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          Long-Term Viability of Protocol Extension Mechanisms

Abstract

   The ability to change protocols depends on exercising the extension
   and version-negotiation mechanisms that support change.  This
   document explores how regular use of new protocol features can ensure
   that it remains possible to deploy changes to a protocol.  Examples
   are given where lack of use caused changes to be more difficult or
   costly.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Architecture Board (IAB)
   and represents information that the IAB has deemed valuable to
   provide for permanent record.  It represents the consensus of the
   Internet Architecture Board (IAB).  Documents approved for
   publication by the IAB are not candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9170.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction
   2.  Imperfect Implementations Limit Protocol Evolution
     2.1.  Good Protocol Design Is Not Itself Sufficient
     2.2.  Disuse Can Hide Problems
     2.3.  Multi-party Interactions and Middleboxes
   3.  Active Use
     3.1.  Dependency Is Better
     3.2.  Version Negotiation
     3.3.  Falsifying Active Use
     3.4.  Examples of Active Use
     3.5.  Restoring Active Use
   4.  Complementary Techniques
     4.1.  Fewer Extension Points
     4.2.  Invariants
     4.3.  Limiting Participation
     4.4.  Effective Feedback
   5.  Security Considerations
   6.  IANA Considerations
   7.  Informative References
   Appendix A.  Examples



     A.1.  DNS
     A.2.  HTTP
     A.3.  IP
     A.4.  SNMP
     A.5.  TCP
     A.6.  TLS
   IAB Members at the Time of Approval
   Acknowledgments
   Authors’ Addresses

1.  Introduction

   A successful protocol [SUCCESS] needs to change in ways that allow it
   to continue to fulfill the changing needs of its users.  New use
   cases, conditions, and constraints on the deployment of a protocol
   can render a protocol that does not change obsolete.

   Usage patterns and requirements for a protocol shift over time.  In
   response, implementations might adjust usage patterns within the
   constraints of the protocol, the protocol could be extended, or a
   replacement protocol might be developed.  Experience with Internet-
   scale protocol deployment shows that each option comes with different
   costs.  [TRANSITIONS] examines the problem of protocol evolution more
   broadly.

   An extension point is a mechanism that allows a protocol to be
   changed or enhanced.  This document examines the specific conditions
   that determine whether protocol maintainers have the ability to
   design and deploy new or modified protocols via their specified
   extension points.  Section 2 highlights some historical examples of
   difficulties in transitions to new protocol features.  Section 3
   argues that ossified protocols are more difficult to update and
   describes how successful protocols make frequent use of new
   extensions and code points.  Section 4 outlines several additional
   strategies that might aid in ensuring that protocol changes remain
   possible over time.

   The experience that informs this document is predominantly at
   "higher" layers of the network stack, in protocols with limited
   numbers of participants.  Though similar issues are present in many
   protocols that operate at scale, the trade-offs involved with
   applying some of the suggested techniques can be more complex when
   there are many participants, such as at the network layer or in
   routing systems.

2.  Imperfect Implementations Limit Protocol Evolution

   It can be extremely difficult to deploy a change to a protocol if
   implementations with which the new deployment needs to interoperate
   do not operate predictably.  Variation in how new code points or
   extensions are handled can be the result of bugs in implementation or
   specifications.  Unpredictability can manifest as errors, crashes,
   timeouts, abrupt termination of sessions, or disappearances of
   endpoints.

   The risk of interoperability problems can in turn make it infeasible
   to deploy certain protocol changes.  If deploying a new code point or
   extension makes an implementation less reliable than others, even if
   only in rare cases, it is far less likely that implementations will
   adopt the change.

   Deploying a change to a protocol could require implementations to fix
   a substantial proportion of the bugs that the change exposes.  This
   can involve a difficult process that includes identifying the cause
   of these errors, finding the responsible implementation(s),
   coordinating a bug fix and release plan, contacting users and/or the
   operator of affected services, and waiting for the fix to be
   deployed.

   Given the effort involved in fixing problems, the existence of these
   sorts of bugs can outright prevent the deployment of some types of



   protocol changes, especially for protocols involving multiple parties
   or that are considered critical infrastructure (e.g., IP, BGP, DNS,
   or TLS).  It could even be necessary to come up with a new protocol
   design that uses a different method to achieve the same result.

