
ï»¿

Internet Architecture Board (IAB) M. Thomson
Request for Comments: 9170
Category: Informational T. Pauly
ISSN: 2070-1721 December 2021

 Long-Term Viability of Protocol Extension Mechanisms

Abstract

 The ability to change protocols depends on exercising the extension
 and version-negotiation mechanisms that support change. This
 document explores how regular use of new protocol features can ensure
 that it remains possible to deploy changes to a protocol. Examples
 are given where lack of use caused changes to be more difficult or
 costly.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Architecture Board (IAB)
 and represents information that the IAB has deemed valuable to
 provide for permanent record. It represents the consensus of the
 Internet Architecture Board (IAB). Documents approved for
 publication by the IAB are not candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9170.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction
 2. Imperfect Implementations Limit Protocol Evolution
 2.1. Good Protocol Design Is Not Itself Sufficient
 2.2. Disuse Can Hide Problems
 2.3. Multi-party Interactions and Middleboxes
 3. Active Use
 3.1. Dependency Is Better
 3.2. Version Negotiation
 3.3. Falsifying Active Use
 3.4. Examples of Active Use
 3.5. Restoring Active Use
 4. Complementary Techniques
 4.1. Fewer Extension Points
 4.2. Invariants
 4.3. Limiting Participation
 4.4. Effective Feedback
 5. Security Considerations
 6. IANA Considerations
 7. Informative References
 Appendix A. Examples

 A.1. DNS
 A.2. HTTP
 A.3. IP
 A.4. SNMP
 A.5. TCP
 A.6. TLS
 IAB Members at the Time of Approval
 Acknowledgments
 Authors’ Addresses

1. Introduction

 A successful protocol [SUCCESS] needs to change in ways that allow it
 to continue to fulfill the changing needs of its users. New use
 cases, conditions, and constraints on the deployment of a protocol
 can render a protocol that does not change obsolete.

 Usage patterns and requirements for a protocol shift over time. In
 response, implementations might adjust usage patterns within the
 constraints of the protocol, the protocol could be extended, or a
 replacement protocol might be developed. Experience with Internet-
 scale protocol deployment shows that each option comes with different
 costs. [TRANSITIONS] examines the problem of protocol evolution more
 broadly.

 An extension point is a mechanism that allows a protocol to be
 changed or enhanced. This document examines the specific conditions
 that determine whether protocol maintainers have the ability to
 design and deploy new or modified protocols via their specified
 extension points. Section 2 highlights some historical examples of
 difficulties in transitions to new protocol features. Section 3
 argues that ossified protocols are more difficult to update and
 describes how successful protocols make frequent use of new
 extensions and code points. Section 4 outlines several additional
 strategies that might aid in ensuring that protocol changes remain
 possible over time.

 The experience that informs this document is predominantly at
 "higher" layers of the network stack, in protocols with limited
 numbers of participants. Though similar issues are present in many
 protocols that operate at scale, the trade-offs involved with
 applying some of the suggested techniques can be more complex when
 there are many participants, such as at the network layer or in
 routing systems.

2. Imperfect Implementations Limit Protocol Evolution

 It can be extremely difficult to deploy a change to a protocol if
 implementations with which the new deployment needs to interoperate
 do not operate predictably. Variation in how new code points or
 extensions are handled can be the result of bugs in implementation or
 specifications. Unpredictability can manifest as errors, crashes,
 timeouts, abrupt termination of sessions, or disappearances of
 endpoints.

 The risk of interoperability problems can in turn make it infeasible
 to deploy certain protocol changes. If deploying a new code point or
 extension makes an implementation less reliable than others, even if
 only in rare cases, it is far less likely that implementations will
 adopt the change.

 Deploying a change to a protocol could require implementations to fix
 a substantial proportion of the bugs that the change exposes. This
 can involve a difficult process that includes identifying the cause
 of these errors, finding the responsible implementation(s),
 coordinating a bug fix and release plan, contacting users and/or the
 operator of affected services, and waiting for the fix to be
 deployed.

