
ï»¿

Internet Engineering Task Force (IETF) B. Laurie
Request for Comments: 9162 E. Messeri
Obsoletes: 6962 Google
Category: Experimental R. Stradling
ISSN: 2070-1721 Sectigo
 December 2021

 Certificate Transparency Version 2.0

Abstract

 This document describes version 2.0 of the Certificate Transparency
 (CT) protocol for publicly logging the existence of Transport Layer
 Security (TLS) server certificates as they are issued or observed, in
 a manner that allows anyone to audit certification authority (CA)
 activity and notice the issuance of suspect certificates as well as
 to audit the certificate logs themselves. The intent is that
 eventually clients would refuse to honor certificates that do not
 appear in a log, effectively forcing CAs to add all issued
 certificates to the logs.

 This document obsoletes RFC 6962. It also specifies a new TLS
 extension that is used to send various CT log artifacts.

 Logs are network services that implement the protocol operations for
 submissions and queries that are defined in this document.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9162.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 1.2. Data Structures
 1.3. Major Differences from CT 1.0

 2. Cryptographic Components
 2.1. Merkle Trees
 2.1.1. Definition of the Merkle Tree
 2.1.2. Verifying a Tree Head Given Entries
 2.1.3. Merkle Inclusion Proofs
 2.1.4. Merkle Consistency Proofs
 2.1.5. Example
 2.2. Signatures
 3. Submitters
 3.1. Certificates
 3.2. Precertificates
 3.2.1. Binding Intent to Issue
 4. Log Format and Operation
 4.1. Log Parameters
 4.2. Evaluating Submissions
 4.2.1. Minimum Acceptance Criteria
 4.2.2. Discretionary Acceptance Criteria
 4.3. Log Entries
 4.4. Log ID
 4.5. TransItem Structure
 4.6. Log Artifact Extensions
 4.7. Merkle Tree Leaves
 4.8. Signed Certificate Timestamp (SCT)
 4.9. Merkle Tree Head
 4.10. Signed Tree Head (STH)
 4.11. Merkle Consistency Proofs
 4.12. Merkle Inclusion Proofs
 4.13. Shutting Down a Log
 5. Log Client Messages
 5.1. Submit Entry to Log
 5.2. Retrieve Latest STH
 5.3. Retrieve Merkle Consistency Proof between Two STHs
 5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash
 5.5. Retrieve Merkle Inclusion Proof, STH, and Consistency Proof
 by Leaf Hash
 5.6. Retrieve Entries and STH from Log
 5.7. Retrieve Accepted Trust Anchors
 6. TLS Servers
 6.1. TLS Client Authentication
 6.2. Multiple SCTs
 6.3. TransItemList Structure
 6.4. Presenting SCTs, Inclusions Proofs, and STHs
 6.5. transparency_info TLS Extension
 7. Certification Authorities
 7.1. Transparency Information X.509v3 Extension
 7.1.1. OCSP Response Extension
 7.1.2. Certificate Extension
 7.2. TLS Feature X.509v3 Extension
 8. Clients
 8.1. TLS Client
 8.1.1. Receiving SCTs and Inclusion Proofs
 8.1.2. Reconstructing the TBSCertificate
 8.1.3. Validating SCTs
 8.1.4. Fetching Inclusion Proofs
 8.1.5. Validating Inclusion Proofs
 8.1.6. Evaluating Compliance
 8.2. Monitor
 8.3. Auditing
 9. Algorithm Agility
 10. IANA Considerations
 10.1. Additions to Existing Registries
 10.1.1. New Entry to the TLS ExtensionType Registry
 10.1.2. URN Sub-namespace for TRANS (urn:ietf:params:trans)
 10.2. New CT-Related Registries
 10.2.1. Hash Algorithms
 10.2.2. Signature Algorithms
 10.2.3. VersionedTransTypes
 10.2.4. Log Artifact Extensions
 10.2.5. Log IDs
 10.2.6. Error Types
 10.3. OID Assignment

 11. Security Considerations
 11.1. Misissued Certificates
 11.2. Detection of Misissue
 11.3. Misbehaving Logs
 11.4. Multiple SCTs
 11.5. Leakage of DNS Information
 12. References
 12.1. Normative References
 12.2. Informative References
 Appendix A. Supporting v1 and v2 Simultaneously (Informative)
 Appendix B. An ASN.1 Module (Informative)
 Acknowledgements
 Authors’ Addresses

1. Introduction

 Certificate Transparency aims to mitigate the problem of misissued
 certificates by providing append-only logs of issued certificates.
 The logs do not themselves prevent misissuance, but they ensure that
 interested parties (particularly those named in certificates) can
 detect such misissuance. Note that this is a general mechanism that
 could be used for transparently logging any form of binary data,
 subject to some kind of inclusion criteria. In this document, we
 only describe its use for public TLS server certificates (i.e., where
 the inclusion criteria is a valid certificate issued by a public
 certification authority (CA)). A typical definition of "public" can
 be found in [CABBR].

 Each log contains certificate chains, which can be submitted by
 anyone. It is expected that public CAs will contribute all their
 newly issued certificates to one or more logs; however, certificate
 holders can also contribute their own certificate chains, as can
 third parties. In order to avoid logs being rendered useless by the
 submission of large numbers of spurious certificates, it is required
 that each chain ends with a trust anchor that is accepted by the log.
 A log may also limit the length of the chain it is willing to accept;
 such chains must also end with an acceptable trust anchor. When a
 chain is accepted by a log, a signed timestamp is returned, which can
 later be used to provide evidence to TLS clients that the chain has
 been submitted. TLS clients can thus require that all certificates
 they accept as valid are accompanied by signed timestamps.

 Those who are concerned about misissuance can monitor the logs,
 asking them regularly for all new entries, and can thus check whether
 domains for which they are responsible have had certificates issued
 that they did not expect. What they do with this information,
 particularly when they find that a misissuance has happened, is
 beyond the scope of this document. However, broadly speaking, they
 can invoke existing business mechanisms for dealing with misissued
 certificates, such as working with the CA to get the certificate
 revoked or with maintainers of trust anchor lists to get the CA
 removed. Of course, anyone who wants can monitor the logs and, if
 they believe a certificate is incorrectly issued, take action as they
 see fit.

 Similarly, those who have seen signed timestamps from a particular
 log can later demand a proof of inclusion from that log. If the log
 is unable to provide this (or, indeed, if the corresponding
 certificate is absent from monitors’ copies of that log), that is
 evidence of the incorrect operation of the log. The checking
 operation is asynchronous to allow clients to proceed without delay,
 despite possible issues, such as network connectivity and the
 vagaries of firewalls.

 The append-only property of each log is achieved using Merkle Trees,
 which can be used to efficiently prove that any particular instance
 of the log is a superset of any particular previous instance and to
 efficiently detect various misbehaviors of the log (e.g., issuing a
 signed timestamp for a certificate that is not subsequently logged).

 The log auditing mechanisms described in this document can be

 circumvented by a misbehaving log that shows different, inconsistent
 views of itself to different clients. Therefore, it is necessary to
 treat each log as a trusted third party. While mechanisms are being
 developed to address these shortcomings and thereby avoid the need to
 blindly trust logs, such mechanisms are outside the scope of this
 document.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Data Structures

 Data structures are defined and encoded according to the conventions
 laid out in Section 3 of [RFC8446].

 This document uses object identifiers (OIDs) to identify Log IDs (see
 Section 4.4), the precertificate Cryptographic Message Syntax (CMS)
 eContentType (see Section 3.2), X.509v3 extensions in certificates
 (see Section 7.1.2), and Online Certificate Status Protocol (OCSP)
 responses (see Section 7.1.1). The OIDs are defined in an arc that
 was selected due to its short encoding.

1.3. Major Differences from CT 1.0

 This document revises and obsoletes the CT 1.0 protocol [RFC6962],
 drawing on insights gained from CT 1.0 deployments and on feedback
 from the community. The major changes are:

 * Hash and signature algorithm agility: Permitted algorithms are now
 specified in IANA registries.

 * Precertificate format: Precertificates are now CMS objects rather
 than X.509 certificates, which avoids violating the certificate
 serial number uniqueness requirement in Section 4.1.2.2 of
 [RFC5280].

 * Removal of precertificate signing certificates and the
 precertificate poison extension: The change of precertificate
 format means that these are no longer needed.

 * Logs IDs: Each log is now identified by an OID rather than by the
 hash of its public key. OID allocations are available from an
 IANA registry.

 * TransItem structure: This new data structure is used to
 encapsulate most types of CT data. A TransItemList, consisting of
 one or more TransItem structures, can be used anywhere that
 SignedCertificateTimestampList was used in [RFC6962].

 * Merkle Tree leaves: The MerkleTreeLeaf structure has been replaced
 by the TransItem structure, which eases extensibility and
 simplifies the leaf structure by removing one layer of
 abstraction.

 * Unified leaf format: The structure for both certificate and
 precertificate entries now includes only the TBSCertificate
 (whereas certificate entries in [RFC6962] included the entire
 certificate).

 * Log artifact extensions: These are now typed and managed by an
 IANA registry, and they can now appear not only in Signed
 Certificate Timestamps (SCTs) but also in Signed Tree Heads
 (STHs).

 * API outputs: Complete TransItem structures are returned rather
 than the constituent parts of each structure.

 * get-all-by-hash: This is a new client API for obtaining an
 inclusion proof and the corresponding consistency proof at the
 same time.

 * submit-entry: This is a new client API, replacing add-chain and
 add-pre-chain.

 * Presenting SCTs with proofs: TLS servers may present SCTs together
 with the corresponding inclusion proofs, using any of the
 mechanisms that [RFC6962] defined for presenting SCTs only.
 (Presenting SCTs only is still supported).

 * CT TLS extension: The signed_certificate_timestamp TLS extension
 has been replaced by the transparency_info TLS extension.

 * Verification algorithms: Detailed algorithms for verifying
 inclusion proofs, for verifying consistency between two STHs, and
 for verifying a root hash given a complete list of the relevant
 leaf input entries have been added.

 * Extensive clarifications and editorial work.

2. Cryptographic Components

2.1. Merkle Trees

 A full description of the Merkle Tree is beyond the scope of this
 document. Briefly, it is a binary tree where each non-leaf node is a
 hash of its children. For CT, the number of children is at most two.
 Additional information can be found in the Introduction and Reference
 sections of [RFC8391].

2.1.1. Definition of the Merkle Tree

 The log uses a binary Merkle Tree for efficient auditing. The hash
 algorithm used is one of the log’s parameters (see Section 4.1).
 This document establishes a registry of acceptable hash algorithms
 (see Section 10.2.1). Throughout this document, the hash algorithm
 in use is referred to as HASH and the size of its output in bytes is
 referred to as HASH_SIZE. The input to the Merkle Tree Hash is a
 list of data entries; these entries will be hashed to form the leaves
 of the Merkle Tree. The output is a single HASH_SIZE Merkle Tree
 Hash. Given an ordered list of n inputs, D_n = {d[0], d[1], ...,
 d[n-1]}, the Merkle Tree Hash (MTH) is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d[0]}) = HASH(0x00 || d[0]).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D_n is then
 defined recursively as:

 MTH(D_n) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

 where:

 * || denotes concatenation

 * : denotes concatenation of lists

 * D[k1:k2] = D’_(k2-k1) denotes the list {d’[0] = d[k1], d’[1] =
 d[k1+1], ..., d’[k2-k1-1] = d[k2-1]} of length (k2 - k1).

 Note that the hash calculations for leaves and nodes differ; this
 domain separation is required to give second preimage resistance.

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle Tree may thus not be balanced;
 however, its shape is uniquely determined by the number of leaves.
 (Note: This Merkle Tree is essentially the same as the history tree
 proposed by [CrosbyWallach], except our definition handles non-full
 trees differently.)