   This document only addresses cases where extensions are not
   deliberately blocked.  Some deployments or implementations apply
   policies that explicitly prohibit the use of unknown capabilities.
   This is especially true of functions that seek to make security
   guarantees, like firewalls.

   The set of interoperable features in a protocol is often the subset
   of its features that have some value to those implementing and
   deploying the protocol.  It is not always the case that future
   extensibility is in that set.

2.1.  Good Protocol Design Is Not Itself Sufficient

   It is often argued that the careful design of a protocol extension
   point or version-negotiation capability is critical to the freedom
   that it ultimately offers.

   RFC 6709 [EXTENSIBILITY] contains a great deal of well-considered
   advice on designing for extensions.  It includes the following
   advice:

   |  This means that, to be useful, a protocol version-negotiation
   |  mechanism should be simple enough that it can reasonably be
   |  assumed that all the implementers of the first protocol version at
   |  least managed to implement the version-negotiation mechanism
   |  correctly.

   There are a number of protocols for which this has proven to be
   insufficient in practice.  These protocols have imperfect
   implementations of these mechanisms.  Mechanisms that aren’t used are
   the ones that fail most often.  The same paragraph from RFC 6709
   acknowledges the existence of this problem but does not offer any
   remedy:

   |  The nature of protocol version-negotiation mechanisms is that, by
   |  definition, they don’t get widespread real-world testing until
   |  *after* the base protocol has been deployed for a while, and its
   |  deficiencies have become evident.

   Indeed, basic interoperability is considered critical early in the
   deployment of a protocol.  A desire to deploy can result in early
   focus on a reduced feature set, which could result in deferring
   implementation of version-negotiation and extension mechanisms.  This
   leads to these mechanisms being particularly affected by this
   problem.

2.2.  Disuse Can Hide Problems

   There are many examples of extension points in protocols that have
   been either completely unused or their use was so infrequent that
   they could no longer be relied upon to function correctly.

   Appendix A includes examples of disuse in a number of widely deployed
   Internet protocols.

   Even where extension points have multiple valid values, if the set of
   permitted values does not change over time, there is still a risk
   that new values are not tolerated by existing implementations.  If
   the set of values for a particular field of a protocol or the order
   in which these values appear remains fixed over a long period, some
   implementations might not correctly handle a new value when it is
   introduced.  For example, implementations of TLS broke when new
   values of the signature_algorithms extension were introduced.

2.3.  Multi-party Interactions and Middleboxes



   One of the key challenges in deploying new features is ensuring
   compatibility with all actors that could be involved in the protocol.
   Even the most superficially simple protocols can often involve more
   actors than is immediately apparent.

   The design of extension points needs to consider what actions
   middleboxes might take in response to a protocol change as well as
   the effect those actions could have on the operation of the protocol.

   Deployments of protocol extensions also need to consider the impact
   of the changes on entities beyond protocol participants and
   middleboxes.  Protocol changes can affect the behavior of
   applications or systems that don’t directly interact with the
   protocol, such as when a protocol change modifies the formatting of
   data delivered to an application.

3.  Active Use

   The design of a protocol for extensibility and eventual replacement
   [EXTENSIBILITY] does not guarantee the ability to exercise those
   options.  The set of features that enable future evolution need to be
   interoperable in the first implementations and deployments of the
   protocol.  Implementation of mechanisms that support evolution is
   necessary to ensure that they remain available for new uses, and
   history has shown this occurs almost exclusively through active
   mechanism use.

   Only by using the extension capabilities of a protocol is the
   availability of that capability assured.  "Using" here includes
   specifying, implementing, and deploying capabilities that rely on the
   extension capability.  Protocols that fail to use a mechanism, or a
   protocol that only rarely uses a mechanism, could lead to that
   mechanism being unreliable.

   Implementations that routinely see new values are more likely to
   correctly handle new values.  More frequent changes will improve the
   likelihood that incorrect handling or intolerance is discovered and
   rectified.  The longer an intolerant implementation is deployed, the
   more difficult it is to correct.

   Protocols that routinely add new extensions and code points rarely
   have trouble adding additional ones especially when the handling of
   new versions or extensions are well defined.  The definition of
   mechanisms alone is insufficient; it is the assured implementation
   and active use of those mechanisms that determines their
   availability.