 Given the effort involved in fixing problems, the existence of these
 sorts of bugs can outright prevent the deployment of some types of

 protocol changes, especially for protocols involving multiple parties
 or that are considered critical infrastructure (e.g., IP, BGP, DNS,
 or TLS). It could even be necessary to come up with a new protocol
 design that uses a different method to achieve the same result.

 This document only addresses cases where extensions are not
 deliberately blocked. Some deployments or implementations apply
 policies that explicitly prohibit the use of unknown capabilities.
 This is especially true of functions that seek to make security
 guarantees, like firewalls.

 The set of interoperable features in a protocol is often the subset
 of its features that have some value to those implementing and
 deploying the protocol. It is not always the case that future
 extensibility is in that set.

2.1. Good Protocol Design Is Not Itself Sufficient

 It is often argued that the careful design of a protocol extension
 point or version-negotiation capability is critical to the freedom
 that it ultimately offers.

 RFC 6709 [EXTENSIBILITY] contains a great deal of well-considered
 advice on designing for extensions. It includes the following
 advice:

 | This means that, to be useful, a protocol version-negotiation
 | mechanism should be simple enough that it can reasonably be
 | assumed that all the implementers of the first protocol version at
 | least managed to implement the version-negotiation mechanism
 | correctly.

 There are a number of protocols for which this has proven to be
 insufficient in practice. These protocols have imperfect
 implementations of these mechanisms. Mechanisms that aren’t used are
 the ones that fail most often. The same paragraph from RFC 6709
 acknowledges the existence of this problem but does not offer any
 remedy:

 | The nature of protocol version-negotiation mechanisms is that, by
 | definition, they don’t get widespread real-world testing until
 | *after* the base protocol has been deployed for a while, and its
 | deficiencies have become evident.

 Indeed, basic interoperability is considered critical early in the
 deployment of a protocol. A desire to deploy can result in early
 focus on a reduced feature set, which could result in deferring
 implementation of version-negotiation and extension mechanisms. This
 leads to these mechanisms being particularly affected by this
 problem.

2.2. Disuse Can Hide Problems

 There are many examples of extension points in protocols that have
 been either completely unused or their use was so infrequent that
 they could no longer be relied upon to function correctly.

 Appendix A includes examples of disuse in a number of widely deployed
 Internet protocols.

 Even where extension points have multiple valid values, if the set of
 permitted values does not change over time, there is still a risk
 that new values are not tolerated by existing implementations. If
 the set of values for a particular field of a protocol or the order
 in which these values appear remains fixed over a long period, some
 implementations might not correctly handle a new value when it is
 introduced. For example, implementations of TLS broke when new
 values of the signature_algorithms extension were introduced.

2.3. Multi-party Interactions and Middleboxes

 One of the key challenges in deploying new features is ensuring
 compatibility with all actors that could be involved in the protocol.
 Even the most superficially simple protocols can often involve more
 actors than is immediately apparent.

 The design of extension points needs to consider what actions
 middleboxes might take in response to a protocol change as well as
 the effect those actions could have on the operation of the protocol.

 Deployments of protocol extensions also need to consider the impact
 of the changes on entities beyond protocol participants and
 middleboxes. Protocol changes can affect the behavior of
 applications or systems that don’t directly interact with the
 protocol, such as when a protocol change modifies the formatting of
 data delivered to an application.

3. Active Use

 The design of a protocol for extensibility and eventual replacement
 [EXTENSIBILITY] does not guarantee the ability to exercise those
 options. The set of features that enable future evolution need to be
 interoperable in the first implementations and deployments of the
 protocol. Implementation of mechanisms that support evolution is
 necessary to ensure that they remain available for new uses, and
 history has shown this occurs almost exclusively through active
 mechanism use.