2.1.2. Verifying a Tree Head Given Entries

 When a client has a complete list of entries from 0 up to tree_size -
 1 and wishes to verify this list against a tree head root_hash
 returned by the log for the same tree_size, the following algorithm
 may be used:

 1. Set stack to an empty stack.

 2. For each i from 0 up to tree_size - 1:

 a. Push HASH(0x00 || entries[i]) to stack.

 b. Set merge_count to the lowest value (0 included) such that
 LSB(i >> merge_count) is not set, where LSB means the least
 significant bit. In other words, set merge_count to the
 number of consecutive 1s found starting at the least
 significant bit of i.

 c. Repeat merge_count times:

 i. Pop right from stack.

 ii. Pop left from stack.

 iii. Push HASH(0x01 || left || right) to stack.

 3. If there is more than one element in the stack, repeat the same
 merge procedure (the sub-items of Step 2(c) above) until only a
 single element remains.

 4. The remaining element in stack is the Merkle Tree Hash for the
 given tree_size and should be compared by equality against the
 supplied root_hash.

2.1.3. Merkle Inclusion Proofs

 A Merkle inclusion proof for a leaf in a Merkle Tree is the shortest
 list of additional nodes in the Merkle Tree required to compute the
 Merkle Tree Hash for that tree. Each node in the tree is either a
 leaf node or is computed from the two nodes immediately below it
 (i.e., towards the leaves). At each step up the tree (towards the
 root), a node from the inclusion proof is combined with the node
 computed so far. In other words, the inclusion proof consists of the
 list of missing nodes required to compute the nodes leading from a
 leaf to the root of the tree. If the root computed from the
 inclusion proof matches the true root, then the inclusion proof
 proves that the leaf exists in the tree.

2.1.3.1. Generating an Inclusion Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle inclusion proof PATH(m, D_n) for the (m+1)th
 input d[m], 0 <= m < n, is defined as follows:

 The proof for the single leaf in a tree with a one-element input list
 D[1] = {d[0]} is empty:

 PATH(0, {d[0]}) = {}

 For n > 1, let k be the largest power of two smaller than n. The
 proof for the (m+1)th element d[m] in a list of n > m elements is
 then defined recursively as:

 PATH(m, D_n) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D_n) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.3.2. Verifying an Inclusion Proof

 When a client has received an inclusion proof (e.g., in a TransItem
 of type inclusion_proof_v2) and wishes to verify inclusion of an
 input hash for a given tree_size and root_hash, the following
 algorithm may be used to prove the hash was included in the
 root_hash:

 1. Compare leaf_index from the inclusion_proof_v2 structure against
 tree_size. If leaf_index is greater than or equal to tree_size,
 then fail the proof verification.

 2. Set fn to leaf_index and sn to tree_size - 1.

 3. Set r to hash.

 4. For each value p in the inclusion_path array:

 a. If sn is 0, then stop the iteration and fail the proof
 verification.

 b. If LSB(fn) is set, or if fn is equal to sn, then:

 i. Set r to HASH(0x01 || p || r).

 ii. If LSB(fn) is not set, then right-shift both fn and sn
 equally until either LSB(fn) is set or fn is 0.

 Otherwise:

 i. Set r to HASH(0x01 || r || p).

 c. Finally, right-shift both fn and sn one time.

 5. Compare sn to 0. Compare r against the root_hash. If sn is
 equal to 0 and r and the root_hash are equal, then the log has
 proven the inclusion of hash. Otherwise, fail the proof
 verification.

2.1.4. Merkle Consistency Proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D_n) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle Tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D_n), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

2.1.4.1. Generating a Consistency Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle consistency proof PROOF(m, D_n) for a
 previous Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

 PROOF(m, D_n) = SUBPROOF(m, D_n, true)

 In SUBPROOF, the boolean value represents whether the subtree created
 from D[0:m] is a complete subtree of the Merkle Tree created from D_n
 and, consequently, whether the subtree Merkle Tree Hash MTH(D[0:m])
 is known. The initial call to SUBPROOF sets this to be true, and
 SUBPROOF is then defined as follows:

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree created from D[0:m] is
 a complete subtree of the Merkle Tree created from the original D_n
 for which PROOF was requested and the subtree Merkle Tree Hash
 MTH(D[0:m]) is known):

 SUBPROOF(m, D_m, true) = {}

 Otherwise, the subproof for m = n is the Merkle Tree Hash committing
 inputs D[0:m]:

 SUBPROOF(m, D_m, false) = {MTH(D_m)}

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively, using the appropriate step
 below:

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D_n, b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k]:

 SUBPROOF(m, D_n, b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.4.2. Verifying Consistency between Two Tree Heads

 When a client has a tree head first_hash for tree size first, has a
 tree head second_hash for tree size second where 0 < first < second,
 and has received a consistency proof between the two (e.g., in a
 TransItem of type consistency_proof_v2), the following algorithm may
 be used to verify the consistency proof:

 1. If consistency_path is an empty array, stop and fail the proof
 verification.

 2. If first is an exact power of 2, then prepend first_hash to the
 consistency_path array.

 3. Set fn to first - 1 and sn to second - 1.

 4. If LSB(fn) is set, then right-shift both fn and sn equally until
 LSB(fn) is not set.

 5. Set both fr and sr to the first value in the consistency_path
 array.

 6. For each subsequent value c in the consistency_path array:

 a. If sn is 0, then stop the iteration and fail the proof
 verification.

 b. If LSB(fn) is set, or if fn is equal to sn, then:

 i. Set fr to HASH(0x01 || c || fr).

 ii. Set sr to HASH(0x01 || c || sr).

 iii. If LSB(fn) is not set, then right-shift both fn and sn
 equally until either LSB(fn) is set or fn is 0.

 Otherwise:

 i. Set sr to HASH(0x01 || sr || c).

 c. Finally, right-shift both fn and sn one time.

 7. After completing iterating through the consistency_path array as
 described above, verify that the fr calculated is equal to the
 first_hash supplied, that the sr calculated is equal to the
 second_hash supplied, and that sn is 0.

2.1.5. Example

 The following is a binary Merkle Tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The inclusion proof for d0 is [b, h, l].

 The inclusion proof for d3 is [c, g, l].

 The inclusion proof for d4 is [f, j, k].

 The inclusion proof for d6 is [i, k].

 The same tree, built incrementally in four steps:

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. Non-leaf nodes c, g are used to verify hash0, and non-leaf
 nodes d, l are additionally used to show hash is consistent with
 hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. Non-leaf nodes k, i are used to verify hash2, and non-leaf
 node j is additionally used to show hash is consistent with hash2.

2.2. Signatures

 When signing data structures, a log MUST use one of the signature
 algorithms from the IANA "Signature Algorithms" registry, described
 in Section 10.2.2.

3. Submitters

 Submitters submit certificates or preannouncements of certificates
 prior to issuance (precertificates) to logs for public auditing, as
 described below. In order to enable attribution of each logged
 certificate or precertificate to its issuer, each submission MUST be
 accompanied by all additional certificates required to verify the
 chain up to an accepted trust anchor (Section 5.7). The trust anchor
 (a root or intermediate CA certificate) MAY be omitted from the
 submission.

 If a log accepts a submission, it will return a Signed Certificate
 Timestamp (SCT) (see Section 4.8). The submitter SHOULD validate the
 returned SCT, as described in Section 8.1, if they understand its
 format and they intend to use it directly in a TLS handshake or to
 construct a certificate. If the submitter does not need the SCT (for
 example, the certificate is being submitted simply to make it
 available in the log), it MAY validate the SCT.

3.1. Certificates

 Any entity can submit a certificate (Section 5.1) to a log. Since it
 is anticipated that TLS clients will reject certificates that are not
 logged, it is expected that certificate issuers and subjects will be
 strongly motivated to submit them.

3.2. Precertificates

 CAs may preannounce a certificate prior to issuance by submitting a
 precertificate (Section 5.1) that the log can use to create an entry
 that will be valid against the issued certificate. The CA MAY
 incorporate the returned SCT in the issued certificate. One example
 of where the returned SCT is not incorporated in the issued
 certificate is when a CA sends the precertificate to multiple logs
 but only incorporates the SCTs that are returned first.

 A precertificate is a CMS [RFC5652] signed-data object that conforms
 to the following profile:

 * It MUST be DER encoded, as described in [X690].

 * SignedData.version MUST be v3(3).

 * SignedData.digestAlgorithms MUST be the same as the
 SignerInfo.digestAlgorithm OID value (see below).

 * SignedData.encapContentInfo:

 - eContentType MUST be the OID 1.3.101.78.

 - eContent MUST contain a TBSCertificate [RFC5280] that will be
 identical to the TBSCertificate in the issued certificate,
 except that the Transparency Information (Section 7.1)
 extension MUST be omitted.

 * SignedData.certificates MUST be omitted.

 * SignedData.crls MUST be omitted.

 * SignedData.signerInfos MUST contain one SignerInfo:

 - version MUST be v3(3).

 - sid MUST use the subjectKeyIdentifier option.

 - digestAlgorithm MUST be one of the hash algorithm OIDs listed
 in the IANA "Hash Algorithms" registry, described in
 Section 10.2.1.

 - signedAttrs MUST be present and MUST contain two attributes:

 o a content-type attribute whose value is the same as
 SignedData.encapContentInfo.eContentType and

 o a message-digest attribute whose value is the message digest
 of SignedData.encapContentInfo.eContent.

 - signatureAlgorithm MUST be the same OID as
 TBSCertificate.signature.

 - signature MUST be from the same (root or intermediate) CA that
 intends to issue the corresponding certificate (see
 Section 3.2.1).

 - unsignedAttrs MUST be omitted.

 SignerInfo.signedAttrs is included in the message digest calculation
 process (see Section 5.4 of [RFC5652]), which ensures that the
 SignerInfo.signature value will not be a valid X.509v3 signature that
 could be used in conjunction with the TBSCertificate (from
 SignedData.encapContentInfo.eContent) to construct a valid
 certificate.

3.2.1. Binding Intent to Issue

 Under normal circumstances, there will be a short delay between
 precertificate submission and issuance of the corresponding
 certificate. Longer delays are to be expected occasionally (e.g.,
 due to log server downtime); in some cases, the CA might not actually
 issue the corresponding certificate. Nevertheless, a
 precertificate’s signature indicates the CA’s binding intent to issue
 the corresponding certificate, which means that:

 * Misissuance of a precertificate is considered equivalent to
 misissuance of the corresponding certificate. The CA should
 expect to be held accountable, even if the corresponding
 certificate has not actually been issued.

 * Upon observing a precertificate, a client can reasonably presume
 that the corresponding certificate has been issued. A client may
 wish to obtain status information (e.g., by using the Online
 Certificate Status Protocol [RFC6960] or by checking a Certificate
 Revocation List [RFC5280]) about a certificate that is presumed to
 exist, especially if there is evidence or suspicion that the
 corresponding precertificate was misissued.

 * TLS clients may have policies that require CAs to be able to
 revoke and to provide certificate status services for each
 certificate that is presumed to exist based on the existence of a
 corresponding precertificate.

4. Log Format and Operation

 A log is a single, append-only Merkle Tree of submitted certificate
 and precertificate entries.

 When it receives and accepts a valid submission, the log MUST return
 an SCT that corresponds to the submitted certificate or

 precertificate. If the log has previously seen this valid
 submission, it SHOULD return the same SCT as it returned before, as
 discussed in Section 11.3. If different SCTs are produced for the
 same submission, multiple log entries will have to be created, one
 for each SCT (as the timestamp is a part of the leaf structure).
 Note that if a certificate was previously logged as a precertificate,
 then the precertificate’s SCT of type precert_sct_v2 would not be
 appropriate; instead, a fresh SCT of type x509_sct_v2 should be
 generated.