   What constitutes "active use" can depend greatly on the environment
   in which a protocol is deployed.  The frequency of changes necessary
   to safeguard some mechanisms might be slow enough to attract
   ossification in another protocol deployment, while being excessive in
   others.

3.1.  Dependency Is Better

   The easiest way to guarantee that a protocol mechanism is used is to
   make the handling of it critical to an endpoint participating in that
   protocol.  This means that implementations must rely on both the
   existence of extension mechanisms and their continued, repeated
   expansion over time.

   For example, the message format in SMTP relies on header fields for
   most of its functions, including the most basic delivery functions.
   A deployment of SMTP cannot avoid including an implementation of
   header field handling.  In addition to this, the regularity with
   which new header fields are defined and used ensures that deployments
   frequently encounter header fields that they do not yet (and may
   never) understand.  An SMTP implementation therefore needs to be able
   to both process header fields that it understands and ignore those
   that it does not.



   In this way, implementing the extensibility mechanism is not merely
   mandated by the specification, it is crucial to the functioning of a
   protocol deployment.  Should an implementation fail to correctly
   implement the mechanism, that failure would quickly become apparent.

   Caution is advised to avoid assuming that building a dependency on an
   extension mechanism is sufficient to ensure availability of that
   mechanism in the long term.  If the set of possible uses is narrowly
   constrained and deployments do not change over time, implementations
   might not see new variations or assume a narrower interpretation of
   what is possible.  Those implementations might still exhibit errors
   when presented with new variations.

3.2.  Version Negotiation

   As noted in Section 2.1, protocols that provide version-negotiation
   mechanisms might not be able to test that feature until a new version
   is deployed.  One relatively successful design approach has been to
   use the protocol selection mechanisms built into a lower-layer
   protocol to select the protocol.  This could allow a version-
   negotiation mechanism to benefit from active use of the extension
   point by other protocols.

   For instance, all published versions of IP contain a version number
   as the four high bits of the first header byte.  However, version
   selection using this field proved to be unsuccessful.  Ultimately,
   successful deployment of IPv6 over Ethernet [RFC2464] required a
   different EtherType from IPv4.  This change took advantage of the
   already diverse usage of EtherType.

   Other examples of this style of design include Application-Layer
   Protocol Negotiation ([ALPN]) and HTTP content negotiation
   (Section 12 of [HTTP]).

   This technique relies on the code point being usable.  For instance,
   the IP protocol number is known to be unreliable and therefore not
   suitable [NEW-PROTOCOLS].

3.3.  Falsifying Active Use

   "Grease" was originally defined for TLS [GREASE] but has been adopted
   by other protocols such as QUIC [QUIC].  Grease identifies lack of
   use as an issue (protocol mechanisms "rusting" shut) and proposes
   reserving values for extensions that have no semantic value attached.

   The design in [GREASE] is aimed at the style of negotiation most used
   in TLS, where one endpoint offers a set of options and the other
   chooses the one that it most prefers from those that it supports.  An
   endpoint that uses grease randomly offers options, usually just one,
   from a set of reserved values.  These values are guaranteed to never
   be assigned real meaning, so its peer will never have cause to
   genuinely select one of these values.

   More generally, greasing is used to refer to any attempt to exercise
   extension points without changing endpoint behavior other than to
   encourage participants to tolerate new or varying values of protocol
   elements.

   The principle that grease operates on is that an implementation that
   is regularly exposed to unknown values is less likely to be
   intolerant of new values when they appear.  This depends largely on
   the assumption that the difficulty of implementing the extension
   mechanism correctly is as easy or easier than implementing code to
   identify and filter out reserved values.  Reserving random or
   unevenly distributed values for this purpose is thought to further
   discourage special treatment.

   Without reserved greasing code points, an implementation can use code
   points from spaces used for private or experimental use if such a
   range exists.  In addition to the risk of triggering participation in
   an unwanted experiment, this can be less effective.  Incorrect



   implementations might still be able to identify these code points and
   ignore them.

   In addition to advertising bogus capabilities, an endpoint might also
   selectively disable noncritical protocol elements to test the ability
   of peers to handle the absence of certain capabilities.