 Only by using the extension capabilities of a protocol is the
 availability of that capability assured. "Using" here includes
 specifying, implementing, and deploying capabilities that rely on the
 extension capability. Protocols that fail to use a mechanism, or a
 protocol that only rarely uses a mechanism, could lead to that
 mechanism being unreliable.

 Implementations that routinely see new values are more likely to
 correctly handle new values. More frequent changes will improve the
 likelihood that incorrect handling or intolerance is discovered and
 rectified. The longer an intolerant implementation is deployed, the
 more difficult it is to correct.

 Protocols that routinely add new extensions and code points rarely
 have trouble adding additional ones especially when the handling of
 new versions or extensions are well defined. The definition of
 mechanisms alone is insufficient; it is the assured implementation
 and active use of those mechanisms that determines their
 availability.

 What constitutes "active use" can depend greatly on the environment
 in which a protocol is deployed. The frequency of changes necessary
 to safeguard some mechanisms might be slow enough to attract
 ossification in another protocol deployment, while being excessive in
 others.

3.1. Dependency Is Better

 The easiest way to guarantee that a protocol mechanism is used is to
 make the handling of it critical to an endpoint participating in that
 protocol. This means that implementations must rely on both the
 existence of extension mechanisms and their continued, repeated
 expansion over time.

 For example, the message format in SMTP relies on header fields for
 most of its functions, including the most basic delivery functions.
 A deployment of SMTP cannot avoid including an implementation of
 header field handling. In addition to this, the regularity with
 which new header fields are defined and used ensures that deployments
 frequently encounter header fields that they do not yet (and may
 never) understand. An SMTP implementation therefore needs to be able
 to both process header fields that it understands and ignore those
 that it does not.

 In this way, implementing the extensibility mechanism is not merely
 mandated by the specification, it is crucial to the functioning of a
 protocol deployment. Should an implementation fail to correctly
 implement the mechanism, that failure would quickly become apparent.

 Caution is advised to avoid assuming that building a dependency on an
 extension mechanism is sufficient to ensure availability of that
 mechanism in the long term. If the set of possible uses is narrowly
 constrained and deployments do not change over time, implementations
 might not see new variations or assume a narrower interpretation of
 what is possible. Those implementations might still exhibit errors
 when presented with new variations.

3.2. Version Negotiation

 As noted in Section 2.1, protocols that provide version-negotiation
 mechanisms might not be able to test that feature until a new version
 is deployed. One relatively successful design approach has been to
 use the protocol selection mechanisms built into a lower-layer
 protocol to select the protocol. This could allow a version-
 negotiation mechanism to benefit from active use of the extension
 point by other protocols.

 For instance, all published versions of IP contain a version number
 as the four high bits of the first header byte. However, version
 selection using this field proved to be unsuccessful. Ultimately,
 successful deployment of IPv6 over Ethernet [RFC2464] required a
 different EtherType from IPv4. This change took advantage of the
 already diverse usage of EtherType.

 Other examples of this style of design include Application-Layer
 Protocol Negotiation ([ALPN]) and HTTP content negotiation
 (Section 12 of [HTTP]).

 This technique relies on the code point being usable. For instance,
 the IP protocol number is known to be unreliable and therefore not
 suitable [NEW-PROTOCOLS].

3.3. Falsifying Active Use

 "Grease" was originally defined for TLS [GREASE] but has been adopted
 by other protocols such as QUIC [QUIC]. Grease identifies lack of
 use as an issue (protocol mechanisms "rusting" shut) and proposes
 reserving values for extensions that have no semantic value attached.

 The design in [GREASE] is aimed at the style of negotiation most used
 in TLS, where one endpoint offers a set of options and the other
 chooses the one that it most prefers from those that it supports. An
 endpoint that uses grease randomly offers options, usually just one,
 from a set of reserved values. These values are guaranteed to never
 be assigned real meaning, so its peer will never have cause to
 genuinely select one of these values.