 An SCT is the log’s promise to append to its Merkle Tree an entry for
 the accepted submission. Upon producing an SCT, the log MUST fulfill
 this promise by performing the following actions within a fixed
 amount of time known as the Maximum Merge Delay (MMD), which is one
 of the log’s parameters (see Section 4.1):

 * Allocate a tree index to the entry representing the accepted
 submission.

 * Calculate the root of the tree.

 * Sign the root of the tree (see Section 4.10).

 The log may append multiple entries before signing the root of the
 tree.

 Log operators SHOULD NOT impose any conditions on retrieving or
 sharing data from the log.

4.1. Log Parameters

 A log is defined by a collection of immutable parameters, which are
 used by clients to communicate with the log and to verify log
 artifacts. Except for the Final STH, each of these parameters MUST
 be established before the log operator begins to operate the log.

 Base URL: The prefix used to construct URLs [RFC3986] for client
 messages (see Section 5). The base URL MUST be an "https" URL,
 MAY contain a port, and MAY contain a path with any number of path
 segments but MUST NOT contain a query string, fragment, or
 trailing "/". Example: https://ct.example.org/blue.

 Hash Algorithm: The hash algorithm used for the Merkle Tree (see
 Section 10.2.1).

 Signature Algorithm: The signature algorithm used (see Section 2.2).

 Public Key: The public key used to verify signatures generated by
 the log. A log MUST NOT use the same keypair as any other log.

 Log ID: The OID that uniquely identifies the log.

 Maximum Merge Delay: The MMD the log has committed to. This
 document deliberately does not specify any limits on the value to
 allow for experimentation.

 Version: The version of the protocol supported by the log (currently
 1 or 2).

 Maximum Chain Length: The longest certificate chain submission the
 log is willing to accept, if the log imposes any limit.

 STH Frequency Count: The maximum number of STHs the log may produce
 in any period equal to the Maximum Merge Delay (see Section 4.10).

 Final STH: If a log has been closed down (i.e., no longer accepts
 new entries), existing entries may still be valid. In this case,
 the client should know the final valid STH in the log to ensure no
 new entries can be added without detection. This value MUST be
 provided in the form of a TransItem of type signed_tree_head_v2.
 If a log is still accepting entries, this value should not be

 provided.

 [JSON.Metadata] is an example of a metadata format that includes the
 above elements.

4.2. Evaluating Submissions

 A log determines whether to accept or reject a submission by
 evaluating it against the minimum acceptance criteria (see
 Section 4.2.1) and against the log’s discretionary acceptance
 criteria (see Section 4.2.2).

 If the acceptance criteria are met, the log SHOULD accept the
 submission. (A log may decide, for example, to temporarily reject
 acceptable submissions to protect itself against denial-of-service
 attacks.)

 The log SHALL allow retrieval of its list of accepted trust anchors
 (see Section 5.7), each of which is a root or intermediate CA
 certificate. This list might usefully be the union of root
 certificates trusted by major browser vendors.

4.2.1. Minimum Acceptance Criteria

 To ensure that logged certificates and precertificates are
 attributable to an accepted trust anchor, to set clear expectations
 for what monitors would find in the log, and to avoid being
 overloaded by invalid submissions, the log MUST reject a submission
 if any of the following conditions are not met:

 * The submission, type, and chain inputs MUST be set as described in
 Section 5.1. The log MUST NOT accommodate misordered CA
 certificates or use any other source of intermediate CA
 certificates to attempt certification path construction.

 * Each of the zero or more intermediate CA certificates in the chain
 MUST have one or both of the following features:

 - The Basic Constraints extension with the cA boolean asserted.

 - The Key Usage extension with the keyCertSign bit asserted.

 * Each certificate in the chain MUST fall within the limits imposed
 by the zero or more Basic Constraints pathLenConstraint values
 found higher up the chain.

 * Precertificate submissions MUST conform to all of the requirements
 in Section 3.2.

4.2.2. Discretionary Acceptance Criteria

 If the minimum acceptance criteria are met but the submission is not
 fully valid according to [RFC5280] verification rules (e.g., the
 certificate or precertificate has expired, is not yet valid, has been
 revoked, exhibits ASN.1 DER encoding errors but the log can still
 parse it, etc.), then the acceptability of the submission is left to
 the log’s discretion. It is useful for logs to accept such
 submissions in order to accommodate quirks of CA certificate-issuing
 software and to facilitate monitoring of CA compliance with
 applicable policies and technical standards. However, it is
 impractical for this document to enumerate, and for logs to consider,
 all of the ways that a submission might fail to comply with
 [RFC5280].

 Logs SHOULD limit the length of chain they will accept. The maximum
 chain length is one of the log’s parameters (see Section 4.1).

4.3. Log Entries

 If a submission is accepted and an SCT is issued, the accepting log
 MUST store the entire chain used for verification. This chain MUST

 include the certificate or precertificate itself, the zero or more
 intermediate CA certificates provided by the submitter, and the trust
 anchor used to verify the chain (even if it was omitted from the
 submission). The log MUST provide this chain for auditing upon
 request (see Section 5.6) so that the CA cannot avoid blame by
 logging a partial or empty chain. Each log entry is a TransItem
 structure of type x509_entry_v2 or precert_entry_v2. However, a log
 may store its entries in any format. If a log does not store this
 TransItem in full, it must store the timestamp and sct_extensions of
 the corresponding TimestampedCertificateEntryDataV2 structure. The
 TransItem can be reconstructed from these fields and the entire chain
 that the log used to verify the submission.

4.4. Log ID

 Each log is identified by an OID, which is one of the log’s
 parameters (see Section 4.1) and which MUST NOT be used to identify
 any other log. A log’s operator MUST either allocate the OID
 themselves or request an OID from the Log ID registry (see
 Section 10.2.5). One way to get an OID arc, from which OIDs can be
 allocated, is to request a Private Enterprise Number from IANA by
 completing the registration form (https://pen.iana.org/pen/
 PenApplication.page). The only advantage of the registry is that the
 DER encoding can be small. (Recall that OID allocations do not
 require a central registration, although logs will most likely want
 to make themselves known to potential clients through out-of-band
 means.) Various data structures include the DER encoding of this
 OID, excluding the ASN.1 tag and length bytes, in an opaque vector:

 opaque LogID<2..127>;

 Note that the ASN.1 length and the opaque vector length are identical
 in size (1 byte) and value, so the full DER encoding (including the
 tag and length) of the OID can be reproduced simply by prepending an
 OBJECT IDENTIFIER tag (0x06) to the opaque vector length and
 contents.

 The OID used to identify a log is limited such that the DER encoding
 of its value, excluding the tag and length, MUST be no longer than
 127 octets.

4.5. TransItem Structure

 Various data structures are encapsulated in the TransItem structure
 to ensure that the type and version of each one is identified in a
 common fashion:

 enum {
 x509_entry_v2(0x0100), precert_entry_v2(0x0101),
 x509_sct_v2(0x0102), precert_sct_v2(0x0103),
 signed_tree_head_v2(0x0104), consistency_proof_v2(0x0105),
 inclusion_proof_v2(0x0106),

 /* Reserved Code Points */
 reserved_rfc6962(0x0000..0x00FF),
 reserved_experimentaluse(0xE000..0xEFFF),
 reserved_privateuse(0xF000..0xFFFF),
 (0xFFFF)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 } data;

 } TransItem;

 versioned_type is a value from the IANA registry in Section 10.2.3
 that identifies the type of the encapsulated data structure and the
 earliest version of this protocol to which it conforms. This
 document is v2.

 data is the encapsulated data structure. The various structures
 named with the DataV2 suffix are defined in later sections of this
 document.

 Note that VersionedTransType combines the v1 type enumerations
 Version, LogEntryType, SignatureType, and MerkleLeafType [RFC6962].
 Note also that v1 did not define TransItem, but this document
 provides guidelines (see Appendix A) on how v2 implementations can
 coexist with v1 implementations.

 Future versions of this protocol may reuse VersionedTransType values
 defined in this document as long as the corresponding data structures
 are not modified and may add new VersionedTransType values for new or
 modified data structures.

4.6. Log Artifact Extensions

 enum {
 reserved(65535)
 } ExtensionType;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 The Extension structure provides a generic extensibility for log
 artifacts, including SCTs (Section 4.8) and STHs (Section 4.10). The
 interpretation of the extension_data field is determined solely by
 the value of the extension_type field.

 This document does not define any extensions, but it does establish a
 registry for future ExtensionType values (see Section 10.2.4). Each
 document that registers a new ExtensionType must specify the context
 in which it may be used (e.g., SCT, STH, or both) and describe how to
 interpret the corresponding extension_data.

4.7. Merkle Tree Leaves

 The leaves of a log’s Merkle Tree correspond to the log’s entries
 (see Section 4.3). Each leaf is the leaf hash (Section 2.1) of a
 TransItem structure of type x509_entry_v2 or precert_entry_v2, which
 encapsulates a TimestampedCertificateEntryDataV2 structure. Note
 that leaf hashes are calculated as HASH(0x00 || TransItem), where the
 hash algorithm is one of the log’s parameters.

 opaque TBSCertificate<1..2^24-1>;

 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 TBSCertificate tbs_certificate;
 Extension sct_extensions<0..2^16-1>;
 } TimestampedCertificateEntryDataV2;

 timestamp is the date and time at which the certificate or
 precertificate was accepted by the log, in the form of a 64-bit
 unsigned number of milliseconds elapsed since the Unix Epoch (1
 January 1970 00:00:00 UTC -- see [UNIXTIME]), ignoring leap seconds,
 in network byte order. Note that the leaves of a log’s Merkle Tree
 are not required to be in strict chronological order.

 issuer_key_hash is the HASH of the public key of the CA that issued
 the certificate or precertificate, calculated over the DER encoding

 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
 needed to bind the CA to the certificate or precertificate, making it
 impossible for the corresponding SCT to be valid for any other
 certificate or precertificate whose TBSCertificate matches
 tbs_certificate. The length of the issuer_key_hash MUST match
 HASH_SIZE.

 tbs_certificate is the DER-encoded TBSCertificate from the
 submission. (Note that a precertificate’s TBSCertificate can be
 reconstructed from the corresponding certificate, as described in
 Section 8.1.2).

 sct_extensions is byte-for-byte identical to the SCT extensions of
 the corresponding SCT.

 The type of the TransItem corresponds to the value of the type
 parameter supplied in the Section 5.1 call.

4.8. Signed Certificate Timestamp (SCT)

 An SCT is a TransItem structure of type x509_sct_v2 or
 precert_sct_v2, which encapsulates a SignedCertificateTimestampDataV2
 structure:

 struct {
 LogID log_id;
 uint64 timestamp;
 Extension sct_extensions<0..2^16-1>;
 opaque signature<1..2^16-1>;
 } SignedCertificateTimestampDataV2;

 log_id is this log’s unique ID, encoded in an opaque vector, as
 described in Section 4.4.

 timestamp is equal to the timestamp from the corresponding
 TimestampedCertificateEntryDataV2 structure.

 sct_extensions is a vector of 0 or more SCT extensions. This vector
 MUST NOT include more than one extension with the same
 extension_type. The extensions in the vector MUST be ordered by the
 value of the extension_type field, smallest value first. All SCT
 extensions are similar to noncritical X.509v3 extensions (i.e., the
 mustUnderstand field is not set), and a recipient SHOULD ignore any
 extension it does not understand. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

 signature is computed over a TransItem structure of type
 x509_entry_v2 or precert_entry_v2 (see Section 4.7) using the
 signature algorithm declared in the log’s parameters (see
 Section 4.1).

