Calculation of the required length with 128 bits of entropy and with

 the set of case-insensitive alphanumeric characters, which consists

 of 36 characters (a-z A-Z 0-9):

 ROUNDUP(128 / log_2 36) =˜ ROUNDUP(128 / 5.17) =˜ ROUNDUP(24.76) = 25

 The strength of the random authorization information is dependent on

 the random number generator. Suitably strong random number

 generators are available in a wide variety of implementation

 environments, including the interfaces listed in Sections 7.1.2 and

 7.1.3 of [RFC4086]. In environments that do not provide interfaces

 to strong random number generators, the practices defined in

 [RFC4086] and Section 4.7.1 of the NIST Federal Information

 Processing Standards (FIPS) Publication 140-2 [FIPS-140-2] can be

 followed to produce random values that will be resistant to attack.

 (Note: FIPS 140-2 has been superseded by FIPS 140-3, but FIPS 140-3

 does not contain information regarding random number generators.)

4.2. Authorization Information Time To Live (TTL)

 The authorization information SHOULD only be set when a transfer is

 in process. This implies that the authorization information has a

 TTL by which the authorization information is cleared when the TTL

 expires. The EPP RFCs do not provide definitions for TTL, but since

 the server supports the setting and unsetting of the authorization

 information by the sponsoring registrar, the sponsoring registrar can

 apply a TTL based on client policy. The TTL client policy may be

 based on proprietary registrar-specific criteria, which provides for

 a transfer-specific TTL tuned for the particular circumstances of the

 transaction. The sponsoring registrar will be aware of the TTL, and

 the sponsoring registrar MUST inform the registrant of the TTL when

 the authorization information is provided to the registrant.

4.3. Authorization Information Storage and Transport

 To protect the disclosure of the authorization information, the

 following requirements apply:

 1. The authorization information MUST be stored by the registry

 using a strong one-way cryptographic hash with at least a 256-bit

 hash function, such as SHA-256 [FIPS-180-4], and with a per-

 authorization information random salt with at least 128 bits.

 2. An empty authorization information value MUST be stored as an

 undefined value that is referred to as a "NULL" value. The

 representation of a NULL (undefined) value is dependent on the

 type of database used.

 3. The authorization information MUST NOT be stored by the losing

 registrar.

 4. The authorization information MUST only be stored by the gaining

 registrar as a "transient" value in support of the transfer

 process.

 5. The plain-text version of the authorization information MUST NOT

 be written to any logs by a registrar or the registry, nor

 otherwise recorded where it will persist beyond the transfer

 process.

 6. All communication that includes the authorization information

 MUST be over an encrypted channel (for example, see [RFC5734])

 for EPP.

 7. The registrar’s interface for communicating the authorization

 information with the registrant MUST be over an authenticated and

 encrypted channel.

4.4. Authorization Information Matching

 To support the authorization information TTL, as described in

 Section 4.2, the authorization information must have either a set or

 unset state. Authorization information that is unset is stored with

 a NULL (undefined) value. Based on the requirement to store the

 authorization information using a strong one-way cryptographic hash,

 as described in Section 4.3, authorization information that is set is

 stored with a non-NULL hashed value. The empty authorization

 information value is used as input in both the <create> command

 (Section 5.1) and the <update> command (Section 5.2) to define the

 unset state. The matching of the authorization information in the

 <info> command (Section 5.3) and the <transfer> request command

 (Section 5.4) is based on the following rules:

 1. Any input authorization information value MUST NOT match an unset

 authorization information value. For example, in [RFC5731] the

 input <domain:pw>2fooBAR</domain:pw> must not match an unset

 authorization information value that used <domain:null/> or

 <domain:pw/>.

 2. An empty input authorization information value MUST NOT match any

 set authorization information value.

 3. A non-empty input authorization information value MUST be hashed

 and matched against the set authorization information value,

 which is stored using the same hash algorithm.

5. Create, Transfer, and Secure Authorization Information

 To secure the transfer process using secure authorization information

 as described in Section 4, the client and server need to implement

 steps where the authorization information is set only when a transfer

 is actively in process and ensure that the authorization information

 is stored securely and transported only over secure channels. The

 steps for management of the authorization information for transfers

 include the following:

 1. The registrant requests to register the object with the

 registrar. The registrar sends the <create> command with an

 empty authorization information value to the registry, as

 described in Section 5.1.

 2. The registrant requests from the losing registrar the

 authorization information to provide to the gaining registrar.