 More generally, greasing is used to refer to any attempt to exercise
 extension points without changing endpoint behavior other than to
 encourage participants to tolerate new or varying values of protocol
 elements.

 The principle that grease operates on is that an implementation that
 is regularly exposed to unknown values is less likely to be
 intolerant of new values when they appear. This depends largely on
 the assumption that the difficulty of implementing the extension
 mechanism correctly is as easy or easier than implementing code to
 identify and filter out reserved values. Reserving random or
 unevenly distributed values for this purpose is thought to further
 discourage special treatment.

 Without reserved greasing code points, an implementation can use code
 points from spaces used for private or experimental use if such a
 range exists. In addition to the risk of triggering participation in
 an unwanted experiment, this can be less effective. Incorrect

 implementations might still be able to identify these code points and
 ignore them.

 In addition to advertising bogus capabilities, an endpoint might also
 selectively disable noncritical protocol elements to test the ability
 of peers to handle the absence of certain capabilities.

 This style of defensive design is limited because it is only
 superficial. As greasing only mimics active use of an extension
 point, it only exercises a small part of the mechanisms that support
 extensibility. More critically, it does not easily translate to all
 forms of extension points. For instance, highest mutually supported
 version (HMSV) negotiation cannot be greased in this fashion. Other
 techniques might be necessary for protocols that don’t rely on the
 particular style of exchange that is predominant in TLS.

 Grease is deployed with the intent of quickly revealing errors in
 implementing the mechanisms it safeguards. Though it has been
 effective at revealing problems in some cases with TLS, the efficacy
 of greasing isn’t proven more generally. Where implementations are
 able to tolerate a non-zero error rate in their operation, greasing
 offers a potential option for safeguarding future extensibility.
 However, this relies on there being a sufficient proportion of
 participants that are willing to invest the effort and tolerate the
 risk of interoperability failures.

3.4. Examples of Active Use

 Header fields in email [SMTP], HTTP [HTTP], and SIP [SIP] all derive
 from the same basic design, which amounts to a list of name/value
 pairs. There is no evidence of significant barriers to deploying
 header fields with new names and semantics in email and HTTP as
 clients and servers generally ignore headers they do not understand
 or need. The widespread deployment of SIP back-to-back user agents
 (B2BUAs), which generally do not ignore unknown fields, means that
 new SIP header fields do not reliably reach peers. This does not
 necessarily cause interoperability issues in SIP but rather causes
 features to remain unavailable until the B2BUA is updated. All three
 protocols are still able to deploy new features reliably, but SIP
 features are deployed more slowly due to the larger number of active
 participants that need to support new features.

 As another example, the attribute-value pairs (AVPs) in Diameter
 [DIAMETER] are fundamental to the design of the protocol. Any use of
 Diameter requires exercising the ability to add new AVPs. This is
 routinely done without fear that the new feature might not be
 successfully deployed.

 These examples show extension points that are heavily used are also
 being relatively unaffected by deployment issues preventing addition
 of new values for new use cases.

 These examples show that a good design is not required for success.
 On the contrary, success is often despite shortcomings in the design.
 For instance, the shortcomings of HTTP header fields are significant
 enough that there are ongoing efforts to improve the syntax
 [HTTP-HEADERS].

3.5. Restoring Active Use

 With enough effort, active use can be used to restore capabilities.

 Extension Mechanisms for DNS ([EDNS]) was defined to provide
 extensibility in DNS. Intolerance of the extension in DNS servers
 resulted in a fallback method being widely deployed (see
 Section 6.2.2 of [EDNS]). This fallback resulted in EDNS being
 disabled for affected servers. Over time, greater support for EDNS
 and increased reliance on it for different features motivated a flag
 day [DNSFLAGDAY] where the workaround was removed.

 The EDNS example shows that effort can be used to restore

 capabilities. This is in part because EDNS was actively used with
 most resolvers and servers. It was therefore possible to force a
 change to ensure that extension capabilities would always be
 available. However, this required an enormous coordination effort.
 A small number of incompatible servers and the names they serve also
 became inaccessible to most clients.