4.9. Merkle Tree Head

 The log stores information about its Merkle Tree in a TreeHeadDataV2:

 opaque NodeHash<32..2^8-1>;

 struct {
 uint64 timestamp;
 uint64 tree_size;
 NodeHash root_hash;
 Extension sth_extensions<0..2^16-1>;
 } TreeHeadDataV2;

 The length of NodeHash MUST match HASH_SIZE of the log.

 timestamp is the current date and time, using the format defined in
 Section 4.7.

 tree_size is the number of entries currently in the log’s Merkle
 Tree.

 root_hash is the root of the Merkle Tree.

 sth_extensions is a vector of 0 or more STH extensions. This vector
 MUST NOT include more than one extension with the same
 extension_type. The extensions in the vector MUST be ordered by the
 value of the extension_type field, smallest value first. If an
 implementation sees an extension that it does not understand, it
 SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

4.10. Signed Tree Head (STH)

 Periodically, each log SHOULD sign its current tree head information
 (see Section 4.9) to produce an STH. When a client requests a log’s
 latest STH (see Section 5.2), the log MUST return an STH that is no
 older than the log’s MMD. However, since STHs could be used to mark
 individual clients (by producing a new STH for each query), a log
 MUST NOT produce STHs more frequently than its parameters declare
 (see Section 4.1). In general, there is no need to produce a new STH
 unless there are new entries in the log; however, in the event that a
 log does not accept any submissions during an MMD period, the log
 MUST sign the same Merkle Tree Hash with a fresh timestamp.

 An STH is a TransItem structure of type signed_tree_head_v2, which
 encapsulates a SignedTreeHeadDataV2 structure:

 struct {
 LogID log_id;
 TreeHeadDataV2 tree_head;
 opaque signature<1..2^16-1>;
 } SignedTreeHeadDataV2;

 log_id is this log’s unique ID encoded in an opaque vector, as
 described in Section 4.4.

 The timestamp in tree_head MUST be at least as recent as the most
 recent SCT timestamp in the tree. Each subsequent timestamp MUST be
 more recent than the timestamp of the previous update.

 tree_head contains the latest tree head information (see
 Section 4.9).

 signature is computed over the tree_head field using the signature
 algorithm declared in the log’s parameters (see Section 4.1).

4.11. Merkle Consistency Proofs

 To prepare a Merkle consistency proof for distribution to clients,
 the log produces a TransItem structure of type consistency_proof_v2,
 which encapsulates a ConsistencyProofDataV2 structure:

 struct {
 LogID log_id;
 uint64 tree_size_1;
 uint64 tree_size_2;
 NodeHash consistency_path<0..2^16-1>;
 } ConsistencyProofDataV2;

 log_id is this log’s unique ID encoded in an opaque vector, as
 described in Section 4.4.

 tree_size_1 is the size of the older tree.

 tree_size_2 is the size of the newer tree.

 consistency_path is a vector of Merkle Tree nodes proving the
 consistency of two STHs, as described in Section 2.1.4.

4.12. Merkle Inclusion Proofs

 To prepare a Merkle inclusion proof for distribution to clients, the
 log produces a TransItem structure of type inclusion_proof_v2, which
 encapsulates an InclusionProofDataV2 structure:

 struct {
 LogID log_id;
 uint64 tree_size;
 uint64 leaf_index;
 NodeHash inclusion_path<0..2^16-1>;
 } InclusionProofDataV2;

 log_id is this log’s unique ID encoded in an opaque vector, as
 described in Section 4.4.

 tree_size is the size of the tree on which this inclusion proof is
 based.

 leaf_index is the 0-based index of the log entry corresponding to
 this inclusion proof.

 inclusion_path is a vector of Merkle Tree nodes proving the inclusion
 of the chosen certificate or precertificate, as described in
 Section 2.1.3.

4.13. Shutting Down a Log

 Log operators may decide to shut down a log for various reasons, such
 as deprecation of the signature algorithm. If there are entries in
 the log for certificates that have not yet expired, simply making TLS
 clients stop recognizing that log will have the effect of
 invalidating SCTs from that log. In order to avoid that, the
 following actions SHOULD be taken:

 * Make it known to clients and monitors that the log will be frozen.
 This is not part of the API, so it will have to be done via a
 relevant out-of-band mechanism.

 * Stop accepting new submissions (the error code "shutdown" should
 be returned for such requests).

 * Once MMD from the last accepted submission has passed and all
 pending submissions are incorporated, issue a final STH and
 publish it as one of the log’s parameters. Having an STH with a
 timestamp that is after the MMD has passed from the last SCT
 issuance allows clients to audit this log regularly without
 special handling for the final STH. At this point, the log’s
 private key is no longer needed and can be destroyed.

 * Keep the log running until the certificates in all of its entries
 have expired or exist in other logs (this can be determined by
 scanning other logs or connecting to domains mentioned in the
 certificates and inspecting the SCTs served).

5. Log Client Messages

 Messages are sent as HTTPS GET or POST requests. Parameters for
 POSTs and all responses are encoded as JavaScript Object Notation
 (JSON) objects [RFC8259]. Parameters for GETs are encoded as order-
 independent key/value URL parameters, using the "application/x-www-
 form-urlencoded" format described in the "HTML 4.01 Specification"
 [HTML401]. Binary data is base64 encoded according to Section 4 of
 [RFC4648], as specified in the individual messages.

 Clients are configured with a log’s base URL, which is one of the
 log’s parameters. Clients construct URLs for requests by appending
 suffixes to this base URL. This structure places some degree of
 restriction on how log operators can deploy these services, as noted
 in [RFC8820]. However, operational experience with version 1 of this
 protocol has not indicated that these restrictions are a problem in
 practice.

 Note that JSON objects and URL parameters may contain fields not
 specified here to allow for experimentation. Any fields that are not
 understood SHOULD be ignored.

 In practice, log servers may include multiple front-end machines.
 Since it is impractical to keep these machines in perfect sync,
 errors that are caused by skew between the machines may occur. Where
 such errors are possible, the front end will return additional
 information (as specified below), making it possible for clients to
 make progress, if progress is possible. Front ends MUST only serve
 data that is free of gaps (that is, for example, no front end will
 respond with an STH unless it is also able to prove consistency from
 all log entries logged within that STH).

 For example, when a consistency proof between two STHs is requested,
 the front end reached may not yet be aware of one or both STHs. In
 the case where it is unaware of both, it will return the latest STH
 it is aware of. Where it is aware of the first but not the second,
 it will return the latest STH it is aware of and a consistency proof
 from the first STH to the returned STH. The case where it knows the
 second but not the first should not arise (see the "no gaps"
 requirement above).

 If the log is unable to process a client’s request, it MUST return an
 HTTP response code of 4xx/5xx (see [RFC7231]), and, in place of the
 responses outlined in the subsections below, the body SHOULD be a
 JSON problem details object (see Section 3 of [RFC7807]) containing:

 type: A URN reference identifying the problem. To facilitate
 automated response to errors, this document defines a set of
 standard tokens for use in the type field within the URN namespace
 of: "urn:ietf:params:trans:error:".

 detail: A human-readable string describing the error that prevented
 the log from processing the request, ideally with sufficient
 detail to enable the error to be rectified.

 For example, in response to a request of <Base URL>/ct/v2/get-
 entries?start=100&end=99, the log would return a 400 Bad Request
 response code with a body similar to the following:

 {
 "type": "urn:ietf:params:trans:error:endBeforeStart",
 "detail": "’start’ cannot be greater than ’end’"
 }

 Most error types are specific to the type of request and are defined
 in the respective subsections below. The one exception is the
 "malformed" error type, which indicates that the log server could not
 parse the client’s request because it did not comply with this
 document:

 +===========+==================================+
 | type | detail |
 +===========+==================================+
 | malformed | The request could not be parsed. |
 +-----------+----------------------------------+

 Table 1

 Clients SHOULD treat 500 Internal Server Error and 503 Service
 Unavailable responses as transient failures and MAY retry the same
 request without modification at a later date. Note that in the case
 of a 503 response, the log MAY include a Retry-After header field per
 [RFC7231] in order to request a minimum time for the client to wait
 before retrying the request. In the absence of this header field,
 this document does not specify a minimum.

 Clients SHOULD treat any 4xx error as a problem with the request and
 not attempt to resubmit without some modification to the request.
 The full status code MAY provide additional details.

 This document deliberately does not provide more specific guidance on
 the use of HTTP status codes.

5.1. Submit Entry to Log

 POST <Base URL>/ct/v2/submit-entry

 Inputs:
 submission: The base64-encoded certificate or precertificate.

 type: The VersionedTransType integer value that indicates the
 type of the submission: 1 for x509_entry_v2 or 2 for
 precert_entry_v2.

 chain: An array of zero or more JSON strings, each of which is a
 base64-encoded CA certificate. The first element is the
 certifier of the submission, the second certifies the first,
 etc. The last element of chain (or, if chain is an empty
 array, the submission) is certified by an accepted trust
 anchor.

 Outputs:
 sct: A base64-encoded TransItem of type x509_sct_v2 or
 precert_sct_v2, signed by this log, that corresponds to the
 submission.

 If the submitted entry is immediately appended to (or already
 exists in) this log’s tree, then the log SHOULD also output:

 sth: A base64-encoded TransItem of type signed_tree_head_v2
 signed by this log.

 inclusion: A base64-encoded TransItem of type inclusion_proof_v2
 whose inclusion_path array of Merkle Tree nodes proves the
 inclusion of the submission in the returned sth.

 Error codes:

 +================+===+
 | type | detail |
 +================+===+
 | badSubmission | submission is neither a valid certificate nor |
 | | a valid precertificate. |
 +----------------+---+
 | badType | type is neither 1 nor 2. |
 +----------------+---+
 | badChain | The first element of chain is not the |
 | | certifier of the submission, or the second |
 | | element does not certify the first, etc. |
 +----------------+---+
 | badCertificate | One or more certificates in chain are not |
 | | valid (e.g., not properly encoded). |
 +----------------+---+
 | unknownAnchor | The last element of chain (or, if chain is an |
 | | empty array, the submission) is not, nor is |
 | | it certified by, an accepted trust anchor. |
 +----------------+---+
 | shutdown | The log is no longer accepting submissions. |
 +----------------+---+

 Table 2

 If the version of sct is not v2, then a v2 client may be unable to
 verify the signature. It MUST NOT construe this as an error. This
 is to avoid forcing an upgrade of compliant v2 clients that do not
 use the returned SCTs.

 If a log detects bad encoding in a chain that otherwise verifies
 correctly, then the log MUST either log the certificate or return the
 "badCertificate" error. If the certificate is logged, an SCT MUST be

 issued. Logging the certificate is useful, because monitors
 (Section 8.2) can then detect these encoding errors, which may be
 accepted by some TLS clients.

 If submission is an accepted trust anchor whose certifier is neither
 an accepted trust anchor nor the first element of chain, then the log
 MUST return the "unknownAnchor" error. A log is not able to generate
 an SCT for a submission if it does not have access to the issuer’s
 public key.

 If the returned sct is intended to be provided to TLS clients, then
 sth and inclusion (if returned) SHOULD also be provided to TLS
 clients. For example, if type was 2 (indicating precert_sct_v2),
 then all three TransItems could be embedded in the certificate.

5.2. Retrieve Latest STH

 GET <Base URL>/ct/v2/get-sth

 No inputs.

 Outputs:
 sth: A base64-encoded TransItem of type signed_tree_head_v2
 signed by this log that is no older than the log’s MMD.

5.3. Retrieve Merkle Consistency Proof between Two STHs

 GET <Base URL>/ct/v2/get-sth-consistency

 Inputs:
 first: The tree_size of the older tree, in decimal.

 second: The tree_size of the newer tree, in decimal (optional).

 Both tree sizes must be from existing v2 STHs. However, because
 of skew, the receiving front end may not know one or both of the
 existing STHs. If both are known, then only the consistency
 output is returned. If the first is known but the second is not
 (or has been omitted), then the latest known STH is returned,
 along with a consistency proof between the first STH and the
 latest. If neither are known, then the latest known STH is
 returned without a consistency proof.