 3. The losing registrar generates a secure random authorization

 information value and sends it to the registry, as described in

 Section 5.2, and then provides it to the registrant.

 4. The registrant provides the authorization information value to

 the gaining registrar.

 5. The gaining registrar optionally verifies the authorization

 information with the <info> command to the registry, as described

 in Section 5.3.

 6. The gaining registrar sends the transfer request with the

 authorization information to the registry, as described in

 Section 5.4.

 7. If the transfer completes successfully, the registry

 automatically unsets the authorization information; otherwise,

 the losing registrar unsets the authorization information when

 the TTL expires; see Section 5.2.

 The following sections outline the practices of the EPP commands and

 responses between the registrar and the registry that supports secure

 authorization information for transfer.

5.1. <Create> Command

 For a <create> command, the registry MUST allow the passing of an

 empty authorization information value and MAY disallow the passing of

 a non-empty authorization information value. By having an empty

 authorization information value on create, the object is initially

 not involved in the transfer process. Any EPP object extension that

 supports setting the authorization information with an

 "eppcom:pwAuthInfoType" element can pass an empty authorization

 information value. Examples of such extensions are found in

 [RFC5731] and [RFC5733].

 Example of passing an empty authorization information value in a

 domain name <create> command [RFC5731]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <create>

 C: <domain:create

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example.com</domain:name>

 C: <domain:authInfo>

 C: <domain:pw/>

 C: </domain:authInfo>

 C: </domain:create>

 C: </create>

 C: <clTRID>ABC-12345</clTRID>

 C: </command>

 C:</epp>

 Example of passing an empty authorization information value in a

 contact <create> command [RFC5733]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <create>

 C: <contact:create

 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">

 C: <contact:id>sh8013</contact:id>

 C: <contact:postalInfo type="int">

 C: <contact:name>John Doe</contact:name>

 C: <contact:addr>

 C: <contact:city>Dulles</contact:city>

 C: <contact:cc>US</contact:cc>

 C: </contact:addr>

 C: </contact:postalInfo>

 C: <contact:email>jdoe@example.com</contact:email>

 C: <contact:authInfo>

 C: <contact:pw/>

 C: </contact:authInfo>

 C: </contact:create>

 C: </create>

 C: <clTRID>ABC-12345</clTRID>

 C: </command>

 C:</epp>

5.2. <Update> Command

 For an <update> command, the registry MUST allow the setting and

 unsetting of the authorization information. The registrar sets the

 authorization information by first generating a strong, random

 authorization information value, based on the information provided in

 Section 4.1, and setting it in the registry in the <update> command.

 The importance of generating strong authorization information values

 cannot be overstated: secure transfers are very important to the

 Internet to mitigate damage in the form of theft, fraud, and other

 abuse. It is critical that registrars only use strong, randomly

 generated authorization information values.

 Because of this, registries may validate the randomness of the

 authorization information based on the length and character set

 required by the registry -- for example, validating that an

 authorization value contains a combination of uppercase, lowercase,

 and non-alphanumeric characters in an attempt to assess the strength

 of the value and returning an EPP error result of 2202 ("Invalid

 authorization information") [RFC5730] if the check fails.

 Such checks are, by their nature, heuristic and imperfect, and may

 identify well-chosen authorization information values as being not

 sufficiently strong. Registrars, therefore, must be prepared for an

 error response of 2202 and respond by generating a new value and

 trying again, possibly more than once.

 Often, the registrar has the "clientTransferProhibited" status set,

 so to start the transfer process, the "clientTransferProhibited"

 status needs to be removed, and the strong, random authorization

 information value needs to be set. The registrar MUST define a TTL,

 as described in Section 4.2, and if the TTL expires, the registrar

 will unset the authorization information.