   This style of defensive design is limited because it is only
   superficial.  As greasing only mimics active use of an extension
   point, it only exercises a small part of the mechanisms that support
   extensibility.  More critically, it does not easily translate to all
   forms of extension points.  For instance, highest mutually supported
   version (HMSV) negotiation cannot be greased in this fashion.  Other
   techniques might be necessary for protocols that don’t rely on the
   particular style of exchange that is predominant in TLS.

   Grease is deployed with the intent of quickly revealing errors in
   implementing the mechanisms it safeguards.  Though it has been
   effective at revealing problems in some cases with TLS, the efficacy
   of greasing isn’t proven more generally.  Where implementations are
   able to tolerate a non-zero error rate in their operation, greasing
   offers a potential option for safeguarding future extensibility.
   However, this relies on there being a sufficient proportion of
   participants that are willing to invest the effort and tolerate the
   risk of interoperability failures.

3.4.  Examples of Active Use

   Header fields in email [SMTP], HTTP [HTTP], and SIP [SIP] all derive
   from the same basic design, which amounts to a list of name/value
   pairs.  There is no evidence of significant barriers to deploying
   header fields with new names and semantics in email and HTTP as
   clients and servers generally ignore headers they do not understand
   or need.  The widespread deployment of SIP back-to-back user agents
   (B2BUAs), which generally do not ignore unknown fields, means that
   new SIP header fields do not reliably reach peers.  This does not
   necessarily cause interoperability issues in SIP but rather causes
   features to remain unavailable until the B2BUA is updated.  All three
   protocols are still able to deploy new features reliably, but SIP
   features are deployed more slowly due to the larger number of active
   participants that need to support new features.

   As another example, the attribute-value pairs (AVPs) in Diameter
   [DIAMETER] are fundamental to the design of the protocol.  Any use of
   Diameter requires exercising the ability to add new AVPs.  This is
   routinely done without fear that the new feature might not be
   successfully deployed.

   These examples show extension points that are heavily used are also
   being relatively unaffected by deployment issues preventing addition
   of new values for new use cases.

   These examples show that a good design is not required for success.
   On the contrary, success is often despite shortcomings in the design.
   For instance, the shortcomings of HTTP header fields are significant
   enough that there are ongoing efforts to improve the syntax
   [HTTP-HEADERS].

3.5.  Restoring Active Use

   With enough effort, active use can be used to restore capabilities.

   Extension Mechanisms for DNS ([EDNS]) was defined to provide
   extensibility in DNS.  Intolerance of the extension in DNS servers
   resulted in a fallback method being widely deployed (see
   Section 6.2.2 of [EDNS]).  This fallback resulted in EDNS being
   disabled for affected servers.  Over time, greater support for EDNS
   and increased reliance on it for different features motivated a flag
   day [DNSFLAGDAY] where the workaround was removed.

   The EDNS example shows that effort can be used to restore



   capabilities.  This is in part because EDNS was actively used with
   most resolvers and servers.  It was therefore possible to force a
   change to ensure that extension capabilities would always be
   available.  However, this required an enormous coordination effort.
   A small number of incompatible servers and the names they serve also
   became inaccessible to most clients.

4.  Complementary Techniques

   The protections to protocol evolution that come from active use
   (Section 3) can be improved through the use of other defensive
   techniques.  The techniques listed here might not prevent
   ossification on their own, but they can make active use more
   effective.

4.1.  Fewer Extension Points

   A successful protocol will include many potential types of
   extensions.  Designing multiple types of extension mechanisms, each
   suited to a specific purpose, might leave some extension points less
   heavily used than others.

   Disuse of a specialized extension point might render it unusable.  In
   contrast, having a smaller number of extension points with wide
   applicability could improve the use of those extension points.  Use
   of a shared extension point for any purpose can protect rarer or more
   specialized uses.

   Both extensions and core protocol elements use the same extension
   points in protocols like HTTP [HTTP] and DIAMETER [DIAMETER]; see
   Section 3.4.

4.2.  Invariants

   Documenting aspects of the protocol that cannot or will not change as
   extensions or new versions are added can be a useful exercise.
   Section 2.2 of [RFC5704] defines invariants as:

   |  Invariants are core properties that are consistent across the
   |  network and do not change over extremely long time-scales.