 Outputs:
 consistency: A base64-encoded TransItem of type
 consistency_proof_v2 whose tree_size_1 MUST match the first
 input. If the sth output is omitted, then tree_size_2 MUST
 match the second input. If first and second are equal and
 correspond to a known STH, the returned consistency proof MUST
 be empty (a consistency_path array with zero elements).

 sth: A base64-encoded TransItem of type signed_tree_head_v2,
 signed by this log.

 Note that no signature is required for the consistency output, as
 it is used to verify the consistency between two signed STHs.

 Error codes:

 +===================+======================================+
 | type | detail |
 +===================+======================================+
 | firstUnknown | first is before the latest known STH |
 | | but is not from an existing STH. |
 +-------------------+--------------------------------------+
 | secondUnknown | second is before the latest known |
 | | STH but is not from an existing STH. |
 +-------------------+--------------------------------------+
 | secondBeforeFirst | second is smaller than first. |
 +-------------------+--------------------------------------+

 Table 3

 See Section 2.1.4.2 for an outline of how to use the consistency
 output.

5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash

 GET <Base URL>/ct/v2/get-proof-by-hash

 Inputs:
 hash: A base64-encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proof,
 in decimal.

 The hash must be calculated as defined in Section 4.7. A v2 STH
 must exist for the tree_size. Because of skew, the front end may
 not know the requested tree head. In that case, it will return
 the latest STH it knows, along with an inclusion proof to that
 STH. If the front end knows the requested tree head, then only
 inclusion is returned.

 Outputs:
 inclusion: A base64-encoded TransItem of type inclusion_proof_v2
 whose inclusion_path array of Merkle Tree nodes proves the
 inclusion of the certificate (as specified by the hash
 parameter) in the selected STH.

 sth: A base64-encoded TransItem of type signed_tree_head_v2,
 signed by this log.

 Note that no signature is required for the inclusion output, as it
 is used to verify inclusion in the selected STH, which is signed.

 Error codes:

 +=================+=====================================+
 | type | detail |
 +=================+=====================================+
 | hashUnknown | hash is not the hash of a known |
 | | leaf (may be caused by skew or by a |
 | | known certificate not yet merged). |
 +-----------------+-------------------------------------+
 | treeSizeUnknown | hash is before the latest known STH |
 | | but is not from an existing STH. |
 +-----------------+-------------------------------------+

 Table 4

 See Section 2.1.3.2 for an outline of how to use the inclusion
 output.

5.5. Retrieve Merkle Inclusion Proof, STH, and Consistency Proof by
 Leaf Hash

 GET <Base URL>/ct/v2/get-all-by-hash

 Inputs:
 hash: A base64-encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the proofs,
 in decimal.

 The hash must be calculated as defined in Section 4.7. A v2 STH
 must exist for the tree_size.

 Because of skew, the front end may not know the requested tree head
 or the requested hash, which leads to a number of cases:

 +=====================+=====================================+
 | Case | Response |

 +=====================+=====================================+
 | latest STH < | Return latest STH. |
 | requested tree head | |
 +---------------------+-------------------------------------+
 | latest STH > | Return latest STH and a consistency |
 | requested tree head | proof between it and the requested |
 | | tree head (see Section 5.3). |
 +---------------------+-------------------------------------+
 | index of requested | Return inclusion. |
 | hash < latest STH | |
 +---------------------+-------------------------------------+

 Table 5

 Note that more than one case can be true; in which case, the returned
 data is their union. It is also possible for none to be true; in
 which case, the front end MUST return an empty response.

 Outputs:
 inclusion: A base64-encoded TransItem of type inclusion_proof_v2
 whose inclusion_path array of Merkle Tree nodes proves the
 inclusion of the certificate (as specified by the hash
 parameter) in the selected STH.

 sth: A base64-encoded TransItem of type signed_tree_head_v2,
 signed by this log.

 consistency: A base64-encoded TransItem of type
 consistency_proof_v2 that proves the consistency of the
 requested tree head and the returned STH.

 Note that no signature is required for the inclusion or
 consistency outputs, as they are used to verify inclusion in and
 consistency of signed STHs.

 Errors are the same as in Section 5.4.

 See Section 2.1.3.2 for an outline of how to use the inclusion
 output, and see Section 2.1.4.2 for an outline of how to use the
 consistency output.

5.6. Retrieve Entries and STH from Log

 GET <Base URL>/ct/v2/get-entries

 Inputs:
 start: 0-based index of first entry to retrieve, in decimal.

 end: 0-based index of last entry to retrieve, in decimal.

 Outputs:
 entries: An array of objects, each consisting of:

 log_entry: The base64-encoded TransItem structure of type
 x509_entry_v2 or precert_entry_v2 (see Section 4.3).

 submitted_entry: JSON object equivalent to inputs that were
 submitted to submit-entry, with the addition of the trust
 anchor to the chain field if the submission did not include
 it.

 sct: The base64-encoded TransItem of type x509_sct_v2 or
 precert_sct_v2, corresponding to this log entry.

 sth: A base64-encoded TransItem of type signed_tree_head_v2,
 signed by this log.

 Note that this message is not signed -- the entries data can be
 verified by constructing the Merkle Tree Hash corresponding to a
 retrieved STH. All leaves MUST be v2. However, a compliant v2
 client MUST NOT construe an unrecognized TransItem type as an error.

 This means it may be unable to parse some entries, but note that each
 client can inspect the entries it does recognize as well as verify
 the integrity of the data by treating unrecognized leaves as opaque
 input to the tree.

 The start and end parameters SHOULD be within the range 0 <= x <
 tree_size, as returned by get-sth in Section 5.2.

 The start parameter MUST be less than or equal to the end parameter.

 Each submitted_entry output parameter MUST include the trust anchor
 that the log used to verify the submission, even if that trust anchor
 was not provided to submit-entry (see Section 5.1). If the
 submission does not certify itself, then the first element of chain
 MUST be present and MUST certify the submission.

 Log servers MUST honor requests where 0 <= start < tree_size and end
 >= tree_size by returning a partial response covering only the valid
 entries in the specified range. end >= tree_size could be caused by
 skew. Note that the following restriction may also apply:

 Logs MAY restrict the number of entries that can be retrieved per
 get-entries request. If a client requests more than the permitted
 number of entries, the log SHALL return the maximum number of entries
 permissible. These entries SHALL be sequential beginning with the
 entry specified by start. Note that a limit on the number of entries
 is not immutable, and therefore the restriction may be changed or
 lifted at any time and is not listed with the other Log Parameters in
 Section 4.1.

 Because of skew, it is possible the log server will not have any
 entries between start and end. In this case, it MUST return an empty
 entries array.

 In any case, the log server MUST return the latest STH it knows
 about.

 See Section 2.1.2 for an outline of how to use a complete list of
 log_entry entries to verify the root_hash.

 Error codes:

 +================+==================================+
 | type | detail |
 +================+==================================+
 | startUnknown | start is greater than the number |
 | | of entries in the Merkle Tree. |
 +----------------+----------------------------------+
 | endBeforeStart | start cannot be greater than |
 | | end. |
 +----------------+----------------------------------+

 Table 6

5.7. Retrieve Accepted Trust Anchors

 GET <Base URL>/ct/v2/get-anchors

 No inputs.

 Outputs:
 certificates: An array of JSON strings, each of which is a
 base64-encoded CA certificate that is acceptable to the log.

 max_chain_length: If the server has chosen to limit the length of
 chains it accepts, this is the maximum number of certificates
 in the chain, in decimal. If there is no limit, this is
 omitted.

 This data is not signed, and the protocol depends on the security
 guarantees of TLS to ensure correctness.

6. TLS Servers

 CT-using TLS servers MUST use at least one of the mechanisms
 described below to present one or more SCTs from one or more logs to
 each TLS client during full TLS handshakes, when requested by the
 client, where each SCT corresponds to the server certificate. (Of
 course, a server can only send a TLS extension if the client has
 specified it first.) Servers SHOULD also present corresponding
 inclusion proofs and STHs.

 A server can provide SCTs using a TLS 1.3 extension (Section 4.2 of
 [RFC8446]) with type transparency_info (see Section 6.5). This
 mechanism allows TLS servers to participate in CT without the
 cooperation of CAs, unlike the other two mechanisms. It also allows
 SCTs and inclusion proofs to be updated on the fly.

 The server may also use an Online Certificate Status Protocol (OCSP)
 [RFC6960] response extension (see Section 7.1.1), providing the OCSP
 response as part of the TLS handshake. Providing a response during a
 TLS handshake is popularly known as "OCSP stapling". For TLS 1.3,
 the information is encoded as an extension in the status_request
 extension data; see Section 4.4.2.1 of [RFC8446]. For TLS 1.2
 [RFC5246], the information is encoded in the CertificateStatus
 message; see Section 8 of [RFC6066]. Using stapling also allows SCTs
 and inclusion proofs to be updated on the fly.

 CT information can also be encoded as an extension in the X.509v3
 certificate (see Section 7.1.2). This mechanism allows the use of
 unmodified TLS servers, but the SCTs and inclusion proofs cannot be
 updated on the fly. Since the logs from which the SCTs and inclusion
 proofs originated won’t necessarily be accepted by TLS clients for
 the full lifetime of the certificate, there is a risk that TLS
 clients may subsequently consider the certificate to be noncompliant.
 In such an event, one of the other two mechanisms will need to be
 used to deliver CT information, or, if this is not possible, the
 certificate will need to be reissued.

6.1. TLS Client Authentication

 This specification includes no description of how a TLS server can
 use CT for TLS client certificates. While this may be useful, it is
 not documented here for the following reasons:

 * The greater security exposure is for clients to end up interacting
 with an illegitimate server.

 * In general, TLS client certificates are not expected to be
 submitted to CT logs, particularly those intended for general
 public use.

 A future version could include such information.

6.2. Multiple SCTs

 CT-using TLS servers SHOULD send SCTs from multiple logs because:

 * The set of logs trusted by TLS clients is neither unified nor
 static; each client vendor may maintain an independent list of
 trusted logs, and, over time, new logs may become trusted and
 current logs may become distrusted. Note that client discovery,
 trust, and distrust of logs are expected to be handled out of band
 and are out of scope of this document.

 * If a CA and a log collude, it is possible to temporarily hide
 misissuance from clients. When a TLS client requires SCTs from
 multiple logs to be provided, it is more difficult to mount this
 attack.

 * If a log misbehaves or suffers a key compromise, a consequence may
 be that clients cease to trust it. Since the time an SCT may be

 in use can be considerable (several years is common in current
 practice when embedded in a certificate), including SCTs from
 multiple logs reduces the probability of the certificate being
 rejected by TLS clients.

 * TLS clients may have policies related to the above risks requiring
 TLS servers to present multiple SCTs. For example, at the time of
 writing, Chromium [Chromium.Log.Policy] requires multiple SCTs to
 be presented with Extended Validation (EV) certificates in order
 for the EV indicator to be shown.

 To select the logs from which to obtain SCTs, a TLS server can, for
 example, examine the set of logs popular TLS clients accept and
 recognize.

6.3. TransItemList Structure

 Multiple SCTs, inclusion proofs, and indeed TransItem structures of
 any type are combined into a list as follows:

 opaque SerializedTransItem<1..2^16-1>;

 struct {
 SerializedTransItem trans_item_list<1..2^16-1>;
 } TransItemList;

 Here, SerializedTransItem is an opaque byte string that contains the
 serialized TransItem structure. This encoding ensures that TLS
 clients can decode each TransItem individually (so, for example, if
 there is a version upgrade, out-of-date clients can still parse old
 TransItem structures while skipping over new TransItem structures
 whose versions they don’t understand).