4. Complementary Techniques

 The protections to protocol evolution that come from active use
 (Section 3) can be improved through the use of other defensive
 techniques. The techniques listed here might not prevent
 ossification on their own, but they can make active use more
 effective.

4.1. Fewer Extension Points

 A successful protocol will include many potential types of
 extensions. Designing multiple types of extension mechanisms, each
 suited to a specific purpose, might leave some extension points less
 heavily used than others.

 Disuse of a specialized extension point might render it unusable. In
 contrast, having a smaller number of extension points with wide
 applicability could improve the use of those extension points. Use
 of a shared extension point for any purpose can protect rarer or more
 specialized uses.

 Both extensions and core protocol elements use the same extension
 points in protocols like HTTP [HTTP] and DIAMETER [DIAMETER]; see
 Section 3.4.

4.2. Invariants

 Documenting aspects of the protocol that cannot or will not change as
 extensions or new versions are added can be a useful exercise.
 Section 2.2 of [RFC5704] defines invariants as:

 | Invariants are core properties that are consistent across the
 | network and do not change over extremely long time-scales.

 Understanding what aspects of a protocol are invariant can help guide
 the process of identifying those parts of the protocol that might
 change. [QUIC-INVARIANTS] and Section 9.3 of [TLS13] are both
 examples of documented invariants.

 As a means of protecting extensibility, a declaration of protocol
 invariants is useful only to the extent that protocol participants
 are willing to allow new uses for the protocol. A protocol that
 declares protocol invariants relies on implementations understanding
 and respecting those invariants. If active use is not possible for
 all non-invariant parts of the protocol, greasing (Section 3.3) might
 be used to improve the chance that invariants are respected.

 Protocol invariants need to be clearly and concisely documented.
 Including examples of aspects of the protocol that are not invariant,
 such as Appendix A of [QUIC-INVARIANTS], can be used to clarify
 intent.

4.3. Limiting Participation

 Reducing the number of entities that can participate in a protocol or
 limiting the extent of participation can reduce the number of
 entities that might affect extensibility. Using TLS or other
 cryptographic tools can therefore reduce the number of entities that
 can influence whether new features are usable.

 [PATH-SIGNALS] also recommends the use of encryption and integrity
 protection to limit participation. For example, encryption is used
 by the QUIC protocol [QUIC] to limit the information that is
 available to middleboxes and integrity protection prevents

 modification.

4.4. Effective Feedback

 While not a direct means of protecting extensibility mechanisms,
 feedback systems can be important to discovering problems.

 The visibility of errors is critical to the success of techniques
 like grease (see Section 3.3). The grease design is most effective
 if a deployment has a means of detecting and reporting errors.
 Ignoring errors could allow problems to become entrenched.

 Feedback on errors is more important during the development and early
 deployment of a change. It might also be helpful to disable
 automatic error recovery methods during development.

 Automated feedback systems are important for automated systems, or
 where error recovery is also automated. For instance, connection
 failures with HTTP alternative services [ALT-SVC] are not permitted
 to affect the outcome of transactions. An automated feedback system
 for capturing failures in alternative services is therefore necessary
 for failures to be detected.

 How errors are gathered and reported will depend greatly on the
 nature of the protocol deployment and the entity that receives the
 report. For instance, end users, developers, and network operations
 each have different requirements for how error reports are created,
 managed, and acted upon.

 Automated delivery of error reports can be critical for rectifying
 deployment errors as early as possible, as seen in [DMARC] and
 [SMTP-TLS-REPORTING].

5. Security Considerations

 Many of the problems identified in this document are not the result
 of deliberate actions by an adversary but more the result of
 mistakes, decisions made without sufficient context, or simple
 neglect, i.e., problems therefore not the result of opposition by an
 adversary. In response, the recommended measures generally assume
 that other protocol participants will not take deliberate action to
 prevent protocol evolution.