 Example of removing the "clientTransferProhibited" status and setting

 the authorization information in a domain name <update> command

 [RFC5731]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <update>

 C: <domain:update

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example.com</domain:name>

 C: <domain:rem>

 C: <domain:status s="clientTransferProhibited"/>

 C: </domain:rem>

 C: <domain:chg>

 C: <domain:authInfo>

 C: <domain:pw>LuQ7Bu@w9?%+_HK3cayg55LSft3MPP

 C: </domain:pw>

 C: </domain:authInfo>

 C: </domain:chg>

 C: </domain:update>

 C: </update>

 C: <clTRID>ABC-12345-XYZ</clTRID>

 C: </command>

 C:</epp>

 When the registrar-defined TTL expires, the sponsoring registrar MUST

 cancel the transfer process by unsetting the authorization

 information value and MAY add back statuses like the

 "clientTransferProhibited" status. Any EPP object extension that

 supports setting the authorization information with an

 "eppcom:pwAuthInfoType" element can pass an empty authorization

 information value. Examples of such extensions are found in

 [RFC5731] and [RFC5733]. Setting an empty authorization information

 value unsets the authorization information. [RFC5731] supports an

 explicit mechanism of unsetting the authorization information, by

 passing the <domain:null> authorization information value. The

 registry MUST support unsetting the authorization information by

 accepting an empty authorization information value and accepting an

 explicit unset element if it is supported by the object extension.

 Example of adding the "clientTransferProhibited" status and unsetting

 the authorization information explicitly in a domain name <update>

 command [RFC5731]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <update>

 C: <domain:update

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example.com</domain:name>

 C: <domain:add>

 C: <domain:status s="clientTransferProhibited"/>

 C: </domain:add>

 C: <domain:chg>

 C: <domain:authInfo>

 C: <domain:null/>

 C: </domain:authInfo>

 C: </domain:chg>

 C: </domain:update>

 C: </update>

 C: <clTRID>ABC-12345-XYZ</clTRID>

 C: </command>

 C:</epp>

 Example of unsetting the authorization information with an empty

 authorization information value in a domain name <update> command

 [RFC5731]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <update>

 C: <domain:update

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example.com</domain:name>

 C: <domain:add>

 C: <domain:status s="clientTransferProhibited"/>

 C: </domain:add>

 C: <domain:chg>

 C: <domain:authInfo>

 C: <domain:pw/>

 C: </domain:authInfo>

 C: </domain:chg>

 C: </domain:update>

 C: </update>

 C: <clTRID>ABC-12345-XYZ</clTRID>

 C: </command>

 C:</epp>

 Example of unsetting the authorization information with an empty

 authorization information value in a contact <update> command

 [RFC5733]:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <update>

 C: <contact:update

 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">

 C: <contact:id>sh8013</contact:id>

 C: <contact:chg>

 C: <contact:authInfo>

 C: <contact:pw/>

 C: </contact:authInfo>

 C: </contact:chg>

 C: </contact:update>

 C: </update>

 C: <clTRID>ABC-12345-XYZ</clTRID>

 C: </command>

 C:</epp>

5.3. <Info> Command and Response

 For an <info> command, the registry MUST allow the passing of a non-

 empty authorization information value for verification. The gaining

 registrar can pre-verify the authorization information provided by

 the registrant prior to submitting the transfer request with the use

 of the <info> command. The registry compares the hash of the passed

 authorization information with the hashed authorization information

 value stored for the object. When the authorization information is

 not set or the passed authorization information does not match the

 previously set value, the registry MUST return an EPP error result

 code of 2202 [RFC5730].

 Example of passing a non-empty authorization information value in a

 domain name <info> command [RFC5731] to verify the authorization

 information value:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <info>

 C: <domain:info

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example.com</domain:name>

 C: <domain:authInfo>

 C: <domain:pw>LuQ7Bu@w9?%+_HK3cayg55LSft3MPP

 C: </domain:pw>

 C: </domain:authInfo>

 C: </domain:info>

 C: </info>

 C: <clTRID>ABC-12345</clTRID>

 C: </command>

 C:</epp>

 The info response in object extensions, such as those defined in

 [RFC5731] and [RFC5733], MUST NOT include the optional authorization

 information element with a non-empty authorization value. The

 authorization information is stored as a hash in the registry, so

 returning the plain-text authorization information is not possible,

 unless valid plain-text authorization information is passed in the

 <info> command. The registry MUST NOT return any indication of

 whether the authorization information is set or unset to the non-

 sponsoring registrar by not returning the authorization information

 element in the response. The registry MAY return an indication to

 the sponsoring registrar that the authorization information is set by

 using an empty authorization information value. The registry MAY

 return an indication to the sponsoring registrar that the

 authorization information is unset by not returning the authorization

 information element.