6.4. Presenting SCTs, Inclusions Proofs, and STHs

 In each TransItemList that is sent during a TLS handshake, the TLS
 server MUST include a TransItem structure of type x509_sct_v2 or
 precert_sct_v2.

 Presenting inclusion proofs and STHs in the TLS handshake helps to
 protect the client’s privacy (see Section 8.1.4) and reduces load on
 log servers. Therefore, if the TLS server can obtain them, it SHOULD
 also include TransItems of type inclusion_proof_v2 and
 signed_tree_head_v2 in the TransItemList.

6.5. transparency_info TLS Extension

 Provided that a TLS client includes the transparency_info extension
 type in the ClientHello and the TLS server supports the
 transparency_info extension:

 * The TLS server MUST verify that the received extension_data is
 empty.

 * The TLS server MUST construct a TransItemList of relevant
 TransItems (see Section 6.4), which SHOULD omit any TransItems
 that are already embedded in the server certificate or the stapled
 OCSP response (see Section 7.1). If the constructed TransItemList
 is not empty, then the TLS server MUST include the
 transparency_info extension with the extension_data set to this
 TransItemList. If the list is empty, then the server SHOULD omit
 the extension_data element but MAY send it with an empty array.

 TLS servers MUST only include this extension in the following
 messages:

 * the ServerHello message (for TLS 1.2 or earlier)

 * the Certificate or CertificateRequest message (for TLS 1.3)

 TLS servers MUST NOT process or include this extension when a TLS

 session is resumed, since session resumption uses the original
 session information.

7. Certification Authorities

7.1. Transparency Information X.509v3 Extension

 The Transparency Information X.509v3 extension, which has OID
 1.3.101.75 and SHOULD be noncritical, contains one or more TransItem
 structures in a TransItemList. This extension MAY be included in
 OCSP responses (see Section 7.1.1) and certificates (see
 Section 7.1.2). Since [RFC5280] requires the extnValue field (an
 OCTET STRING) of each X.509v3 extension to include the DER encoding
 of an ASN.1 value, a TransItemList MUST NOT be included directly.
 Instead, it MUST be wrapped inside an additional OCTET STRING, which
 is then put into the extnValue field:

 TransparencyInformationSyntax ::= OCTET STRING

 TransparencyInformationSyntax contains a TransItemList.

7.1.1. OCSP Response Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in the singleExtensions of a SingleResponse in an
 OCSP response. All included SCTs and inclusion proofs MUST be for
 the certificate identified by the certID of that SingleResponse or
 for a precertificate that corresponds to that certificate.

7.1.2. Certificate Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in a certificate. All included SCTs and inclusion
 proofs MUST be for a precertificate that corresponds to this
 certificate.

7.2. TLS Feature X.509v3 Extension

 A certification authority SHOULD NOT issue any certificate that
 identifies the transparency_info TLS extension in a TLS feature
 extension [RFC7633], because TLS servers are not required to support
 the transparency_info TLS extension in order to participate in CT
 (see Section 6).

8. Clients

 There are various different functions clients of logs might perform.
 We describe here some typical clients and how they should function.
 Any inconsistency may be used as evidence that a log has not behaved
 correctly, and the signatures on the data structures prevent the log
 from denying that misbehavior.

 All clients need various parameters in order to communicate with logs
 and verify their responses. These parameters are described in
 Section 4.1, but note that this document does not describe how the
 parameters are obtained, which is implementation dependent (for
 example, see [Chromium.Policy]).

8.1. TLS Client

8.1.1. Receiving SCTs and Inclusion Proofs

 TLS clients receive SCTs and inclusion proofs alongside or in
 certificates. CT-using TLS clients MUST implement all of the three
 mechanisms by which TLS servers may present SCTs (see Section 6).

 TLS clients that support the transparency_info TLS extension (see
 Section 6.5) SHOULD include it in ClientHello messages, with empty
 extension_data. If a TLS server includes the transparency_info TLS
 extension when resuming a TLS session, the TLS client MUST abort the
 handshake.

8.1.2. Reconstructing the TBSCertificate

 Validation of an SCT for a certificate (where the type of the
 TransItem is x509_sct_v2) uses the unmodified TBSCertificate
 component of the certificate.

 Before an SCT for a precertificate (where the type of the TransItem
 is precert_sct_v2) can be validated, the TBSCertificate component of
 the precertificate needs to be reconstructed from the TBSCertificate
 component of the certificate as follows:

 * Remove the Transparency Information extension (see Section 7.1).

 * Remove embedded v1 SCTs, identified by OID 1.3.6.1.4.1.11129.2.4.2
 (see Section 3.3 of [RFC6962]). This allows embedded v1 and v2
 SCTs to co-exist in a certificate (see Appendix A).

8.1.3. Validating SCTs

 In order to make use of a received SCT, the TLS client MUST first
 validate it as follows:

 * Compute the signature input by constructing a TransItem of type
 x509_entry_v2 or precert_entry_v2, depending on the SCT’s
 TransItem type. The TimestampedCertificateEntryDataV2 structure
 is constructed in the following manner:

 - timestamp is copied from the SCT.

 - tbs_certificate is the reconstructed TBSCertificate portion of
 the server certificate, as described in Section 8.1.2.

 - issuer_key_hash is computed as described in Section 4.7.

 - sct_extensions is copied from the SCT.

 * Verify the SCT’s signature against the computed signature input
 using the public key of the corresponding log, which is identified
 by the log_id. The required signature algorithm is one of the
 log’s parameters.

 If the TLS client does not have the corresponding log’s parameters,
 it cannot attempt to validate the SCT. When evaluating compliance
 (see Section 8.1.6), the TLS client will consider only those SCTs
 that it was able to validate.

 Note that SCT validation is not a substitute for the normal
 validation of the server certificate and its chain.

8.1.4. Fetching Inclusion Proofs

 When a TLS client has validated a received SCT but does not yet
 possess a corresponding inclusion proof, the TLS client MAY request
 the inclusion proof directly from a log using get-proof-by-hash
 (Section 5.4) or get-all-by-hash (Section 5.5).

 Note that fetching inclusion proofs directly from a log will disclose
 to the log which TLS server the client has been communicating with.
 This may be regarded as a significant privacy concern, and so it is
 preferable for the TLS server to send the inclusion proofs (see
 Section 6.4).

8.1.5. Validating Inclusion Proofs

 When a TLS client has received, or fetched, an inclusion proof (and
 an STH), it SHOULD proceed to verify the inclusion proof to the
 provided STH. The TLS client SHOULD also verify consistency between
 the provided STH and an STH it knows about.

 If the TLS client holds an STH that predates the SCT, it MAY, in the

 process of auditing, request a new STH from the log (Section 5.2) and
 then verify it by requesting a consistency proof (Section 5.3). Note
 that if the TLS client uses get-all-by-hash, then it will already
 have the new STH.

8.1.6. Evaluating Compliance

 It is up to a client’s local policy to specify the quantity and form
 of evidence (SCTs, inclusion proofs, or a combination) needed to
 achieve compliance and how to handle noncompliance.

 A TLS client can only evaluate compliance if it has given the TLS
 server the opportunity to send SCTs and inclusion proofs by any of
 the three mechanisms that are mandatory to implement for CT-using TLS
 clients (see Section 8.1.1). Therefore, a TLS client MUST NOT
 evaluate compliance if it did not include both the transparency_info
 and status_request TLS extensions in the ClientHello.

8.2. Monitor

 Monitors watch logs to check for correct behavior, for certificates
 of interest, or for both. For example, a monitor may be configured
 to report on all certificates that apply to a specific domain name
 when fetching new entries for consistency validation.

 A monitor MUST at least inspect every new entry in every log it
 watches, and it MAY also choose to keep copies of entire logs.

 To inspect all of the existing entries, the monitor SHOULD follow
 these steps once for each log:

 1. Fetch the current STH (Section 5.2).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH
 (Section 5.6).

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Confirm that the tree made from the fetched entries produces the
 same hash as that in the STH.

 To inspect new entries, the monitor SHOULD follow these steps
 repeatedly for each log:

 1. Fetch the current STH (Section 5.2). Repeat until the STH
 changes. To allow for experimentation, this document does not
 specify the polling frequency.

 2. Verify the STH signature.

 3. Fetch all the new entries in the tree corresponding to the STH
 (Section 5.6). If they remain unavailable for an extended
 period, then this should be viewed as misbehavior on the part of
 the log.

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Either:

 a. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if it is not keeping all log entries:

 a. Fetch a consistency proof for the new STH with the previous
 STH (Section 5.3).

 b. Verify the consistency proof.

 c. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 6. Repeat from Step 1.

8.3. Auditing

 Auditing ensures that the current published state of a log is
 reachable from previously published states that are known to be good
 and that the promises made by the log, in the form of SCTs, have been
 kept. Audits are performed by monitors or TLS clients.

 In particular, there are four properties of log behavior that should
 be checked:

 * the Maximum Merge Delay (MMD)

 * the STH Frequency Count

 * the append-only property

 * the consistency of the log view presented to all query sources

 A benign, conformant log publishes a series of STHs over time, each
 derived from the previous STH and the submitted entries incorporated
 into the log since publication of the previous STH. This can be
 proven through auditing of STHs. SCTs returned to TLS clients can be
 audited by verifying against the accompanying certificate and using
 Merkle inclusion proofs against the log’s Merkle Tree.

 The action taken by the auditor, if an audit fails, is not specified,
 but note that in general, if an audit fails, the auditor is in
 possession of signed proof of the log’s misbehavior.

 A monitor (Section 8.2) can audit by verifying the consistency of
 STHs it receives, ensuring that each entry can be fetched and that
 the STH is indeed the result of making a tree from all fetched
 entries.

 A TLS client (Section 8.1) can audit by verifying an SCT against any
 STH dated after the SCT timestamp + the Maximum Merge Delay by
 requesting a Merkle inclusion proof (Section 5.4). It can also
 verify that the SCT corresponds to the server certificate it arrived
 with (i.e., the log entry is that certificate or is a precertificate
 corresponding to that certificate).

 Checking of the consistency of the log view presented to all entities
 is more difficult to perform because it requires a way to share log
 responses among a set of CT-using entities and is discussed in
 Section 11.3.

9. Algorithm Agility

 It is not possible for a log to change either of its algorithms part
 way through its lifetime:

 Signature algorithm: SCT signatures must remain valid so signature
 algorithms can only be added, not removed.

 Hash algorithm: A log would have to support the old and new hash
 algorithms to allow backwards compatibility with clients that are
 not aware of a hash algorithm change.

 Allowing multiple signature or hash algorithms for a log would
 require that all data structures support it and would significantly
 complicate client implementation, which is why it is not supported by
 this document.

 If it should become necessary to deprecate an algorithm used by a

 live log, then the log MUST be frozen, as specified in Section 4.13,
 and a new log SHOULD be started. Certificates in the frozen log that
 have not yet expired and require new SCTs SHOULD be submitted to the
 new log and the SCTs from that log used instead.

10. IANA Considerations

 The assignment policy criteria mentioned in this section refer to the
 policies outlined in [RFC8126].

10.1. Additions to Existing Registries

 This subsection defines additions to existing registries.

10.1.1. New Entry to the TLS ExtensionType Registry

 IANA has added the following entry to the "TLS ExtensionType Values"
 registry defined in [RFC8446], with an assigned Value:

 +=====+===================+===+===========+=============+===========+
 |Value| Extension Name |TLS| DTLS-Only | Recommended | Reference |
 | | |1.3| | | |
 +=====+===================+===+===========+=============+===========+
52	transparency_info	CH,	N	Y	RFC 9162
		CR,			
		CT			
 +-----+-------------------+---+-----------+-------------+-----------+

 Table 7

10.1.2. URN Sub-namespace for TRANS (urn:ietf:params:trans)

 IANA has added a new entry in the "IETF URN Sub-namespace for
 Registered Protocol Parameter Identifiers" registry, following the
 template in [RFC3553]:

 Registry name: trans
 Specification: RFC 9162
 Repository: <https://www.iana.org/assignments/trans>
 Index value: No transformation needed.