   Understanding what aspects of a protocol are invariant can help guide
   the process of identifying those parts of the protocol that might
   change.  [QUIC-INVARIANTS] and Section 9.3 of [TLS13] are both
   examples of documented invariants.

   As a means of protecting extensibility, a declaration of protocol
   invariants is useful only to the extent that protocol participants
   are willing to allow new uses for the protocol.  A protocol that
   declares protocol invariants relies on implementations understanding
   and respecting those invariants.  If active use is not possible for
   all non-invariant parts of the protocol, greasing (Section 3.3) might
   be used to improve the chance that invariants are respected.

   Protocol invariants need to be clearly and concisely documented.
   Including examples of aspects of the protocol that are not invariant,
   such as Appendix A of [QUIC-INVARIANTS], can be used to clarify
   intent.

4.3.  Limiting Participation

   Reducing the number of entities that can participate in a protocol or
   limiting the extent of participation can reduce the number of
   entities that might affect extensibility.  Using TLS or other
   cryptographic tools can therefore reduce the number of entities that
   can influence whether new features are usable.

   [PATH-SIGNALS] also recommends the use of encryption and integrity
   protection to limit participation.  For example, encryption is used
   by the QUIC protocol [QUIC] to limit the information that is
   available to middleboxes and integrity protection prevents



   modification.

4.4.  Effective Feedback

   While not a direct means of protecting extensibility mechanisms,
   feedback systems can be important to discovering problems.

   The visibility of errors is critical to the success of techniques
   like grease (see Section 3.3).  The grease design is most effective
   if a deployment has a means of detecting and reporting errors.
   Ignoring errors could allow problems to become entrenched.

   Feedback on errors is more important during the development and early
   deployment of a change.  It might also be helpful to disable
   automatic error recovery methods during development.

   Automated feedback systems are important for automated systems, or
   where error recovery is also automated.  For instance, connection
   failures with HTTP alternative services [ALT-SVC] are not permitted
   to affect the outcome of transactions.  An automated feedback system
   for capturing failures in alternative services is therefore necessary
   for failures to be detected.

   How errors are gathered and reported will depend greatly on the
   nature of the protocol deployment and the entity that receives the
   report.  For instance, end users, developers, and network operations
   each have different requirements for how error reports are created,
   managed, and acted upon.

   Automated delivery of error reports can be critical for rectifying
   deployment errors as early as possible, as seen in [DMARC] and
   [SMTP-TLS-REPORTING].

5.  Security Considerations

   Many of the problems identified in this document are not the result
   of deliberate actions by an adversary but more the result of
   mistakes, decisions made without sufficient context, or simple
   neglect, i.e., problems therefore not the result of opposition by an
   adversary.  In response, the recommended measures generally assume
   that other protocol participants will not take deliberate action to
   prevent protocol evolution.

   The use of cryptographic techniques to exclude potential participants
   is the only strong measure that the document recommends.  However,
   authorized protocol peers are most often responsible for the
   identified problems, which can mean that cryptography is insufficient
   to exclude them.

   The ability to design, implement, and deploy new protocol mechanisms
   can be critical to security.  In particular, it is important to be
   able to replace cryptographic algorithms over time [AGILITY].  For
   example, preparing for the replacement of weak hash algorithms was
   made more difficult through misuse [HASH].

6.  IANA Considerations

   This document has no IANA actions.
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Appendix A.  Examples

   This appendix contains a brief study of problems in a range of
   Internet protocols at different layers of the stack.

A.1.  DNS

   Ossified DNS code bases and systems resulted in new Resource Record
   Codes (RRCodes) being unusable.  A new code point would take years of
   coordination between implementations and deployments before it could
   be relied upon.  Consequently, use of the TXT record was overloaded
   in order to avoid the effort and delays involved in allocating new
   code points; this approach was used in the Sender Policy Framework
   [SPF] and other protocols.

   It was not until after the standard mechanism for dealing with new
   RRCodes [RRTYPE] was considered widely deployed that new RRCodes
   could be safely created and used.



A.2.  HTTP

   HTTP has a number of very effective extension points in addition to
   the aforementioned header fields.  It also has some examples of
   extension points that are so rarely used that it is possible that
   they are not at all usable.