 Example of returning an empty authorization information value in a

 domain name info response [RFC5731] to indicate to the sponsoring

 registrar that the authorization information is set:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 S: <response>

 S: <result code="1000">

 S: <msg>Command completed successfully</msg>

 S: </result>

 S: <resData>

 S: <domain:infData

 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 S: <domain:name>example.com</domain:name>

 S: <domain:roid>EXAMPLE1-REP</domain:roid>

 S: <domain:status s="ok"/>

 S: <domain:clID>ClientX</domain:clID>

 S: <domain:authInfo>

 S: <domain:pw/>

 S: </domain:authInfo>

 S: </domain:infData>

 S: </resData>

 S: <trID>

 S: <clTRID>ABC-12345</clTRID>

 S: <svTRID>54322-XYZ</svTRID>

 S: </trID>

 S: </response>

 S:</epp>

5.4. <Transfer> Request Command

 For a <transfer> request command, the registry MUST allow the passing

 of a non-empty authorization information value to authorize a

 transfer. The registry compares the hash of the passed authorization

 information with the hashed authorization information value stored

 for the object. When the authorization information is not set or the

 passed authorization information does not match the previously set

 value, the registry MUST return an EPP error result code of 2202

 [RFC5730]. Whether the transfer occurs immediately or is pending is

 up to server policy. When the transfer occurs immediately, the

 registry MUST return the EPP success result code of 1000 ("Command

 completed successfully") [RFC5730], and when the transfer is pending,

 the registry MUST return the EPP success result code of 1001

 ("Command completed successfully; action pending"). The losing

 registrar MUST be informed of a successful transfer request using an

 EPP <poll> message.

 Example of passing a non-empty authorization information value in a

 domain name <transfer> request command [RFC5731] to authorize the

 transfer:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">

 C: <command>

 C: <transfer op="request">

 C: <domain:transfer

 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

 C: <domain:name>example1.com</domain:name>

 C: <domain:authInfo>

 C: <domain:pw>LuQ7Bu@w9?%+_HK3cayg55LSft3MPP

 C: </domain:pw>

 C: </domain:authInfo>

 C: </domain:transfer>

 C: </transfer>

 C: <clTRID>ABC-12345</clTRID>

 C: </command>

 C:</epp>

 Upon successful completion of the transfer, the registry MUST

 automatically unset the authorization information. If the transfer

 request is not submitted within the TTL (Section 4.2) or the transfer

 is canceled or rejected, the registrar MUST unset the authorization

 information, as described in Section 5.2.

6. Transition Considerations

 The goal of the transition considerations is to minimize the impact

 to the registrars in supporting the Secure Authorization Information

 Model defined in this document by supporting incremental transition

 steps. The transition steps are dependent on the starting point of

 the registry. Registries may have different starting points, since

 some of the elements of the Secure Authorization Information Model

 may have already been implemented. The considerations assume a

 starting point, referred to as the "Classic Authorization Information

 Model", which incorporates the following steps for management of the

 authorization information for transfers:

 1. The registrant requests to register the object with the

 registrar. The registrar sends the <create> command, with a non-

 empty authorization information value, to the registry. The

 registry stores the authorization information as an encrypted

 value and requires a non-empty authorization information value

 for the life of the object. The registrar may store the long-

 lived authorization information.

 2. At the time of transfer, the registrant requests from the losing

 registrar the authorization information to provide to the gaining

 registrar.

 3. The losing registrar retrieves the locally stored authorization

 information or queries the registry for authorization information

 using the <info> command, and provides it to the registrant. If

 the registry is queried, the authorization information is

 decrypted and the plain-text authorization information is

 returned in the info response to the registrar.

 4. The registrant provides the authorization information value to

 the gaining registrar.

 5. The gaining registrar optionally verifies the authorization

 information with the <info> command to the registry, by passing

 the authorization information in the <info> command to the

 registry.

 6. The gaining registrar sends the transfer request with the

 authorization information to the registry. The registry will

 decrypt the stored authorization information to compare to the

 passed authorization information.

 7. If the transfer completes successfully, the authorization

 information is not touched by the registry and may be updated by

 the gaining registrar using the <update> command. If the

 transfer is canceled or rejected, the losing registrar may reset

 the authorization information using the <update> command.

 The gaps between the Classic Authorization Information Model and the

 Secure Authorization Information Model include the following:

 1. Registry requirement for a non-empty authorization information

 value on create and for the life of the object versus the

 authorization information not being set on create and only being

 set when a transfer is in process.

 2. Registry not allowing the authorization information to be unset

 versus providing support for unsetting the authorization

 information in the <update> command.

 3. Registry storing the authorization information as an encrypted

 value versus a hashed value.

 4. Registry support for returning the authorization information

 versus not returning the authorization information in the info

 response.