10.2. New CT-Related Registries

 IANA has added a new protocol registry, "Public Notary Transparency",
 to the list that appears at <https://www.iana.org/assignments/>

 The rest of this section defines the subregistries that have been
 created within the new "Public Notary Transparency" registry.

10.2.1. Hash Algorithms

 IANA has established a registry of hash algorithm values, named "Hash
 Algorithms", with the following registration procedures:

 +===========+=========================+
 | Range | Registration Procedures |
 +===========+=========================+
 | 0x00-0xDF | Specification Required |
 +-----------+-------------------------+
 | 0xE0-0xEF | Experimental Use |
 +-----------+-------------------------+
 | 0xF0-0xFF | Private Use |
 +-----------+-------------------------+

 Table 8

 The "Hash Algorithms" registry initially consists of:

 +========+==================+========================+===========+
 | Value | Hash Algorithm | OID | Reference |
 +========+==================+========================+===========+

 | 0x00 | SHA-256 | 2.16.840.1.101.3.4.2.1 | [RFC6234] |
 +--------+------------------+------------------------+-----------+
 | 0x01 - | Unassigned | | RFC 9162 |
 | 0xDF | | | |
 +--------+------------------+------------------------+-----------+
 | 0xE0 - | Reserved for | | RFC 9162 |
 | 0xEF | Experimental Use | | |
 +--------+------------------+------------------------+-----------+
 | 0xF0 - | Reserved for | | RFC 9162 |
 | 0xFF | Private Use | | |
 +--------+------------------+------------------------+-----------+

 Table 9

 The designated expert(s) should ensure that the proposed algorithm
 has a public specification and is suitable for use as a cryptographic
 hash algorithm with no known preimage or collision attacks. These
 attacks can damage the integrity of the log.

10.2.2. Signature Algorithms

 IANA has established a registry of signature algorithm values, named
 "Signature Algorithms".

 The following notes have been added to the registry:

 | *Note:*
 | This is a subset of the "TLS SignatureScheme" registry, limited
 | to those algorithms that are appropriate for CT. A major
 | advantage of this is leveraging the expertise of the TLS
 | Working Group and its designated expert(s).

 | *Note:*
 | The value 0x0403 appears twice. While this may be confusing,
 | it is okay because the verification process is the same for
 | both algorithms, and the choice of which to use when generating
 | a signature is purely internal to the log server.

 The "Signature Algorithms" registry has the following registration
 procedures:

 +===============+=========================+
 | Range | Registration Procedures |
 +===============+=========================+
 | 0x0000-0x0807 | Specification Required |
 +---------------+-------------------------+
 | 0x0808-0xFDFF | Expert Review |
 +---------------+-------------------------+
 | 0xFE00-0xFEFF | Experimental Use |
 +---------------+-------------------------+
 | 0xFF00-0xFFFF | Private Use |
 +---------------+-------------------------+

 Table 10

 The "Signature Algorithms" registry initially consists of:

 +========================+===========================+=============+
 | SignatureScheme Value | Signature Algorithm | Reference |
 +========================+===========================+=============+
 | 0x0000 - 0x0402 | Unassigned | |
 +------------------------+---------------------------+-------------+
 | ecdsa_secp256r1_sha256 | ECDSA (NIST P-256) with | [FIPS186-4] |
 | (0x0403) | SHA-256 | |
 +------------------------+---------------------------+-------------+
 | ecdsa_secp256r1_sha256 | Deterministic ECDSA (NIST | [RFC6979] |
 | (0x0403) | P-256) with HMAC-SHA256 | |
 +------------------------+---------------------------+-------------+
 | 0x0404 - 0x0806 | Unassigned | |
 +------------------------+---------------------------+-------------+
 | ed25519 (0x0807) | Ed25519 (PureEdDSA with | [RFC8032] |

 | | the edwards25519 curve) | |
 +------------------------+---------------------------+-------------+
 | 0x0808 - 0xFDFF | Unassigned | |
 +------------------------+---------------------------+-------------+
 | 0xFE00 - 0xFEFF | Reserved for Experimental | RFC 9162 |
 | | Use | |
 +------------------------+---------------------------+-------------+
 | 0xFF00 - 0xFFFF | Reserved for Private Use | RFC 9162 |
 +------------------------+---------------------------+-------------+

 Table 11

 The designated expert(s) should ensure that the proposed algorithm
 has a public specification, has a value assigned to it in the "TLS
 SignatureScheme" registry (which was established by [RFC8446]), and
 is suitable for use as a cryptographic signature algorithm.

10.2.3. VersionedTransTypes

 IANA has established a registry of VersionedTransType values, named
 "VersionedTransTypes".

 The following note has been added:

 | *Note:*
 | The range 0x0000..0x00FF is reserved so that v1 SCTs are
 | distinguishable from v2 SCTs and other TransItem structures.

 The registration procedures for the "VersionedTransTypes" registry
 are the following:

 +===============+=========================+
 | Range | Registration Procedures |
 +===============+=========================+
 | 0x0100-0xDFFF | Specification Required |
 +---------------+-------------------------+
 | 0xE000-0xEFFF | Experimental Use |
 +---------------+-------------------------+
 | 0xF000-0xFFFF | Private Use |
 +---------------+-------------------------+

 Table 12

 The "VersionedTransTypes" registry initially consists of:

 +=================+===============================+===========+
 | Value | Type and Version | Reference |
 +=================+===============================+===========+
 | 0x0000 - 0x00FF | Reserved | [RFC6962] |
 +-----------------+-------------------------------+-----------+
 | 0x0100 | x509_entry_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0101 | precert_entry_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0102 | x509_sct_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0103 | precert_sct_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0104 | signed_tree_head_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0105 | consistency_proof_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0106 | inclusion_proof_v2 | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0x0107 - 0xDFFF | Unassigned | |
 +-----------------+-------------------------------+-----------+
 | 0xE000 - 0xEFFF | Reserved for Experimental Use | RFC 9162 |
 +-----------------+-------------------------------+-----------+
 | 0xF000 - 0xFFFF | Reserved for Private Use | RFC 9162 |
 +-----------------+-------------------------------+-----------+

 Table 13

 The designated expert(s) should review the public specification to
 ensure that it is detailed enough to ensure implementation
 interoperability.

10.2.4. Log Artifact Extensions

 IANA has established a registry of ExtensionType values, named "Log
 Artifact Extensions".

 The registration procedures for the "Log Artifact Extensions"
 registry are the following:

 +===============+=========================+
 | Range | Registration Procedures |
 +===============+=========================+
 | 0x0000-0xDFFF | Specification Required |
 +---------------+-------------------------+
 | 0xE000-0xEFFF | Experimental Use |
 +---------------+-------------------------+
 | 0xF000-0xFFFF | Private Use |
 +---------------+-------------------------+

 Table 14

 The "Log Artifact Extensions" registry initially consists of:

 +=================+===============================+=====+===========+
 | ExtensionType | Status | Use | Reference |
 +=================+===============================+=====+===========+
 | 0x0000 - 0xDFFF | Unassigned | n/a | |
 +-----------------+-------------------------------+-----+-----------+
 | 0xE000 - 0xEFFF | Reserved for | n/a | RFC 9162 |
 | | Experimental Use | | |
 +-----------------+-------------------------------+-----+-----------+
 | 0xF000 - 0xFFFF | Reserved for | n/a | RFC 9162 |
 | | Private Use | | |
 +-----------------+-------------------------------+-----+-----------+

 Table 15

 The "Use" column should contain one or both of the following values:

 * "SCT", for extensions specified for use in Signed Certificate
 Timestamps.

 * "STH", for extensions specified for use in Signed Tree Heads.

 The designated expert(s) should review the public specification to
 ensure that it is detailed enough to ensure implementation
 interoperability. They should also verify that the extension is
 appropriate to the contexts in which it is specified to be used (SCT,
 STH, or both).

10.2.5. Log IDs

 IANA has established a registry of Log IDs, named "Log IDs".

 The registry’s registration procedure is First Come First Served.

 The "Log IDs" registry initially consists of:

 +================+==============+==============+===========+
 | Log ID | Log Base URL | Log Operator | Reference |
 +================+==============+==============+===========+
 | 1.3.101.8192 - | Unassigned | Unassigned | |
 | 1.3.101.16383 | | | |
 +----------------+--------------+--------------+-----------+
 | 1.3.101.80.0 - | Unassigned | Unassigned | |
 | 1.3.101.80.* | | | |

 +----------------+--------------+--------------+-----------+

 Table 16

 The following notes have been added to the registry:

 | *Note:*
 | All OIDs in the range from 1.3.101.8192 to 1.3.101.16383 have
 | been set aside for Log IDs. This is a limited resource of
 | 8,192 OIDs, each of which has an encoded length of 4 octets.

 | *Note:*
 | The 1.3.101.80 arc has also been set aside for Log IDs. This
 | is an unlimited resource, but only the 128 OIDs from
 | 1.3.101.80.0 to 1.3.101.80.127 have an encoded length of only 4
 | octets.

 Each application for the allocation of a Log ID MUST be accompanied
 by:

 * the Log’s Base URL (see Section 4.1) and

 * the Log Operator’s contact details.

 IANA is asked to reject any request to update a Log ID or Log Base
 URL in this registry because these fields are immutable (see
 Section 4.1).

 IANA is asked to accept requests from log operators to update their
 contact details in this registry.

 Since log operators can choose to not use this registry (see
 Section 4.4), it is not expected to be a global directory of all
 logs.

10.2.6. Error Types

 IANA has created a new registry for errors, the "Error Types"
 registry.

 The registration procedure for this registry is Specification
 Required.

 This registry has the following three fields:

 +============+========+===========+
 | Field Name | Type | Reference |
 +============+========+===========+
 | Identifier | string | RFC 9162 |
 +------------+--------+-----------+
 | Meaning | string | RFC 9162 |
 +------------+--------+-----------+
 | Reference | string | RFC 9162 |
 +------------+--------+-----------+

 Table 17

 The initial values of the "Error Types" registry, which are taken
 from the text in Section 5, are as follows:

 +===================+===================================+===========+
 | Identifier | Meaning | Reference |
 +===================+===================================+===========+
 | malformed | The request could not be | RFC 9162 |
 | | parsed. | |
 +-------------------+-----------------------------------+-----------+
badSubmission	submission is neither a	RFC 9162
	valid certificate nor a	
	valid precertificate.	
+-------------------+-----------------------------------+-----------+		
badType	type is neither 1 nor 2.	RFC 9162

 +-------------------+-----------------------------------+-----------+
badChain	The first element of chain	RFC 9162
	is not the certifier of the	
	submission, or the second	
	element does not certify the	
	first, etc.	
+-------------------+-----------------------------------+-----------+		
badCertificate	One or more certificates in	RFC 9162
	chain are not valid (e.g.,	
	not properly encoded).	
+-------------------+-----------------------------------+-----------+		
unknownAnchor	The last element of chain	RFC 9162
	(or, if chain is an empty	
	array, the submission) is	
	not, nor is it certified by,	
	an accepted trust anchor.	
+-------------------+-----------------------------------+-----------+		
shutdown	The log is no longer	RFC 9162
	accepting submissions.	
+-------------------+-----------------------------------+-----------+		
firstUnknown	first is before the latest	RFC 9162
	known STH but is not from an	
	existing STH.	
+-------------------+-----------------------------------+-----------+		
secondUnknown	second is before the latest	RFC 9162
	known STH but is not from an	
	existing STH.	
+-------------------+-----------------------------------+-----------+		
secondBeforeFirst	second is smaller than	RFC 9162
	first.	
+-------------------+-----------------------------------+-----------+		
hashUnknown	hash is not the hash of a	RFC 9162
	known leaf (may be caused by	
	skew or by a known	
	certificate not yet merged).	
+-------------------+-----------------------------------+-----------+		
treeSizeUnknown	hash is before the latest	RFC 9162
	known STH but is not from an	
	existing STH.	
+-------------------+-----------------------------------+-----------+		
startUnknown	start is greater than the	RFC 9162
	number of entries in the	
	Merkle Tree.	
+-------------------+-----------------------------------+-----------+		
endBeforeStart	start cannot be greater than	RFC 9162
	end.	
 +-------------------+-----------------------------------+-----------+

 Table 18

10.3. OID Assignment

 IANA has assigned an object identifier from the "SMI Security for
 PKIX Module Identifier" registry to identify the ASN.1 module in
 Appendix B of this document.