 The use of cryptographic techniques to exclude potential participants
 is the only strong measure that the document recommends. However,
 authorized protocol peers are most often responsible for the
 identified problems, which can mean that cryptography is insufficient
 to exclude them.

 The ability to design, implement, and deploy new protocol mechanisms
 can be critical to security. In particular, it is important to be
 able to replace cryptographic algorithms over time [AGILITY]. For
 example, preparing for the replacement of weak hash algorithms was
 made more difficult through misuse [HASH].

6. IANA Considerations

 This document has no IANA actions.

7. Informative References

 [AGILITY] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [DIAMETER] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [DMARC] Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
 Message Authentication, Reporting, and Conformance
 (DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,
 <https://www.rfc-editor.org/info/rfc7489>.

 [DNSFLAGDAY]
 "DNS Flag Day 2019", May 2019,
 <https://dnsflagday.net/2019/>.

 [EDNS] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [EXT-TCP] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", IMC ’11: Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference,
 DOI 10.1145/2068816.2068834, November 2011,
 <https://doi.org/10.1145/2068816.2068834>.

 [EXTENSIBILITY]
 Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 DOI 10.17487/RFC6709, September 2012,
 <https://www.rfc-editor.org/info/rfc6709>.

 [GREASE] Benjamin, D., "Applying Generate Random Extensions And
 Sustain Extensibility (GREASE) to TLS Extensibility",
 RFC 8701, DOI 10.17487/RFC8701, January 2020,
 <https://www.rfc-editor.org/info/rfc8701>.

 [HASH] Bellovin, S. and E. Rescorla, "Deploying a New Hash
 Algorithm", Proceedings of NDSS, 2006,
 <https://www.cs.columbia.edu/˜smb/papers/new-hash.pdf>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", Work in Progress, Internet-Draft,
 draft-ietf-httpbis-semantics-19, September 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 semantics-19>.

 [HTTP-HEADERS]
 Nottingham, M. and P-H. Kamp, "Structured Field Values for
 HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,
 <https://www.rfc-editor.org/info/rfc8941>.

 [HTTP11] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP/1.1", Work in Progress, Internet-Draft, draft-
 ietf-httpbis-messaging-19, September 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 messaging-19>.

 [INTOLERANCE]
 Kario, H., "Re: [TLS] Thoughts on Version Intolerance",
 July 2016, <https://mailarchive.ietf.org/arch/msg/tls/
 bOJ2JQc3HjAHFFWCiNTIb0JuMZc>.

 [MPTCP] Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684, March
 2020, <https://www.rfc-editor.org/info/rfc8684>.

 [MPTCP-HOW-HARD]
 Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", April 2012,
 <https://www.usenix.org/conference/nsdi12/technical-
 sessions/presentation/raiciu>.

 [NEW-PROTOCOLS]
 Barik, R., Welzl, M., Fairhurst, G., Elmokashfi, A.,
 Dreibholz, T., and S. Gjessing, "On the usability of
 transport protocols other than TCP: A home gateway and
 internet path traversal study", Computer Networks, Vol.
 173, pp. 107211, DOI 10.1016/j.comnet.2020.107211, May
 2020, <https://doi.org/10.1016/j.comnet.2020.107211>.

 [PATH-SIGNALS]
 Hardie, T., Ed., "Transport Protocol Path Signals",
 RFC 8558, DOI 10.17487/RFC8558, April 2019,
 <https://www.rfc-editor.org/info/rfc8558>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",
 RFC 8999, DOI 10.17487/RFC8999, May 2021,
 <https://www.rfc-editor.org/info/rfc8999>.

 [RAv4] Katz, D., "IP Router Alert Option", RFC 2113,
 DOI 10.17487/RFC2113, February 1997,
 <https://www.rfc-editor.org/info/rfc2113>.