 5. Registry not touching the authorization information versus the

 registry automatically unsetting the authorization information

 upon a successful transfer.

 6. Registry possibly validating a shorter authorization information

 value using password complexity rules versus validating the

 randomness of a longer authorization information value that meets

 the required bits of entropy.

 The transition can be handled in the three phases defined in

 Sections 6.1, 6.2, and 6.3.

6.1. Transition Phase 1 - Features

 The goal of "Transition Phase 1 - Features" is to implement the

 needed features in EPP so that the registrar can optionally implement

 the Secure Authorization Information Model. The features to

 implement are broken out by the commands and responses below:

 <Create> Command: Change the <create> command to make the

 authorization information optional, by allowing both a non-empty

 value and an empty value. This enables a registrar to optionally

 create objects without an authorization information value, as

 described in Section 5.1.

 <Update> Command: Change the <update> command to allow unsetting the

 authorization information, as described in Section 5.2. This

 enables the registrar to optionally unset the authorization

 information when the TTL expires or when the transfer is canceled

 or rejected.

 Transfer Approve Command and Transfer Auto-Approve: Change the

 transfer approve command and the transfer auto-approve to

 automatically unset the authorization information. This sets the

 default state of the object to not have the authorization

 information set. The registrar implementing the Secure

 Authorization Information Model will not set the authorization

 information for an inbound transfer, and the registrar

 implementing the Classic Authorization Information Model will set

 the new authorization information upon a successful transfer.

 Info Response: Change the <info> command to not return the

 authorization information in the info response, as described in

 Section 5.3. This sets up the implementation of "Transition Phase

 2 - Storage" (Section 6.2), since the dependency on returning the

 authorization information in the info response will be removed.

 This feature is the only one that is not an optional change to the

 registrar, and this change could potentially break the client, so

 it’s recommended that the registry provide notice of the change.

 <Info> Command and Transfer Request: Change the <info> command and

 the transfer request to ensure that a registrar cannot get an

 indication that the authorization information is set or not set by

 returning the EPP error result code of 2202 when comparing a

 passed authorization to a non-matching set authorization

 information value or an unset value.

6.2. Transition Phase 2 - Storage

 The goal of "Transition Phase 2 - Storage" is to transition the

 registry to use hashed authorization information instead of encrypted

 authorization information. There is no direct impact on the

 registrars, since the only visible indication that the authorization

 information has been hashed is that the set authorization information

 is not returned in the info response, as addressed in "Transition

 Phase 1 - Features" (Section 6.1). Transitioning the authorization

 information storage includes the following three steps:

 Hash New Authorization Information Values: Change the <create>

 command and the <update> command to hash rather than encrypt the

 authorization information.

 Support Comparison against Encrypted or Hashed Authorization

 Information: Change the <info> command and the <transfer> request

 command to be able to compare a passed authorization information

 value with either a hashed or encrypted authorization information

 value. This requires that the stored values be self-identifying

 as being in hashed or encrypted form.

 Hash Existing Encrypted Authorization Information Values: Convert

 the encrypted authorization information values stored in the

 registry database to hashed values. This update will not be

 visible to the registrar. The conversion can be done over a

 period of time, depending on registry policy.

6.3. Transition Phase 3 - Enforcement

 The goal of "Transition Phase 3 - Enforcement" is to complete the

 implementation of the Secure Authorization Information Model, by

 enforcing the following:

 Disallow Authorization Information on <Create> Command: Change the

 <create> command to not allow the passing of a non-empty

 authorization information value. This behavior could potentially

 break the client, so it’s recommended that the registry provide

 notice of this change.

 Validate the Strong Random Authorization Information: Change the

 validation of the authorization information in the <update>

 command to ensure at least 128 bits of entropy.

7. IANA Considerations

7.1. XML Namespace

 This document uses URNs to describe XML namespaces conforming to the

 registry mechanism described in [RFC3688]. IANA has assigned the

 following URI in the "ns" subregistry within the "IETF XML Registry"

 for secure authorization information for the transfer namespace:

 URI: urn:ietf:params:xml:ns:epp:secure-authinfo-transfer-1.0

 Registrant Contact: IESG

 XML: None. Namespace URIs do not represent an XML specification.