   Extension points in HTTP that might be unwise to use include the
   extension point on each chunk in the chunked transfer coding
   (Section 7.1 of [HTTP11]), the ability to use transfer codings other
   than the chunked coding, and the range unit in a range request
   (Section 14 of [HTTP]).

A.3.  IP

   The version field in IP was rendered useless when encapsulated over
   Ethernet, requiring a new EtherType with IPv6 [RFC2464], due in part
   to Layer 2 devices making version-independent assumptions about the
   structure of the IPv4 header.

   Protocol identifiers or code points that are reserved for future use
   can be especially problematic.  Reserving values without attributing
   semantics to their use can result in diverse or conflicting semantics
   being attributed without any hope of interoperability.  An example of
   this is the 224/3 address space in IPv4 that [RFC0791] reserved
   without assigning any semantics.  [RFC1112] partially reclaimed that
   reserved address space for use in multicast (224/4), but the
   remaining address space (240/4) has not been successfully reclaimed
   for any purpose.

   For protocols that can use negotiation to attribute semantics to
   values, it is possible that unused code points can be reclaimed for
   active use, though this requires that the negotiation include all
   protocol participants.  For something as fundamental as addressing,
   negotiation is difficult or even impossible, as all nodes on the
   network path plus potential alternative paths would need to be
   involved.

   IP Router Alerts [RAv4][RAv6] use IP options or extension headers to
   indicate that data is intended for consumption by the next-hop router
   rather than the addressed destination.  In part, the deployment of
   router alerts was unsuccessful due to the realities of processing IP
   packets at line rates, combined with bad assumptions in the protocol
   design about these performance constraints.  However, this was not
   exclusively down to design problems or bugs, as the capability was
   also deliberately blocked at some routers.

A.4.  SNMP

   As a counter example, the first version of the Simple Network
   Management Protocol (SNMP) [SNMPv1] states that unparseable or
   unauthenticated messages are simply discarded without response:

   |  It then verifies the version number of the SNMP message.  If there
   |  is a mismatch, it discards the datagram and performs no further
   |  actions.

   When SNMP versions 2, 2c, and 3 came along, older agents did exactly
   what the protocol specifies.  Deployment of new versions was likely
   successful because the handling of newer versions was both clear and
   simple.

A.5.  TCP

   Extension points in TCP [TCP] have been rendered difficult to use
   largely due to middlebox interactions; see [EXT-TCP].

   For instance, multipath TCP ([MPTCP]) can only be deployed
   opportunistically; see [MPTCP-HOW-HARD].  Since MPTCP is a protocol
   enhancement that doesn’t impair the connection if it is blocked,
   network path intolerance of the extension only results in the



   multipath functionality becoming unavailable.

   In comparison, the deployment of TCP Fast Open ([TFO]) critically
   depends on extension capability being widely available.  Though very
   few network paths were intolerant of the extension in absolute terms,
   TCP Fast Open could not be deployed as a result.

A.6.  TLS

   Transport Layer Security (TLS) [TLS12] provides examples of where a
   design that is objectively sound fails when incorrectly implemented.
   TLS provides examples of failures in protocol version negotiation and
   extensibility.

   Version negotiation in TLS 1.2 and earlier uses the "Highest mutually
   supported version (HMSV)" scheme exactly as it is described in
   [EXTENSIBILITY].  However, clients are unable to advertise a new
   version without causing a non-trivial proportion of sessions to fail
   due to bugs in server and middlebox implementations.

   Intolerance to new TLS versions is so severe [INTOLERANCE] that TLS
   1.3 [TLS13] abandoned HMSV version negotiation for a new mechanism.

   The server name indication (SNI) [TLS-EXT] in TLS is another
   excellent example of the failure of a well-designed extensibility
   point.  SNI uses the same technique for extensions that is used
   successfully in other parts of the TLS protocol.  The original design
   of SNI anticipated the ability to include multiple names of different
   types.

   SNI was originally defined with just one type of name: a domain name.
   No other type has ever been standardized, though several have been
   proposed.  Despite an otherwise exemplary design, SNI is so
   inconsistently implemented that any hope for using the extension
   point it defines has been abandoned [SNI].
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