 [RAv6] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
 RFC 2711, DOI 10.17487/RFC2711, October 1999,
 <https://www.rfc-editor.org/info/rfc2711>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, DOI 10.17487/RFC1112, August 1989,
 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet
 Networks", RFC 2464, DOI 10.17487/RFC2464, December 1998,
 <https://www.rfc-editor.org/info/rfc2464>.

 [RFC5704] Bryant, S., Ed., Morrow, M., Ed., and IAB, "Uncoordinated
 Protocol Development Considered Harmful", RFC 5704,
 DOI 10.17487/RFC5704, November 2009,
 <https://www.rfc-editor.org/info/rfc5704>.

 [RRTYPE] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [SMTP-TLS-REPORTING]
 Margolis, D., Brotman, A., Ramakrishnan, B., Jones, J.,
 and M. Risher, "SMTP TLS Reporting", RFC 8460,
 DOI 10.17487/RFC8460, September 2018,
 <https://www.rfc-editor.org/info/rfc8460>.

 [SNI] Langley, A., "[TLS] Accepting that other SNI name types
 will never work.", March 2016,
 <https://mailarchive.ietf.org/arch/msg/
 tls/1t79gzNItZd71DwwoaqcQQ_4Yxc>.

 [SNMPv1] Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", RFC 1157,
 DOI 10.17487/RFC1157, May 1990,
 <https://www.rfc-editor.org/info/rfc1157>.

 [SPF] Kitterman, S., "Sender Policy Framework (SPF) for
 Authorizing Use of Domains in Email, Version 1", RFC 7208,
 DOI 10.17487/RFC7208, April 2014,
 <https://www.rfc-editor.org/info/rfc7208>.

 [SUCCESS] Thaler, D. and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
 <https://www.rfc-editor.org/info/rfc5218>.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [TFO] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [TLS-EXT] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [TRANSITIONS]
 Thaler, D., Ed., "Planning for Protocol Adoption and
 Subsequent Transitions", RFC 8170, DOI 10.17487/RFC8170,
 May 2017, <https://www.rfc-editor.org/info/rfc8170>.

Appendix A. Examples

 This appendix contains a brief study of problems in a range of
 Internet protocols at different layers of the stack.

A.1. DNS

 Ossified DNS code bases and systems resulted in new Resource Record
 Codes (RRCodes) being unusable. A new code point would take years of
 coordination between implementations and deployments before it could
 be relied upon. Consequently, use of the TXT record was overloaded
 in order to avoid the effort and delays involved in allocating new
 code points; this approach was used in the Sender Policy Framework
 [SPF] and other protocols.

 It was not until after the standard mechanism for dealing with new
 RRCodes [RRTYPE] was considered widely deployed that new RRCodes
 could be safely created and used.

A.2. HTTP

 HTTP has a number of very effective extension points in addition to
 the aforementioned header fields. It also has some examples of
 extension points that are so rarely used that it is possible that
 they are not at all usable.

 Extension points in HTTP that might be unwise to use include the
 extension point on each chunk in the chunked transfer coding
 (Section 7.1 of [HTTP11]), the ability to use transfer codings other
 than the chunked coding, and the range unit in a range request
 (Section 14 of [HTTP]).

A.3. IP

 The version field in IP was rendered useless when encapsulated over
 Ethernet, requiring a new EtherType with IPv6 [RFC2464], due in part
 to Layer 2 devices making version-independent assumptions about the
 structure of the IPv4 header.

 Protocol identifiers or code points that are reserved for future use
 can be especially problematic. Reserving values without attributing
 semantics to their use can result in diverse or conflicting semantics
 being attributed without any hope of interoperability. An example of
 this is the 224/3 address space in IPv4 that [RFC0791] reserved
 without assigning any semantics. [RFC1112] partially reclaimed that
 reserved address space for use in multicast (224/4), but the
 remaining address space (240/4) has not been successfully reclaimed
 for any purpose.