7.2. EPP Extension Registry

 IANA has registered the EPP operational practice described in this

 document in the "Extensions for the Extensible Provisioning Protocol

 (EPP)" registry as defined in [RFC7451]. The details of the

 registration are as follows:

 Name of Extension: "Extensible Provisioning Protocol (EPP) Secure

 Authorization Information for Transfer"

 Document status: Standards Track

 Reference: RFC 9154

 Registrant Name and Email Address: IESG (iesg@ietf.org)

 TLDs: Any

 IPR Disclosure: None

 Status: Active

 Notes: None

8. Security Considerations

 Section 4.1 defines the use of a secure random value for the

 generation of authorization information. The client SHOULD choose a

 length and set of characters that result in at least 128 bits of

 entropy.

 Section 4.2 defines the use of an authorization information TTL. The

 registrar SHOULD only set the authorization information during the

 transfer process by setting the authorization information at the

 start of the transfer process and unsetting the authorization

 information at the end of the transfer process. The TTL value is

 left up to registrar policy, and the sponsoring registrar MUST inform

 the registrant of the TTL when providing the authorization

 information to the registrant.

 Section 4.3 defines the storage and transport of authorization

 information. The losing registrar MUST NOT store the authorization

 information and the gaining registrar MUST only store the

 authorization information as a "transient" value during the transfer

 process, where the authorization information MUST NOT be stored after

 the end of the transfer process. The registry MUST store the

 authorization information using a one-way cryptographic hash of at

 least 256 bits and with a per-authorization information random salt

 with at least 128 bits. All communication that includes the

 authorization information MUST be over an encrypted channel. The

 plain-text authorization information MUST NOT be written to any logs

 by the registrar or the registry.

 Section 4.4 defines the matching of the authorization information

 values. The registry stores an unset authorization information value

 as a NULL (undefined) value to ensure that an empty input

 authorization information value never matches it. The method used to

 define a NULL (undefined) value is database specific.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,

 "Randomness Requirements for Security", BCP 106, RFC 4086,

 DOI 10.17487/RFC4086, June 2005,

 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",

 STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009,

 <https://www.rfc-editor.org/info/rfc5730>.

 [RFC5731] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)

 Domain Name Mapping", STD 69, RFC 5731,

 DOI 10.17487/RFC5731, August 2009,

 <https://www.rfc-editor.org/info/rfc5731>.

 [RFC5733] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)

 Contact Mapping", STD 69, RFC 5733, DOI 10.17487/RFC5733,

 August 2009, <https://www.rfc-editor.org/info/rfc5733>.

 [RFC5734] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)

 Transport over TCP", STD 69, RFC 5734,

 DOI 10.17487/RFC5734, August 2009,

 <https://www.rfc-editor.org/info/rfc5734>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and

 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth

 Edition)", World Wide Web Consortium Recommendation REC-

 xml-20081126, November 2008,

 <https://www.w3.org/TR/2008/REC-xml-20081126>.

9.2. Informative References

 [FIPS-140-2]

 National Institute of Standards and Technology, U.S.

 Department of Commerce, "NIST Federal Information

 Processing Standards (FIPS) Publication 140-2",

 DOI 10.6028/NIST.FIPS.140-2, May 2001,

 <https://csrc.nist.gov/publications/detail/fips/140/2/

 final>.

 [FIPS-180-4]

 National Institute of Standards and Technology, U.S.

 Department of Commerce, "Secure Hash Standard, NIST

 Federal Information Processing Standards (FIPS)

 Publication 180-4", DOI 10.6028/NIST.FIPS.180-4, August

 2015,

 <https://csrc.nist.gov/publications/detail/fips/180/4/

 final>.

 [RFC7451] Hollenbeck, S., "Extension Registry for the Extensible

 Provisioning Protocol", RFC 7451, DOI 10.17487/RFC7451,

 February 2015, <https://www.rfc-editor.org/info/rfc7451>.

Acknowledgements

 The authors wish to thank the following persons for their feedback

 and suggestions: Michael Bauland, Martin Casanova, Scott Hollenbeck,

 Benjamin Kaduk, Jody Kolker, Barry Leiba, Patrick Mevzek, Matthew

 Pozun, Srikanth Veeramachaneni, and Ulrich Wisser.

Authors’ Addresses

 James Gould

 Verisign, Inc.

 12061 Bluemont Way

 Reston, VA 20190

 United States of America

 Email: jgould@verisign.com

 URI: https://www.verisign.com

 Richard Wilhelm

 Verisign, Inc.

 12061 Bluemont Way

 Reston, VA 20190

 United States of America

 Email: 4rickwilhelm@gmail.com

 URI: https://www.verisign.com