 +=========+=========================+============+
 | Decimal | Description | References |
 +=========+=========================+============+
 | 102 | id-mod-public-notary-v2 | RFC 9162 |
 +---------+-------------------------+------------+

 Table 19

11. Security Considerations

 With CAs, logs, and servers performing the actions described here,
 TLS clients can use logs and signed timestamps to reduce the
 likelihood that they will accept misissued certificates. If a server
 presents a valid signed timestamp for a certificate, then the client
 knows that a log has committed to publishing the certificate. From

 this, the client knows that monitors acting for the subject of the
 certificate have had some time to notice the misissuance and take
 some action, such as asking a CA to revoke a misissued certificate.
 A signed timestamp does not guarantee this, though, since appropriate
 monitors might not have checked the logs or the CA might have refused
 to revoke the certificate.

 In addition, if TLS clients will not accept unlogged certificates,
 then site owners will have a greater incentive to submit certificates
 to logs, possibly with the assistance of their CA, increasing the
 overall transparency of the system.

11.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, are not considered compliant. Misissued
 certificates that do have an SCT from a log will appear in that
 public log within the Maximum Merge Delay, assuming the log is
 operating correctly. Since a log is allowed to serve an STH of any
 age up to the MMD, the maximum period of time during which a
 misissued certificate can be used without being available for audit
 is twice the MMD.

11.2. Detection of Misissue

 The logs do not themselves detect misissued certificates; they rely
 instead on interested parties, such as domain owners, to monitor them
 and take corrective action when a misissue is detected.

11.3. Misbehaving Logs

 A log can misbehave in several ways. Examples include the following:
 failing to incorporate a certificate with an SCT in the Merkle Tree
 within the MMD; presenting different, conflicting views of the Merkle
 Tree at different times and/or to different parties; issuing STHs too
 frequently; mutating the signature of a logged certificate; and
 failing to present a chain containing the certifier of a logged
 certificate.

 Violation of the MMD contract is detected by log clients requesting a
 Merkle inclusion proof (Section 5.4) for each observed SCT. These
 checks can be asynchronous and need only be done once per
 certificate. However, note that there may be privacy concerns (see
 Section 8.1.4).

 Violation of the append-only property or the STH issuance rate limit
 can be detected by multiple clients comparing their instances of the
 STHs. This technique, known as "gossip", is an active area of
 research and not defined here. Proof of misbehavior in such cases
 would be either a series of STHs that were issued too closely
 together, proving violation of the STH issuance rate limit, or an STH
 with a root hash that does not match the one calculated from a copy
 of the log, proving violation of the append-only property.

 Clients that report back SCTs can be tracked or traced if a log
 produces multiple STHs or SCTs with the same timestamp and data but
 different signatures. Logs SHOULD mitigate this risk by either:

 * using deterministic signature schemes or

 * producing no more than one SCT for each distinct submission and no
 more than one STH for each distinct tree_size. Each of these SCTs
 and STHs can be stored by the log and served to other clients that
 submit the same certificate or request the same STH.

11.4. Multiple SCTs

 By requiring TLS servers to offer multiple SCTs, each from a
 different log, TLS clients reduce the effectiveness of an attack
 where a CA and a log collude (see Section 6.2).

11.5. Leakage of DNS Information

 Malicious monitors can use logs to learn about the existence of
 domain names that might not otherwise be easy to discover. Some
 subdomain labels may reveal information about the service and
 software for which the subdomain is used, which in turn might
 facilitate targeted attacks.

12. References

12.1. Normative References

 [FIPS186-4]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.186-4.pdf>.

 [HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", W3C Recommendation SPSD-html401-20180327,
 March 2018,
 <https://www.w3.org/TR/2018/SPSD-html401-20180327>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <https://www.rfc-editor.org/info/rfc3553>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,

 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7633] Hallam-Baker, P., "X.509v3 Transport Layer Security (TLS)
 Feature Extension", RFC 7633, DOI 10.17487/RFC7633,
 October 2015, <https://www.rfc-editor.org/info/rfc7633>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
 Mohaisen, "XMSS: eXtended Merkle Signature Scheme",
 RFC 8391, DOI 10.17487/RFC8391, May 2018,
 <https://www.rfc-editor.org/info/rfc8391>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [UNIXTIME] IEEE, "The Open Group Base Specifications Issue 7",
 Section 4.16 Seconds Since the Epoch, IEEE
 Std 1003.1-2008, 2016, <http://pubs.opengroup.org/
 onlinepubs/9699919799.2016edition/basedefs/
 V1_chap04.html#tag_04_16>.

 [X690] ITU-T, "Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1,
 February 2021.

12.2. Informative References

 [CABBR] CA/Browser Forum, "Baseline Requirements for the Issuance
 and Management of Publicly-Trusted Certificates",
 Version 1.7.3, October 2020, <https://cabforum.org/wp-
 content/uploads/CA-Browser-Forum-BR-1.7.3.pdf>.

 [Chromium.Log.Policy]
 The Chromium Projects, "Chromium Certificate Transparency
 Log Policy",
 <https://googlechrome.github.io/CertificateTransparency/
 log_policy.html>.

 [Chromium.Policy]
 The Chromium Projects, "Chromium Certificate Transparency
 Policy",

 <https://googlechrome.github.io/CertificateTransparency/
 ct_policy.html>.

 [CrosbyWallach]
 Crosby, S. and D. Wallach, "Efficient Data Structures for
 Tamper-Evident Logging", Proceedings of the 18th USENIX
 Security Symposium, Montreal, August 2009,
 <http://static.usenix.org/event/sec09/tech/full_papers/
 crosby.pdf>.

 [JSON.Metadata]
 The Chromium Projects, "Chromium Log Metadata JSON
 Schema", <https://www.gstatic.com/ct/log_list/
 log_list_schema.json>.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010,
 <https://www.rfc-editor.org/info/rfc5912>.

 [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
 for the Cryptographic Message Syntax (CMS) and the Public
 Key Infrastructure Using X.509 (PKIX)", RFC 6268,
 DOI 10.17487/RFC6268, July 2011,
 <https://www.rfc-editor.org/info/rfc6268>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8820] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 8820, DOI 10.17487/RFC8820, June 2020,
 <https://www.rfc-editor.org/info/rfc8820>.

 [X.680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, February 2021.

Appendix A. Supporting v1 and v2 Simultaneously (Informative)

 Certificate Transparency logs have to be either v1 (conforming to
 [RFC6962]) or v2 (conforming to this document), as the data
 structures are incompatible, and so a v2 log could not issue a valid
 v1 SCT.

 CT clients, however, can support v1 and v2 SCTs for the same
 certificate simultaneously, as v1 SCTs are delivered in different
 TLS, X.509, and OCSP extensions than v2 SCTs.

 v1 and v2 SCTs for X.509 certificates can be validated independently.
 For precertificates, v2 SCTs should be embedded in the TBSCertificate
 before submission of the TBSCertificate (inside a v1 precertificate,
 as described in Section 3.1 of [RFC6962]) to a v1 log so that TLS
 clients conforming to [RFC6962] but not this document are oblivious
 to the embedded v2 SCTs. An issuer can follow these steps to produce
 an X.509 certificate with embedded v1 and v2 SCTs:

 * Create a CMS precertificate, as described in Section 3.2, and
 submit it to v2 logs.

 * Embed the obtained v2 SCTs in the TBSCertificate, as described in
 Section 7.1.2.

 * Use that TBSCertificate to create a v1 precertificate, as
 described in Section 3.1 of [RFC6962], and submit it to v1 logs.

 * Embed the v1 SCTs in the TBSCertificate, as described in
 Section 3.3 of [RFC6962].

 * Sign that TBSCertificate (which now contains v1 and v2 SCTs) to
 issue the final X.509 certificate.

Appendix B. An ASN.1 Module (Informative)

 The following ASN.1 [X.680] module may be useful to implementors.
 This module references [RFC5912] and [RFC6268].

 CertificateTransparencyV2Module-2021
 -- { id-mod-public-notary-v2 from above, in
 iso(1) identified-organization(3) ...
 form }
 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 -- EXPORTS ALL --

 IMPORTS
 EXTENSION
 FROM PKIX-CommonTypes-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 CONTENT-TYPE
 FROM CryptographicMessageSyntax-2010 -- RFC 6268
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

 TBSCertificate
 FROM PKIX1Explicit-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) }
 ;

 --
 -- Section 3.2. Precertificates
 --

 ct-tbsCertificate CONTENT-TYPE ::= {
 TYPE TBSCertificate
 IDENTIFIED BY id-ct-tbsCertificate }

 id-ct-tbsCertificate OBJECT IDENTIFIER ::= { 1 3 101 78 }

 --
 -- Section 7.1. Transparency Information X.509v3 Extension
 --

 ext-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-ce-transparencyInfo
 CRITICALITY { FALSE } }

 id-ce-transparencyInfo OBJECT IDENTIFIER ::= { 1 3 101 75 }

 TransparencyInformationSyntax ::= OCTET STRING

 --
 -- Section 7.1.1. OCSP Response Extension
 --

 ext-ocsp-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-pkix-ocsp-transparencyInfo
 CRITICALITY { FALSE } }

 id-pkix-ocsp-transparencyInfo OBJECT IDENTIFIER ::=

 id-ce-transparencyInfo

 --
 -- Section 8.1.2. Reconstructing the TBSCertificate
 --

 ext-embeddedSCT-CTv1 EXTENSION ::= {
 SYNTAX SignedCertificateTimestampList
 IDENTIFIED BY id-ce-embeddedSCT-CTv1
 CRITICALITY { FALSE } }

 id-ce-embeddedSCT-CTv1 OBJECT IDENTIFIER ::= {
 1 3 6 1 4 1 11129 2 4 2 }

 SignedCertificateTimestampList ::= OCTET STRING

 END

Acknowledgements

 The authors would like to thank Erwann Abelea, Robin Alden, Andrew
 Ayer, Richard Barnes, Al Cutter, David Drysdale, Francis Dupont, Adam
 Eijdenberg, Stephen Farrell, Daniel Kahn Gillmor, Paul Hadfield, Brad
 Hill, Jeff Hodges, Paul Hoffman, Jeffrey Hutzelman, Kat Joyce, Emilia
 Kasper, Stephen Kent, Adam Langley, SM, Alexey Melnikov, Linus
 Nordberg, Chris Palmer, Trevor Perrin, Pierre Phaneuf, Eric Rescorla,
 Rich Salz, Melinda Shore, Ryan Sleevi, Martin Smith, Carl Wallace,
 and Paul Wouters for their valuable contributions.

 A big thank you to Symantec for kindly donating the OIDs from the
 1.3.101 arc that are used in this document.

Authors’ Addresses

 Ben Laurie
 Google UK Ltd.

 Email: benl@google.com

 Eran Messeri
 Google UK Ltd.

 Email: eranm@google.com

 Rob Stradling
 Sectigo Ltd.

 Email: rob@sectigo.com