 For protocols that can use negotiation to attribute semantics to
 values, it is possible that unused code points can be reclaimed for
 active use, though this requires that the negotiation include all
 protocol participants. For something as fundamental as addressing,
 negotiation is difficult or even impossible, as all nodes on the
 network path plus potential alternative paths would need to be
 involved.

 IP Router Alerts [RAv4][RAv6] use IP options or extension headers to
 indicate that data is intended for consumption by the next-hop router
 rather than the addressed destination. In part, the deployment of
 router alerts was unsuccessful due to the realities of processing IP
 packets at line rates, combined with bad assumptions in the protocol
 design about these performance constraints. However, this was not
 exclusively down to design problems or bugs, as the capability was
 also deliberately blocked at some routers.

A.4. SNMP

 As a counter example, the first version of the Simple Network
 Management Protocol (SNMP) [SNMPv1] states that unparseable or
 unauthenticated messages are simply discarded without response:

 | It then verifies the version number of the SNMP message. If there
 | is a mismatch, it discards the datagram and performs no further
 | actions.

 When SNMP versions 2, 2c, and 3 came along, older agents did exactly
 what the protocol specifies. Deployment of new versions was likely
 successful because the handling of newer versions was both clear and
 simple.

A.5. TCP

 Extension points in TCP [TCP] have been rendered difficult to use
 largely due to middlebox interactions; see [EXT-TCP].

 For instance, multipath TCP ([MPTCP]) can only be deployed
 opportunistically; see [MPTCP-HOW-HARD]. Since MPTCP is a protocol
 enhancement that doesn’t impair the connection if it is blocked,
 network path intolerance of the extension only results in the

 multipath functionality becoming unavailable.

 In comparison, the deployment of TCP Fast Open ([TFO]) critically
 depends on extension capability being widely available. Though very
 few network paths were intolerant of the extension in absolute terms,
 TCP Fast Open could not be deployed as a result.

A.6. TLS

 Transport Layer Security (TLS) [TLS12] provides examples of where a
 design that is objectively sound fails when incorrectly implemented.
 TLS provides examples of failures in protocol version negotiation and
 extensibility.

 Version negotiation in TLS 1.2 and earlier uses the "Highest mutually
 supported version (HMSV)" scheme exactly as it is described in
 [EXTENSIBILITY]. However, clients are unable to advertise a new
 version without causing a non-trivial proportion of sessions to fail
 due to bugs in server and middlebox implementations.

 Intolerance to new TLS versions is so severe [INTOLERANCE] that TLS
 1.3 [TLS13] abandoned HMSV version negotiation for a new mechanism.

 The server name indication (SNI) [TLS-EXT] in TLS is another
 excellent example of the failure of a well-designed extensibility
 point. SNI uses the same technique for extensions that is used
 successfully in other parts of the TLS protocol. The original design
 of SNI anticipated the ability to include multiple names of different
 types.

 SNI was originally defined with just one type of name: a domain name.
 No other type has ever been standardized, though several have been
 proposed. Despite an otherwise exemplary design, SNI is so
 inconsistently implemented that any hope for using the extension
 point it defines has been abandoned [SNI].

IAB Members at the Time of Approval

 Internet Architecture Board members at the time this document was
 approved for publication were:

 Jari Arkko
 Deborah Brungard
 Ben Campbell
 Lars Eggert
 Wes Hardaker
 Cullen Jennings
 Mirja KÃ¼hlewind
 Zhenbin Li
 Jared Mauch
 Tommy Pauly
 David Schinazi
 Russ White
 Jiankang Yao

Acknowledgments

 Toerless Eckert, Wes Hardaker, Mirja KÃ¼hlewind, Eliot Lear, Mark
 Nottingham, and Brian Trammell made significant contributions to this
 document.

Authors’ Addresses

 Martin Thomson

 Email: mt@lowentropy.net

 Tommy Pauly

 Email: tpauly@apple.com

